
mTreebone: A Hybrid Tree/Mesh Overlay for Application-Layer Live Video
Multicast

Feng Wang1∗, Yongqiang Xiong2, Jiangchuan Liu1†

1School of Computing Science
Simon Fraser University
Burnaby, B.C. Canada
{fwa1, jcliu}@cs.sfu.ca

2Wireless and Networking Group
Microsoft Research Asia

Beijing, China
yqx@microsoft.com

Abstract

Application-layer overlay networks have recently
emerged as a promising solution for live media multicast
on the Internet. A tree is probably the most natural
structure for a multicast overlay, but is vulnerable in the
presence of dynamic end-hosts. Data-driven approaches
form a mesh out of overlay nodes to exchange data, which
greatly enhances the resilience. It however suffers from an
efficiency-latency tradeoff, given that the data have to be
pulled from mesh neighbors with periodical notifications.

In this paper, we suggest a novel hybrid tree/mesh design
that leverages both overlays. The key idea is to identify a set
of stable nodes to construct a tree-based backbone, called
treebone, with most of the data being pushed over this back-
bone. These stable nodes, together with others, are further
organized through an auxiliary mesh overlay, which facili-
tates the treebone to accommodate node dynamics and fully
exploit the available bandwidth between overlay nodes.

This hybrid design, referred to as mTreebone, is braced
by our real trace studies, which show strong evidence that
the performance of an overlay closely depends on a small
set of backbone nodes. It however poses a series of unique
and critical design challenges, in particular, the identifica-
tion of stable nodes and seamless data delivery using both
push and pull methods. In this paper, we present optimized
solutions to these problems, which reconcile the two over-
lays under a coherent framework with controlled overhead.
We evaluate mTreebone through both simulations and Plan-
etLab experiments. The results demonstrate the superior ef-

∗This work was mainly performed when Feng Wang was a visiting stu-
dent at Microsoft Research Asia.

†J. Liu’s work was supported by a Canadian NSERC Discovery Grant,
an NSERC Research Tools and Instruments Grant, a Canada Foundation
for Innovation (CFI) New Opportunities Grant, a BCKDF Matching Grant,
and an SFU President’s Research Grant.

ficiency and robustness of this hybrid solution.

1. Introduction

Large-scale live video multicast is one of the most at-
tractive network applications, which unfortunately has yet
to be fulfilled over the Internet. Earlier proposals attempted
to use IP multicast as the underlying vehicle. While IP mul-
ticast is efficient, its deployment remains limited in reach
and scope due to many practical and political issues. Re-
cently, focus has been shifted to the use of application-
layer overlays for multicast data delivery, where end-hosts
act as not only receivers but also relays to forward the re-
ceived data to others [6]. This peer-to-peer solution en-
ables quick and easy deployment of multicast applications,
for there is no involvement of routers. Nevertheless, a
new set of challenges have to be addressed in this commu-
nication paradigm, in particular, the dynamics of the au-
tonomous end-hosts. The high data volume and stringent
timing requirements of video applications further compli-
cate the overlay design.

A large body of application-layer multicast proposals
suggest the end-hosts be organized into a tree for data de-
livery [3][6][13]. This is probably the most natural and ef-
ficient structure in terms of bandwidth and delay optimiza-
tion. The tree structure, however, is vulnerable to dynamics,
and the leave or failure of a node, particularly one close to
the source, may cause data outage in all its descendants.
The tree thus has to repair frequently, which brings extra
costs and renders the structure to be sub-optimal.

A possible enhancement to the single tree structure is to
employ multiple disjoint trees [5][15][18], each of which
delivering a sub-stream of the video. While the multi-tree
can remarkably improve resilience, it is more complex to be
constructed and maintained. Optimizing the multiple trees

as a whole without violating the disjoint property can be
quite difficult in the presence of dynamic nodes [4][14].

Recently, data-driven randomized overlays have been
proposed as an alternative solution with better re-
silience [11][10][16][23]. Such systems essentially con-
struct a mesh out of overlay nodes, where each node in-
dependently selects some other nodes as neighbors and ex-
changes data with them. A drastic difference between the
tree and the mesh overlays lies in their data delivery strate-
gies. In a tree or multi-tree, a video stream is basically
pushed along well-defined routes, i.e., from parents to their
children. In a mesh, given that multiple and dynamic neigh-
bors may have video data available to send, a node has to
pull data to avoid significant redundancies. A mesh-based
system is therefore more robust, but experiences longer de-
lays and higher control overhead. More explicitly, there is
an efficiency-latency tradeoff [19][22]: if the mesh nodes
choose to send notifications for every data block arrival, the
overhead will be excessive; Periodical notifications contain-
ing buffer maps within a sliding window, as suggested in
[16][23], reduce the overhead, but increase the latencies.

In this paper, we present a novel approach toward a hy-
brid overlay design. The key idea is to identify a set of sta-
ble nodes to construct a tree-based backbone, called tree-
bone, with most of the data being pushed over this back-
bone. These stable nodes, together with others, are further
organized through an auxiliary mesh overlay, which facili-
tates the treebone to accommodate dynamic nodes and also
to fully explore the available bandwidth between node pairs.

Our design, referred to as mTreebone, is largely mo-
tivated by a series of trace studies of a practical overlay
streaming system[20]. Our results provide strong evidence
that most of the data blocks delivered through a mesh over-
lay essentially follow a specific tree structure or a small set
of trees. The similarity of the trees, defined as the fraction
of the common links, can be as high as 70%. The over-
lay performance thus closely depends on the set of com-
mon internal nodes and their organization. If such a set
consists mainly of the stable nodes, with others being or-
ganized through a mesh, we can expect high efficiency with
low overhead and delay simultaneously.

In this hybrid tree/mesh design, however, a series of
unique and important issues need to be addressed. First, we
have to identify the stable nodes in an overlay, and gradu-
ally build up the treebone; Second, we need to reconcile the
push and pull data delivery in the two overlays, respectively.
They should work complementarily to maximize the joint
efficiency in the presence of autonomous nodes. In this pa-
per, we derive an optimal age threshold for identifying sta-
ble nodes, which maximizes their expected service times in
the treebone. We then propose a set of overlay construction
and evolution algorithms to enable seamless treebone/mesh
collaboration with minimized control overhead and trans-

mission delay. Finally, we present a buffer partitioning and
scheduling algorithm, which coordinates push/pull opera-
tions and avoids data redundancy.

We extensively evaluate the performance of mTreebone
and compare it with existing mesh and tree based solutions.
The simulation results demonstrate the superior efficiency
and robustness of this hybrid solution. Such results are reaf-
firmed by our experimental results of an mTreebone proto-
type over the PlanetLab network [1].

The remainder of this paper is organized as follows: In
Section 2, we introduce the background and related work.
Section 3 summarizes our trace studies and overviews the
framework of mTreebone. Details about treebone evolu-
tion and its interactions with the mesh are discussed in Sec-
tions 4 and 5, respectively. We evaluate the performance of
mTreebone in Section 6. Finally, Section 7 concludes the
paper and offers potential future research directions.

2. Background and Related Work

Many application-layer multicast protocols have been
proposed for media streaming, which can be broadly clas-
sified into two categories according to their overlay struc-
tures [13][14], namely, tree-based and mesh-based. The
former, like IP Multicast, uses a tree rooted at the source as
the data delivering structure; typical examples include ESM
[6] and NICE [3]. However, unlike IP multicast with dedi-
cated routers, the nodes in an application-layer overlay are
autonomous end-hosts, which join or leave at will or crash
without notification. Later studies, e.g., SplitStream [5],
CoopNet [15] and THAG [18], rely on multiple disjoint
trees to mitigate the impact of such overlay churns. Re-
cently, an robust yet simple alternative, data-driven design,
is proposed. It essentially constructs a mesh out of the over-
lay nodes, with each node having a small set of neighbors to
exchange data. Examples include Bullet [11], Bullet’ [10],
Chainsaw [16], CoolStreaming [23] and AnySee [12].

Both tree/multi-tree and mesh solutions have shown their
success in practical deployment[13], and yet neither com-
pletely overcomes the challenges from the dynamic peer-
to-peer environment. The selling point for the data-driven
mesh overlays is their robustness, but the lack of a well-
ordered parent/children relation implies that data have to be
pulled from neighbors, which suffers the efficiency-latency
tradeoff as discussed before. The push delivery in a tree is
efficient, but has to face data outage in descendants when
an internal node fails. The pre-defined flow direction also
prevents the overlay from fully utilizing the bandwidth be-
tween node pairs, e.g., that between two leaf nodes.

Given the pros and cons of the two approaches, a natu-
ral question is whether we can combine them to realize a
hybrid overlay that is both efficient and resilient. An early
attempt toward such combination is HON [24], which fo-

(b)

B

A

D
E

(a)

B

A
C

D
E

Treebone

Stable Node Unstable Node
Push Data Pull Data
Neighborhood

Source

Outskirts
......

C

......
......

Source

Figure 1. mTreebone framework. (a) A hybrid
overlay; (b) Handling node dynamics.

cuses on on-demand streaming. For live streaming, a recent
work is ChunkySpread [19]. Our work differs in that we ex-
plicitly classify stable and transient nodes, and focus on the
effective use of stable nodes. We demonstrate that a tree-
bone consisting purely of stable nodes remarkably boosts
the overlay performance.

3. Overview of mTreebone

We consider a live video streaming system using
application-layer multicast. There is a single dedicated
source node, which is persistent during the streaming ses-
sion. The video stream, originated from the source, is di-
vided into equal-length blocks. The clients that are inter-
ested in the video form an overlay network rooted at the
source, and each overlay node, except for the source, acts
both as a receiver and, if needed, an application-layer relay
that forwards data blocks. In addition, these nodes can join
and leave the overlay at will, or crash without notification.

The primary issue for building such a system lies in the
construction of a resilient overlay structure with low over-
head and short delay. In our proposed mTreebone, we ad-
vocate a hybrid tree/mesh overlay design that combines the
best features of both approaches to meet such demands.

3.1. Treebone: A Stable Backbone Overlay

The core of our design is a tree-based backbone, referred
to as treebone. Unlike existing tree-based approaches, this
backbone consists of only a subset of the nodes, in partic-
ular, the stable nodes. Other non-stable nodes are attached
to the backbone as outskirts. Most of the streaming data
are pushed through the treebone and eventually reach the
outskirts, as shown in Fig. 1.

It is worth noting that even a small set of stable nodes
is sufficient to support the entire overlay. As an illustra-
tion, consider a simple K-ary tree of height H . The frac-
tion of its internal nodes, i.e., those belong to the backbone,

is no more than 1/K if the tree is complete and balanced
(
∑H−2

i=0 Ki/
∑H−1

i=0 Ki < 1
K). As such, the construction

and maintenance overheads for the treebone are relatively
low, particularly considering its nodes are stable, while the
data delivery is efficient.

The critical question here is thus how to identify stable
nodes. Recent studies have found that, in overlay multicast
systems, nodes with a higher age tend to stay longer [4].
It offers a hint to identify stable nodes by periodically ex-
amining their ages. With this hint, we devise an optimal
threshold-based method, which is discussed in Section 4.1.

3.2. Mesh: An Adaptive Auxiliary Overlay

The treebone, however, cannot completely eliminate re-
pairing operations because the nodes are not absolutely per-
sistent. In addition, the potential bandwidth between the
unstable nodes are largely ignored by the treebone.

To improve the resilience and efficiency of the treebone,
we further organize all the nodes into a mesh overlay. Sim-
ilar to CoolStreaming [23], in this auxiliary mesh overlay,
each node keeps a partial list of the active overlay nodes
and their status. This local list facilitates the node to lo-
cate a set of mesh neighbors as well as its dedicated tree-
bone parent. To keep the list updated, a light-weighted,
scalable, random gossip algorithm, SCAMP [7], is used for
the nodes to periodically exchange their status information.
The mesh neighbors also periodically exchange their buffer
maps. Unlike existing data-driven systems, a node will not
actively schedule to fetch data blocks from neighbors using
such data availability information. Such a fetch is invoked
only if data outage occurs in the treebone.

Fig. 1(a) illustrates this hybrid mTreebone design. When
an unstable node, such as node A fails or leaves, it will
not affect the data pushed along the treebone. On the other
hand, the treebone nodes are stable and seldom leave; even
a leave happens, the impact can be remarkably mitigated
with the help from the mesh overlay. For example, consider
the leave of node B, shown in Fig 1(b). While node C is
affected, it can easily pull the missing data from its mesh
neighbors before it re-attaches to the treebone.

4. Treebone Construction and Optimization

To realize such a hybrid overlay for live streaming, a se-
ries of unique and important issues have to be addressed.
First, we have to identify the stable nodes in the overlay;
Second, we have to position the stable nodes to form the
treebone, which should also evolve to optimize its data de-
livery; Third, we have to reconcile the treebone and the
mesh overlays, so as to fully explore their potentials. In
this section, we present our solutions for the construction

and optimization of the treebone. Its interactions with the
mesh will be detailed in the next section.

4.1. Optimal Stable Node Identification

Intuitively, the stability of a node is proportional to
its duration in the overlay, which unfortunately cannot be
known before the node actually leaves. We thus resort to a
practical prediction using a node’s age in the session, i.e.,
the time elapsed since its arrival. As mentioned earlier, ex-
isting studies have shown that the nodes already with higher
ages tend to stay longer [4]; hence, a node’s age partially re-
flects its stability, and if its age is above a certain threshold,
a node can be considered stable and moved into the tree-
bone. Once a stable node is in the treebone, it remains there
until it leaves or the session ends.

The effectiveness of the treebone clearly depends on the
age threshold. If the threshold is too low, many unstable
nodes would be included in the treebone; on the other hand,
given a high threshold, few nodes could be considered sta-
ble. Our objective is thus to optimize the Expected Service
Time (EST) of a treebone node by selecting an appropriate
age threshold.

Let f(x) be the probability distribution function (PDF)
of node duration, and L be the length of the session. Since
a node starts serving in the treebone when its age exceeds
the corresponding threshold, for a treebone node arriving
at time t, its expected service time EST (t) can be calcu-
lated as the expected duration minus the corresponding age
threshold, T (t), i.e.,

EST (t) =

∫ L−t

T (t)
xf(x)dx +

∫ ∞
L−t

(L − t)f(x)dx
∫ ∞

T (t)
f(x)dx

− T (t)

Previous studies on video client behavior have suggested
that node durations generally follow a heavy-tailed distribu-
tion [2][17][20], in particular, the Pareto distribution with
parameters k and xm (k is a shape parameter that deter-
mines how skew the distribution is, and xm is a location
parameter that determines where the distribution starts).
Given this model, we have the following expression,

EST (t) =
T (t)
k − 1

[1 − (
T (t)
L − t

)k−1]

To maximize EST (t) with respect to T (t), we have

EST (t)′T (t) =
1

k − 1
− k

k − 1
(

T (t)
L − t

)k−1 = 0,

which follows that T ∗(t) = (L − t)(
1
k

)
1

k−1 .

For the typical k value close to 1, EST (t) is maximized
when T (t) is roughly about 0.3(L − t). In other words, the
age threshold for a node arriving at time t is 30% of the

18

0
0

5 5
7

6

17

10
12

2

610

Source

14 16
11 14 11

13

Treebone

Outskirts

12

Figure 2. An example of treebone evolution.
Numeric labels indicate node arrival times.

residual session length. This is the default setting used in
our experiments. In practice, we can also online estimate k
and adjust the threshold accordingly.

4.2. Treebone Bootstrapping and Evolution

Given the optimal age threshold, we now discuss how the
nodes evolve into a stable treebone. We assume that initially
only the source node is in the treebone. Each newly joined
node obtains L and t from the source, as well as a partial
list of existing overlay nodes, at least one of which is in the
treebone. The new node then attaches itself to one of the
treebone nodes and locates mesh neighbors using the list.

If a node is not in the treebone, it will periodically check
its own age in the overlay. Once its age exceeds the thresh-
old T (t), it will promote itself as a treebone node. Fig. 2
shows an example, where the numeric label of each node is
its arrival time.

In this basic promotion method, before time T (0), no
node but the source is included in the treebone, which re-
duces the efficiency of data delivery in this period. To al-
leviate this problem, we introduce a randomized promo-
tion for the initial period of the session. For a node arriv-
ing at time t, the algorithm strikes to achieve a probabil-
ity s/T (t) for the node to be in the treebone when its age
is s. Specifically, each non-treebone node independently
checks its status per unit time; for the s-th check (i.e., at
time t + s), it will be promoted to the treebone with prob-
ability 1/(T (t) − s + 1) (and 0 for s = 0). Such an early
promotion will speed up the establishment of the treebone.
And it is fully distributed with no extra message exchange
among the overlay nodes. In addition, as suggested by ob-
servations from [8], the built-in randomness of the promo-
tion will also reduce the churn of the treebone.

4.3. Treebone Optimization

The treebone constructed by the above basic algorithm
does not necessarily minimize the latency for data delivery.
In particular, two non-optimal substructures could exist, as
shown in Fig. 3 and 4. In the first case, a node has more

children than its parent, and a swap of them can reduce the
average depth of the treebone nodes. In the second case, a
treebone node closer to the source may still be able to accept
new children; a node can use this chance to reduce its depth
in the treebone. We now introduce two localized algorithms
that implement such optimizations.

High-Degree-Preemption. Each treebone node x peri-
odically checks whether it has more children than a node
that is closer to the source in the treebone. Such a node,
referred to as y, could either be the parent of x in the tree-
bone, or a node known from x’s local node list. If so, node
x will then preempt y’s position in the treebone, and y will
re-join the treebone. In practice, y can simply attach itself
to x, as illustrated in Fig. 3.

Low-Delay-Jump. Each treebone node x periodically
checks whether there are nodes closer to the source than
its parent. If so and one such node, say y, has enough band-
width to support a new child, node x will leave its original
parent and attach itself to y as a child, as illustrated in Fig. 4.

The above two algorithms will be executed by the over-
lay nodes iteratively until no node can further locate can-
didates for swapping. The average depth of the treebone
nodes is monotonically decreasing in the iterations, lead-
ing to a minimal average depth. More explicitly, we have
the following theorem to show the minimal average depth
is actually minimum:

Theorem 4.1 The average depth of the treebone is min-
imized when high-degree-preemption and low-delay-jump
terminate at all treebone nodes.

Due to the concern of space, we omit the proof here. A full
version of the proof can be found in [21].

5. Collaborative Push/Pull Data Delivery

We next discuss the collaboration between the treebone
and the mesh within the mTreebone framework. Such col-
laboration reflects in two aspects, namely, delivering video
data and handling node dynamics.

5.1. Seamless Push/Pull Switching

In mTreebone, the data blocks are delivered by two
means. In general, they are pushed over the treebone. And
if a gap appears in the stream received by a node, due to
either temporal capacity fluctuation in the treebone or node
dynamics as discussed later, the node may pull the missed
blocks through the mesh overlay. We introduce a seamless
push/pull buffer that coordinates the treebone and the mesh
to make data delivery efficient yet resilient against failure.

Fig. 5 illustrates the push/pull switching, where a tree-
push pointer is used to indicate the latest data block deliv-
ered by the push method, and a mesh-pull window facilitates

the pull delivery. When a node is temporarily disconnected
from the treebone, its tree-push pointer will be disabled and
only the mesh-pull window works to fetch data from its
mesh neighbors. When it connects to the treebone again, the
tree-push pointer will be re-activated. The mesh-pull win-
dow is always kept behind the tree-push pointer so as not
to request data currently being delivered by the treebone.
Therefore, no duplicated data blocks are received from both
treebone and mesh.

5.2. Handling Node Dynamics

A node may gracefully leave the overlay, or abruptly fail
without any notification. In the former, the node will proac-
tively inform its mesh neighbors and its treebone children
if it resides in the treebone. In the latter, the abrupt leave
can be detected by the mesh neighbors after a silent period
with no control message exchange, or by the children in the
treebone after observing persistent losses. In either case,
its mesh neighbors need to re-establish neighborships with
other known nodes in their local node lists, and, if the node
is in the treebone, its children have to relocate parents.

If the affected child is an unstable node in the outskirts
of the treebone, it will check its local node list and directly
attach to one node that is nearest to the source with enough
available bandwidth. On the other hand, if it is a stable
node, it has to re-join the treebone. To this end, the node
will first locate a treebone node with enough available band-
width and then attach itself. If no such treebone node is
known, the node needs to preempt the position of an unsta-
ble node that is currently a child of a treebone node.

In the above process, mesh overlay will temporarily take
over data delivery before the treebone is repaired, as dis-
cussed previously. Our simulation and experimental results
demonstrate that this 2-tier overlay effectively reduce data
losses in the tree repairing process. Meanwhile, its control
overhead is kept at a reasonable level, which is lower than
relying on a mesh only.

6. Performance Evaluation

To evaluate mTreebone, we have conducted extensive
simulations and PlanetLab-based experiments. We have
also implemented two state-of-the-art application layer
multicast systems for comparison, namely, CoolStream-
ing [23] and ChunkySpread [19]. The former is a typical
data-driven mesh system, and the latter is a multi-tree sys-
tem, which also adopts an auxiliary neighboring graph to
facilitate tree construction.

In our evaluation and comparison, we use the following
three typical metrics, which combined reflect the quality of
service experienced by overlay nodes.

y

x

z

y

x

z

Figure 3. An illustration of
high-degree-preemption.

y

x

y

x

Figure 4. An illustration
of low-delay-jump.

Playback Pointer

Mesh-pull Window

Tree-push Pointer

Time

Figure 5. Design of the push/pull
switch buffer.

Startup latency, which is the time taken by a node
between its requesting to join the session and receiving
enough data blocks to start playback;

Transmission delay, which is the time to deliver a data
block from the source to the node. Due to the buffer-and-
relay nature in overlay networks, the end-to-end transmis-
sion delay is orders of magnitude higher than that in IP mul-
ticast, thus we use second as the unit, as for startup latency;

Data loss rate, which is defined as the fraction of the
data blocks missing their playback deadlines, i.e., either lost
during transmission or experienced excessive delays.

We adopt a dynamic scenario for the evaluation, where
the overlay nodes arrive at different times and may also
leave or fail before the session ends. As discussed in Section
4.1, we use the Pareto distribution to model the durations of
the nodes in a session, which is also suggested by many em-
pirical trace studies [2][17]. The default parameters of the
distribution are adopted from the recently modeling work
for peer-to-peer streaming in [4] as well as trace studies of
PPLive, a popular commercial peer-to-peer streaming sys-
tem [9][20]. We also investigate the impact of other param-
eter settings, in particular, that for the skew factor k, which
reflects the churn rate of the clients.

6.1. Simulation Results

Unless otherwise specified, the following default param-
eters are used in our simulation, most of which follow the
typical values reported in [2][9][20]. The session length L
is set to 6000 seconds and each data block is of 1-second
video; there are 5000 overlay nodes; the maximum end-to-
end delay is 1000 ms between two overlay nodes, and the
maximum upload bandwidth is uniformly distributed from
4 to 12 times of the bandwidth required for a full streaming.
For comparison, the number of partners in CoolStreaming
is set to 5 and the number of substreams in ChunkySpread is
set to 16. The details about these two parameters and their
setting guidelines can be found in [23][19], respectively.

We set the default age threshold T (t) to 30% of the resid-
ual session length, which corresponds to the optimal setting
(see Section 4.1) when k is close to 1. We will also examine
other settings of T (t) as well as the impact of k.

Fig. 6 shows the CDF of the startup latency. We can see

that mTreebone has the lowest latency, followed by Cool-
Streaming and then by ChunkySpread. This is because,
when two events (join and leave) occur closely, the tree re-
pair process in ChunkySpread may delay the newly joined
node from receiving data. In addition, the new node needs
to receives sub-streams across multiple trees to assemble
the original stream, which further increases the delay. A
CoolStreaming node, however, has to locate multiple mesh
neighbors and establish relations, and the data pull oper-
ation also slows down the process. On the other hand, a
new node in mTreebone can receive data in the tree struc-
ture even before establishing the mesh neighborship, and
the high-degree-preemption and low-delay-jump minimize
the delay of the treebone. Similar reasons also explain the
results of transmission delay in Fig. 7. The data loss rate
for the three systems are given by Fig. 8. mTreebone also
outperforms CoolStreaming and ChunkySpread, validating
the advantage of the hybrid design.

Fig. 9 shows the data loss rate in mTreebone with dif-
ferent age threshold. Although the data loss rates are gener-
ally below 1% for a wide range of thresholds, the minimal
appears at 30% of the residual session length, which cor-
responds to the optimal threshold setting. Also, we have
conducted simulations with different k values. In general,
a larger k means the overlay is of a higher churn rate, i.e.,
more dynamic. We show the data loss rate of mTreebone as
a function of k in Fig. 10. When k is no greater than 1.5,
our mTreebone is fairly stable, and the default value of 1 is
thus representative for performance evaluation. It is worth
noting that, although the data loss rate noticeably increases
for k over 1.5, it remains less than 2%, implying that our
hybrid design resists to node dynamics well.

6.2. PlanetLab-based Experimental Results

To further investigate the performance of mTreebone, we
have implemented a prototype and conducted experiments
on the PlanetLab. Besides the three typical metrics for over-
lay nodes, we also examine the cost of the whole system
in such a real network, i.e., the message overhead to con-
struct, maintain, and repair the overlay. When a mesh is ap-
plied, the overhead also includes the messages to exchange
data availability and to request blocks from neighbors. Such

0 50 100 150
0

20

40

60

80

100

Startup Latency (sec.)

P
er

ce
nt

ile

ChunkySpread
CoolStreaming
mTreebone

Figure 6. CDF of
startup latency (sim-
ulation).

0 50 100 150 200
0

20

40

60

80

100

Playback Delay (sec.)

P
er

ce
nt

ile

ChunkySpread
CoolStreaming
mTreebone

Figure 7. CDF of
transmission delay
(simulation).

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Data Loss Rate

P
er

ce
nt

ile

ChunkySpread
CoolStreaming
mTreebone

Figure 8. CDF of data
loss (simulation).

900 1200 1500 1800 2100 2400
4

4.5

5

5.5

6

6.5
x 10

−3

Age Threshold (sec.)

D
at

a
Lo

ss
 R

at
e

Figure 9. Avg. data
loss w/ different T (t)
(simulation).

0.6 0.8 1 1.2 1.5 1.8 2
4

6

8

10

12

14
x 10

−3

k Value

D
at

a
Lo

ss
 R

at
e

Figure 10. Avg. data
loss w/ different k
(simulation).

0 120 240 360 480
0.03

0.04

0.05

0.06

0.07

0.08

0.09

Age Threshold (sec.)

D
at

a
Lo

ss
 R

at
e

Figure 11. Avg. data
loss w/ different T (t)
(PlanetLab).

10 20 30 40 50 60 70
0

20

40

60

80

100

Startup Latency (sec.)

P
er

ce
nt

ile

SingleTree
CoolStreaming
mTreebone

Figure 12. CDF
of startup latency
(PlanetLab).

0 50 100 150 200 250
0

20

40

60

80

100

Playback Delay (sec.)

P
er

ce
nt

ile

SingleTree
CoolStreaming
mTreebone

Figure 13. CDF of
transmission delay
(PlanetLab).

messages are generally of small sizes, but their excessive to-
tal number could still impose heavy load to routers. Hence,
in our evaluation, we use the total number of the control
messages as the metric to measure their impact.

In each experiment, we let 200 PlanetLab nodes stay in
the session following the Pareto distribution. To accumulate
enough join and leave events for evaluation, we also allow
a node to re-join the overlay after it leaves the overlay for
a while. We first vary the age threshold to see its impact
on data loss rate. The result is shown in Fig. 11, where
the threshold at 30% again leads to the minimum loss rate.
Hence, we still use it as the default setting in mTreebone.

Figs. 12–14 give the results of startup latency, transmis-
sion delay, and data loss rate of mTreebone. For compar-
ison, we also implement CoolStreaming and a single tree
based system, and present their respective results in the fig-
ures. From these results, we can see that the startup la-
tency of mTreebone is very close to that of the tree-based
approach, and is much lower than that of CoolStreaming.
Similar observation applies to transmission delay. On the
other hand, mTreebone and CoolStreaming both have much
lower data loss rates, as compared to the single tree. Com-
paring with the simulation results, the data loss rates on the
PlanetLab are generally higher. This is due to the influences
of background traffic.

Fig. 15 compares the control overhead of the three sys-
tems. It is not surprising that mTreebone has a higher over-
head than the single tree; but, even though mTreebone has to

maintain two overlays, its overhead is still lower than Cool-
Streaming. This result suggests that the stable treebone is
the major delivery path in mTreebone. Also the total traf-
fic volume of the (small) control messages are indeed quite
low, which generally less than 1% of the total data traffic
of mTreebone in our experiments. We thus believe that the
control overhead of mTreebone is acceptable.

To further demonstrate the resilience of mTreebone
against node dynamics, Fig. 16 shows the data loss rates for
different values of k. The results reaffirm that mTreebone is
quite stable for a wide range of churn levels.

7. CONCLUSION AND FUTURE WORK

In this paper, we explored the opportunity to leverage
both tree and mesh approaches within a hybrid framework,
mTreebone. We presented effective and coherent solutions
to reconcile the two overlays in the mTreebone framework.
Specifically, we derived an optimal age threshold to iden-
tify stable nodes, which maximizes their expected service
time in the treebone. We designed a set of overlay construc-
tion and evolution algorithms, which minimize the startup
and transmission delays. Finally, we gave a buffer parti-
tioning and scheduling algorithm, which enables seamless
treebone/mesh collaboration in data delivery.

We extensively evaluated the performance of mTreebone
and compared it with existing mesh and tree based solu-

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Data Loss Rate

P
er

ce
nt

ile

SingleTree
CoolStreaming
mTreebone

Figure 14. CDF of
data loss (Planet-
Lab).

SingleTree CoolStreaming mTreebone
0

1

2

3

4

5

6
x 10

5

of

 M
es

sa
ge

s

Data Message
Control Message

Figure 15. Message
overhead (Planet-
Lab).

0.6 0.8 1 1.5 2
0.03

0.035

0.04

0.045

0.05

0.055

K Value

D
at

a
Lo

ss
 R

at
e

Figure 16. Avg. data
loss w/ different k
(PlanetLab).

tions. The simulation results demonstrated the superior ef-
ficiency and robustness of this hybrid solution, which were
further validated by our experiments of an mTreebone pro-
totype over the PlanetLab network.

It is worth emphasizing that diverse optimization tech-
niques could be carried over the treebone, for its rela-
tively smaller scale and inherent stability. In our future
work, we plan to examine advanced node organization/re-
organization methods to further improve its efficiency and
its interactions with the mesh. We will also explore the use
of multi-tree-based backbone, which may lead to more bal-
anced load and finer-grained bandwidth control. Finally, we
are interested in experiments of larger scales with our pro-
totype as well as real deployment over the global Internet.

References

[1] PlanetLab Website: http://www.planet-lab.org/.
[2] K. C. Almeroth and M. H. Ammar. Collecting and model-

ing the join/leave behavior of multicast group members in
the mbone. In IEEE International Symposium on High Per-
formance Distributed Computing (HPDC), 1996.

[3] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scal-
able application layer multicast. In ACM SIGCOMM, 2002.

[4] M. Bishop, S. Rao, and K. Sripanidkulchai. Considering
priority in overlay multicast protocols under heterogeneous
environments. In IEEE INFOCOM, 2006.

[5] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Row-
stron, and A. Singh. Splitstream: High-bandwidth multicast
in cooperative environments. In ACM SOSP, 2003.

[6] Y. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. In ACM SIGMETRICS, 2000.

[7] A. J. Ganesh, A. M. Kermarrec, and L. Massoulie. Peer-to-
peer membership management for gossip-based protocols.
IEEE Transactions on Computers, (2):139–149, February
2003.

[8] P. B. Godfrey, S. Shenker, and I. Stoica. Minimizing churn
in distributed systems. In ACM SIGCOMM, 2006.

[9] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross. Insights into
pplive: A measurement study of a large-scale p2p iptv sys-
tem. In Workshop on Internet Protocol TV (IPTV) services
over World Wide Web, 2006.

[10] D. Kostic, R. Braud, C. Killian, E. Vandekieft, J. W. An-
derson, A. C. Snoeren, and A. Vahdat. Maintaining high
bandwidth under dynamic network conditions. In USENIX
Anual Technical Conference, 2005.

[11] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:
High bandwidth data dissemination using an overlay mesh.
In ACM SOSP, 2003.

[12] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng. Anysee:
Peer-to-peer live streaming. In IEEE INFOCOM, 2006.

[13] J. Liu, S. G. Rao, B. Li, and H. Zhang. Opportunities and
challenges of peer-to-peer internet video broadcast. In Pro-
ceedings of the IEEE, 2007.

[14] N. Magharei, R. Rejaie, and Y. Guo. Mesh or multiple-tree:
A comparative study of p2p live streaming services. In IEEE
INFOCOM, 2007.

[15] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and
K. Sripanid-kulchai. Distributed streaming media content
using cooperative networking. In ACM NOSSDAV, 2002.

[16] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E.
Mohr. Chainsaw: Eliminating trees from overlay multicast.
In IPTPS, 2005.

[17] K. Sripanidkulchai, B. Maggs, and H. Zhang. An analysis of
live streaming workloads on the internet. In Internet Mea-
surement Conference, 2004.

[18] R. Tian, Q. Zhang, Z. Xiang, Y. Xiong, X. Li, and W. Zhu.
Robust and efficient path diversity in application-layer mul-
ticast for video streaming. IEEE Transactions on Circuits
and Systems for Video Technology, 15(8):961–972, August
2005.

[19] V. Venkataraman, P. Francis, and J. Calandrino.
Chunkyspread: Multi-tree unstructured peer-to-peer
multicast. In IPTPS, 2006.

[20] F. Wang and J. Liu. A trace-based analysis of packet flows
in data-driven overlay networks. Technical report, 2006.

[21] F. Wang, Y. Xiong, and J. Liu. mTreebone: A hybrid P2P
multicast framework for live streaming. Technical report,
2006.

[22] M. Zhang, J.-G. Luo, L. Zhao, and S.-Q. Yang. A peer-to-
peer network for live media streaming – using a push-pull
approach. In ACM Multimedia, 2005.

[23] X. Zhang, J. Liu, B. Li, and T. P. Yum. Coolstream-
ing/donet: A data-driven overlay network for efficient live
media streaming. In IEEE INFOCOM, 2005.

[24] M. Zhou and J. Liu. A hybrid overlay network for video-on-
demand. In IEEE ICC, 2005.

