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McGill University, Montréal, Québec, Canada; b Graduate School of Information Science and
Technology, Hokkaido University, Japan

ARTICLE HISTORY

Compiled October 29, 2019

ABSTRACT

We describe mts, a generic framework for parallelizing certain types of tree search
programs including reverse search, backtracking, branch and bound and satisfiability
testing. It abstracts and generalizes the ideas used in parallelizing lrs, a reverse search
code for vertex enumeration. mts supports sharing information between processes
which is important for applications such as satisfiability testing and branch-and-
bound. No parallelization is implemented in the legacy single processor programs
minimizing the changes needed and simplifying debugging. mts is written in C, uses
MPI for parallelization and can be used on a network of computers. We give four ex-
amples of reverse search codes parallelized by using mts: topological sorts, spanning
trees, triangulations and Galton-Watson trees. We also give a parallelization of two
codes for satisfiability testing. We give experimental results comparing the parallel
codes with other codes for the same problems.
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1. Introduction

Parallel programming is a vast area and there is a great amount of literature on it (see,
e.g., Mattson et al. [36]). Topics include architecture, communication, data sharing,
interrupts, deadlocks, load balancing, and the distinction between shared memory and
distributed computing. This is all essential for building an efficient parallel algorithm
from scratch.

Our starting point was different. We had a large complex code, lrs, developed over
about 20 years and tested extensively, which solved vertex/facet enumeration prob-
lems. These problems are notoriously hard and running times often take weeks or
longer. The underlying algorithm, reverse search, was clearly suitable for paralleliza-
tion. Nevertheless, the mathematical intricacy of the underlying problem rendered
the algorithmic engineering of direct parallelization daunting. This led us to consider
building all of the parallelization into a wrapper, making only minor changes to the
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underlying lrs code. There followed a series of implementations resulting ultimately in
the authors’ mplrs code [8]. The key features of mplrs are: (a) there is no parallel code
inside lrs, (b) parallel threads execute lrs on non-overlapping subproblems, (c) there is
no communication between threads except at the beginning and end of a subproblem
execution, (d) the computation can be distributed over a cluster of computers, and
(e) the wrapper is directly inserted into the lrs library. Most of the topics in paral-
lel computation mentioned above are not major issues in this restricted framework.
The exception is load balancing for which we use a particularly simple method which
consists of budgeting the number of nodes evaluated in a subproblem.

It seemed likely that similar results could be obtained for other algorithms based
on reverse search1 or similar easily parallelizable tree search methods. Many such
sequential codes exist, so designing custom wrappers for each is not desirable. Our goal
was to build a single generic wrapper that could be used, with little if any modification,
to do the required parallelization while maintaining features (a)–(e) described above.
This resulted in mts, presented here. The current implementation2 uses MPI and
works on clusters of machines. The mts framework is more general than mplrs in that
it allows the sharing of data obtained by subproblems, but still maintains the absence
of communication between threads. This widens its application to more general tree
search problems such as satisfiablility testing and branch and bound.

In Section 2 we survey the literature on parallelizing reverse search codes. We then
describe our general approach in Section 3 and apply it to reverse search in Section 4.
We give four examples: generating topological sorts, spanning trees of a graph, high
dimensional triangulations and Galton-Watson trees. This latter problem was chosen
as the trees generated are unbalanced, which is a challenge for parallelization. They
allow an analysis of the major source of overhead in mts and its dependence on the
crucial budgeting parameter which will be described in Section 3.

Tree search has wide uses, of which enumeration is just one example. In fact it is
a very specific example as all nodes in the enumeration tree are visited. Two other
important uses of tree search are satisfiability testing and branch and bound. Here
the goal is not to search the entire tree but to prune subtrees when possible. The
tree generated in these cases will normally differ depending on the choices made at
early stages and the sharing of information learned during the computation. The mts

framework includes support for sharing data between processes and can be applied to
these types of problems. As an example we present a parallelization for satisfiability
testing in Section 5, demonstrating how little of the original code needs to be changed.

In Section 6 we give computational results for parallelized reverse search and sat-
isfiability codes. This is followed in Section 7 by a discussion of how to evaluate the
experimental results, the situation being quite different for enumeration problems and
for those problems where pruning is used. For the enumeration problems we get near
linear speedup using several hundred cores. For the satisfiability problem we show a
substantial improvement in the number of SAT instances that can be solved in a given
fixed time period. Finally we give some conclusions and areas for future research in
Section 8.

1In 2008, John White made a list of 130 different applications and implementations, see link at [6].
2Version used here available at https://www-alg.ist.hokudai.ac.jp/~skip/mts/
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2. Survey of previous work

The reverse search method, initially developed for vertex enumeration, was extended
to a wide variety of enumeration problems [5]. From the outset it was realized that
it was eminently suitable for parallelization. In 1998, Marzetta announced his ZRAM
parallelization platform [14, 35] which can be used for reverse search, backtracking
and branch and bound codes. He successfully used it to parallelize several reverse
search and branch and bound codes, including lrs from which he derived the prs code.
Load balancing is performed using a variant of what is now known as job stealing.
Application codes, such as lrs, were embedded into ZRAM itself leading to problems
of maintenance as the underlying codes evolved. Although prs is no longer distributed
and was based on a now obsolete version of lrs, it clearly showed the potential for large
speedups of reverse search algorithms.

The reverse search framework in ZRAM was also used to implement a parallel code
for certain quadratic maximization problems [21]. In a separate project, Weibel [45]
developed a parallel reverse search code to compute Minkowski sums. This C++ im-
plementation runs on shared memory machines and he obtains linear speedups with
up to 8 processors, the largest number reported.

ZRAM is a general-purpose framework that is able to handle a number of other
applications, such as branch and bound and backtracking, for which there are by now
a large number of competing frameworks. This is a very large area and an extensive
survey of those methods relevant to the present study was given in [8]. We give a brief
overview here. Recent papers by Crainic et al. [17], McCreesh et al. [37] and Herrera et
al. [25] describe over a dozen such systems. While branch and bound may seem similar
to reverse search enumeration, there are fundamental differences. In enumeration it is
required to explore the entire tree whereas in branch and bound the goal is to explore
as little of the tree as possible until a desired node is found. The bounding step removes
subtrees from consideration and this step depends critically on what has already been
discovered. Hence the order of traversal is crucial and the number of nodes evaluated
varies dramatically depending on this order. Sharing of information is critical to the
success of parallelization. These issues do not occur in reverse search enumeration, and
so a much lighter wrapper is possible.

Relevant to the heaviness of the wrapper and amount of programming effort re-
quired, a comparison of three frameworks is given in [25]. The first, Bob++ [19],
is a high level abstract framework, similar in nature to ZRAM, on top of which the
application sits. This framework provides parallelization with relatively little program-
ming effort on the application side and can run on a distributed network. The second,
Threading Building Blocks (TBB) [42], is a lower level interface providing more control
but also considerably more programming effort. It runs on a shared memory machine.
The third framework is the Pthread model [15] in which parallelization is deep in the
application layer and migration of threads is done by the operating system. It also
runs on a shared memory machine. All of these methods use job stealing for load
balancing [13]. In [25] these three approaches are applied to a global optimization
algorithm. They are compared on a rather small setup of 16 processors, perhaps due
to the shared memory limitation of the last two approaches. The authors found that
Bob++ achieved a disappointing speedup of about 3 times, considerably slower than
the other two approaches which achieved near linear speedup.

A more sophisticated framework for parallelizing application codes over large net-
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works of computers is MW that works with the distributed environment of HTCondor3.
MW is a set of C++ abstract base classes that allow parallelization of existing appli-
cations based on the master-worker paradigm [23]. We employ the same paradigm in
mts although our load balancing methods are different. MW has been used successfully
to parallelize combinatorial optimization problems such as the Quadratic Assignment
Problem, see the MW home page for references. Although MW could be used to par-
allelize reverse search algorithms, we are not aware of any such applications.

3. The mts framework

The goal of mts is to parallelize existing tree search codes with minimal internal
modification of these codes. The tree search codes should satisfy certain conditions,
specified below. The mts implementation starts a user-specified number of processes
on a cluster of computers. One process becomes the master, another becomes the
consumer, and the remaining are workers which essentially run the original tree search
code on specified subtrees. Communication is limited; workers are not interrupted and
do not communicate between themselves.

The master sends the input data and parametrized subproblems to workers, informs
the other processes to exit when appropriate, and handles checkpointing. The consumer
receives and synchronizes output. Workers get subproblems from the master, run the
legacy code, send output to the consumer, and return unfinished subproblems to the
master.

Generating subproblems can be done in many ways. One way would be to report
nodes at some initial fixed depth. This works well for balanced trees but many trees
encountered in practice are highly unbalanced and the vast majority of subtrees contain
few nodes. Increasing the initial search depth does not solve this problem. Ideally we
would only break up the large subtrees and in the development of mplrs we tried
various ways to estimate the size of a given subtree. Experimentally this did not work
well due to the high variance of the estimator and the wasted cost of doing many
estimates.

The idea that worked best, and is implemented in mts, was also the simplest: a
heuristic to determine large subtrees called budgeting. This general approach is similar
to but simpler than the well-known work-stealing approach [13]. When assigning work
the master specifies that a worker should terminate after completing a certain amount
of work, called a budget, and then return a list of unexplored subtrees. The precise
budget may depend on the application. For enumeration problems it could be the
number of nodes visited by the worker. Some advantages of budgeting are:

• small subtrees are explored without being broken up
• large subtrees will be broken up repeatedly
• each worker returns periodically for reassignment, can give information to be
passed on to other workers and receive such information
• it is implemented on-the-fly and avoids the duplication of work done in estimation
• it can be varied dynamically during execution to control the job list size
• when used statically and without pruning, the overall job list produced is deter-
ministic and independent of the number of workers

This last item is useful for debugging purposes and also enables a theoretical analysis

3Available at https://research.cs.wisc.edu/htcondor/mw/
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of the job list size under certain random tree models, see [4]. In particular, methods
that limit work based on time (such as “begetting” in MW) do not have this property.

Implementing budgeting does not require interrupting workers or communication
between workers. The master uses dynamic budgets to control the job list: small bud-
gets break up more subtrees and lengthen the joblist while large budgets have the
reverse effect.

Additional features of mts include checkpointing and restarts, allowing the user to
move jobs or free computing resources without losing work. mts can produce vari-
ous histograms to help tune performance. Histograms and their uses are described in
Section 7.

3.1. Sequential tree search code

To be suitable for parallelization with mts the underlying tree search code, which we
will call search, must satisfy a few properties. First, when given a positive budget, search
should either finish the given job or return a list of unexplored nodes. Any unexplored
node should represent a smaller portion of the unfinished work, i.e. running search

(with positive budgets) on the unexplored nodes and any resulting unexplored nodes
will eventually result in finishing the original job. The code should also interpret the
budget in some suitable way where larger budgets correspond to doing more work
than smaller budgets. This may require some modification of the legacy code. Our
applications usually interpret the budget as number of traversed nodes and depth, but
this is not required (see conflict budgeting in Section 5.1).

Any given worker must be able to work on any given unexplored node that mts

has seen. It is helpful for the unexplored nodes to represent non-overlapping jobs. mts

supports sharing data between workers, but it is helpful for shared data to be small.
Implementing a shared memory version of mts could help performance when large
amounts of data are shared. Shared data is not used in our enumeration applications.
It is used for satisfiability and similar applications to prune the search tree.

3.2. Master process

The master process begins with initialization, including obtaining an application-
provided initial start vertex . It places this initial subproblem in a (new) job list L, and
then enters the main loop. In this main loop, the master assigns budgeted subproblems
to workers, collects unfinished subproblems to add to L, and collects/sends updated
shared data from/to the workers. Assigning shared data updates to the master is not
essential: it simplifies checkpointing but can increase load on the master and inter-
connect. Each worker either finishes its subproblem or reaches its budget limitation
(max depth and max nodes) and returns unfinished subproblems to the master for
insertion into L. This continues until no workers are running and the master has no
unfinished subproblems. Once the main loop ends, the master informs all processes to
finish. The main loop performs the following tasks:

• subproblems and relevant shared data updates are sent to free workers when
available;
• check if any workers are done, mark them as free and receive their unfinished
subproblems;
• check and receive shared data updates.
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Pseudocode is given as Algorithm 3 in the Appendix. Communication is non-blocking
and work proceeds when required information is available.

Using reasonable parameters is critical to performance. This is done dynamically by
observing |L|. We use parameters lmin, lmax and scale which depend on the type of
tree search problem being handled. The following default values are used in this paper.
Initially, to create a reasonable size list L, we set max depth = 2 and max nodes =
5000. Therefore the initial worker will generate subtrees at depth 2 until 5000 nodes
have been visited and then terminates sending roots of unvisited subtrees back to
the master. Additional workers are given the same aggressive parameters until |L|
grows larger than lmin times the number of processors, at which point max depth is
removed. Once |L| is larger than lmax times the number of processors, we multiply
the budget by scale. With scale = 40 workers will not generate any new subproblems
unless their tree has at least 200,000 nodes. If |L| drops below these bounds we return
to the smaller budgets. The default is lmin = 1, lmax = 3. In Section 7 we show an
example of how |L| typically behaves with these settings.

3.3. Workers

The worker processes are simpler – they receive the problem at startup, and then
repeat their main loop: receive a parametrized subproblem and possible shared data
updates from the master, work on the subproblem subject to the parameters, send the
output to the consumer, and send updated shared data and unfinished subproblems
to the master if the budget is exhausted. Pseudocode is given as Algorithm 4 in the
Appendix.

3.4. Consumer process

The consumer process in mts is the simplest. The workers send output to the consumer
in exactly the format it should be output (i.e., this formatting is done in parallel).
The consumer simply outputs it. By synchronizing output to a single destination, the
consumer delivers a continuous output stream to the user in the same way as search

does. Pseudocode is given as Algorithm 5 in the Appendix.

4. Applying mts to reverse search

Reverse search is a technique for generating large relatively unstructured sets of dis-
crete objects [5]. In its most basic form, reverse search can be viewed as the traversal
of a spanning tree, called the reverse search tree T , of a graph G = (V,E) whose nodes
are the objects to be generated. Edges in the graph are specified by an adjacency or-
acle, and the subset of edges of the reverse search tree are determined by an auxiliary
function, which can be thought of as a local search function f for an optimization
problem defined on the set of objects to be generated. One vertex, v∗, is designated
as the target vertex. For every other vertex v ∈ V repeated application of f must
generate a path in G from v to v∗. The set of these paths defines the reverse search
tree T , which has root v∗.

A reverse search is initiated at v∗, and only edges of the reverse search tree are
traversed. When a node is visited, the corresponding object is output. Since there is
no possibility of visiting a node by different paths, the visited nodes do not need to
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be stored. Backtracking can be performed in the standard way using a stack, but this
is not required as the local search function can be used for this purpose.

In the basic setting described here a few properties are required. Firstly, the under-
lying graph G must be connected and an upper bound on the maximum vertex degree,
∆, must be known. The performance of the method depends on G having ∆ as low
as possible. An adjacency oracle Adj(v, j) must be capable of generating the adjacent
vertices of any given vertex v in G. For each vertex v 6= v∗ the local search function
f(v) returns the tuple (u, j) where v = Adj(u, j) which defines the parent u of v in
T . Pseudocode is given in Algorithm 1 and is invoked by setting start vertex = v∗. C
implementations for several simple enumeration problems are given at [6]. For conve-
nience later, we do not output the start vertex in the pseudocode shown. Note that
the vertices are output as a continuous stream. Also note that Algorithm 1 does not
require the parameter start vertex to be the root v∗ of the entire search tree. If an
arbitrary node in the tree is given, the algorithm reports the subtree rooted at this
node and terminates.

We need to implement budgeting in order to parallelize Algorithm 1 with mts.
We do this in two ways that may be combined. Firstly we introduce the parameter
max depth which terminates the tree search at that depth returning any unvisited
subtrees. Secondly we introduce a parameter max nodes which terminates the tree
search after this many nodes have been visited and again returns the roots of all
unvisited subtrees. This entails backtracking to the root and returning the unvisited
siblings of each node in the backtrack path. These modifications are straightforward
and given in Algorithm 2, which reduces to Algorithm 1 by deleting the items in red.

To output all nodes in the subtree of T rooted at v we set start vertex = v,
max nodes = +∞ and max depth = +∞. To break up T into subtrees we have
two options that can be combined. Firstly we can set the max depth parameter result-
ing in all nodes at that depth to be flagged as unexplored. Secondly we can set the
budget parameter max nodes. In this case, once this many nodes have been explored
the current node and all unexplored siblings on the backtrack path to the root are
output and flagged as unexplored.

4.1. Example 1: Topological sorts

A C implementation (per.c) of the reverse search algorithm for generating permuta-
tions is given in the tutorial [6]. A small modification of this code generates all topo-
logical sorts of a partially ordered set that is given by a directed acyclic graph (DAG).
Such topological sorts are also called linear extensions or topological orderings. The
code modification is given as Exercise 5.1 and a solution to the exercise (topsorts.c) is
at [6]. Here we describe how to modify this code to allow parallelization via the mts

interface to produce the program mtopsorts. The details and code are available at [6].
It is convenient to describe the procedure as two phases. Phase 1 implements bud-

geting and organizes the internal data in a suitable way. This involves modifying an
implementation of Algorithm 1 to an implementation of Algorithm 2 that can be inde-
pendently tested. We need to prepare a global data structure bts data which contains
problem data obtained from the input. In Phase 2 we build a node structure for use
by the mts wrapper and add necessary routines to allow initialization and I/O in a
parallel setting. In practice this involves using a header file from mts. The resulting
program btopsorts.c can be compiled as a sequential code or with mts as a parallel
code with no change in the source files.
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Algorithm 1 Reverse Search

1: procedure rs(start vertex )

2: v ← start vertex
3: j ← 0 depth ← 0
4: repeat

5: while j < ∆ do

6: j ← j + 1
7: if f(Adj(v, j)) = v

then

8: v ← Adj(v, j)
9: j ← 0

10: depth ← depth+1

11: output (v)
12: end if

13: end while

14: if depth > 0 then

15: (v, j)← f(v)
16: depth ← depth − 1
17: end if

18: until depth = 0 and j = ∆
19: end procedure

Algorithm 2 Budgeted Reverse Search

1: procedure brs(start vertex , max depth,
max nodes)

2: v ← start vertex
3: j ← 0 depth ← 0 count ← 0
4: repeat

5: unexplored ← false

6: while j < ∆ and

7: unexplored = false do

8: j ← j + 1
9: if f(Adj(v, j)) = v then

10: v ← Adj(v, j)
11: j ← 0
12: count ← count + 1
13: depth ← depth + 1
14: if count ≥ max nodes or

depth = max depth then

15: unexplored ← true

16: end if

17: output (v, unexplored)
18: end if

19: end while

20: if depth > 0 then ⊲ backtrack step
21: (v, j)← f(v)
22: depth ← depth − 1
23: end if

24: until depth = 0 and j = ∆
25: end procedure

In the second phase we add the ‘hooks’ that allow communication with mts. This
involves defining a Node structure which holds all necessary information about a node
in the search tree. The roots of unexplored subtrees are maintained by mts for par-
allel processing. Therefore whenever a search terminates due to the max nodes or
max depth restrictions, the Node structure of each unexplored tree node is returned
to mts. As we do not wish to customize mts for each application, we use a very generic
node structure. The user should pack and unpack the necessary data into this structure
as required. The Node structure is defined in the mts header.

The efficiency of mts depends on keeping the job list non-empty until the end of the
computation, without letting it get too large. Depending on the application, there may
be a substantial restart cost for each unexplored subtree. Surely there is no need to
return a leaf as an unexplored node, and the prune=0 option checks for this. Further,
if an unexplored node has only one child it may be advantageous to explore further,
terminating either at a leaf or at a node with two or more children, which is returned
as unexplored. The prune=1 option handles this condition, meaning that no isolated
nodes or paths are returned as unexplored. Note that pruning is not a built-in mts

option; it is an example of options that applications may wish to include and was
implemented in mtopsorts.
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4.2. Example 2: Spanning trees

In the tutorial [6] a C implementation (tree.c) is given for the reverse search algorithm
for all spanning trees of the complete graph. An extension of this to generate all
spanning trees of a given graph is stated as Exercise 6.3. Applying Phase 1 and 2 as
described above results in the code btree.c. Again this may be compiled as a sequential
code or with the mts wrapper to provide the parallel implementation mtree. All of these
codes are given at the URL [6].

4.3. Example 3: Triangulations

The previous examples are from the tutorial on reverse search; a more substantial
application of mts is the parallel enumeration of triangulations implemented in mp-

topcom [29]. This was the first parallel code for the problem, and has already found
applications [30, 43]. Here we give a brief summary, see [29] for details of mptopcom

and [18] for background on triangulations.
Enumerating triangulations in the plane is one of the early applications of reverse

search [5]. Imai et al. [28] later gave a reverse search algorithm for enumerating trian-
gulations in general dimensions, including techniques for restricting to regular trian-
gulations and enumerating up to symmetry. However, the standard tool used for this
is TOPCOM [41], which essentially performs a breadth-first search of the flip graph.

mptopcom is an implementation of the algorithm by Imai et al. [28] with some
improvements, parallelized using mts. It uses TOPCOM for triangulations and flips
and polymake [22] for basic data types. The single-threaded version is competitive
with other codes for this problem, while the parallel version allows one to enumerate
triangulations that are (in practice) beyond reach of the other codes; see [29] for
detailed experimental results.

4.4. Example 4: Galton Watson trees

The previous examples give reverse search trees that are rather well balanced. By
that we mean that the height of the tree is either logarithmic or polylogarithmic in
its size, i.e. the number of nodes in the tree. Balanced trees are especially suited to
parallelization and this is indeed the case for mts as we will see in the experimental
results in Section 6. To see how well budgeting works for non-balanced trees Avis and
Devroye [4] studied its behaviour on a family of random trees with depth roughly the
square root of their size. They also studied how the job list size L depends on the
budget parameter b. We review the main result.

A Galton-Watson (or Galton-Watson-Bienaymé) tree is a rooted random ordered
tree that is a classical statistical model of a birth and death process. Each node
independently generates a random number of children drawn from a fixed offspring
distribution ξ. The distribution of ξ defines the distribution of T , a random Galton-
Watson tree. They consider critical Galton-Watson trees which are those having E{ξ =
1}, and P{ξ = 1} < 1. In addition, they assume that the variance of ξ is finite (and
hence, nonzero).

Moon [39] and Meir and Moon [38] defined the simply generated trees as ordered
labelled trees of size n that are all equally likely given a certain pattern of labeling
for each node of a given degree. The most important examples include the Catalan
trees (equiprobable binary trees), the equiprobable k-ary trees, equiprobable unary-
binary trees (ordered trees with up to two children), random Motzkin trees, ran-
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dom planted plane trees (equiprobable ordered trees of unlimited degrees) and Cayley
trees (equiprobable unordered rooted trees). It turns out that all these trees can be
represented as critical Galton-Watson trees conditional on their size, n, a fact first
pointed out by Kennedy [32] and further developed by others. For example, when ξ
is 0 or 2 with probability 1/4, and 1 with probability 1/2, we obtain the uniform
binary (Catalan) tree. Uniformly random full binary trees are obtained by setting
P{ξ = 0} = P{ξ = 2} = 1/2. A uniformly random k-ary tree has its offspring dis-
tributed as a binomial (k, 1/k) random variable. A uniform planted plane tree is ob-
tained for the geometric law P{ξ = i} = 1/2i+1, i ≥ 0. When ξ is Poisson of parameter
1, one obtains (the shape of) a random rooted labeled (or Cayley) tree. For ξ uniform
on {0, 1, 2, . . . , k}, Tn is like a uniform ordered tree with maximal degree of k. All such
trees can be dealt with at once in the Galton-Watson framework.

In [4] an analysis is performed on the expected size of the job list as a function
of the budget parameter b. They prove that if Tn is a Galton-Watson tree of size n
determined by ξ, where E{ξ} = 1 variance 0 < σ2 <∞, then

Ln

n
→

√

πσ2

8b
(1)

in probability as n→∞, where b is the budget and Ln is the job list size. For example,
for the Catalan trees we have σ2 = 3/2 and so the constant on the right hand side of

(1) is
√

3π/16b. With a budget b = 5000 this indicates that about 1% of the nodes
are returned unexplored to the job list. Jobs returned to Ln are the main source of
overhead in mts, so a value of about 1% is very satisfactory in practice.

Experimental results are given in [4] for various Galton-Watson trees to show that
the estimate in (1) is quite accurate.

5. Applying mts to satisfiability

Boolean satisfiability (SAT) asks us to determine the existence of (or find) satisfying
assignments for propositional formulas, see [12] for more background. SAT solvers have
made tremendous progress over the years, and are now widely used as general NP
solvers. While most application problems seem to result in easy SAT instances [10],
there has long been interest in parallel SAT solvers for hard instances. Despite the
many challenges [24, 31] in parallel SAT, there are recent successes [26].

There are two major approaches to parallel SAT solvers. Either one somehow par-
titions the space of possible assignments and uses divide-and-conquer (e.g., [1] for a
recent example) or one uses the portfolio approach and runs many sequential solvers on
the original problem (e.g., plingeling [11]). In either case, a major issue is determining
which learnt clauses4 to share between workers [3]. While sharing these clauses helps
prune the search space, additional clauses slow the solver and enormous numbers of
clauses are learned.

Another question for divide-and-conquer solvers is the question of how to divide
the search space. Many approaches have been tried, often setting initial variables
and using a common feature of sequential solvers to “solve under assumptions”. Some
recent solvers (e.g., [1] and treengeling [11]) work on these subproblems subject to some
budget, and hard subproblems can be split again. Cube-and-conquer [27] is another

4CDCL solvers learn clauses during the search, pruning the search space. See, e.g., Chapter 4 of [12].
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recent approach that uses look-ahead solvers to divide the search space for CDCL
solvers.

5.1. mtsat: parallelizing Minisat with mts

We used mts to implement a divide-and-conquer solver mtsat, using Minisat 2.2.0 as
sequential solver. Our goal was to demonstrate the use of shared data and show that
mts can be used in settings other than enumeration. mtsat is still experimental and
much work remains to reach the level of state-of-the-art dedicated parallel SAT solvers,
but it allows for experimentation with, e.g., budgeting and restart strategies in parallel
SAT.

Minisat [20] supports solving under assumptions, i.e. solving subject to some partial
assignment. It also supports solving subject to a budget, given in propagations or
conflicts, returning unknown if the given subproblem could not be solved within the
budget.

The major modification required is to report unexplored partial assignments when
the budget is exhausted. At any point in the search, SAT solvers distinguish between
decision variables and propagated variables. Decision variables are those where the
solver chose an assignment, while propagated variables are those where the solver was
able to determine (because of a unit clause) that only one option need be explored.
It suffices to return unexplored nodes corresponding to the current partial assignment
and to those formed by taking the unexplored options for decision variables (including
the last one) along the backtrack path.

Regarding learnt clauses, we implemented a simple scheme sharing only learnt unit
clauses. The idea is that short clauses cut the search tree more than longer clauses; an
early version of plingeling also shared only units [11]. We avoided more sophisticated
approaches to sharing clauses [1, 3], using conflicts to prune the job list L and similar
ideas for simplicity.

mtsat includes additional options. For example, while the parallel solvers most sim-
ilar to our approach [1, 11] budget using conflicts – we added the option to budget
using decisions. Conflict budgets correspond to hitting a leaf in the search tree, while
decision budgets correspond to nodes in the search space (omitting propagated vari-
ables since those are forced). Conflict budgets are attractive, but decision budgets
correspond more closely to the budgets used in Section 4 and allow us to experiment
with different budgeting techniques.

Modern solvers generally perform random restarts, abandoning the current search
to start over (cf. Chapter 4 of [12]) and hopefully avoid getting stuck in hard parts
of the search space. We split problems along the backtrack path and schedule these
abandoned portions of the search space for later exploration – possibly resulting in
much duplicated work. We therefore added an option to disable restarts, in order to
experiment with their impact on performance in mtsat, and formula preprocessing, to
experiment with the idea that avoiding preprocessing can be beneficial to divide-and-
conquer parallel SAT solvers [24].

The total is 50 lines of changes to legacy Minisat (including support to parse inputs
from strings) of the original 4803 lines, plus a few hundred lines of generic code in-
terfacing the Minisat API and mts that can be re-used. Essentially identical changes
suffice to parallelize Glucose (since it is based on Minisat) and others, and so we also
parallelize Glucose 3.0. One could easily support workers using a mix of solvers, a
hybrid of the divide-and-conquer and portfolio approaches to parallel SAT.
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6. Experimental results

The tests were performed at Kyoto University on mai32, a cluster of 5 nodes with a
total of 192 identical processor cores, consisting of:

• mai32abcd: 4 nodes, each containing: 2x Opteron 6376 (16-core 2.3GHz), 32GB
memory, 500GB hard drive (128 cores in total);
• mai32ef: 4x Opteron 6376 (16-core 2.3GHz), 64 cores, 256GB memory, 4TB hard
drive.

A complete description of the problems solved below is given in [7] and the input files
are available by following the link to tutorial2 at [6].

6.1. Topological sorts: mtopsorts

The tests were performed using the following codes:

• VR: obtained from [16], generates topological sorts in lexicographic order via the
Varol-Rotem algorithm [44] (Algorithm V in Section 7.2.1.2 of [34]);
• Genle: also obtained from [16], generates topological sorts in Gray code order
using the algorithm of Pruesse and Rotem [40];
• btopsorts: derived from the reverse search code topsorts.c [6] as described in
Section 4.1;
• mtopsorts: mts parallelization of btopsorts.

For the tests all codes were used in count-only mode due to the enormous output that
would otherwise be generated. All codes were used with default parameters5:

max depth = 2 max nodes = 5000 scale = 40 lmin = 1 lmax = 3 (2)

The following graphs were chosen, listed in order of increasing edge density: pm22 ,
cat42 , K8,9. The constructions for the first two partial orders are well known (see, e.g.,
Section 7.2.1.2 of [34]) and the third is a complete bipartite graph.

Table 1.: Topological sorts: mai32, times in secs

Graph m n No. of perms VR Genle btopsorts mtopsorts

nodes edges 12 24 48 96 192
pm22 22 21 13,749,310,575 179 14 12723 1172 595 360 206 125
cat42 42 61 24,466,267,020 654 171 45674 4731 2699 1293 724 408
K8,9 17 72 14,631,321,600 159 5 8957 859 445 249 137 85

Results are in Table 1. The reverse search code btopsorts is very slow, over 900 times
slower than Genle and over 70 times slower than VR on pm22 . However the parallel
mts code obtains excellent speedups and is faster than VR on all problems when 192
cores are used.

6.2. Spanning trees: mtree

The tests were performed using the following codes:

5 Performance for budgeted reverse search seems quite stable for a range of reasonable parameters. See
Section 7 below, or Section 6.4 of [8], for experimental results and [4] for analysis.
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• grayspan: Knuth’s implementation [33] of an algorithm that generates all span-
ning trees of a given graph, changing only one edge at a time, as described in
Malcolm Smith’s M.S. thesis, Generating spanning trees (University of Victoria,
1997);
• grayspspan: Knuth’s improved implementation of grayspan: “This program com-
bines the ideas of grayspan and spspan, resulting in a glorious routine that gener-
ates all spanning trees of a given graph, changing only one edge at a time, with
‘guaranteed efficiency’—in the sense that the total running time is O(m+n+ t)
when there are m edges, n vertices, and t spanning trees.” [33];
• btree: derived from the reverse search code tree.c [6] as described in Section 4.2;
• mtree: mts parallelization of btree.

Both grayspan and grayspspan are described in detail in Knuth [34]. Again all codes
were used in count-only mode and with the default parameters (2). The problems
chosen were the following graphs which are listed in order of increasing edge density:
8-cage, P5C5, C5C5, K7,7, K12. The latter 4 graphs were motivated by Table 5 in [34]:
P5C5 appears therein and the other graphs are larger versions of examples in that
table.

Table 2.: Spanning tree generation: mai32, times in secs

Graph m n No. of trees grayspan grayspspan btree mtree

nodes edges 12 24 48 96 192
8-cage 30 45 23,066,015,625 3166 730 10008 1061 459 238 137 92
P5C5 25 45 38,720,000,000 3962 1212 8918 851 455 221 137 122
C5C5 25 50 1,562,500,000,000 131092 41568 230077 26790 13280 7459 4960 4244
K7,7 14 49 13,841,287,201 699 460 2708 259 142 68 51 61
K12 12 66 61,917,364,224 2394 1978 3179 310 172 84 97 148

The computational results are given in Table 2. This time the reverse search code is
a bit more competitive: about 3 times slower than grayspan and about 14 times slower
than grayspspan on 8-cage for example. The parallel mts code runs about as fast as
grayspspan on all problems when 12 cores are used and is significantly faster after that.
Near linear speedups are obtained up to 48-cores but then tail off. For the two dense
graphs K7,7 and K12 the performance of mts is actually worse with 192 cores than
with 96.

6.3. Satisfiability

The tests were performed using the following codes:

• Minisat: version 2.2.0, classic sequential solver [20];
• Glucose: version 3.0, sequential solver [2] derived from Minisat;
• mtsat: parallel solver using mts and Minisat 2.2.0;
• mtsat-glucose: parallel solver using mts and Glucose 3.0;
• Glucose-Syrup: version 4.0, parallel (shared memory) solver;
• lingeling, treengeling: version bbc, sequential and (shared memory) parallel

solvers [11].

Benchmarking parallel SAT solvers is challenging [24] and any particular instance
may give superlinear speedups or timeouts. We use a standard set of hard instances
from applications, and count the number of problems that each solver can solve within
a given time. We re-use the setup of [1], i.e. the 100 instances in the parallel track
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of SAT Race 2015 [9] and a timeout of 20 minutes. Results are in Figure 1. Due to
different computers used, our results are not directly comparable to those in [1]. As
noted by [10], solvers like mtsat can use substantial memory on very large instances,
limiting the number of processes that can execute in a given amount of memory. The
computers we used had sufficient memory for the instances used.
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Solver SAT UNSAT Total
Minisat 18 1 19

mtsat (16) 17 1 18
mtsat (32) 22 2 24
mtsat (64) 23 4 27
mtsat (128) 29 7 36
mtsat (192) 35 10 45

lingeling 17 10 27
treengeling (32) 38 21 59

(b) Instances solved within 1200s

Figure 1.: mtsat performance (decision budgeting, default parameters (2))

The results in Figure 1 show improvement from additional cores using default pa-
rameters and decision budgeting with no attempt at tuning. Performance with conflict
budgeting is shown in Figure 2, using an initial budget of 10000 conflicts (i.e. the cor-
responding value in [1]).
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Solver SAT UNSAT Total
Minisat 18 1 19

mtsat (16) 18 2 20
mtsat (32) 23 3 26
mtsat (64) 27 7 34
mtsat (128) 30 10 40
mtsat (192) 34 11 45

(b) Instances solved within 1200s

Figure 2.: mtsat performance (conflict budgeting, max nodes = 10000, scale = 10)

All non-timeout outputs are correct, and the 32-core run with conflict budgeting
solves problem 62bits 10.dimacs.cnf (reported as unsolved in the SAT Race 2015
results) giving a correct satisfying assignment. It is likely that experimenting with
parameter values can improve performance, and using a newer sequential solver on
the workers may be another source of improvement given the performance treengeling

achieves starting from the higher baseline performance of lingeling.
Along these lines, we also report results applying mts to parallelize Glucose. Figures

3 and 4 show results using the default decision budgeting and also conflict budgeting.
Note that like in mtsat, only unit clauses are shared in mtsat-glucose. A more sophis-
ticated approach to sharing learnt clauses, e.g. sharing glue clauses, would likely help
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Figure 3.: mtsat-glucose performance: Instances solved vs time

Solver SAT UNSAT Total
Glucose 6 5 11

mtsat-glucose (16) 26 5 31
mtsat-glucose (32) 26 5 31
mtsat-glucose (64) 31 6 37

mtsat-glucose (128) 32 9 41
mtsat-glucose (192) 35 10 45
Glucose-Syrup (32) 32 18 50
Glucose-Syrup (64) 31 18 49

(a) Decision budgeting with
default parameters (2)

Solver SAT UNSAT Total
Glucose 6 5 11

mtsat-glucose (16) 23 7 30
mtsat-glucose (32) 27 7 34
mtsat-glucose (64) 30 10 40
mtsat-glucose (128) 34 13 47
mtsat-glucose (192) 38 13 51

(b) Conflict budgeting with
max nodes = 10000, scale = 10

Figure 4.: mtsat-glucose performance: Instances solved within 1200s

In all cases, we see that additional cores allow one to solve more problems given a
fixed amount of time. While it is likely that performance can be improved by tuning
and a better approach to sharing clauses, these results suffice for our purpose: to show
that one can easily parallelize a legacy code with mts.

As mentioned earlier, conflict budgeting is most common in this kind of parallel
solver. This is because generating a conflict clause guarantees at least some progress has
been made and instances can have very different and enormous numbers of variables.
Conflict budgeting usually slightly outperformed decision budgeting in the runs here,
however this was not universal. Given the minimal tuning for both budget types, our
results do not show a clear difference regarding how to budget.
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7. Evaluating and improving performance

Our main measures of performance for the enumeration problems are the elapsed time
taken and the efficiency defined as:

efficiency =
single core running time

number of cores ∗multicore running time
(3)

Multiplying efficiency by the number of cores gives the speedup. Speedups that scale
linearly with the number of cores give constant efficiency. External factors can affect
performance as the load on the machine increases. One example is dynamic overclock-
ing, where the speed of working cores may be increased by 25%–30% when other cores
are idle. This limits the maximum efficiency achievable when all cores are used, since
the single core running times are measured on otherwise idle machines. In Figure 5 we
plot the efficiencies obtained by mtopsorts and mtree for the runs shown in Tables 1
and 2 respectively.
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Figure 5.: Efficiency vs number of cores (data from Tables 1 and 2)

The amount of work contained in a subproblem can vary dramatically. mts can
produce histograms to help understand and tune performance. We discuss three here:
processor usage, job list size and distribution of subproblem sizes. Figure 6 shows the
first two histograms for the mtopsorts run on K8,9 with default parameters (2).
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We see the master struggling to keep workers busy despite having jobs available.
This suggests that we can improve performance with better parameters. Here, a larger
-scale or -maxnodes value may help, since it will allow workers to do more work
(assuming a sufficiently large subproblem) before contacting the master.

 60

 70

 80

 90

 100

 110

 120

 130

 0  20  40  60  80  100  120

c
o
re

s

time (secs)

Number of cores vs time

’histk89-scale200maxnodes10000’ using 1:2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100  120

L

time (secs)

Size of job list L vs time

’histk89-scale200maxnodes10000’ using 1:3

Figure 7.: Histograms with -scale 200 -maxnodes 10000 on K8,9: busy workers (l),
joblist size (r)

Figure 7 shows the result of using 200 for -scale and 10000 for -maxnodes. These
parameters produce less than half the number of total number of jobs compared to
the default parameters, and increase performance by about five percent on this input.

In addition to the performance histograms, mts can generate a frequency file con-
taining a list of values returned by each worker on the completion of each job. For the
enumeration applications this is normally the number of nodes visited by the worker
during the job. Such a list provides statistical information about the tree that is helpful
when tuning the parameters for better performance. For example, it may be helpful
to implement and use pruning if many jobs correspond to leaves. Likewise, increasing
the budget will have limited effect if only few jobs use the full budget.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0  50000  100000  150000  200000  250000

F
re

q
u
e
n
c
y

Size of subtree

Frequency distribution of subtree sizes

’freq’ using (rounded($1)):(1)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0  20  40  60  80  100

F
re

q
u
e
n
c
y

Size of subtree

Frequency distribution of subtree sizes up to 100 nodes

’freq’ using (rounded($1)):(1)

Figure 8.: Subproblem sizes for K8,9: all (left) small subproblems only (right)

Figure 8 shows the distribution of subproblem sizes that was produced in a run
of mtopsorts on K8,9 with default parameters (2). L is usually large so the scaled
budget constraint of 200000 is normally in use. The left figure shows this constraint
was invoked about 15000 times. The right figure shows that most subproblems have
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less than 40 nodes and so are not broken up. The three spikes in the middle of the left
figure are interesting and show there are large numbers of subtrees with these specific
sizes. This is probably due to the high symmetry of the graph K8,9.

8. Conclusions

We have presented a generic framework for parallelizing certain tree search codes
requiring only minimal changes to the legacy codes. Two features of our approach are
that the parallelizing wrapper does not need to be user modified and the modified
legacy code can be tested in standalone single processor mode. There is no separate
library to install and just a few routines need to be inserted in a user’s existing library.
Applying mts to four reverse search codes we obtained comparable results to that
previously obtained by the customized mplrs wrapper applied to the the lrs code [8].
We expect that many other reverse search applications and will obtain similar speedups
when parallelized with mts.

The application to SAT demonstrates the use of shared data, and the ease with
which a widely-used existing legacy code can be parallelized using mts. While mtsat

remains work in progress, it shows some promise and further experimentation can likely
improve performance. Other ongoing work involves using mts to parallelize existing
integer programming solvers that use the branch-and-bound approach.
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Appendix A. Pseudocode

Algorithm 3 Master process

1: procedure master(input data, max depth, max nodes, lmin, lmax , scale,
num workers)

2: Send (input data) to each worker
3: Create empty table sdata
4: Create empty list L
5: Get start vertex from application, add to L
6: size ← num workers + 2
7: while L is not empty or some worker is marked as working do

8: while L is not empty and some worker not marked as working do

9: if |L| < size · lmin then

10: maxd ← max depth
11: else

12: maxd ←∞
13: end if

14: if |L| > size · lmax then

15: node budget ← scale ·max nodes
16: else

17: node budget ← max nodes
18: end if

19: Remove next element start from L
20: Send (start , maxd , node budget) to first free worker i
21: Mark i as working
22: Send any shared data in sdata newer than i has
23: end while

24: for each marked worker i do
25: Check for new message unfinished from i
26: if incoming message unfinished from i then
27: Join list unfinished to L
28: Receive shared data update from i
29: Unmark i as working
30: if non-empty update then

31: Update i’s shared data in sdata
32: end if

33: end if

34: end for

35: end while

36: Call application with final set of shared data
37: Send terminate to all processes
38: end procedure
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Algorithm 4 Worker process

1: procedure worker

2: Receive (input data) from master
3: Create empty shared data
4: while true do

5: Wait for message from master
6: if message is terminate then

7: Exit

8: end if

9: Receive (start vertex , max depth, max nodes)
10: Receive shared data updates, update local copy
11: Call search (start vertex , max depth, max nodes, shared data)
12: Send list of unfinished vertices to master
13: Send shared data update to master
14: Send output list to consumer
15: end while

16: end procedure

Algorithm 5 Consumer process

1: procedure consumer

2: while true do

3: Wait for incoming message
4: if message is terminate then

5: Exit

6: end if

7: Output this message
8: end while

9: end procedure
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