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p-Synthesis of an Electromagnetic Suspension System 

Masayuki Fujita, Toru Namerikawa, 
Fumio Matsumura, and Kenko Uchida 

Abstruct- This paper deals with ji-synthesis of an electromagnetic 
suspension system. First, an issue of modeling a real physical electro- 
magnetic suspension system is discussed. We derive a nominal model as 
well as a set of models in which the real system is assumed to reside. 
Different model structures and possible model parameter values are 
fully employed to determine unstructured additive plant perturbations, 
which directly yield uncertainty frequency weighting function. Second, 
based on the set of plant models, we setup robust performance control 
objectives. Third, we make use of the D-I< iteration approach for the 
controller design. Finally, implementing the controller with a digital signal 
prtxessor, experiments are carried out. With these experimental results, 
we show robust performance of the designed control system. 

I. INTRODUCTION 

Electromagnetic suspension systems can suspend objects without 
any contact. The increasing use of this technology in its various forms 
makes the research extremely active. The electromagnetic suspension 
technology has already applied to magnetically levitated vehicles, 
magnetic bearings, and so on. Recent advances on this field are 
shown in [l], and [5]. 

Feedback control is indispensable for magnetic suspension systems, 
since they are essentially unstable systems. To synthesis a feedback 
control system, a precise mathematical model for the plant is required. 
It is known, however, that a design model can not always express the 
behavior of the real physical plant. An ideal mathematical model 
has various uncertainties such as parameter identification errors, 
unmodeled dynamics, and neglected nonlinearities. The controller 
is required to have robustness for stability and performance against 
uncertainties on the model. 

Recently, p-synthesis , which is constructed with both H, syn- 
thesis and p-analysis, has been developed for the design of robust 
control systems [7], [8]. Beyond the singular value specifications, 
the p-synthesis technique can put both robust stability and robust 
performance problems in a unified framework. Applications of the 
p-synthesis method have been reported in [3]-[4], and [9]. This 
electromagnetic suspension system is a simple SISO system, but in [3] 
and [lo], the authors also applied the H - / p  synthesis to a magnetic 
bearing, and the effectiveness of this design method was evaluated 
for a MIMO system. In the case of applications of H,/p control to 
real physical systems, it is quite important to select appropriate design 
parameters. These parameters construct some parts of the generalized 
plant, e.g., uncertainty and performance weightings. 

In this paper, we will evaluate p-synthesis methodology exper- 
imentally with a real electromagnetic suspension system. We will 
model the additive uncertainties and decide the frequency weighting 
function for uncertainty accurately and reasonably. We will show 
that the closed-loop system with a p controller achieves robust 
performance experimentally. 
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Fig. 1. Schematic diagram of the electromagnetic suspension system. 

11. EXPERIMENTAL SETUP 

A .  Electromagnetic Suspension System 

The structure of the electromagnetic suspension system is shown 
schematically in Fig. 1. The objective of our control experiments is 
to suspend an iron ball stably and firmly without any contact by 
controlling the attractive forces of an electromagnet. Note that this 
system is essentially unstable. 

In Fig. 1, a cylindrical electromagnet as an actuator is located at 
the upper part of the experimental system. Mass of the iron ball 
is 1.75 kg, and it has a diameter of 77 mm. A gap sensor of our 
own producing is placed at the bottom of the system to measure the 
gap length between the iron ball and the electromagnet. The sensor 
is scaled for a gap of 2.4 mm per volt. It is a standard induction 
probe of eddy-current type. Physical parameters of this experimental 
machine are shown in Table I. 

B. Digital Controller 

The experimental machine is controlled by a digital controller using 
a DSP (digital signal processor). The experimental setup basically 
consists of the DSP which is sandwiched between A/D and D/A 
converters. Real-time control is implemented with a processor NEC 
pPD77230, which can execute one instruction in 150 ns with 32- 
bit floating point arithmetic. This device has enough fast processing 
speed to stabilize a relatively simple magnetic suspension system in 
Fig. 1. The control algorithm is written in the assembly language for 
the DSP and a software development is assisted by a host personal 
computer NEC PC-9801 under the MS-DOS environment. The data 
acquisition board MSP-77230 consists of a 12-bit A/D converter and 
a 12-bit D/A converter with the maximum conversion speed of 10.5 
ps and 1.5 ps, respectively. 

The sensor outputs are filtered through an analog low-pass circuit 
and then converted to digital signals by A/D converters. The DSP 
calculates the control input signals. These digital signals are converted 
to analog signals by D/A converters with a range of f 5  V. The 
converted signals and the steady current signals are added and 
amplified by 10 times to actuate the electromagnet. Steady-state 
voltage of the electromagnet is 24.6 V, and the maximum voltage 
of a regulated DC power supply is 70.0 V. 

111. MODEL OF ELECTROMAGNETIC SUSPENSION SYSTEM 

Our purpose in this section is to introduce an ideal mathematical 
model and an uncertainty weighting function for the system. See [4] 
for details. 

I [A] 1 1.18 1 1.; 1 0.93 1 
i [AI 1.18 x 101 -1.26 x 10-1 

L [HI 5.57 x 10-1 5.08 x 10 l  4.65 x 10-I 

R In] 2.37 X lo+' 2.32 x lo+' 2.27 x 10" 

x [m] 5 . 0 0 ~ 1 e  - 5.00 x 10" 

I [HI I 3 . 9 6 ~ 1 0 '  I 3.75 x 10' I 3.54 x 101 1 

A .  Model Structures 

We will employ four different model structures for the system 
depicted in Fig. 1. All of the models are finite-dimensional, linear, 
and time-invariant of the following state-space form 

j. =Ax + Bu, y = C x  

x = [ z  i i lT,  u = e ,  y = x .  (3.1) 

First, we introduce ideal mathematical models for the real electro- 
magnetic suspension system. Due to the idealizing assumptions that 
we make, two types of ideal mathematical models can be derived 
hereafter, which are composed of nonlinear differential equations. 
We define them as Type[A] and Type[B], respectively. 

Since the behavior of the electromagnetic force is nonlinear, we 
then employ the linearization procedure around an operating point. 
To account for the neglected nonlinearity, we derive two types of 
linear model, respectively. Thus, we will derive four linear models 
according to the following manners: 

Model[AI]:  L = CONSTANT; and the nonlinearity of the 
electromagnetic forces are approximated up to the first-order 
term in the Taylor series expansion. 
Model[AZ]: L = CONSTANT; and the nonlinearity of the 
electromagnetic forces are approximated up to the second-order 
term in the Taylor series expansion. 
Model[BI]: L = L ( x ) ;  and the nonlinearity of the electromag- 
netic forces are approximated up to the first-order term in the 
Taylor series expansion. 
Model[BZ]: L = L ( z ) ;  and the nonlinearity of the electromag- 
netic forces are approximated up to the second-order term in the 
Taylor series expansion. 

1 )  Ideal Mathematical Model-Type[AA]: We will derive ideal 
mathematical models for the real electromagnetic suspension system, 
where the following assumptions on the electromagnet are considered. 

A.l) Magnetic permeability of the electromagnet is infinity. 
A.2) Magnetic flux density and magnetic field have not hystere- 
sis, and they are not saturated. 
A.3) Eddy current in the magnetic pole can be neglected. 

I 
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Using A.l) and A.2), we can treat the coil inductance L as a 
function of variable x. Then, the system can be written by the 
following nonlinear differential equations 

d 2 I  

dt2 
m- =mg - f, 

d 
d t  

e = Ri = - { L ( x ) i }  (3.2) 

where the coefficients k and S O  in (3.2) are constants determined by 
identification experiments. Further, we introduce another assumption 
for Type[A]. 

A.A) The coil inductance is constant near an operating point. 
Furthermore, the electromotive forces due to the differential of 
gap can be neglected. 

Then from (3.2), we get 
di  

c = Ri + Lc-. d t  
The ideal mathematical model: Type[A] is represented by (3.2) and 
(3.3). 

Model[AI]: In view of (3.2) and (3.3), we can obtain the linear 
model (3.4) 

(3.3) 

(3.4) 

Model[A2]: We can further obtain another linear model (3.5) 

In this way, we deal with the deviation s and i as fixed numbers, 
at the second-order term in the Taylor series expansion and include 
them in the matrix 4 as Ax, Ai and Ay. 

2 )  Ideal Mathematical Model-Type[B]: For the ideal mathemat- 
ical model Type[B], we also consider the assumptions A.l), A.2), 
A.3) and here in addition to them, we introduce the next assumption 
A.B) instead of A.A). Using this assumption, we can obtain more 
accurate model than one of Type[A]. 

A.B) The coil inductance L is a function of a gap .r, and written 
as follows 

L ( r )  = ~ - -Lo  
s + x, 

where the coefficients Q ,  S, and LO are also the constants deter- 
mined by identification experiments. For any given current i in a coil 
with inductance L,  the magnetic co-energy is shown as i L i 2 .  Hence 
electromagnetic forces between the electromagnet and the iron ball 
in (3.2) is equal to the change rate of co-energy with respect to the 
distance x ,  i.e., 

(3.7) 

Comparing (3.2) with (3.7) 

Then from (3.2), (3.6) and (3.8), we get 

2ki  d.x 2 k  d i  
e = Ri - ~- + L O ) % .  (3.9) 

( x  + S O P  at + ( Z Z  
Now we obtained the ideal mathematical model: Type[B] which is 
constructed with (3.2) and (3.9). 

ModeZ[BI]: From (3.2) and (3.9), the linear model (3.10) (as 
shown at the bottom of the page) is derived. 

Model[B2] Moreover, the linear model (3.1 1) can be derived, as 
shown at the bottom of the page. 

Thus, now we obtained four linear model structures: Model[Al], 
Model[A2], Model[BI], and Model[B2]. 

1 
0 

R ( X  + SO 1 
2 k  + Lo(X + xo) 

- 2kI 
( X  + x 0 ) { 2 k  + LO(X + xo)}  

0 

2 k  + Lo(X + X O )  

A = Ay 

B =  I 0 _ri + x o  
LLo(X + 20) + 2 /41  - A x )  

1 
0 

2kI( 1 - 2Ax + A i )  - R (  x +-so ) 
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TABLE I1 
PERTURBED MODELS 

model(3a) 

model(3b) 

THE UNCERTAINTY WEIGHTHING 

lo-+- 

Model[Al] R -i R-max 

Model[Al] R -+ R-min 

Parameter Change 
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model(5a) Model[A21 x’ -i x‘_max 
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model(6a) Model[A2] 
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model( 12b) Model[B2 J 

~ 
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B .  Model Parameters 

To account for unpredictable perturbations in the model parameters, 
we will set the nominal value as well as the possible max./min. 
value of each parameter in every linear model. To obtain the possible 
max./min. value of each parameter, consider the steady-state gap X 
= 5.0 mm (nominal). Now let us perturb it with X = 4.5 mm and X 
= 5.5 mm (perturbed f0.5 mm). And, for these cases, we measured 
the three sets of the parameter values. The results of measurements 
are shown in Table 11. 

C .  Nominal Model 

We will form the nominal model using the simplest Model[Al] 
structure and the nominal model parameter (X= 5.0 mm case). Its 
state-space form is then of the following form 

[ 1 0 -45.69l 

1 0  
Anom = 4481 0 -18.43 , 

(3.12) 

And the corresponding nominal transfer function is 

(3.13) 
-36.27 

( s +  66.94)(~ - 66.94)(~+ 45.69)’ Gnom = 

Fig. 2. Uncertainty weighting. 

D .  Modeling Unstructured Uncertainty 

To account for unstructured uncertainties, we should consider not 
only a nominal model but also a set of plant models in which 
the real system is assumed to reside. Considering only unstructured 
uncertainties, we get all unstructured uncertainties together into one- 
full block uncertainty. 

To estimate the quantities of additive model perturbations, we 
employ differences of gain between the nominal transfer function and 
the perturbed transfer function with only one parameter changed and 
the others fixed, where we did not consider that plural parameters 
change together. In such a way, 24 perturbed models have been 
employed. They are shown in Table 11. With these notatjons, we 
can define the corresponding perturbed transfer functions G,, in an 
obvious way 

Az3 := GZ3 - Gno, (1 5 i 5 1 2 , j  = a ,b ) .  (3.14) 

Frequency responses of these additive perturbations la,, (ju) I are 
plotted in Fig. 2, with 24 dotted lines. Now let us consider the set of 
plant models. Here we assume the following form 

(3.15) 

in which the real plant is assumed to reside. All of the uncertainties 
are captured in the normalized, unknown transfer function 
It is natural to choose the uncertainty weighting W a d d  as follows 
(shown in Fig. 2). Here it should be noted that the magnitude of 
the uncertainty weighting W a d d  covers all the model perturbations 
shown in Fig. 2 

G := {Gnom -I- A a d d w a d d  : I l A a d d l I c o  5 1> 

1.4 x 10-5(1 + s/8)(1+ s/170)(1+ s/420) 
(1 + s/30)(1+ s/35)(1+ s/38) ‘ W a d d  = 

(3.16) 

IV. DESIGN 

A.  Control Objectives 

Electromagnetic suspension system is essentially unstable. We 
must design a robust controller to stabilize the closed-loop system; 
furthermore, we would like to design a controller to maintain the 
performance against unpredictable disturbances and the uncertainties. 

Let us consider the feedback structure shown in Fig. 3. The box 
represents the set of the models: G of the real system. Robust stability 
requirement for the additive uncertainty can be evaluated using the 
closed-loop transfer function h-S, where S := (I + GI<)-’. Hence 
robust stability test for G E G is equivalent to 

I I W a d d , K ( I +  G n o m I i ) - l W a d d l  l l o ~ i  < 1. (4.1) 

- -  I 
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Gml 

Fig. 3. Feedback structure. 

It is noted in Fig. 3 that we factor the uncertainty weighting as 
W o d d  = W a d d l  x W a d d , .  where 

waddl = 1.0 x 

. (4.2) 

To reject the disturbances at low frequency band, the performance 
weighting function Wp,,f is now chosen as 

1.3 x (1 + s / 8 ) (  1 + s/170)( 1 + s/420) 
(1 + s/30)(  1 = s/35)( 1 + s/38) \*-add, = 

200.0 Wpel-f = ~ 

1 + s/o.1. (4.3) 

We also factor the performance weighting as Wprrf  = JVperjl X 

Wpt,-f,, where 

(4.4) 
2.0 x 10' ivPeTf, = 1.0 x io-', wperf, = ~ 1 + s/o.1. 

In practical situation, however, we would like to achieve this perfor- 
mance specification for all the possible plant G E G. A necessary 
and sufficient condition for this robust performance is 

Now the control objective is to find a stabilizing controller I< which 
achieves the following two conditions 

The closed-loop system remains intemally stable for every plant 
model G E G, 
The weighted sensitivity function satisfies the performance test 
(4.5) for every plant G E G. 

The design objectives have been specified as the requirements for 
particular closed loop transfer functions with the frequency weighting 
functions W c L d a  and Wpe7-f .  The above control objectives exactly fit 
in the //-synthesis framework by introducing a fictitious uncertainty 
Mock Aperf. Rearranging the feedback structure in Fig. 3, we can 
build the interconnection structure shown in Fig. 4. 

B .  fr-Synthesis 
We first define a block structure Ap as 

Next, consider a generalized plant P partitioned as 

Pl1 PlZ 
= [Al P z z ] -  (4.7) 

I t  I 

i 
i-,,+LJ- 

Fig. 4. Interconnection structure. 

Obviously in Fig. 4, we can get a lower linear fractional transforma- 
tion .Tl( P, Ii) on P by I i  

h ( P ,  IC) := P11 + P n I i ( I -  P 2 2 1 i ) - ' P ~ .  (4.8) 

Finally, robust performance condition is equivalent to the following 
structured singular value fi test 

(4.9) 

The complex structured singular value p d P  is defined as 

(4.10) 1 
min {F(A: A E A, det ( I  - M A )  = 0) 

/ / A  (df) := 

unless no A E A makes I - M A  singular, in which case p ~ ( d f )  
:= 0. In this case a matrix M in (4.10) belongs to Czx2. 

C.  D-K iteration 
Unfortunately, it is not known how to obtain a controller 

achieving the structured singular value test (4.9) directly. But we 
can obtain the lower and upper bounds of p.  Our approach taken 
here is the so-called D-I< iteration procedure. 

The D-K iteration involves a sequence of minimizations over 
either I i  or D while holding the other fixed, until a satisfactory 
controller is constructed. First, for D = I fixed, the controller 1<i 
is synthesized using the well-known state-space H, optimization 
method. Let Pl = P denote the given open-loop interconnection 
structure in Fig. 4, and Fl ( P ,  IC) be the closed-loop transfer function 
from the disturbances w to the errors b. 

Then, solving the following H, control problem 

l lF i (P i , I~ l ) I I -<q / l ,  YI = 1.3. (4.1 1) 

The problem (4.11) yields the central controller IC1 as shown in 
(4.12) found at the bottom of the page. 

Iil = 
-5.22 X 10R(s + 1 2 . 4 6 ) ( ~  + 3 0 . 0 ) ( ~  + 3 5 . 0 ) ( ~  + 38.0)(s  + 45.69)(s + 66.94) 

(4.12) 
(s+ O . l O ) ( s +  31.6 - j 5 . 1 2 ) ( ~ +  3 1 . 6 + j 5 . 1 2 ) ( ~ +  3 9 . 7 7 ) ( ~ +  315.2 - j 3 2 9 . 6 ) ( ~ +  3 1 5 . 2 + j 3 2 9 . 6 ) ( ~ +  733.7) 
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Fig. 5. i7 and p plot of the first D-K iteration. 

JV AND MU PLOT OF THE SECOND D-K ITERATION 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  """I 

1.21 

max singular value (solid) 

mu bounds (dashed) 

0.61 i 

Fig. 6. i7 and p plot of the second D-li iteration. 

Here we try to assess robust performance of this closed-loop 
system using p-analysis associated with the block structure (4.6). 
The maximum singular value and p upper bound of the closed-loop 
transfer function Fi(P1, IC1) are plotted in Fig. 5. It is noteworthy 
to point out that the peak value of the upper bound p plot is not 
less than one. This reveals that the closed-loop system with this H, 
controller Kl does not achieve robust performance condition. 

Next, the above calculations of p produce a scaling matrix at each 
frequency. In this design, we try to fit the curve using a first-order 
transfer function. 

Now, let PZ denote the new open-loop interconnection structure 
absorbing the scaling matrix D. This time, from the following H, 
control problem 

(4.13) 

we can calculate the controller IC2 as found in (4.14) as shown at 
the bottom of the page. 

The maximum singular value and p upper bound of this closed- 
loop system are plotted in Fig. 6. Since the value of p is less than 
one in Fig. 6, robust performance condition is now achieved. 

V. EXPERIMENTAL RESULTS 
The designed controllers A-1 and A-2 are continuous-time systems. 

To implement these two controllers with the digital controller, we 
discretized them via the well known Tustin transform. The controllers 
A-1 and K2 are discretized at the sampling period of 45ps and 60ps, 
respectively. 

[ 0 '  

Y 4 .501 0.2 0.4 0.6 0.8 1.0 

TIME (8)  

Fig. 7. Response to step disturbance with K i  (-17.15N). 

S I ,  . . . . . . . I  a -5 
0 , 0.2 0.4 0.6 0.8 1.0 

TIME (s) 

Fig. 8. Response to step disturbance with Kz (-17.15N). 

a s  I 

3 -51  ' ' ' ' ' ' ' ' ' I 
0.2 0.4 0.6 0.8 1.0 

TIME (s) 

Fig. 9. Response to step disturbance with K1 (-34.3ON). 

We succeeded in the stable suspension of the iron ball using both 
of the controllers IC1 and Ii2. In the Section IV, robust stability 
and robust performance objectives were considered as the control 
problems. The obtained H ,  controller Kl achieves robust stability 
condition, and p controller KZ achieves not only robust stability but 
also robust performance specification. Hence, we will evaluate robust 
performance as well as robust stability of the closed-loop systems 
with responses against various extemal disturbances. 

There the disturbances are added to the experimental system as 
an applied voltage in the electromagnet. It is noted that there are 
four types of disturbances. Taking account that the steady-state force 
of the electromagnet is equal to 17.15 N, we added the following 
disturbance forces to the floating iron ball 

downward 17.15 N, downward 34.30 N. 

These disturbances are large enough to evaluate the robustness of both 
these two controllers. Experimental results are shown in Figs. 7-10. 

First of all, these experimental results in Figs. 7-10 show that 
the iron ball is suspended. Responses in Fig. 9 are vibrating ex- 
tremely, however, their vibration get on the decrease. This shows 
the closed-loop systems with both the controllers l i l  and IC2 remain 
stable against these disturbances. Comparing Fig. 7 with Fig. 9, the 
responses with IC1 deteriorate extremely against relatively large 
disturbances. While in Fig. 8 and Fig. 10, the responses with the 
controller Kz maintain good transient responses against these distur- 
bances. Now we can see the following observation. 

-8.01 x 109(s  + 10.54)(s + 15.75)(s+ 30.0)(s + 35.0)(s + 38.0) l i s  = 
( s + O . ~ O ) ( S +  19.59 - j 5 . 3 2 ) ( ~ +  19.59+j5.32)(~+38.48-j2.70)(~+38.48+j2.70) 

(s + 45.69)(s + 66.94)(s + 169.6) 
X 

( s +  176 .6 ) (~+420 .1  - j272 .8 ) (~+420 .1+ j272 .8 ) (~+8180) '  
(4.14) 

7 - 1  1'1 
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Fig. 10. Response to step disturbance with KZ (-34.30N). 

The closed-loop system with the p controller h; achieves 
robust performance, while the closed-loop system with the 
H,controller l i l  does not. 

VI. CONCLUSIONS 

In this paper, we experimentally evaluated a controller designed by 
p-synthesis methodology with an electromagnetic suspension system. 
We have obtained a nominal mathematical model as well as a set of 
plant models in which the real system is assumed to reside. With this 
set of the models we designed the control system to achieve robust 
performance objective utilizing p-synthesis method. 

First, four types of different model structures were derived based 
on the several idealizing assumptions for the real system. Second, for 
every model, the nominal value as well as the possible maximum 
and minimum values of each model parameter was determined 
by measurements and/or experiments. Third, a nominal model was 
naturally chosen. This model has the simplest model structure of 
all four models and makes use of nominal parameter values. Then, 
model perturbations were defined to account for additive unstruc- 
tured uncertainties from such as neglected nonlinearities and model 
parameter errors. Fourth, we defined a family of plant models where 
the unstructured additive perturbation was employed. The method to 
model the plant as belonging to a family or set plays a key role for 
systematic robust control design. Fifth, we setup robust performance 
objective as a structured singular value test. Next, for the design, 
the D-I i  iteration approach was employed. Finally, the experimental 
results showed that the closed-loop system with the p-controller 
achieves not only nominal performance and robust stability, but in 
addition robust performance. 

REFERENCES 

[l] P. Allaire, Ed., “Magnetic bearings,” in Proc. Third In?. Symp. Magnetic 
Bearings, Alexandria, VA, 1992. 

[2] G. J. Balas, P. Young, and J. C. Doyle, “The process of control design 
for the NASA Langley minimast structure,” in Proc. Amer. Contr. Conf., 
Boston, MA, 1991, pp. 562-567. 

[3] M. Fujita, K. Hatake, F. Matsumura, and K. Uchida “An experimental 
evaluation and comparison of H,/p  control for a magnetic bearing,” in 
Proc. 12th IFAC World Congress, Sydney, Australia, 1993, pp. 393-398. 

[4] M. Fujita, T. Namerikawa, F. Matsumura, and K. Uchida, “p-synthesis 
of an electromagnetic suspension system,” in Proc. 3Ist IEEE Conf. 
Decis. Contr., Tucson, AZ, 1992, pp. 2514-2579. 

[5] T. Higuchi, “Magnetic bearings,” in Proc. Second Inc. Symp. Magnetic 
Bearings, Tokyo, Japan, 1990. 

[6] F. Matsumura and S. Tachimori, “Magnetic suspension system suitable 
for wide range operation (in Japanese),” Trans. IEE of Japan, vol. 99-B, 

[7] A. Packard and J. Doyle, “The complex structured singular value,“ 
Auromatica, vol. 29, no. 1, pp. 71-109, 1993. 

[8] G. Stein and J. C. Doyle, “Beyond singular values and loop shapes,” J .  
Guidance, vol. 14, no. 1, pp. 5-16 1991. 

pp. 25-32, 1978. 

[9] M. Steinbuch, G. Schootstra, and 0. H. Bosgra, “Robust control of a 
compact disc player,” in Proc. IEEE Conf. Decis. Contr., Tucson, AZ, 
1992, pp. 2596-2600. 

[lo] M. Fujita, K. Hatake, and F. Matsumura, “Loop shaping based robust 
control of a magnetic bearing,” IEEE Contr. Syst. Mag., vol. 13, no. 4, 
pp. 5745, Aug. 1993. 

Parameter-Dependent Lyapunov Functions and the 
Popov Criterion in Robust Analysis and Synthesis 

Wassim M. Haddad and Dennis S .  Bemstein 

Abstruct- Many practical applications of robust feedback control 
involve constant real parameter uncertainty, whereas small gain or 
norm-bounding techniques guarantee robust stability against complex, 
frequency-dependent uncertainty, thus entailing undue conservatism. 
Since conventional Lyapunov bounding techniques guarantee stability 
with respect to time-varying perturbations, they possess a similar 
drawback. In this paper we develop a framework for parameter- 
dependent Lyapunov functions, a less conservative refinement of “fixed” 
Lyapunov functions. An immediate application of this framework is 
a reinterpretation of the classical Popov criterion as a parameter- 
dependent Lyapunov function. This result is then used for robust 
controller synthesis with full-order and reduced-order controllers. 

I. INTRODUCTION 

The analysis and synthesis of robust feedback controllers entails 
a fundamental distinction between parametric and nonparametric 
uncertainty. Parametric uncertainty refers to plant uncertainty that is 
modeled as constant real parameters, whereas nonparametric uncer- 
tainty refers to uncertain transfer function gains modeled as complex 
frequency-dependent quantities. In the time domain, nonparametric 
uncertainty is manifested as time-varying uncertain real parameters. 

The distinction between parametric and nonparametric uncertainty 
is critical to the achievable performance of feedback control sys- 
tems. For example, in the problem of vibration suppression for 
flexible space structures, if stiffness matrix uncertainty is modeled 
as nonparametric uncertainty, then perturbations to the damping 
matrix will inadvertently be allowed. Predictions of stability and 
performance for given feedback gains will consequently be extremely 
conservative, thus limiting achievable performance [ 11. Altematively, 
this problem can be viewed by considering the classical analysis of 
Hill’s equation (e.g., the Mathieu equation) which shows that time- 
varying parameter variations can destabilize a system even when 
the parameter variations are confined to a region in which constant 
variations are nondestabilizing. Consequently, a feedback controller 
designed for time-varying parameter variations will unnecessarily 
sacrifice performance when the uncertain real parameters are actually 
constant. 
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