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ABSTRACT This paper presents a lightweight Multi-task Semantic Attention Network (MTSAN) to

collectively deal with object detection as well as semantic segmentation aiding real-time applications of the

Advanced Driver Assistance Systems (ADAS). This paper proposes a Semantic Attention Module (SAM)

that introduces the semantic contextual clues from a segmentation subnet to guide a detection subnet. The

SAM significantly boosts up the detection performance and computational cost by considerably decreasing

the false alarm rate and it is completely independent of any other parameters. The experimental results show

the effectiveness of each component of the network and demonstrate that the proposed MTSAN yields a

better balance between accuracy and speed. Following the post-processing methods, the proposed module

is tested and proved for its accuracy in the Lane Departure Warning System (LDWS) and Forward Collision

Warning System (FCWS). In addition, the proposed lightweight network is deployable on low-power

embedded devices to meet the requirements of the real-time applications yielding 10FPS @ 512 X 256 on

NVIDIA Jetson Xavier and 15FPS @ 512 X 256 on Texas Instrument’s TDA2x.

INDEX TERMS Advanced Driver Assistance System (ADAS), detection subnet, image segmentation,

multi-task learning network, object detection, segmentation subnet, semantic attention module (SAM).

I. INTRODUCTION

Due to swift developments of deep learning and vision-

based technologies, autonomous driving has developed into

an extremely popular field of discussion in the recent years.

The autonomous driving system is a vast and complicated

system consisting of numerous modules and sensors with

different functions. The key for a reliable autonomous driving

system is its ability to recognize and understand the surround-

ing environment such as the behavior of the vehicles nearby,

pedestrians and motorcyclists and their corresponding behav-

iors and more as shown in Fig. 1.

Deep Convolution Neural Networks (DCNN) exhibit

a tremendous ability to tackle numerous vision based

challenges such as image classification, object detection,

semantic segmentation and so on. Many DCNNs demonstrate

The associate editor coordinating the review of this manuscript and
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substantial accuracy on a variety of benchmarking tasks at the

expense of a plenty of different parameters and incurring high

computation costs. However, in order to meet some of the

salient requirements of real-time applications of the advanced

driver assistance system (ADAS) such as, lane departure

warning system (LDWS), forward collision warning system

(FCWS), adaptive cruise control (ACC), autonomous emer-

gency braking (AEB), blind-spot detection (BSB) and so on,

the algorithms should be capable of processing at an adequate

frame rate and higher accuracy so that the implementation

on resource-limited embedded platforms for ADAS real-time

applications become feasible.

Most of the networks now aim to solve one specific task.

In real applications, the process of integrating multiple indi-

vidual algorithms into a single-unified learning framework is

more efficient. Multi-task learning networks combine multi-

ple tasks into a single unified task by exploiting the relation-

ship between these different tasks, making it more efficient
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FIGURE 1. Schematic diagram of an autonomous vehicle.

for the real-time applications. The networks can generalize a

more accurate representation of targets by sharing the features

between each tasks and thus may improve prediction accura-

cies and increase learning efficiencies. Moreover, by sharing

the backbone layers, the overall network size and computa-

tional complexity can be exceptionally reduced which is also

beneficial to fast inference requirements.

This paper proposes a lightweight multi-task semantic

attention network (MTSAN) for multiple objects detec-

tion and semantic segmentation for ADAS applications as

in Fig.2. The main contributions of this paper are listed as

follows: (i) First, we explored the model backbone that acts

as the feature extractor for the model. The backbone should

be lightweight and efficient so that it can be implemented on

resource-limited embedded devices. Further, we investigated

and improved the detection subnet detector and segmen-

tation subnet decoder for more robust prediction. (ii) The

paper explores the relationship between object detection and

semantic segmentation tasks and proposes ‘‘semantic atten-

tion module (SAM)’’ that utilizes the semantic clues from

segmentation subnet to guide the detection subnet without

any additional parameters. (iii) The authors explored and

improvised each of the components of the network for better

speed and prediction accuracy. (iv) The authors delved the

feasibility of deploying the proposed network on low-power

embedded devices processing at real-time to demonstrate the

low complexity of the proposed network.

The rest of this paper is organized as below. Section II

briefs some of the recent state-of-the-art algorithms devel-

oped for object detection, semantic segmentation as well as

multi-task learning systems. Section III discusses the pro-

posed methods in detail followed by the implementation and

the post-processing methods illustrated in Section IV. Finally,

Section V concludes the proposed work.

II. RELATED WORK

This below section briefly describes some of the previous

state-of-the-art works on object detection, semantic segmen-

tation and multi-task learning systems.

A. OBJECT DETECTION

Recent object detection networks are broadly divided into

two types namely, two-stage architecture and single-stage

FIGURE 2. Multiple objects detection and semantic segmentation of the
road for ADAS applications.

architecture. The two-stage architectures require an extra

proposal stage to capture the object proposals [1] and thus

they have a strong advantage in terms of accuracy. On the

other hand, the single-stage architectures directly classify

and localize multiple objects without region proposal mech-

anism [2], [3] and hence is advantageous in terms of speed.

1) TWO STAGE OBJECT DETECTION

Region with Convolutional Neural Network (RCNN) [4] by

RossGirshick et al. combines the region proposals with CNN.

First, RCNN extracts about 2k region proposals using a selec-

tive search method and then uses CNN to obtain high-level

representation features of each proposal. In the end,

RCNN classifies each region with class-specific linear sup-

port vector machines (SVMs). The main drawback of this

method is that it is slow as each proposal is computed through

the whole CNN.

Fast Region-based Convolutional Network (Fast R-CNN)

[5] by Ross Girshick et al. exceedingly improves the speed

of RCNN. Fast RCNN crops the region proposals from the

convolution feature map and uses region of interest (ROI)

pooling layer to pool each cropped features into the same size.

Then it predicts class and bounding boxes offset of each ROI

by softmax probability function and bounding box regression.

Faster R-CNN [1] proposed by Shaoqing Ren et al. fur-

ther improves the time-consuming compared to Fast-RCNN.

Faster R-CNN replaces the original selective search method

with Region Proposal Network (RPN). The RPN predicts

the region bound and objectness scores of generated anchor

boxes. The high scores anchor boxes are viewed as proposals

and fed into the ROI pooling layer to get same size fea-

tures similar to that of Fast RCNN. With this modification,

the Faster R-CNN turns out to be a single convolution only

network with higher speed.

2) ONE STAGE OBJECT DETECTION

You Only Look Once (YOLO) [3] proposed by

Joseph Redmon et al. models detection as a regression prob-

lem. It divides the image into S x S grid cells. Each grid

cell predicts B bounding boxes, confidence scores for boxes
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and C conditional class probability. These predictions are

encoded as an S x S x(B∗5+C) tensor. YOLO architecture is

composed of total 24 convolutional layers followed by 2 fully

connected layers.

Single Shot MultiBox Detector (SSD) [2] proposed by

Wei Liu et al. makes boxes prediction easier by locating

default boxes over different aspect ratios and scales per

feature map location. A single deep convolution network

predicts the adjustments to the boxes and confidence for

the presence of each object category. The SSD predicts at

multiple feature maps at different scales so that it can handle

objects of various sizes. The architecture contains several

convolution layers and decreases in size progressively to

generate multiple scale feature maps.

Focal Loss for Dense Object Detection (RetinaNet) [6]

proposed by Tsung-Yi Lin et al. points out the foreground-

background class imbalance problem for most of the

one-stage object detectors during training. Focal loss handles

this problem in a better way by modifying cross entropy

function and making training process more efficient. It shows

the big improvement to the prediction accuracy.

MobileNets [7] proposed by Andrew G. Howard et al. are

based on a streamlined architecture that uses depth-wise sepa-

rable convolutions to build lightweight deep neural networks,

and the main purpose is to execute on mobile, and embedded

platforms. MobileNets demonstrate the effectiveness over a

wide range of applications such as object detection and image

classification.

B. SEMANTIC SEGMENTATION

Fully Convolution Networks for Semantic Segmentation [8]

proposed by Jonathan Long et al. extends classification task

to dense prediction task by transforming fully connected

layers into convolution layers. In addition, deconvolution,

also called as transpose convolution, is proposed to connect

coarse outputs to dense pixels prediction. Lastly, the ele-

ment wise summation is introduced to fuse the features from

high-resolution feature to lower layer. The FCN architecture

is an end-to-end trainable network.

SegNet [9] proposed by Vijay Badrinarayanan et al. found

that the increasingly loss of image boundary detail has detri-

mental effect on semantic segmentation task. The decoder

featuremaps need some clues from encoder to recover bound-

ary information. In order to achieve this, the unpooling opera-

tion is proposed. The locations of the maximum value in each

max pooling is memorized and applied on unpooling. The

overall architecture of SegNet consists of symmetry encoder

and decoder.

DeepLab [10] proposed by Liang-Chieh Chen et al. points

out that transpose convolution can be used to recover the

spatial resolution of feature maps. However, it requires addi-

tional memory and has more parameters for network to learn.

In order to handle this problem, it proposes atrous convolution

for dense feature extraction and field-of-view enlargement.

It can be integrated with training, and computes responses of

any layer at any desirable resolution.

U-Net [11] proposed by Olaf Ronneberger et.al presents

a network and effective data augmentation (DA) method for

segmentation task. The U-shape network consists of a con-

tracting path for encoding and expansive path for decoding.

To deal with the loss of border pixels, the concatenation

process is adopted to introduce encoder feature to decoder.

ENet [12] proposed by Aabhish et al. aims to per-

form semantic segmentation task in real-time. It designs a

ResNet-like bottleneck module, and follows some rules to

progressively down sample the feature maps. The other

implementation details are also took into design consid-

eration. The results shows that ENet has high inference

speed not only on NVIDIA Titan X GPU but also on

embedded NVIDIA TX1.

Dual Attention Network for Scene Segmentation [13] pro-

posed by Jyn Fu et al. solves the pixel segmentation task by

capturing rich contextual information based on the attention

mechanism. The proposed two attention modules, position

attention module and chancel attention module, integrate

local features with global dependencies through different

dimensions. This paper achieves state-of-the-art segmenta-

tion results that demonstrate the effectiveness of attention

mechanism.

C. MULTI-TASK LEARNING

VPGNet [14] proposed by Seokju Lee et al. presents a

network to joint detect lanes, road markings and vanishing

points. The network is composed of AlexNet-based shared

backbone and multiple sub-networks to predict object mask,

multi-label, grid box, and vanishing point maps separately.

Fast Scene Understanding for Autonomous Driving [15]

proposed by Davy Neven et al. tackles semantic segmenta-

tion, instance segmentation, monocular depth estimation task

with a single integrated network. It uses ENet as backbone.

Therefore, the run-time speed is faster.

MultiNet [16] proposed by Marvin Teichmann et al.

presents a network to segment drivable area, detect vehicles,

and classify street scenes via joint classification, detection

and semantic segmentation for autonomous driving. The shar-

ing encoder backbone reduces computation complexity and

the whole network is easy to train. However, it does not

discuss the task relationship between each task that may be

an important clue to further enhance the performance.

End-to-End Multi-Task Learning with Attention Network

(MTAN) [17] proposed by Shikun Liu et al. presents a

novel multi-task learning architecture. Unlike commonmulti-

task learning network that only share the last layer feature

of encoder, the MTAN encoder works as a global feature

pool, and each subnet learns task specific feature by using

soft-attention module. The result shows that MTAN can

increase the learning efficiency and is further robust towards

different loss weighting schemes.

III. THE PROPOSED MULTI-TASK SEMANTIC ATTENTION

NETWORK

The following section introduces the proposed lightweight

Multi-task Semantic Attention Network (MTSAN) that can
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concurrently deal with object detection and semantic segmen-

tation. The network consists of a shared backbone encoder,

a detection subnet, a segmentation subnet and a semantic

attention module as shown in Fig.3. The following sections

discuss each individual components in detail.

FIGURE 3. Overview of the MTSAN architecture.

A. BACKBONE ENCODER

The function of the backbone encoder is to process an

input image and extract rich abstract features from the

input image that represent the crucial information in the

image. Instead of adopting very deep and wide architec-

tures such as AlexNet [18], GoogleNet [19], DenseNet [20],

ResNet101 [21] and VGG16 [22] that comprise numerous

parameters and incurs higher computation cost, an open

source lightweight architecture named JacintoNet [23] which

is designed for embedded devices is adopted in the pro-

posed method. The JacintoNet is a modified ResNet-10 by

removing the shortcut connection. In order to reduce the com-

putation complexity, it uses max-pooing instead of convolu-

tion with strides to do feature maps down-sampling process.

In addition, it adopts group convolution at alternate layers

to help in the reduction of the data bandwidth. On the other

hand, the single-branch architecture’s features of JacintoNet

are found to be more efficient and fast on some hardware-

embedded devices.

B. SEGMENTATION SUBNET

The architecture of segmentation subnet is designed similarly

to U-Net [11] with several learnable up-sampling layers as

shown in Fig. 4. The subnets are composed of several conv-

blocks, which includes 3×3 convolution layer, batch normal-

ization layer, and ReLU activation layer in order. The width

and height of the output tensor of conv-block remain the

same with input tensor whereas only the up-sampling process

changes size.

In order to extract meaningful semantic features for seg-

mentation, first, a conv-block is applied at the bottom of

subnet. Then, instead of using pooling process to explore fea-

tures at lower resolution, three subsequent conv-blocks with

which the convolution layer inside is replaced with dilated

one are adopted [6]. Due to the information loss caused from

FIGURE 4. The architecture of segmentation subnet.

pooling process, the dilated convolution process is better for

extracting dense feature response compared to three subse-

quent pooling operations with normal convolution. After the

dense feature extraction, the implementation of up-sampling

process is carried out to recover the spatial resolution. In order

to recover the objects boundary efficiently during the pro-

cess, the encoder features are introduced to decoder for more

object-shape clues. The feature concatenation operation is

employed instead of the element-by-element summation for

better accuracy.

In addition to the loss at the top of subnet, an extra loss

is applied at the feature before up-sampling layers to benefit

from intermediate supervision. In order to map each feature

vector to the desired number of classes for the extra loss,

the convolution 1 × 1 is applied before the loss layer. Due

to the intermediate supervision, the front part of subnet is

forced to classify each pixel at that scale to fulfill the loss

in the middle. Therefore, the remaining part of network can

simply focus on the up-sampling process. In real-world appli-

cations, the intermediate supervision can also provide extra

output choice for users. In this case, the segmentation output

can be of higher resolution and more accurate or the one

with lower resolution but faster one, depending on the users

requirements.

C. DETECTION SUBNET

In order to fulfill the demands of real-time application

requirements and achieve faster inference speed, the detection

decoder is designed based on an one-stage approach adopting

the classical, widely used SSD [2] detector.

The SSD detector generates several anchor boxes over

different aspect ratios and scales at each feature map location.

More specifically, each vector of feature map tensor along

the channel dimension represents the anchor information at

each image grid. The grid size depends on the feature map

receptive field. The grid size might vary by a great deal due

to multi-scale prediction. For instance, from an 8-pixel width

to the whole network input size. After the anchor generation,

the network output directly predicts the confidence score and

location shift of each anchor by a single forward pass. The

main advantage of this kind of anchor-based approach is that
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it is easy to learn, as the deep network only requirement is to

predict the boxes offset instead of learning the whole boxes

information from scratch.

1) PROBLEM AND BASELINES

The authors have identified a weakness in the anchor-based

approaches like SSD in which it is harder to detect objects

in some locations. For instance, an object that is not directly

located at an anchor location or an object that is located in

the middle of two anchors. This problem usually occurs in

objects with high-aspect-ratio such as pedestrians as the over-

lapping area between two adjacent high-aspect-ratio anchors

are small. Fig.5 (a) shows the scenario in which a pedestrian

is walking from the left-hand-side to the right-hand-side of

the image. It is observed that such a pedestrian cannot be

detected successfully in every individual frames. In order

to understand the cause of this problem, some failure cases

are visualized by drawing the default anchor boxes that are

close to the pedestrian’s location at the corresponding scale

as shown in Fig.5 (b). It can be seen that when the pedestrian

walks through the position at which the anchor centers are

not located, the prediction fails. This is a major problem for

a lightweight network as its regression ability is limited.

FIGURE 5. (a) Default SSD detector predictions at different time.
(b) Failure cases visualization of closest anchors to the pedestrian.

2) PROPOSED MULTI-HEAD DENSE ANCHORS APPROACH

The multi-head dense anchors method as in Fig. 6 (a) is

adopted in order to fill the gaps between the adjacent anchors

by inserting more anchors at the corners of the grid cells

depicted by the blue points in Fig.6 (b).

In order to classify and regress extra anchors, it is necessary

to increase the number of SSD detector heads. Fig.7 (a) shows

the original SSD detector and detection feature vectors encod-

ing the grid cells information. The proposedmulti-head dense

anchors’ architecture applies 3 × 3 convolution at the orig-

inal detector features to generate mixed features as shown

in Fig. 7 (b). Due to the constraints of the implementation

FIGURE 6. (a) Illustration of anchors center. (a) Red points represent the
original anchors center. (b) Blue points represent the appended new
anchors.

FIGURE 7. Detection subnet architectures. (a) Original SSD detector
architecture. (b) Multi-head SSD detector architecture.

platform and increase in the model complexity, we only apply

the dense anchors method at three scales as it is experimen-

tally determined that the 3 × 3 convolution here works as

the feature mixer and combine adjacent grid cells informa-

tion to get the mixed features at corner positions. With the

corresponding pre-trained models, the multi-head detection

subnet is easy to train and converge fast with the intuitive

mixed features concept. Although the multi-head architecture

marginally increases the network size and computation cost,

we found that it is acceptable and the improvement in quality

is significant.

D. SEMANTIC ATTENTION MODULE

For a multi-task learning network to collectively administer

detection and semantic segmentation, the two sub-networks

share the backbone encoder and distinctly extract the task-

specific features. Although the network is easier to generalize

a target representation due to multi-task learning and sharing

backbone features, there still exists some deficiency. In this

work, we have implemented a multi-task learning network

without any extra features, and the prediction results of the

Cityscape dataset [24] are shown in Fig. 8.

From detection prediction results as in Fig. 8 (a), it can

be noted that a pedestrian at the image boundary is not

detected. On the contrary, from semantic segmentation pre-

diction shown in Fig. 8 (b), the pedestrian who was missed in

detection has been classifiedwell, pixel by pixel.More results
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FIGURE 8. Illustration of common multi-task network output.
(a) Detection prediction, (b) Segmentation prediction.

were similar from numerous experiments. Thus, it can con-

cluded that semantic segmentation provides location clues of

objects that can be utilized in detection subnet. Additionally,

the benefit from the complete alignment between network

input and segmentation output maps, the location information

can be applied to different scales feature maps through down-

sampling process.

In order to utilize the semantic information in segmentation

subnet, a new approach termed Semantic Attention Mod-

ule (SAM) is proposed in this paper in order to introduce

the features from semantic segmentation subnet to object

detection subnet. The SAM builds up a connection between

the two tasks as shown in Fig.9.

FIGURE 9. The architecture of semantic attention module (SAM).

In order to match the tensor size of detection subnet,

the input of the SAM, Sd ∈ R
Cs×Wd×Hd is obtained by rescal-

ing the segmentation output activation maps, S ∈ R
Cs×Ws×Hs

given by Eq. (1).

Sd = Downsample (S) (1)

where the parameter Downsample() represents the down-

sampling process which can be bilinear interpolation or

max-pooling process.

To extract the useful information from the segmentation

maps, the first softmax function is applied on each position

to get the probability maps. Then, the channel of probability

maps related to object detection category such as pedestrian,

vehicles etc. is selected. In other words, the unrelated cat-

egories, such as road, are discarded. The softmax output

probability maps, P ∈ R
Cs×Wd×Hd and selected probability

maps P′
∈ R

Csl×Wd×Hd can be presented as in Eq. (2) and

Eq. (3), respectively.

P = Softmax(Sd ) (2)

P′
= Select(P) (3)

where Softmax() and Select() represent the softmax-2d-

function and class maps selection function, respectively.

After obtaining the objects probability maps, themaximum

operation is applied at each position to get the semantic

attention mask to encode the objects response. In practice,

the semantic attention mask is multiplied with a parameter λ

to control the strength of attention. Furthermore, the semantic

attention mask tensor is obtained by the channel expansion

function in order to match the tensor size of the detection sub-

net. Lastly, in order to generate the guided feature, the seman-

tic attention mask tensor is applied on the feature of detec-

tion subnet through the element-by-element multiplication

and summation that work as the attention operations. The

generated guided features D′
∈ R

Cd×Wd×Hd are respectively

obtained using Eq. (4), Eq. (5) and Eq. (6).

M = Max(P′) (4)

M′
= Expand(M,Cd ) (5)

D′
= ((λ × M′

⊗)D) ⊕ D (6)

where Max() function represents maximum operation

through channel axis, Expand(T, N ) function transforms

single channel map T ∈ R
1×Wd×Hd to N channel ten-

sor, ⊗ and ⊕ represent element-wise multiplication and

summation, respectively. M∈ R
1×Wd×Hd implies semantic

attention mask, M′
∈ R

Cd×Wd×Hd is the semantic attention

mask tensor, D ∈ R
Cd×Wd×Hd is the detection feature, and

D′
∈ R

Cd×Wd×Hd means the guided feature.

After the SAM process, the object response in the original

detection feature via the attention mechanism is featured, and

the detector utilizes the generated guided feature to capture

and localize objects easier. The experimental results and fur-

ther ablation study are discussed in Section IV.

E. IMPLEMENTATION DETAILS

1) TRAINING STRATEGY

Due to loss imbalance and model capacity, it is found that

the network was hard to converge and reach the global min-

imum using end-to-end training strategy. Hence, we adopt a

two-stage training strategy in all our experiments. First, the

network is trained with only semantic segmentation subnet

by freezing all the parameters of detection subnet. During the

first stage of training, it was found that the weight filters learn

the global contextual information in images. The first-stage

training stops until the loss converges. Then, the backbone

encoder and segmentation subnet parameters are frozen and

the object detection subnet with semantic attention module is

trained. For training the SSD detector, the original multi-box-

loss is replaced with Focal Loss [6] to deal with the imbalance

problem of foreground and background labels.
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a: SEMANTIC SEGMENTATION SUBNET

In data pre-processing, the input images are randomly scaled

between 0.5∼1.5 followed by random cropping of a patch

from these scaled images. Finally, the images are resized to

512 × 512 during training. The pre-training model trained

on ImageNet is used for encoder weights initialization. The

softmax cross entropy is used for the pixel level classification

task. The Adam optimizer is adopted in this paper with initial

learning rate 1e-4 and reduce it on plateau by a factor of 0.1 to

optimize the network. The training is terminated when the

loss converges.

b: OBJECT DETECTION SUBNET WITH SAM

The training procedures as in the design [16] are employed

in this paper with certain modifications. For data pre-

processing, the random sample-crop process is swapped by

directly resizing input image to network input size during

training. Then, we adopt Focal Loss [17] for the classification

objective function to deal with imbalance problem of fore-

ground and background labels, and smooth L1 loss is used for

bounding box regression. We choose Adam optimizer with

initial learning rate 1e-5 and reduce it on plateau by a factor

of 0.1 to optimize the subnet. The training is terminated when

the loss converges.

2) INFERENCE

During inference, the overall architecture works as a single

stage end-to-end model. The softmax function is applied on

the top of the output of the segmentation activation maps to

get the output probability maps. Then, the probability maps

are fed into the SAM to get the guided features. The detection

subnet utilizes the guided feature to generate the detection

output.

IV. EXPERIMENTAL RESULTS

A. DATASETS AND METRICS

1) CITYSCAPE DATASET

Cityscape Dataset [24] is a large-scale urban street scenes

dataset that contains 5000 images collected from 50 different

cities across Europe. The annotations contain around seven

categories that are further divided into 19 classes and 2 types.

The first type called things contains the categories that are

countable such as, car, people, and so on whereas the other

type called stuff contains the categories that are uncountable

and have amorphous regions such as roads, grass, footpath,

and so on. For semantic segmentation task, we classified all

the classes. For object detection task, we tested on only the

countable things type.

2) BERKELEY DEEPDRIVE

Berkeley DeepDrive (BDD) [25] is also a large-scale dataset

that contains almost 100K images collected from sev-

eral cities in America for autonomous driving applications.

It is collected in different environments and weather condi-

tions, making it more suitable for real-world applications.

For object detection task, the bounding boxes of seven classes

related to moving objects are used. For semantic segmen-

tation task, drivable area and lane marking annotations are

adopted.

3) METRICS

To evaluate the quantitative performance of the proposed

network, the two widely used metrics namely mean inter-

section over union (mIOU) [8] and mean average precision

(mAP) [26] are adopted to measure semantic segmentation

task and object detection task, respectively. The mIOU is

calculated as per the Eq. 7 where ncl represents the total

number of classes, nji represents the number of pixels of

class i predicted to belong to class j, and ti represents the total

number of pixels of class i.

mIOU =
1

ncl

∑
i nii

(ti +
∑

j nji − nii)
(7)

On the other hand, mAP has various versions for its calcu-

lation. In this paper, the PASCAL VOC 2007 metric [26] is

adopted. The mAP is calculated under the intersection over

unit (IOU) threshold of 0.5. With the IOU threshold, the pre-

dicted bounding boxes can be classified into either true or

false.With the aim to get the mAP, the average precision (AP)

of each class should be computed first, and then the mAPwill

be the average value over AP of all classes. For computing

AP, the boxes related to one specific class are sorted by the

experimentally set confidence threshold. Following the order,

the precision and recall are computed and the precision over

recall curve is plotted. The average precision is then com-

puted as the average over the precision value at 11 different

recall rates using the Eq. 8 and Eq. 9 where Pr (a) represent

the precision value at recall rate a, and ncl represent the total

number of classes.

AP =
1

11
× (Pr (0) + Pr (0.1) + · · · + Pr (1.0)) (8)

mAP =

∑ncl

i
APi (9)

B. SEGMENTATION SUBNET

1) ABLATION STUDY

The ablation experiments were carried out by decomposing

two key parts of the segmentation subnet. First, we train

the network but removing the intermediate loss followed

by removing the shortcut connection introducing the feature

from encoder to decoder. The validation mIOU on Cityscape,

number of parameters, and frame rate on Titan X GPU of

trained models are shown in Table 1.

The number of parameters here contain the backbone

encoder and the segmentation subnet. It can be noted

that the shortcut connection results in improved mIOU by

almost 1%, demonstrating the importance of boundary

information provided by the high-resolution features from

the encoder. Moreover, appending the intermediate loss

during training further boosts up the performance to

70.17% mIOU, which proves the beneficial effect from the
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TABLE 1. Results of the proposed segmentation subnet on the cityscape
validation set at 2048 × 1024 resolution.

intermediate supervision. The mIOU scores of each class are

shown in Table 2.

TABLE 2. Detailed mIOU results of the proposed segmentation subnet on
the cityscape validation set at 2048 × 1024 resolution.

2) COMPARISON

With the purpose of comparing the proposed design with

the state-of-the-art methods, the test set predictions of the

other methods and the proposed method on the Cityscape

evaluation server is determined. The results of the same

are as tabulated in Table 3. The proposed method yields

the mIOU 70.17% with adequate frame rate as required for

the real-time ADAS applications. Considering the time con-

sumption, we only include the methods that have reported

the corresponding run times. Our method strikes a good

trade-off between the accuracy, inference speed and model

TABLE 3. Comparison with the state-of-the art works on cityscape
test set.

size, and the simple straight architecture is more suitable for

hardware-embedded devices.

C. DETECTION SUBNET

In this section, the evaluation on the detection subnet individ-

ually by training the backbone encoder and detection decoder

together and ignore the segmentation decoder and SAM is

performed.

The multi-head anchor SSD architecture has enabled us

to overcome the discontinuity detection problem caused by

sparse anchors distribution as shown in Fig. 5. Fig. 10 shows

the prediction results of two models. It can be noted that

the predictions of multi-head detector is successful in all the

frames. Further, the variation of the confidence values can

be observed from the plot of confidence values verses frame

index as shown in Fig. 11 where the green curve represents

original SSD detector predictions whereas the blue curve rep-

resents the multi-head SSD detector predictions. The mean

and standard deviation of the two curves are listed in Table 4.

Although the confidence values predicted by the proposed

method varies frequently due to the engagement of more

anchors, the overall values are higher than the results pre-

dicted by the original SSD detector implementation.

FIGURE 10. Pedestrian prediction of two methods at different time.
(a) Original SSD. (b) Multi-head SSD.

FIGURE 11. Confidence curves of pedestrian in different SSD detectors.

In order to compare the proposed design with other works,

we have re-implemented two of the popular networks using
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TABLE 4. The mean and standard deviation of confidence values of the
two methods.

highly optimized tensorflow-object-detection-API [27]. The

first one is ResNet101-Faster-RCNN pre-trained on the

COCO dataset [28] and we view it as the upper bound of

the Cityscape detection. The other one is the MobileNet-SSD

with default settings and pre-trained on COCO dataset and it

is viewed as the contemporary of the proposed method. The

input sizes of all these networks are 1024×512 and networks

are implemented on a NVIDIA Maxwell Titan X GPU. The

results are shown in Table 5. The performance of the proposed

detector with default setting is comparatively better than the

MobileNet-SSD, which demonstrates the best features from

JacintoNet. For the proposed multi-head version, we sacrifice

the inference speed and model size to get the performance

boosting, and it is found that it is an acceptable trade-off.

TABLE 5. Comparison with other works on cityscape validation set.

D. MULTI-TASK SEMANTIC ATTENTION NETWORK

1) ABLATION STUDY AND DIFFERENT λ PARAMETERS

For ablation study, we directly trained a multi-task network

without SAM and compared with the proposed MTSAN.

Then, we explore MTSAN with different λ parameters that

work as the multiplication factors during the attention opera-

tion. The results are shown in Table 6.

Comparing the network that has been only trained for

object detection with Multi-task and without SAM method,

we can see a drop in accuracy by 3.4%, which might be

due to fewer learnable parameters caused by fixing back-

bone parameters during two-stage training. However, with the

SAM, the MTSAN boosts up the performance from 33.50%

to 35.92% with an increase of mAP by 2.42% when λ = 1.0.

This demonstrates the effectiveness of spatial information

provided by attention module.

Further experiments were conducted with the increased

value of λ parameters that represent the increase of attention

response applied on the detection feature. With λ = 1.3,

the mAP of the detection results increase to 39.78%, prov-

ing the significant improvement compared to λ = 1.0.

As there were no further accuracy improvements with respect

to λ, we did not observe further accuracy improvement

TABLE 6. Detection results of MTSAN with different λ values and Other
works.

for λ > 1.5. The experiments prove that the appropriate

increase of attention clue is helpful for detection prediction.

To show the effectiveness of the SAM, we provide qualitative

results comparison obtained by network with and without

SAM as shown in Fig.12. The visualization results show

that the MTSAN is better for reducing missed predictions

and for localizing objects more accurately, and with higher

probability to capture small objects at a farther distance.

2) COMPARISON WITH OTHER FUSION METHODS

The MTSAN introduces semantic features through semantic

attention module, while we also explore two other methods

to introduce features from segmentation subnet. The first one

has adopted element-wise summation to add the segmentation

features with detection features and the extra 1 × 1 convolu-

tion is applied before operation due to the different channel

dimension. The other one is concatenating the features at

the top of segmentation subnet with the detection features.

As shown in Table 7, both the methods have effects on the

detection results, but the result predicted by SAM is much

better than these two methods, which demonstrates the effec-

tiveness of SAM.

TABLE 7. Comparison with other works on cityscape validation set.

3) VISUALIZATION MASKS AND FEATURES

To further understand the attention modules, we visualize the

attention masks and guided features before and after attention

operation as shown in Fig.13. The visualization results are

obtained by the normalization process and the 2D feature

maps are chosen from the feature tensor randomly. From the
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FIGURE 12. Visualization of MTSAN on Cityscape validation set. From left to right with (a) Input image, (b) Segmentation prediction, (c) Detection
prediction without SAM, (d) Detection prediction of MTSAN (λ = 1.3).

FIGURE 13. The semantic attention mask and its guided features.
(a) Input image, (b) Semantic attention mask, (c) Features before
attention process, (d) Guided features after attention process.

results, it can be seen that applying semantic attention mask

can enhance the objects response and degrade unimportant

noise from the feature maps making it easier for the network

to focus on appropriate objects.

4) INFERENCE SPEED AND MODEL SIZE ANALYSIS

The proposedMTSAN consists of a backbone encoder, a seg-

mentation subnet, a detection subnet and a semantic attention

module. The parameter sizes and the inference time of each

component are given in Table 8. For inference time analysis,

the input size of the network is 1024 × 512 and the GPU

device is NVIDIAMaxwell Titan X. The overall light-weight

network contains only 4.94 million parameters. Most of the

TABLE 8. Model size and inference time analysis.

parameters are in the backbone encoder and detection subnet

due to the deeper architectures.

The segmentation subnet required only a few parameters

but the inference time is long due to the bigger feature maps

obtained via up-sampling process. The detection subnet is

slowest due to several bounding boxes generation, regression

process and non-maximum suppression. For the proposed

SAM, it does not require any extra parameters, and takes only

a little inference time, which results in the low cost method.

5) IMPLEMENTATION ON BDD DATASET

Compared to the Cityscape dataset, the segmentation pre-

diction in BDD dataset does not contain any classes that

detection process tries to predict. Therefore, the formulation

to adapt it to the BDD dataset is modified as follows: (i) First,

in the Select() function, all the classes in the segmentation

maps activation are selected and sent into the SAM. After

the Max() operation, the semantic mask here represents the

drivable area region. The example masks are given in Fig.14.
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TABLE 9. Comparison with the state-of-the art works on cityscape test set.

TABLE 10. Detection prediction results comparison on BDD validation set (%).

FIGURE 14. The semantic attention mask and its guided features on BDD
dataset. (a) Input image, (b) Semantic attention mask, (c) Features before
attention process, (d) Guided features after attention process.

The attention operation is modified as in Eq. (10).

D′
= D ⊖ ((λ × M′) ⊗ D) (10)

where ⊗ and ⊖ represent element-wise multiplication and

subtraction, respectively. M′
∈ R

Cd×Wd×Hd means semantic

attention mask tensor, D ∈ R
Cd×Wd×Hd means semantic

attention mask tensor, D ∈ R
Cd×Wd×Hd means detection

feature, D′
∈ R

Cd×Wd×Hd means guided feature.

The training results of MTSAN are shown in Table 9

and Table 10. Even though the segmentation task does not

predict objects categories, the SAM still can boost up the

detection performance significantly by degrading the back-

ground response. In addition, the detection results suffer

from data imbalance in the BDD dataset and requires dataset

fine-tuning. Qualitative results of the MTSAN prediction are

provided in Fig. 15.

6) FAILURE CASES

Although the SAM has proved beneficial from the results

in the previous sections, there exists certain failure cases

when tested on Cityscape dataset as shown in Fig. 16. Since

we have applied segmentation attention masks on detection

features and rely on semantic spatial hints, the false alarms,

though minimal, may introduce wrong information to the

detection features and cause incorrect detection predictions.

Considering this as a pivotal issue, we list it as a future work

of the proposed method.

E. POST-PROCESSING

The post-processing methods are employed to deal with the

semantic segmentation predictions for further applications.

For BDDdataset, wemainly classify the output maps into two

categories such as lanes and lane markings. The following

sections introduces the proposed post-processing methods on

these two categories, respectively.

1) LANE MARKING POST-PROCESSING

The proposed lane marking post-processing method is

divided into three steps namely: (i) the localmaximum extrac-

tion, (ii) clustering, and (iii) the polynomial curve fitting.

First, the lane marking probability maps are stacked into a

single channel binary response map, and then we scan all the

regions in the maps through the y-axis. For each value of y,

we can get one x vector, and if there is any lane response in

the vector, we pick the mid-point of each response as a local

maximum point. After scanning through all the y values, all

the possible localmaximumpoints of lanemarking are stored.

After capturing all the local maximum points, we adopt our

proposed clustering methods. In brief, we cluster the local

maximum points through the y-direction and follow the two

main constraints namely, the minimum distance and angle

between the cluster and candidate point both need to be small.

After the clustering step, each cluster will define their class

type by majority vote. Last, the polynomial curve fitting is

used to get the formulation of each lane marking.

Detection rate=
TP

TP+ TN

=
Correct predictions

Departure ground truth
(11)

False alarm rate=
FP

TP+ FP

=
False predictions

All predictions
(12)

The Lane Departure Warning System (LDWS) is imple-

mented using the lane marking post-process results. First,

we define two symmetry boundary points on the vehicle say,

car’s hood in order to judge the occurrence of the lane depar-

ture. Then, for each lane marking, we obtain the extension
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FIGURE 15. Visualization of MTSAN prediction on BDD validation set. (a) Input image, (b) Ground truth label, (c) MTSAN prediction result.

point by calculating the polynomial curve output x with the

same y-coordinate as the boundary points. If the output coor-

dinate x is located between the two boundary points, the lane

departure has occurred. In order to evaluate the reliability of

the proposed system, we pick up several inclement weathers

including highway-driving videos captured in Taiwan and

calculate the detection rate and false alarm rate, as defined

by Eq. 11 and Eq. 12, respectively. As shown in Table 11, our

system achieves 98.31% detection rate and 3.45% false alarm

rate averagely and qualitative results are shown in Fig. 17.

2) LANE POST-PROCESSING

The lane prediction results from segmentation subnet can be

classified into two categories like (i) the main lane; (ii) the

alternative lane. In our application, it is viewed as one class.

First, we define the path of interest that represents the path

that a driver will pass through, and we divide all the cases

into two circumstances. The first case is that the main lane

is surrounded by lane markings, and we define the region

surrounded by the lane markings as path of interest. The

other circumstance is that there is no lane marking. We have

to pre-define the path that the drivers might pass through

by ourselves. Since we cannot get the actual steering wheel

angle and direction from the simulation data, we can only

assume the vehicle to go straight and define a fixed path.

After defining the path, in the same way, we get the path of

TABLE 11. Lane departure warning system experimental results.

interest. After obtaining the path of interest, it is overlapped

with the drivable area which is the region predicted by all

the segmentation classes. The overlapping region represents

the drivable region along the path that vehicle might take.

Importantly, the region in path of interest but not in drivable

area represent the non-drivable region along the path that

vehicle might take, and the point that contains the smallest y-

coordinate in this region is the target considered as the closest

point. After we get the closest point, we draw the stop line for

visualization. The process is shown in Fig. 18.

After getting the stop line, we use this information

to implement the function of Forward Collision Warning
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FIGURE 16. Visualization of failure cases: (a) Input image,
(b) Segmentation prediction, (c) Detection prediction
without SAM, (d) Failure cases predicted by MTSAN (λ = 1.3).

FIGURE 17. Qualitative results of the lane departure warning
system (LDWS).

FIGURE 18. The process flow of identifying the stop line.

System (FCWS). Theoretically, a monotonous camera cannot

estimate depth. However, with prior knowledge as in [24] that

assumes the road is flat, it is possible to estimate the distance

of an object using a single monotonous camera. That is, if we

assume the road is flat, we can use geometric relation between

the road and the camera to estimate the object distance.

Fig. 19 shows the qualitative results. If the estimated distance

of stop line is smaller than 15 meters, the line is colored red

indicating a warning signal.

F. IMPLEMENTATION ON HARDWARD PLATFORMS

In this section, we explore two embedded devices, NVIDIA

Jetson Xavier [28], and Texas Instrument TDA2x [29],

to prove the porting ability of the proposed methods. The

specification of device and performance evaluation are

included.

1) NVIDIA JETSON XAVIER

NVIDIA Jetson Xavier [28] as shown in Fig. 20 (a) con-

tains commonly used Linux environment, includes many

FIGURE 19. Qualitative results of forward collision warning system.

FIGURE 20. (a) NVIDIA Jetson Xavier, (b) TI TDA2x.

common APIs, and is supported by NVIDIA’s complete

development tool chain. The specification of NVIDIA Jetson

Xavier is shown in Table 12.

TABLE 12. Lane departure warning system experimental results.

The inference speed on Jetson Xavier compared to the

powerful GPU, such as Titan X, is almost 10 times slower

due to the number of CUDA cores and clock rate. In order

to port our algorithm on it, we have to downsize the input

resolution to 512×256, and retrain the network. It achieves a

run-time of 10FPS on Jetson Xavier. Some qualitative results

are shown in Fig.21.

FIGURE 21. Qualitative results of MTSAN 512 × 256 on Jetson Xavier.

2) TEXAS INSTRUMENT TDA2X

Texas Instrument TDA2x evaluationmodule (EVM) [29] is as

shown in Fig. 20 (b) is designed to speed up the development

efforts and reduce time to market of the ADAS applications.

It is delivered with scalable, highly integrated SoCs con-

sisting of several DSP based accelerators with low-power

footprint. The specifications are shown in Table 13. Due to

the device and library limitation, we could not implement
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TABLE 13. Specifications of texas instrument TDA2x.

our MTSAN on it. Instead, we split our models into two

separate models for detection and segmentation, respectively.

Then, through the model pruning process to reduce the model

size and computation, we successfully port two models onto

the platform. Although two separate models cannot get the

benefit of sharing encoder, the run-time performance can

reach almost 15FPS with 512 × 256 input resolution. Some

of the qualitative results are shown in Fig.22.

FIGURE 22. Qualitative results of object detection and segmentation
predictions on TDA2x.

V. CONCLUSION

In this paper, we have proposed, developed and imple-

mented a Multi-task Semantic Attention Network (MTSAN)

to jointly deal with multiple objects detection and the seman-

tic segmentation tasks. The design concepts of each compo-

nent are introduced. This paper has also proposed an efficient

semantic attention module (SAM) to boost up the detec-

tion performance by introducing semantic information. The

effectiveness of the proposed method is demonstrated on the

benchmark datasets, and it is demonstrated that the predic-

tions of MTSAN can be utilized for real-time applications

such as lane departure warning, and forward collision warn-

ing. The proposed MTSAN network is a lightweight, low

computation cost network and achieves 10FPS @ 512× 256

on the NVIDIA Jetson Xavier and 15FPS @ 512 × 256 on

the Texas Instrument TDA2x.

Alongside, we believe that the proposed MTSAN method

can be robust to other object detection applications with

suitable training and certain modifications corresponding to

target applications.

REFERENCES

[1] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-

time object detection with region proposal networks,’’ IEEE Trans. Pat-

tern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017, doi:

10.1109/TPAMI.2016.2577031.

[2] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. Reed, ‘‘SSD: Single

shot multibox detector,’’ in Computer Vision–(ECCV) (Lecture Notes in

Computer Science), vol. 9905, B. Leibe, J.Matas, N. Sebe, andM.Welling,

Eds. Cham, Switzerland: Springer, 2016, pp. 21–37, doi: 10.1007/978-3-

319-46448-0_2.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:

Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 779–788,

doi: 10.1109/CVPR.2016.91.

[4] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies

for accurate object detection and semantic segmentation,’’ in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit., Columbus, OH, USA, Jun. 2014,

pp. 580–587, doi: 10.1109/CVPR.2014.81.

[5] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),

Santiago, Chile, Dec. 2015, pp. 1440–1448, doi: 10.1109/ICCV.2015.169.

[6] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for dense

object detection,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2,

pp. 318–327, Feb. 2020, doi: 10.1109/TPAMI.2018.2858826.

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neu-

ral networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[Online]. Available: http://arxiv.org/abs/1704.04861

[8] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks

for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Boston, MA, USA, Jun. 2015, pp. 3431–3440.

[9] V. Badrinarayanan, A. Kendall, and R. Cipolla, ‘‘SegNet: A deep convolu-

tional encoder-decoder architecture for image segmentation,’’ IEEE Trans.

Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017, doi:

10.1109/TPAMI.2016.2644615.

[10] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,

‘‘DeepLab: Semantic image segmentation with deep convolutional nets,

atrous convolution, and fully connected CRFs,’’ IEEE Trans. Pat-

tern Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018, doi:

10.1109/TPAMI.2017.2699184.

[11] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks

for biomedical image segmentation,’’ in Medical Image Computing and

Computer-Assisted Intervention–(MICCAI) (Lecture Notes in Computer

Science), vol. 9351, N. Navab, J. Hornegger, W.Wells, and A. Frangi, Eds.

Cham, Switzerland: Springer, 2015, pp. 234–241, doi: 10.1007/978-3-319-

24574-4_28.

[12] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, ‘‘ENet: A deep

neural network architecture for real-time semantic segmentation,’’ 2016,

arXiv:1606.02147. [Online]. Available: http://arxiv.org/abs/1606.02147

[13] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, ‘‘Dual attention net-

work for scene segmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pat-

tern Recognit. (CVPR), Long Beach, CA, USA, Jun. 2019, pp. 3141–3149,

doi: 10.1109/CVPR.2019.00326.

[14] S. Lee, J. Kim, J. S. Yoon, S. Shin, O. Bailo, N. Kim, T.-H. Lee, H. S. Hong,

S.-H. Han, and I. S. Kweon, ‘‘VPGNet: Vanishing point guided network

for lane and road marking detection and recognition,’’ in Proc. IEEE Int.

Conf. Comput. Vis. (ICCV), Venice, Italy, Oct. 2017, pp. 1965–1973, doi:

10.1109/ICCV.2017.215.

[15] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and

L. Van Gool, ‘‘Fast scene understanding for autonomous driving,’’ in Proc.

IEEE Symp. Intell. Vehicles, Redondo Beach, CA, USA, Jun. 2017.

[16] M. Teichmann, M. Weber, M. Zollner, R. Cipolla, and R. Urtasun, ‘‘Multi-

Net: Real-time joint semantic reasoning for autonomous driving,’’ in

Proc. IEEE Intell. Vehicles Symp. (IV), Changshu, China, Jun. 2018,

pp. 1013–1020, doi: 10.1109/IVS.2018.8500504.

[17] S. Liu, E. Johns, and A. J. Davison, ‘‘End-to-end multi-task learning

with attention,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-

nit. (CVPR), Long Beach, CA, USA, Jun. 2019, pp. 1871–1880, doi:

10.1109/CVPR.2019.00197.

[18] A. Krizhevsky, I. Sutskever, and G. Hinton, ‘‘ImageNet classification with

deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Process.

Syst. (NIPS), Dec. 2012, pp. 1–9.

[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’ in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Boston, MA,

USA, Jun. 2015, pp. 1–9, doi: 10.1109/CVPR.2015.7298594.

[20] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely

connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 2261–2269,

doi: 10.1109/CVPR.2017.243.

VOLUME 9, 2021 50713

http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1109/TPAMI.2018.2858826
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1109/CVPR.2019.00326
http://dx.doi.org/10.1109/ICCV.2017.215
http://dx.doi.org/10.1109/IVS.2018.8500504
http://dx.doi.org/10.1109/CVPR.2019.00197
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2017.243


C.-Y. Lai et al.: MTSAN: Multi-Task Semantic Attention Network for ADAS Applications

[21] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for

image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recog-

nit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778, doi:

10.1109/CVPR.2016.90.

[22] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for

large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-

able: http://arxiv.org/abs/1409.1556

[23] M.Mathew, K. Desappan, P. K. Swami, and S. Nagori, ‘‘Sparse, quantized,

full frame CNN for low power embedded devices,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. Workshops (CVPRW), Honolulu, HI, USA,

Jul. 2017, pp. 328–336, doi: 10.1109/CVPRW.2017.46.

[24] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,

U. Franke, S. Roth, and B. Schiele, ‘‘The cityscapes dataset for semantic

urban scene understanding,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 3213–3223, doi:

10.1109/CVPR.2016.350.

[25] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,

and T. Darrell, ‘‘BDD100K: A diverse driving dataset for heteroge-

neous multitask learning,’’ 2018, arXiv:1805.04687. [Online]. Available:

http://arxiv.org/abs/1805.04687

[26] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,

J. Winn, and A. Zisserman, ‘‘The Pascal visual object classes challenge: A

retrospective,’’ Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136, Jan. 2015,

doi: 10.1007/s11263-014-0733-5.

[27] (2020). Tensorflow/Models. GitHub. Accessed: Oct. 17, 2019.

[Online]. Available: https://github.com/tensorflow/models/tree/master/

research/object_detection

[28] (2021). NVIDIA Jetson AGX Xavier: The AI Platform for

Autonomous Machines. Accessed: Mar. 10, 2020. [Online]. Available:

https://www.nvidia.com/zh-tw/autonomous-machines/jetson-agx-xavier/

[29] (2021). TDA2x Vision EVM Kit–Spectrum Digital (Includes CPU Board

and Vision Application Board): Spectrum Digital Inc.–TDA2EVM5777–

Third Party Tool Folder. Ti.com. Accessed: Jul. 18, 2019. [Online]. Avail-

able: http://www.ti.com/tool/TDA2EVM5777

[30] M. Treml, J. Arjona-Medina, T. Unterthiner, R. Durgesh, F. Friedmann,

P. Schuberth, and A. Mayr, ‘‘Speeding up semantic segmentation for

autonomous driving,’’ inProc. 29th Conf. Neural Inf. Process. Syst. (NIPS),

Barcelona, Spain, 2016, pp. 1–7.

[31] F. Yu and V. Koltun, ‘‘Multi-scale context aggregation by dilated con-

volutions,’’ 2015, arXiv:1511.07122. Accessed: Mar. 15, 2020. [Online].

Available: http://arxiv.org/abs/1511.07122

[32] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, ‘‘Pyramid scene parsing

network,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

Honolulu, HI, USA, Jul. 2017, pp. 6230–6239, doi:

10.1109/CVPR.2017.660.

[33] G. P. Stein, O. Mano, and A. Shashua, ‘‘Vision-based ACC with a single

camera: Bounds on range and range rate accuracy,’’ in Proc. IEEE IV

Intell. Vehicles Symp., Columbus, OH, USA, Jun. 2003, pp. 120–125, doi:

10.1109/IVS.2003.1212895.

CHUN-YU LAI was born in Taoyuan, Taiwan,

in 1995. He received the Master of Science degree

in electronics engineering from the Department

of Electronics Engineering, Institute of Electron-

ics, National Yang Ming Chiao Tung University,

Hsinchu, Taiwan, in 2019.

He is currently working as a Software Engineer

with Mediatek Inc., Taiwan. His research interests

include computer vision, embedded deep learn-

ing applications, and deep learning-based object

detection. He has received the Academic Excellence Award and the Out-

standing Graduate Student Award in 2015 and 2019, respectively.

BO-XUN WU was born in Taipei, Taiwan, in 1997.

He received the Bachelor of Science degree in

electronics engineering from the Department of

Electronics Engineering, Institute of Electronics,

National Chiao Tung University, Hsinchu, Taiwan,

in 2019, where he is currently pursuing the mas-

ter’s degree in electronics engineering.

His research interests include computer vision,

embedded systems with deep learning applica-

tions, and object detection algorithms.

VINAY MALLIGERE SHIVANNA was born in

India. He received the Master of Science degree

in electronics engineering from the Department of

Electronics Engineering, Institute of Electronics,

National Chiao Tung University, Hsinchu, Taiwan

in 2015, where he is currently pursuing the Ph.D.

degree in electronics engineering.

He has worked with OnMobile Global Ltd.,

Bengaluru, India, from 2011 to 2013. His research

interests include images, multimedia, and digital

signal processing, computer vision, object detection and segmentation, arti-

ficial intelligence and deep learning, data augmentation, and SOC design.

JIUN-IN GUO received the B.S. and Ph.D.

degrees in electronics engineering from National

Chiao Tung University, Hsinchu, Taiwan, in 1989

and 1993, respectively.

He is currently a Distinguished Professor

of the Institute of Electronics, the Associated

Dean of electrical and computer engineering, and

the Director of Embedded Artificial Intelligence

Research Center, National Yang Ming Chiao Tung

University, Hsinchu. He was the Director of Insti-

tute of Electronics, National Chiao-Tung University, from 2013 to 2015.

Before joining in National Chiao-Tung University, he was an Associate

Professor of the Department of Computer Science and Information Engi-

neering, National Chung-Cheng University, from 2001 to 2003. He has been

promoted as a Professor, since 2003. He also served as the Director for

the SOC Research Center, National Chung-Cheng University, from 2005 to

2008, and the Director for the Department of Computer Science, National

Chung-Cheng University, Taiwan, from 2009 to 2011, and the Research

Distinguished Professor of National Chung-Cheng University in 2008. From

1994 to 2001, he served as an Associate Professor for the Department of

Electronics Engineering, National Lien-Ho Institute of Technology, Miaoli,

Taiwan. He is also the author of 243 technical articles on the research

areas. His research interests include images, multimedia, and digital signal

processing, VLSI algorithm/architecture design, digital SIP design, SOC

design, and intelligent vision processing applications including ADAS/Self-

driving vehicles. He received the Outstanding Electrical Engineering Pro-

fessor Award from the Chinese Institute of Electrical Engineering in 2010,

the Outstanding Engineering Professor Award from the Chinese Institute

of Engineers in 2014, the Outstanding Research Award from Minister of

Science (MOST) in 2017, and the Outstanding Technology Transferring

Award from MOST in 2018 with the topic of ADAS system.

50714 VOLUME 9, 2021

http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPRW.2017.46
http://dx.doi.org/10.1109/CVPR.2016.350
http://dx.doi.org/10.1007/s11263-014-0733-5
http://dx.doi.org/10.1109/CVPR.2017.660
http://dx.doi.org/10.1109/IVS.2003.1212895

