
33

MUA-Router: Maximizing the Utility-of-Allocation for

On-chip Pipelining Routers

CUNLU LI, DEZUN DONG, and XIANGKE LIAO, National University of Defense Technology,

China

As an important pipeline stage in the router of Network-on-Chips, switch allocation assigns output ports to
input ports and allows flits to transit through the switch without conflicts. Previous work designed efficient
switch allocation strategies by maximizing the matching efficiency in time series. However, those works ne-
glected the interaction between different router pipeline stages. In this article, we propose the concept of
Utility-of-Allocation (UoA) to indicate the quality of allocation to be practically used in on-chip routers. We
demonstrate that router pipelines can interact with each other, and the UoA can be maximized if the interac-
tion between router pipelines is taken into consideration. Based on these observations, a novel class of routers,
MUA-Router, is proposed to maximize the UoA through the collaborative design (co-design) between router
pipelines. MUA-Router achieves this goal in two ways and accordingly implements two novel instance router
architectures. In the first, MUA-Router improves the UoA by mitigating the impact of endpoint congestion in
the switch allocation, and thus Eca-Router is proposed. Eca-Router achieves an endpoint-congestion-aware
switch allocation through the co-design between routing computation and switch allocation. Based on Eca-
Router, CoD-Router is proposed to feed back switch allocation information to routing computation stage to
provide switch allocator with more conflict-free requests. Through the co-design between pipelines, MUA-
Router significantly improves the efficiency of switch allocation and the performance of the entire network.
Evaluation results show that our design can achieve significant performance improvement with moderate
overheads.

CCS Concepts: • Computer systems organization → Interconnection architectures; • Hardware →
Networking hardware;

Additional Key Words and Phrases: Network on Chip, switch allocation, endpoint congestion, co-design

This is an extension of a conference paper. This article is extended from our previous conference publication [19]. The
work in Reference [19] proposes Eca-Router, which is designed to relieve the impact of endpoint congestion through the
co-design between SA and RC pipelines. Based on the conference paper, we give an example to present the benefit of this
design. We also discuss different design methods of Eca-Router and present the detailed datapath of Eca-Router. Going
beyond the conference paper, we propose the concept of UoA and a new class of routers named MUA-Router. We classify
Eca-Router as an instance of MUA-Router and propose another instance named CoD-Router. Based on Eca-Router, CoD-
Router further feeds back allocation results of SA and VA stages to the RC stage, so that the RC stage can provide more
conflict-free requests to improve the matching efficiency of SA.
This work was supported in part by Excellent Youth Foundation of Hunan Province under Grant No. 2021JJ10050, NSFC
under Grant No. 62002368 and National Postdoctoral Program for Innovative Talents under Grant No. BX20190091.
Authors’ address: C. Li, D. Dong (corresponding author), and X. Liao, National University of Defense Technology, 109 Deya
Rd., Changsha, Hunan 410073, China; emails: {cunluli, dong, xkliao}@nudt.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1544-3566/2022/05-ART33 $15.00
https://doi.org/10.1145/3519027

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

https://orcid.org/0000-0002-3724-6878
mailto:permissions@acm.org
https://doi.org/10.1145/3519027
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519027&domain=pdf&date_stamp=2022-05-04

33:2 C. Li et al.

ACM Reference format:

Cunlu Li, Dezun Dong, and Xiangke Liao. 2022. MUA-Router: Maximizing the Utility-of-Allocation for On-
chip Pipelining Routers. ACM Trans. Arch. Code Optim. 19, 3, Article 33 (May 2022), 23 pages.
https://doi.org/10.1145/3519027

1 INTRODUCTION

As network-on-chips (NoCs) technology has become fundamental to interconnect cores in
manycore architecture due to abundant on-chip resources [18], the design of efficient NoCs re-
mains a challenge, as it interconnects hundreds and even thousands of cores [30]. Router microar-
chitecture [6], which largely determines the network latency, has been involved in many prior
works to implement efficient NoCs. The Input-queued (IQ) router [6, 27] is the most popular
router architecture of modern NoCs, which usually contain five pipeline stages: Routing Com-

putation (RC), Virtual-Channel (VC) allocation, Switch Allocation (SA), switch traversal, and
link traversal [6]. Most optimization work just focuses on one pipeline stage of the IQ router, such
as RC and SA. Among all the pipeline stages, SA is important, because it determines the through-
put of a router by assigning output ports to input ports and ensures conflict-free1 transmission
of flits during switch traversal. Therefore, many optimization work on IQ routers has been car-
ried out by improving the matching efficiency of SA [1, 3, 22, 23, 25, 29]. Current proposed SA
strategies mostly strive to maximize the matching efficiency by considering the requests as time
series [3, 25] or adding dedicated circuit to bypass the packets [1, 29]. However, most prior works
do not consider to maximize the Utility-of-Allocation (UoA) while designing switch allocation
strategies.

We define UoA as the ability of a router to achieve or enhance additional functions during the
allocation. UoA can be improved by utilizing the results of the allocation into other pipeline stages
to enhance router functions such as adaptive routing selection and congestion control. Previous
work aiming to maximize matching is for the switch allocation stage and only focuses on the effi-
ciency of the allocation. Most existing work makes allocation decisions only based on SA request
information and rarely considers the information from other pipeline stages or to improve the per-
formance of other pipelines. If considered, then UoA can be improved to deliver higher matching
efficiency in SA to further improve the performance of NoCs. UoA is associated with the interac-
tion between router pipelines. Therefore, collaborative design (co-design) between router pipelines
should be performed to improve the UoA in SA. In particular, UoA can be improved through the
co-design between router pipelines by the following methods.

First, congestion information in the RC stage can be utilized in SA to mitigate the impact of
endpoint congestion. On-chip congestions include network congestion and endpoint congestion.
Network congestion occurs if the network or a network channel cannot transmit the packet in time.
Adaptive routing, aiming to increase routing adaptiveness, can help to alleviate the impact of net-
work congestion by routing packets around the congested network channel [5, 8, 9, 21, 33]. Recent
work [10] strives to alleviate the influence of endpoint congestion by minimizing the resource
used by Endpoint-Congestion-Causing (ECC) packets2 in the RC stage. However, resource lim-
itation can be weakened by traditional switch allocators, since they treat ECC requests and normal
requests indiscriminately. Moreover, matching efficiency can be degraded by endpoint congestion

1The conflict refers to the situation where there are multiple requests for the same port of the switch during the switch
allocation, including input conflicts and output conflicts.
2ECC packets refer to packets that can cause endpoint congestion, that is, multiple packets with the same destination. Other
packets, including randomly issued packets and packets that can cause network congestion but with different destinations,
are not ECC packets.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

https://doi.org/10.1145/3519027

MUA-Router: Maximizing the Utility-of-Allocation for On-chip Pipelining Routers 33:3

due to the resulting tree saturation [6] and the congestion in output ports, which can reduce the
number of requests provided to the switch allocator. Therefore, the impact of endpoint congestion
should be taken into consideration in the SA.

Second, SA results can be utilized to optimize other pipeline stages to provide more conflict-free
requests to the switch allocator. Specifically, this goal can be achieved through the co-design of
RC and SA. Traditional routing algorithms are usually designed with the purpose of alleviating
congestions in the network, without considering to improve the performance of other pipelines
such as SA. In fact, the SA matching efficiency can be directly affected by the result of RC. In detail,
if RC process tends to choose an output port competed by other SA requests, then conflicts will
occur in that output port during the SA, reducing SA performance as a result. Therefore, SA (and
other pipeline stages) result should be considered during the RC process, so that the RC result does
not introduce unnecessary conflicts in SA.

In this article, we propose a new class of routers aims to maximize the UoA, and we call such
routers MUA-Routers. We use the two methods mentioned above to improve the UoA and propose
two instance routers for MUA-Routers accordingly. We first propose Eca-Router, within which
an endpoint-congestion-aware SA strategy is implemented. In Eca-Router, we propose to collect
the information of requests that contribute to the endpoint congestion during the RC stage. Then,
these requests will be given lower priority during SA. Eca-Router predicts the endpoint conges-
tion and attempts to minimize the impact of it in the SA, which in turn achieves higher SA per-
formance in long periods of time. Based on Eca-Router, CoD-Router is proposed to make full use
of the co-design between pipeline stages to improve the UoA. CoD-Router moves one step for-
ward by adding contention information collected in VC Allocation (VA) and SA to the RC stage.
CoD-Router records the number of requests for each port in SA and passes this information to
the RC unit. When selecting output ports in the RC stage, CoD-Router gives lower priority to the
port with more SA conflicts. In other words, CoD-Router tends to select an output port that is
free from or has less contention in the SA. Such a design can provide more conflict-free requests
to the switch allocator and greatly improve the matching efficiency of the SA. We carefully de-
sign the SA processes of our design to relieve the impact of unfair allocation where requests with
low priority would have no chance to be allocated for a long period of time. It should be noted
that our design is based on a two-dimensional (2D) mesh topology where the size of a NoC flit
is often very wide and is not necessarily efficient for 3D ones. The implementation of our de-
sign is light-weighted, and efficient latency reduction can be achieved with moderate hardware
overhead.

The rest of this article is organized as follows. In Section 2, related work is introduced, including
the background of SA and endpoint congestion in NoCs. We give a scheduling instance in Section 3
to demonstrate the benefits of co-design between SA and RC in alleviating endpoint congestion. An
overview of different SA strategies is also presented to show the design purpose of our design. In
Section 4, a detailed architecture of our design is presented. An SA example is also provided to show
that SA processes in our design outperform previous allocation strategies. Evaluation methodology
and the results are presented in Section 5. Finally, we conclude our article in Section 6.

2 RELATED WORK

For a given routing algorithm, SA is an important pipeline stage in on-chip routers, because it
effects packet latency in NoCs. SA allows packets to transit through the switch by assigning output
ports to input ports. The purpose of SA is to move packets from input ports to output ports as
soon as possible without introducing any conflicts during this process. The SA is done per flit
by allocating a time slot for each flit to pass through the switch. To achieve efficient SA, most
traditional strategies, such as iSLIP, wavefront, and augmenting paths [23, 27], are proposed to

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

33:4 C. Li et al.

maximize the matching number in a single SA cycle. However, most of those works are too complex
for NoCs or need multiple cycles to achieve desirable performance. To achieve efficient SA in
NoCs, previous work tends to take advantage of time-series allocation. For example, Pseudo-circuit
[1] and Packet Chaining [25] introduce the previous allocation information into the current SA
decision. TS-Router [3] further adds the future request information to the current allocation. Some
other works also attempt to improve the matching efficiency of SA by adding additional hardware.
Virtual input crossbar [29] makes it possible to allow more than one input VC in an input port
to transit flits through the switch in a single cycle. RoB-Router [20] organizes the input buffer as
reorder buffer to enable packet-scheduling during the SA. References [13, 26] explore dividing the
SA stage into some substages and pipelining these substages to avoid damage to router frequency.

However, existing work rarely improve the performance of SA by improving the UoA or taking
into the consideration of the interaction between different pipelines. A significant benefit of the
co-design is to alleviate the endpoint congestion. Plenty of short packets in NoCs can stress the
impact of endpoint congestion. In NoCs, most packets only carry a memory address or control
instruction, and these packets can be encoded as short or even single-flit packets. Most of these
short packets share the same destination to form the endpoint congestion. Endpoint congestion
can negatively influence the matching efficiency of SA due to contention in output ports and the
consequently reduction in the number of SA requests over a long period of time. To the best of our
knowledge, so far there has no previous work to apply endpoint congestion information to the SA
process.

Early work has been proposed to design efficient traffic management strategies to mitigate the
impact of endpoint congestion. Congestion notification [14, 16, 24, 31] is a notable hardware ap-
proach utilized to relieve the impact of endpoint congestion. Explicit Congestion Notification

(ECN) protocol [31], as an example, reduces the traffic injection rate based on the congestion signal
detected in the network. However, the response time of ECN is slow due to the time needed for de-
tecting and throttling the congestion-causing traffic. Moreover, the throttling parameters of ECN
highly impact its performance. Speculative Reservation Protocol (SRP) [14] uses a reservation
handshake between the source node and the destination node to avoid overloading in network
endpoints. Some SRP-based researches also use multiple resource reservation protocols in over-
subscribed network [24]. Reference [16] proposes a short-message-oriented reservation protocol
to addresses possible endpoint congestion caused by short messages. Reference [17] proposes to
utilize the contention information within the intermediate routers to identify endpoint congestion
at the endpoint node. Reference [34] attempts to achieve efficient reservation for short messages
by chaining packets as a flexible reservation granularity. However, those congestion-management-
based strategies are too complex to be adopted in NoCs.

Current work tends to alleviate the impact of endpoint congestion through the optimization
of adaptive routing [10]. Adaptive routing effectively alleviate the performance loss caused by
network congestion [5, 8, 9, 21, 33] by providing more selections on the path/port to bypass the
congested link. While adaptive routing can address network congestion necessarily and efficiently
improve the network performance under adversarial traffic pattern conditions, it cannot address
endpoint congestion and can be even worse when combined with congestion management strate-
gies [17]. CBCM [17] first addresses that adaptive routing can be problematic with congestion
management when faced with endpoint congestion, and it is necessary to differentiate between
endpoint congestion and network congestion. Footprint [10] is proposed to minimize the satura-
tion tree [6] caused by endpoint congestion by limiting hot-spot packets waiting on the footprint
VC, which alleviates the Head-of-Line (HoL) blocking [6] as a result. However, the mitigation ef-
fect of routing algorithms on the impact of endpoint congestion would be weakened in SA process.
This is because the switch allocator can give higher priorities to ECC requests rather than normal

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

MUA-Router: Maximizing the Utility-of-Allocation for On-chip Pipelining Routers 33:5

Fig. 1. The benefits of Eca-Router. By avoiding the allocation of ECC requests in the SA, the number of

congested links (red links) can be minimized, and uniform packets can be transferred through free links

(green links).

requests during the SA process. Therefore, the impact of endpoint congestion should be relieved
in the SA process, and fortunately, this goal can be achieved through the co-design between router
pipelines.

3 MOTIVATION

The purpose of Eca-Router is to limit the allocation of ECC requests during the SA. In theory, end-
point congestion occurs when packets with the same destination reach the hotspot node. Therefore,
if multiple packets traveling in the network share the same destination, then these packets can be
regarded as ECC packets. Consequently, in Eca-Router, if a router detects that multiple arriving
packets have the same destination, then these packets will be regarded as ECC packets.

In SA, limiting the allocation of ECC requests can alleviate the congestion of the output port,
resulting in more free links in the network in long time series. Figure 1 presents the benefit of
adopting such strategy in a 4 × 4 2D mesh network. In Figure 1, the red link denotes that this link
is congested and the green indicates that there is no congestion in this link. As shown in the figure,
permutation traffic is formed with the following three traffic flows:

{ f1, f2, f3} = {n14 → n6, n9 → n6, n11 → n2}.
With Dimension-Order Routing (DOR), if a traditional SA strategy is adopted in the network,
then n6 will be oversubscribed by f1 and f2 to cause endpoint congestion. Moreover, the endpoint
congestion in n6 also propagates backpressure all the way to the source nodes (n9, n11 and n14),
congesting four links to form a congestion tree. As can be seen in Figure 1(a), DOR cannot nec-
essarily address the endpoint congestion in this situation. However, as shown in Figure 1(b), if
the ECC request can be restricted during the SA process, then the number of congested links will
be reduced. As has been presented in Figure 1(b), the RC process in the router within node n10

chooses the same output port (the south port) for f1, f2, and f3, providing three requests to the
switch allocator, including two ECC requests and one uniform request. In the router within node
n10, by limiting the allocation of ECC requests during the SA process, the congestion state of the

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

33:6 C. Li et al.

Fig. 2. An overview of different kinds of MUA-Routers and the time-series-based SA strategies. Eca-Router

achieves more performance improvement in SA by introducing the endpoint congestion information from the

RC pipeline stage. CoD-Router further improves the performance of SA by taking into account the interaction

among RC, SA, and VA.

south output port will be alleviated. Therefore, links n11 → n10 and n10 → n6 will not be congested,
and f3 can be transferred to node n2 without congestion.

Although mitigating the impact of endpoint congestion can be done in the RC stage, it is also
necessary to address this problem in the SA process. Eca-Router achieves this goal by detecting
endpoint congestion at intermediate routers rather than the endpoint node. With this strategy,
endpoint congestion can be detected earlier than adopting RC-based optimizations. This strategy
is effective, because endpoint congestion always causes congestion in the intermediate router. As
shown in Figure 1(a), although endpoint congestion occurs on node n6, the contention can be
detected in the SA process of the router within node n10. Therefore, we can identify endpoint con-
gestion and improve NoCs performance by optimizing the SA process in intermediate routers. In
detail, contention requests can be detected in the SA stage while the corresponding destinations
of these requests can be detected in the RC stage of the intermediate router. This information
can be used in SA to identify endpoint congestion and relieve its impact on network performance.
Unlike Eca-Router, other metrics (such as congestion management and adaptive routing) can es-
timate endpoint congestion dynamically but only begin to work when the congestion has begun
to damage network performance. Differently, Eca-Router detects endpoint congestion at interme-
diate routers instead of endpoint nodes, providing a new solution for endpoint congestion with a
faster response. It should be noted that our design only performs local observation based on the
information of the router in which SA is done. However, remote congestion cannot be detected by
our design. For example, in Figure 1(a), if the router within node n2 is congested, then the router
within node n10 is unable to detect the congestion and thus cannot make the right decision of giv-
ing the priority to f1 or f2. This problem can be solved by storing congestion status of the remote
router in the current router. However, since the benefits of obtaining the congestion status of the
remote router cannot offset the hardware overhead, our design does not consider introducing the
congestion status of the remote router to assist the current router’s decision-making.

We classify our designs and the existing SA strategies in time and space dimensions, and the
spectrum of these strategies has been presented in Figure 2. Existing SA strategies strive to improve
SA performance by scaling in time series. As shown in Figure 2, TS-Router not only adds the
information of current arrival requests but also considers the future request information during
the SA process, achieving higher performance in long time series. It should be noted that the TS-
Router only uses the request information of the next cycle, and information of more future requests

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

MUA-Router: Maximizing the Utility-of-Allocation for On-chip Pipelining Routers 33:7

Fig. 3. Baseline router architecture of Eca-Router

and CoD-Router.

Fig. 4. An alternative switch allocation strategy

for Eca-Router.

is hard to obtain due to hardware overheads. Therefore, our design turns to expand SA in the
spatial dimension through the co-design of different pipeline stages. Eca-Router adds the endpoint
congestion information from the RC stage to the SA stage to improve the matching efficiency
through the co-design of RC and SA. In fact, Eca-Router also expends time-series-based SA [3].
Specifically, Eca-Router delays the congestion of the output port by limiting the allocation of ECC
requests. As a result, more SA requests can be provided to the switch allocator in long time series,
thereby achieving more matchings during SA. Compared with Eca-Router, CoD-Router strives
to improve the matching efficiency through the co-design between more pipelines. CoD-Router
takes more pipeline stages into account to provide more requests to the switch allocator, further
improving the SA performance.

4 DETAILED ROUTER ARCHITECTURE

4.1 Baseline Router Architecture

The baseline router of our design is a state-of-the-art router [28], as shown in Figure 3. The base-
line router contains five pipeline stages: RC, VA, SA, Xbar/Switch Traversal, and Link Traversal.
Traditional VC flow control [4] is adopted, and each input port has multiple VCs. Each VC in the
input port is associated with a private buffer, and packets can be held in this buffer. The total buffer
of all the VCs in an input port constitutes the whole buffer of this input port, and the bandwidth
of the input port can be shared by all the VCs in the input port. A VC is actually a FIFO queue to
buffer flits. By observing how a packet gets through the router, we can have a better understanding
of the baseline router architecture. When a packet arrives at the input port, it will be written into
the input buffer (the VC to be cached in has been assigned in the last-hop router) first, and then
RC will be performed once the packet reaches at the head of the VC. Then, the VC allocator will
allocate an available VC in the input buffer of the next-hop router. After that, switch allocator will
allocate a switch path from the input port to the output port for this packet. The packet is then
driven onto the output channel link and destined to the next-hop router after traversal through
the switch. In our design, each pipeline stage only takes one cycle. This architecture is the baseline
of Eca-Router and CoD-Router as well as Packet Chaining and TS-Router.

4.2 SA Strategy in Eca-Router

4.2.1 Alternative SA Strategy. Eca-Router relieves the impact of endpoint congestion by limit-
ing the allocation of ECC requests during SA. To implement Eca-Router, a trivial and alternative

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

33:8 C. Li et al.

strategy is giving the lowest priority to the ECC request and allowing ECC requests to be allo-
cated only when there is no other requests. Figure 4 shows an example of the SA process using
this strategy. With this strategy, ECC requests (marked in red) can only be allocated when there is
no uniform requests (marked in green) in the current cycle. As shown in Figure 4, there are three
requests competing for output S , among which requests N → S andW → S are ECC requests and
the request E → S is a uniform random request. When adopting this strategy in the SA, switch
allocator will prioritize the uniform request (E → S), and thus ECC requests cannot be allocated.

This strategy can relieve the impact of endpoint congestion but introduces new problems. First,
fairness cannot be guaranteed during the SA process. With this strategy, if there always exists a
uniform request, then the ECC request will not be successfully allocated for a long time, causing
ECC requests to be starved. This phenomenon can lead to a degradation in matching efficiency
and performance degradation can be more serious in routers near the destination of ECC requests.
This is because excessive restrictions on ECC requests can reduce the number of packets arriving
at the endpoint node, thereby reducing the number of requests arriving at the router connected to
the endpoint. Moreover, such strategy can improperly identify some temporary (or instantaneous)
congestion as endpoint congestion to limit the allocation of the corresponding requests, resulting
in low matchings efficiency in SA.

4.2.2 Fairness-guaranteed SA Strategy. To ensure fairness and improve the matching efficiency
of SA, a new SA strategy is proposed in Eca-Router. With this strategy, ECC requests can be allo-
cated even if there exist other requests. In our design, a new process, Request Selection (RS) is
added before the SA to deal with the ECC request.3 The RS process detects all the ECC requests and
randomly selects one or several of these requests. The number of selected ECC requests does not
depend on the network configuration or the traffic. In fact, the number of selected ECC requests
is equal to the number of different destinations of all ECC requests. To identify an ECC request,
the RS process collects and compares the destination of each request; if multiple requests have the
same destination, then they will be judged as ECC requests. It should be noted that the RS process
compares the destination of each request rather than the destination of each request with same
outport. This is because Eca-Router strives to identify all the ECC requests to relieve the impact
of endpoint congestion in time series. After finding all the ECC requests, the RS process will ran-
domly select some from all the ECC requests, and the selected ECC requests can be passed to the
switch allocator to be regarded as normal requests, while other unselected ECC requests will be
discarded. In addition, after the RS process, all non-ECC requests will also be added as normal
requests to the switch allocator. Note that at least one ECC request (if exists) will be selected in
the RS process. In addition, RS process could select two or more ECC requests in a single cycle. For
example, if there exist different destinations (endpoints) in ECC requests, then the RS process will
select more than one ECC request, and the selected ECC requests number is equal to the number
of destinations. After RS process, normal SA process will be executed.

Figure 5 presents an instance to detail the RS and the SA processes of Eca-Router. In this instance,
an output-first separable allocator [6] is adopted for the SA process. As shown in Figure 5(a), the RS
process is performed before SA. There are three ECC requests, namelyN → S ,W → S , andW → E,
and other requests are uniform random requests. In the figure, there two requests from inport E at
the same time. This is because each VC is one input candidate for switch, and there can be multiple
VCs in an input port simultaneously applying for traversal the switch. RS process randomly select
the ECC request N → S and adds it as a normal request to the switch allocator, along with all other

3In fact, the RS process can be executed in parallel with router pipelines. But for a better description, here we take RC as
an independent pipeline stage.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

MUA-Router: Maximizing the Utility-of-Allocation for On-chip Pipelining Routers 33:9

Fig. 5. An instance of the SA process of Eca-Router. Before SA, the RS process will be performed to select

a request from all ECC requests (marked in red), and this selected ECC request and all uniform requests

(marked in green) will be used as input requests of the switch allocator. The switch allocator of Eca-Router is

a traditional output-first separable allocator, and the selected ECC request and other uniform requests have

the equal probability to be allocated during the SA. Such design restricts the allocation of ECC requests

while ensuring the fairness by giving ECC requests a certain probability to be allocated.

uniform requests. During the output arbitration of SA, as shown in Figure 5(b), the ECC request
N → S is selected, and the uniform request E → S is removed, because this request is in conflict
with the ECC request N → S on output port S . Finally, after the input arbitration of SA, three
requests are selected by the switch allocator, including an ECC request. As can be observed from
the figure, by limiting allocation of ECC requests, Eca-Router can relieve the impact of endpoint
congestion while ensuring the fairness in SA.

4.3 SA Strategy in CoD-Router

Eca-Router relieves the impact of endpoint congestion by adding information collected in the RC
stage to the SA stage. To further improve the performance of SA, CoD-Router optimizes the SA
process through the co-design of more router pipelines. The purpose of CoD-Router is to improve
the matching number in SA by providing more conflict-free requests. This purpose can be achieved
in the RC process of CoD-Router, using the SA request information obtained from the SA stage
and the VA stage.

Figure 6 shows an example of the RC and SA processes in CoD-Router, where the corresponding
processes of the baseline router are also presented for comparison. The baseline router also adopts
a traditional routing strategy but cannot use information from other pipelines to produce routing
results more suitable for SA. In the RC process of CoD-Router, SA request information can be
used to select an output port that will not be competed by future SA requests in the next cycle.
As shown in Figure 6, in the RC stage, the packet in input port S has two candidate output ports
N and E, and these two output ports have the same probability to be selected as the final output
port. If an output port, say, N , is selected, then a new SA request S → N will be provided to the
switch allocator in the next cycle (in this case, we adopt speculative SA [28] where SA is performed
in parallel with VA, so that there is only one-cycle delay between RC and SA). To make the RC
stage generate fewer conflicts in the next-cycle SA, some SA information needs to be collected
and utilized. This information includes the SA request not allocated in the current cycle (W → S ,
W → E, and E → S in the RC stage in Figure 6) and the new generated SA request that will arrive
in the next cycle (L → E in the RC stage in Figure 6). These two kinds of requests will reach the
SA stage in the next cycle. Traditional adaptive routing algorithms do not take advantage of this
information when making routing decisions. Without this information, as shown in Figure 6(a), a
traditional routing strategy usually randomly select a candidate output port (say, S → E). If the

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

33:10 C. Li et al.

Fig. 6. Pipeline comparisons of (a) the baseline router that adopts traditional RC strategy and (b) CoD-Router.

Before RC, some information will be collected, including unallocated SA requests in current cycle and the

SA requests to arrive in the next cycle (these requests will be used as requests for the next SA cycle). Based

on this information, CoD-Router can select a routing path with the least competition so that the SA process

can have more non-conflicting requests to achieve more matchings in the next cycle. However, traditional

RC strategy do not use this information, thus the selected routing path can compete with future SA requests

to reduce matching efficiency.

selected output port is in conflict with future SA requests, then fewer conflict-free requests will
be provided to the switch allocator in next cycle, and thus fewer matchings can be achieved in the
next-cycle SA. However, if considering SA request information during the RC process, then more
matchings can be achieved in the SA due to more conflict-free requests provided to the switch
allocator. As shown in Figure 6(b), by adopting SA request information, CoD-Router selects the
routing path S → N rather than S → E to not introduce new conflicts into the SA in the next
cycle. With such a routing decision, CoD-Router achieves more matchings in the SA in the next
cycle.

Figure 7 shows a comparison of the RC and SA processes for TS-Router, Eca-Router, and CoD-
Router. In Figure 7, a request matrix [3] is used to indicate the relationship between input ports and
output ports. A thin circle in the figure refers to a uniform request, and the thick circle represents
the ECC request. In the ith request matrix, there are four requests, namely request (2,3), (3,3), (4,3),
and (3,2); among them, (2,3) and (3,3) are ECC requests, and others are uniform requests. We assume
sing-flit packets in this case, and requests provided to the switch allocator are consistent across
each cycle. TS-Router achieves better performance by adding future SA request information into
the current SA process, but it can be problematic when faced with endpoint congestion. TS-Router
prefers to choose requests that are in conflict with next-cycle requests. However, if the selected
request is an ECC request, then conflicts can be introduced in the next cycle as well. As shown in
Figure 7(a), TS-Router chooses ECC request (3,3), because it has the highest priority (this request
is in conflict with the most requests arriving in the next cycle). However, since this request is an
ECC request and it is in conflict with all other requests, only this ECC request can be allocated in
the ith allocation. Moreover, TS-Router can cause congestion on the output port competed by ECC
requests (outport 3 in this case). As a result, after a period of time, outport 3 will be congested, and

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

MUA-Router: Maximizing the Utility-of-Allocation for On-chip Pipelining Routers 33:11

Fig. 7. Switch allocation comparisons. The thin circles are the uniform requests and the thick circles are the

ECC requests used by Eca-Router. We assume that there are continuous request arrivals, and the arriving

requests are the same as the ith request matrix in each cycle. TS-Router chooses the ECC request (3,3) in each

cycle, because it has the highest priority but achieves the least matchings. Eca-Router lowers the priority of

ECC requests and thus achieves more allocations. Request in inport 4 has an alternate routing outport 4 in

addition to outport 3. CoD-Router selects outport 4 in the RC stage in the ith cycle and thus adds a new

conflict-free request (4,4) in the SA in the (i + 1)-th cycle. Therefore, CoD-Router achieves more matchings.

thus requests to this outport will not be allocated by the switch allocator. Eca-Router outperforms
TS-Router, because Eca-Router relieves the impact of endpoint congestion in SA and thus achieves
higher matching efficiency on long time series. In the SA of Eca-Router, as shown in Figure 7(b),
the switch allocator prefers to choose uniform requests rather than the ECC requests and thus
relieves the impact of endpoint congestion and provides more requests to the switch allocator
on time series. To further improve the matching efficiency of SA, CoD-Router actually changes
the SA requests with optimizations in the RC stage. As shown in Figure 7(c), in ith cycle, RC
process detects that routing path 4→ 3 (resulting in request (4,3) in SA in the (i + 1)-th cycle) can
be conflict with other SA requests in the (i + 1)-th cycle. Therefore, the candidate routing path
4→ 4 is chosen to avoid such conflict. Because CoD-Router introduces a new conflict-free request
in SA, it can achieve more matchings in the (i + 1)-th allocation compared to the other two SA
strategies.

4.4 Pipeline Design in Eca-Router and CoD-Router

Eca-Router adopts the information from the RC stage to optimize the SA process. A simple de-
sign is to add a new pipeline stage (RS) before the SA stage for processing RC information and
removing ECC requests from SA requests. However, such a design can increase the router latency
by one cycle and damage the low latency characteristics of the on-chip router as a result. To mit-
igate performance loss, we divide the RS process into two stages. The first stage detects the ECC

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

33:12 C. Li et al.

Fig. 8. Datapath of Eca-Router and CoD-Router. In Eca-Router, one forwarding link is added for prefetching

the ECC request information to the SA stage. This link is from the output of the RC stage to the input of the

SA stage. CoD-Router further adds two additional control paths to feed back the SA request information to

the RC stage. Among these two paths, one transits unallocated SA request information from the SA stage,

and the other transits the new generated SA request information from the VA stage, to the RC stage.

packets by analyzing the destination information of packets in input buffers, and the second stage
determines which ECC requests should be discarded before the SA process. The first stage can be
executed in parallel with the RC stage, because the input data (destinations of packets) of these
two stages are the same. The second stage requires a random selection and removal of ECC re-
quests. Selection of ECC requests can be implemented with simple selection logic, and it can be
performed in parallel with the router critical pipeline stages. Removal of the selected ECC requests
can be implemented by marking the ECC request before the start of the SA process. The marked
ECC requests can be directly removed during the SA. Therefore, although the second phase of
the RS cannot be performed in parallel with router pipelines, it can be integrated in the SA phase
without introducing significant delay in the SA. To investigate the overheads in router frequency,
we perform estimations on the critical path latency of our router architecture using Synopsys De-
sign Compiler. Behavioral RTL is performed using 65-nm design libraries with 1.20 V and 1 GHz
frequency. The result shows that our design achieves a 13.6% slower router, which runs up to
864 MHz.

Figure 8 presents the datapath of Eca-Router and CoD-Router in a five-stage pipeline router. As
shown in the figure, a single forwarding link from RC stage to SA stage is added for transmitting
the ECC request information in Eca-Router. It should be noted that the process of identifying the
ECC request in the first stage of RS has been merged into the RC process. CoD-Router is designed
based on Eca-Router. In CoD-Router, two additional links are added to further feed back the SA
request information to the RC stage. These two links, one from the SA stage to the RC stage, which
is designed for the purpose to transit the information of unallocated SA requests to the RC process.
The other from the VA stage to the RC stage to transit the new generated SA request information
to the RC process.

MUA-Router can be extended to other IQ routers as well, since the design of MUA-Router is not
dependent on a particular router architecture or routing algorithms. The design of Eca-Router is
orthogonal to most previous SA strategies, because the RS process and the SA process are indepen-
dent. Therefore, previous advanced SA strategies can be adopted in the SA process of Eca-Router
to further improve the performance. CoD-Router can be integrated with other adaptive routing
algorithms as well. This is because CoD-Router makes sense when there exist multiple candidate
routing paths in the RC stage, and these paths have the same probability to be selected. Although
different routing algorithms select routing paths differently, the probability that two paths share
the same probability to be selected is still very high. Therefore, CoD-Router can be extended to
most IQ routers combined with efficient adaptive routing algorithms. It should be noted that CoD-
Router cannot be integrated with DOR. This is because the routing decision of each hop in the

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

MUA-Router: Maximizing the Utility-of-Allocation for On-chip Pipelining Routers 33:13

Table 1. Network Simulation Configuration

Parameters Values

Network Topology 4 × 4, 8 × 8, 16 × 16 2D meshes

Routing Algorithms Footprint [10]

VC 2, 4, 8 VCs per physical channel, VC buffer size is 8

Traffic Patterns Uniform Random, Transpose, Tornado, Hotspot, PARSEC traces

Packet Size single-flit, {2,3,4 · · · 16}-flit packets

Flow Control Technique credit-based wormhole

VC Allocator Round-Robin

Switch Allocator iSLIP, Packet Chaining [25], TS-Router [3], Eca-Router, CoD-Router

Speedup internal_speedup = 1.0

The default values are shown in bold.

routing path is determined for DOR, and there is no optional output port provided to CoD-Router
to select an output port that can reduce SA conflicts.

5 EXPERIMENTAL STUDIES

5.1 Evaluation Methodology

The evaluations are performed using Booksim [15], a cycle-accurate interconnection network sim-
ulator, with synthetic traffic patterns as well as traces from real-workload. The detailed config-
uration has been listed in Table 1. We adopt an 8 × 8 2D mesh with 64 nodes as the baseline
network topology. The 4 × 4 and 16 × 16 2D meshes are also evaluated to study the scalability of
our design. Our evaluations focus on 2D mesh topologies due to the benefit of mapping well to the
2D layout and the fact that this topology has been implemented in commercial and experimental
manycore systems. All channels have one cycle delay and each router connects one terminal node.
Traditional VC flow control [4] is used and there are 4 VCs in each input port. Different number
of VCs are also evaluated and each VC has a buffer size of eight flits in all the evaluations. We
choose Footprint [10] routing for the mesh, because it is the most efficient adaptive routing in
NoCs. Duato’s theory [8] is utilized in Footprint to avoid routing deadlock. Router architecture
has been described in Section IV, and the credits can be transmitted upstream in two cycles. We
use one-iteration iSLIP as the baseline allocator for Packet Chaining, TS-Router and our design.
In the evaluation, we implement the second type of Packet Chaining (same port, different VCs).
Unless indicated otherwise, our evaluation is performed with single-flit packets.

Synthetic traffic patterns, such as uniform, transpose, tornado, and bitrev are used in the eval-
uation. In addition, a hotspot traffic is designed to evaluate the performance of our design under
endpoint congestion conditions. For hotspot traffic pattern, 10% nodes are randomly selected as the
hotspot receivers to accept traffic from other nodes. Other nodes have a 20% probability of send-
ing packets to hotspot endpoint nodes, and an 80% probability of sending packets to a randomly
selected node.

To evaluate the performance of our design with real-workload, trace-driven simulations [12] are
performed under PARSEC benchmarks [2]. The traces are gathered from full-system simulations
of 64 in-order-issue 2-way SMT cores. Dsent [32] is used to evaluate area and power consumption.
Area and power evaluations are performed at 22-nm technology scaling with 1.0-V operating volt-
age. Operating frequency is set to 1.0 GHz while data width of links and flit width are all set to
128 bits.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

33:14 C. Li et al.

Fig. 9. Latency comparison of CoD-Router and Eca-Router with other switch allocators in the mesh.

5.2 Network Performance of Synthetic Traffic

We first evaluate the performance of Eca-Router and CoD-Router in the mesh under three different
traffic patterns. We also compare our design with other advanced SA strategies. Average packet
latency is measured and the result has been presented in Figure 9. As can be seen from the figure,
Eca-Router outperforms most other allocators and CoD-Router achieves even better performance
than Eca-Router. Our design not only achieves higher saturation throughput but also achieves
lower latency when the injection rate is less than the saturation injection rate. Compared with
TS-Router, Eca-Router achieves 6.7%, 6.2%, 8.9%, and 5.8% performance improvement in saturation
throughput under uniform, transpose, and tornado traffic patterns, respectively. The throughput
improvements of CoD-Router under these three traffic patterns are 7.2%, 7.8%, 12.8%, and 11.5%
respectively. Under each traffic pattern, Eca-Router achieves much lower packet latency; this is be-
cause the impact of congestion is relieved during the SA process, which reduces the packet latency
as a result. CoD-Router is designed based on Eca-Router and further introduces the SA informa-
tion to the RC stage, achieving better performance than Eca-Router and other SA strategies due to
more conflict-free requests provided to the switch allocator. It should noted that the overall per-
formance improvement cannot compensate for the decreased frequency (13.6%) in this evaluation.
This is because the complicated SA process will bring down the router frequency, which is a flaw in
our design. However, our design gives a novel method to improve the performance of SA, and we
can achieve higher performance through further optimization to offset the router frequency over-
head. However, our design can achieve high performance under certain traffic patterns or larger
NoCs, which is enough to offset the overhead of router frequency. Detailed experimental results
will be presented in the following paragraphs.

We further evaluate the impact of the number of VCs on performance and the result is shown
in Figure 10. In this evaluation, we vary the number of VCs and compare our design with TS-
Router. To avoid deadlock in RC, at least two VCs are required in the input buffer [8]. Therefore,
in this evaluation, we adopt two VCs, four VCs, and eight VCs in the input buffer. More VCs can

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

MUA-Router: Maximizing the Utility-of-Allocation for On-chip Pipelining Routers 33:15

Fig. 10. Latency comparison of Eca-Router, CoD-Router, and TS-Router as the number of VCs is varied for

different traffic patterns.

provide more requests to the switch allocator, resulting in more matchings in the SA process. As
shown in Figure 10, for different SA strategies, adopting more VCs can achieve better performance.
As the number of VCs increases, the performance of SA strategy increases accordingly. However,
when the number of VCs continues to increase, the number of requests is no longer a performance
bottleneck for SA, the allocation efficiency of the switch allocator is. Therefore, the performance
difference between different SA strategies is more obvious when a larger number of VCs is used.
As shown in Figure 10, given the same number of VCs, CoD-Router and Eca-Router outperform
TS-Router under different traffic patterns. Eca-Router improves the saturation throughput by 5.2%
with 2 VCs and increases to 7.3% with 8 VCs under uniform traffic pattern, and the corresponding
improvements achieved by CoD-Router are 6.7% and 8.1%, respectively.

One reason why MUQ-ROUTER is efficient lays in its ability to relieve the impact of endpoint
congestion. Thus we evaluate our design and compare it with other SA strategies under a hotspot
and uniform mixed traffic pattern, described earlier in Section 5.1. The hotspot traffic will create
a congestion tree and congest other uniform traffic due to the HoL blocking, which can reduce
network throughput. We present the latency-throughput curve in Figure 11 to demonstrate the
benefit of our design in relieving the impact of endpoint congestion. As shown in Figure 11, TS-
Router saturates when the injection rate reaches approximately 34%. Compared with TS-Router,
the saturation injection rate of Eca-Router and CoD-Router can be increased by 4.6% and 8.8%, re-
spectively. In addition to increasing network throughput, our design also reduces the transmission
latency of packets under low load. As shown in Figure 11, when the injection rate is lower than
the saturation point, CoD-Router can achieve much lower packet latency compared with other SA
strategies. When the injection rate is 0.2 flits/cycle, CoD-Router can reduce average packet latency
by 37.5% and 30.2% compared with TS-Router and Eca-Router.

We also compare our design with TS-Router using different network scale and the result is
shown in Figure 12. The throughput of Eca-Router and CoD-Router has been normalized to TS-
Router under each traffic pattern. As shown in Figure 12, the performance improvement of our

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

33:16 C. Li et al.

Fig. 11. Performance comparison of TS-Router,

Eca-Router, and CoD-Router with hotspot traffic.

Fig. 12. Throughput comparison of TS-Router,

Eca-Router, and CoD-Router for different network

size. The throughput of Eca-Router and CoD-

Router is normalized to that of TS-Router.

Fig. 13. Comparison of matching numbers in the

SA process of TS-Router, Eca-Router, and CoD-

Router in a single router of the mesh network un-

der uniform traffic.

Fig. 14. Increased matching number of SA for Eca-

Router and CoD-Router (compared to TS-Router)

under uniform traffic in the mesh.

design is larger in the 16 × 16 mesh than in the 4 × 4 mesh, since larger network can stress the
congestion. For uniform traffic pattern, the throughput gained by Eca-Router over TS-Router in
4×4 and 16×16 meshes is 3.6% and 15.4%, respectively. The corresponding improvement achieved
by CoD-Router in these two meshes is 4.9% and 23.1%, respectively. Compared with TS-Router, the
improvement in throughput of Eca-Router in 4 × 4 and 16 × 16 meshes is 3.8% and 12.5%, respec-
tively, while the corresponding improvement of CoD-Router in these two meshes is 4.5% and 17.5%,
respectively. Considering the overhead of router frequency, the performance improvement of our
design is more pronounced for larger NoCs, which can offset the overhead of router frequency.
For this evaluation, the number of VCs is not increased as the network size increases, and we do
not increase the depth of VCs as well. Although adopting more VCs or deeper VCs implies better
performance in NoCs, the increased buffer size and the complex scheduling logic are difficult to
implement in the on-chip router. Note that input buffer consumes a considerable amount of area
and power in a NoC router, it is difficult to adopt a large buffer in on-chip routers [20].

The performance of switch allocator is associated with the matching number, and the larger
matching number achieved, the better performance of the switch allocator. We compare the num-
ber of matchings in a single router for CoD-Router, Eca-Router, and TS-Router by increasing the
injection rate from 0 to 0.9 flits/cycle/node. The result is presented in Figure 13, and it is col-
lected from 1,000 consecutive stable cycles in the mesh network under uniform traffic pattern. As
Figure 13 shows, when the injection rate exceeds 0.38 flits/cycle/node, the network will be sat-
urated. Moreover, when the injection rate exceeds the saturation point, as the injection rate in-
creases, the matching number does not continue to increase but decreases. This is because when

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

MUA-Router: Maximizing the Utility-of-Allocation for On-chip Pipelining Routers 33:17

Fig. 15. The CDF of packet latency for TS-Router,

Eca-Router, and CoD-Router.

Fig. 16. Average packet latency by packet length

for TS-Router, Eca-Router, and CoD-Router under

uniform traffic pattern in the mesh.

the output port is congested, requests provided to the switch allocator will be reduced, thereby re-
ducing the number of SA requests. However, due to the advantage in SA process, CoD-Router and
Eca-Router can achieve more matchings when the injection rate is near or exceeds the saturation
injection rate.

We further demonstrate the advantage of our design in increasing the number of matchings and
present the result in Figure 14. Figure 14 presents the improved matching number of the SA process
for CoD-Router and Eca-Router compared with TS-Router. We collect the matching number of
the switch allocator for CoD-Router, Eca-Router, and TS-Router in 40,000 cycles in an 8 × 8 mesh
network with the injection rate changing from 0.1 to 1.0 flits/cycle/node. As presented in Figure 14,
CoD-Router and Eca-Router achieve more matchings than TS-Router at each injection rate, and
CoD-Router can deliver more matchings than Eca-Router. When the injection rate is less than 0.5,
the increased matching numbers of both methods increase as the injection rate increases. This is
because the matching number relies on the number of requests, and the more requests provided
to the switch allocator, the more matchings can be achieved. However, when the injection rate
exceeds 0.5 flits/cycle/node, the number of increased matchings begins to decrease. This is because
the excessive load can block the output port of the router, which leads to a decrease in the number
of valid requests and in turn damages the allocation efficiency of the switch allocator.

Eca-Router achieves better performance in average packet latency by relieving the impact of
endpoint congestion. In this way, the long waiting latency of packets caused by endpoint conges-
tion can be reduced, resulting in lower average packet latency. Although CoD-Router changes the
execution process of routing algorithm, it does not negatively affect the performance. We evalu-
ate the latency distributions of TS-Router, Eca-Router, and CoD-Router and present the result of
cumulative distribution function (CDF) in Figure 15. The evaluation is performed in an 8 × 8
mesh network and packets are injected in saturation injection rate. As can be seen in the figure,
the proportion of packets with low latency is larger in our design than in TS-Router. Moreover,
our design does not introduce significant tail latency. That is, our design can avoid the long packet
latency caused by unnecessary waiting when faced with endpoint congestion.

We next evaluate the impact of packet length on the performance of our design. We evaluate the
average packet latency of CoD-Router, Eca-Router, and TS-Router with the packet length changing
from 1 flit to 16 flits. Results are presented in Figure 16. We set the injection rate to saturation
injection rate for each test. As can be observed from the figure, Eca-Router outperforms TS-Router
when the packet length is smaller than 8 flits and becomes worse when the packet length beyond 8
flits. The performance improvement of Eca-Router degrades as the packet length keeps increasing.
This is because long packets reduce the number of requests provided to the switch allocator, which
limits the optimization of the SA process. For TS-Router, there is a mutation after packet length

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

33:18 C. Li et al.

Fig. 17. Average packet of CoD-Router and the baseline router when endpoint congestion occurs in the

20,000th cycle for 500 cycles.

beyond 8 flits. This is because we set the capacity of a VC to 8 flits in our evaluation. When the
packet length beyond 8 flits, the probability of two packets in the same VC will be very small.
Consequently, the opportunity to get the information of next requests will also be reduced and thus
reduces the performance of TS-Router. In most cases, CoD-Router can achieve better performance
than the other two methods, especially when the packet length is less than 7. This indicates that
CoD-Router is more suitable for NoCs where a large proportion of packets are short packets [25].

Our design strives to find ECC requests and limit the allocation of these ECC requests to relieve
the impact of endpoint congestion. To prove the effectiveness of our design, we have counted the
changes in ECC requests when endpoint congestion occurs, as well as the changes in the average
packet latency of our design and the baseline router. The result has been presented in Figure 17. In
this evaluation, hotspot traffic, which can introduce endpoint congestion, occurs in the 20,000th
cycle. Background load is a uniform random traffic pattern with an injection rate of 40%, and
the hotspot traffic continues to inject 500 cycles from the 20,000th cycle with an injection rate
of 50%. As shown in the figure, when endpoint congestion occurs, the average packet latency of
both the CoD-Router and the baseline router increase sharply, but the CoD-Router can recover to
normal levels more quickly, while the baseline router takes a long time to eliminate the impact of
endpoint congestion on network performance. This is because CoD-Router can use the collected
ECC request information to reduce the impact of endpoint congestion by limiting the allocation of
requests that cause endpoint congestion. It can be seen from the figure that when congestion occurs
in the network, the ECC requests detected by the CoD-Router also increase rapidly, which provides
the required information for the performance optimization of the CoD-Router, and also proves that
our design can effectively use ECC request information to optimize network performance.

5.3 Application-Level Performance

In addition to synthetic traffic patterns, we also compare our design with TS-Router using network
traces from PARSEC 2.0 workloads [2] in the mesh network. We select eight PARSEC benchmarks
to evaluate the performance of our design in some representative application scenarios. For exam-
ple, the application domains of bodytrack, canneal, ferret, and fluidanimate are computer vision,
engineering, similarity search, and animation, respectively. The application domain represented
by blackscholes and swaptions is financial analysis, but blackscholes is with a small working set
while swaptions is with a large working set to evaluate the impact of working set size. Both vips
and x264 are applications from media processing area, but the parallelization model of vips is data-
parallel while x264 adopts pipeline parallelization model, which can be used to evaluate the impact
of different parallelization models. All the traces are from the whole execution of applications, and

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

MUA-Router: Maximizing the Utility-of-Allocation for On-chip Pipelining Routers 33:19

Fig. 18. The reduced packet latency of Eca-Router

and CoD-Router (compared to TS-Router) with

PARSEC benchmarks in the mesh network.

Fig. 19. Average packet length of PARSEC

benchmarks.

both the parallel regions and the serial phases of the benchmarks will be taken into account. For
each benchmark, results are collected after 1,000,000 cycles of continuous trace injection.

Application-level results are presented in Figure 18 and the latency reduction of CoD-Router
and Eca-Router has been normalized to TS-Router. As can be seen from the figure, CoD-Router
and Eca-Router outperform TS-Router in all benchmarks, and the performance of CoD-Router is
much better than Eca-Router. For Eca-Router, the average improvement over all the benchmarks is
4.1% while the maximum improvement is 9.2% using bodytrack benchmark. The average improve-
ment of CoD-Router over all the benchmarks is 11.7% while the maximal improvement is 28.5%
using bodytrack benchmark. For most benchmarks in Figure 18, the performance improvement of
Eca-Router is not significant; this is because the average injection rate of PARSEC benchmarks is
relatively low, which results in fewer requests to the switch allocator and thus reduces the perfor-
mance of Eca-Router in relieving the impact of endpoint congestion. However, CoD-Router can
achieve much more performance improvements than Eca-Router. This is because most packets in
PARSEC benchmarks are short packets, and CoD-Router can achieve much better performance
with short packets (as shown in Figure 16).

We also calculate the average length of the packets in PARSEC benchmarks and present the
result in Figure 19. As shown in Figure 19, the average packet length varies from 2 to 4 flits
for different benchmarks, and the overall average packet length is 2.8 flits. It can be seen from
Figure 16 that CoD-Router can best reduce the packet latency when the packet length changes
from 1 to 6 flits. This is the reason why CoD-Router can achieve a significant reduction in packet
latency under PARSEC benchmarks whose average packet length changes from 2 to 4 flits. For
the same reason, the performance of Eca-Router and CoD-Router under different benchmarks has
a great relationship with the packet length. Eca-Router adopts fine-granularity endpoint conges-
tion control strategy, and short packet dominated traffic is more suitable for this strategy. For
CoD-Router, short packets can provide more precise feedback from the SA stage to the RC stage,
which achieves better performance by providing more conflict-free requests to the switch alloca-
tor. The three benchmarks that improve performance most are bodytrack, ferret, and swaptions.
Accordingly, as shown in Figure 19, the average packet length of these three benchmarks is also
the shortest. The performance of Eca-Router and CoD-Router also relates with other factors, such
as the number of synchronization operations.

Synchronous operation contributes most to endpoint congestion. To achieve better performance,
Eca-Router can alleviate the impact of endpoint congestion directly while CoD-Router can miti-
gate the competing for the same output port during the SA. Therefore, Eca-Router and CoD-Router
get better performance in benchmarks that contain more synchronization operations. For this
reason, Eca-Router and CoD-Router achieve the maximum performance improvement under the

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

33:20 C. Li et al.

Fig. 20. The increased power consumption in a

router of the Eca-Router and CoD-Router com-

pared with the baseline router.

Fig. 21. The increased area in a router of the Eca-

Router and CoD-Router compared with the base-

line router.

bodytrack benchmark, due to its large amount of barriers synchronization operations. By the way,
the performance improvement of Eca-Router is not obvious; this is because the average injection
rate of PARSEC is relatively low (less than 0.005 flits per cycle) and the congestion in the network
is not serious. The degree of performance improvement and the injection rate also have a certain
correlation and the greater the injection rate, the more obvious the performance improvement is.
This is because the higher the injection rate, the greater the probability of congestion, resulting
in a more significant performance improvement in our design. For PARSEC benchmarks, body-
track and swaptions have the highest average injection rate thus achieve the highest performance
improvement.

5.4 Power and Area

We adopt a light-weighted implementation in our design to minimum the overhead. For Eca-Router,
only a simple RS process is added before SA. The main process of RS can be executed in parallel
with RC stage, and the other process of RS is preformed by marking the ECC request that has been
selected to be discarded. The main overhead of Eca-Router comes from the added registers. In Eca-
Router, to track the destination of the request in each VC, a log2 (N) bits of register is needed for
each VC, where N is the network size. For an 8 × 8 2D mesh with four VCs per physical channel,
this results in only 24 bits storage per port, and 120 bits in total for a 5-port router. Given that
the size of a NoC flit is often very wide (e.g., 128 [11] or 256 [7] bits), the additional storage over-
head is approximately equal to another flit buffer entry at the router. Compared with Eca-Router,
CoD-Router adds two new datapaths to prefetch SA information from the SA and the VA stages.
However, there is no need to set up new registers to store this information, as this information can
be obtained directly from the SA and the VA processes. This information can be used to calculate
the SA contention number for each output port, which is the basis of CoD-Router’s RC process to
select an output port that do not compete with future SA requests. Therefore, only a few registers
need to be added to record the SA contention number of each output port. For an n-port router,
a log2 (n) bits of register is needed for each output port, and thus the total capacity in a router
is n× log2 (n) bits. For a five-port router, compared with Eca-Router, CoD-Router’s storage over-
head is only 15 bits. CoD-Router has a small storage overhead, and there is only a little impact on
the critical datapath of CoD-Router’s pipelines. As our design only adds some registers and the
corresponding logic circuits, the overhead of resource consumption is marginal.

Dsent is utilized to estimate power and area of our design. Our design is modeled based on
the router model in the simulator. The baseline router model has five pipelines stages and five
input/output ports. In the baseline router, there are four VCs in each input port and each VC has a
buffer size of eight flits. We modify the configuration parameters and the implementation details

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

MUA-Router: Maximizing the Utility-of-Allocation for On-chip Pipelining Routers 33:21

in the router model to simulate our design. The buffer space of registers is added to emulate the
storage overhead. Figure 20 presents the increased power consumption of a router for CoD-Router
and Eca-Router compared with the baseline router, and the power result includes the correspond-
ing leakage power and the dynamic power. It should be noted that we put the cost of registers into
the buffer. Therefore, the main increase in power consumption comes from the switch allocator
and the buffer. In total, power consumption is increased by 2.6% and 3.8% for Eca-Router and CoD-
Router, respectively. Because we have added the cost of RS process to that of switch allocator, the
switch allocator contributes the most in power consumption. We also present the area overhead
of our design in Figure 21. In general, the area cost of our design is acceptable and similar to that
of power consumption. In total, the increase in area of the Eca-Router and CoD-Router is 2.4% and
4.1%, respectively. The increase in area of the switch allocator of Eca-Router and CoD-Router is
9.7% and 10.0%, respectively.

6 CONCLUSION

Communication latency has become the performance bottleneck in on-chip systems. To overcome
the bottleneck, designing efficient SA strategy is important for low-latency router architecture, be-
cause SA seriously impacts the overall network latency. Existing SA strategies only focus on the SA
process itself to improve the matching efficiency, which is difficult to further improve the perfor-
mance of SA. This paper revisits designing low-latency router architecture through the co-design
between different pipeline stages to maximize the UoA for SA. Accordingly, we propose MUA-
Router with two instance routers. We first introduce Eca-Router to relieve the impact of endpoint
congestion by lowing the priority of requests that cause endpoint congestion in the SA process,
collaboratively designed with RC stage. We carefully design the SA strategy in Eca-Router to guar-
antee the fairness in the SA process. Based on Eca-Router, an improved router architecture, CoD-
Router is proposed to explore the co-design between RC, VA, and SA process to further improve the
SA performance. CoD-Router strives to provide more conflict-free requests to the switch allocator
through the optimization of RC process, using the request information collected from the VA and
SA processes. We implement our design with light-weight property to achieve desirable perfor-
mance with moderate overheads. Evaluations demonstrate that CoD-Router enhances the overall
performance of NoCs by 12.8% with synthetic traffic compared with TS-Router, and the average
performance improvement under application-level traffic is about 11.7%. As for overhead, CoD-
Router improves about 3.7% leakage power consumption and 4.1% area compared with the baseline
router.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their valuable feedback. We gratefully acknowl-
edge members of Tianhe interconnect group at NUDT for many inspiring conversations.

REFERENCES

[1] Minseon Ahn and Eun Jung Kim. 2010. Pseudo-circuit: Accelerating communication for on-chip interconnection net-
works. In Proceedings of the 43rd Annual IEEE/ACM International Symposium on Microarchitecture. 399–408.

[2] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PARSEC benchmark suite: Characteriza-
tion and architectural implications. In Proceedings of the 17th ACM International Conference on Parallel Architectures

and Compilation Techniques. 72–81.
[3] Yuan-Ying Chang, Yoshi Shih-Chieh Huang, Matthew Poremba, Vijaykrishnan Narayanan, Yuan Xie, and Candice

King. 2013. TS-Router: On maximizing the quality-of-allocation in the on-chip network. In Proceedings of the 19th

IEEE International Symposium on High Performance Computer Architecture (HPCA’13). 390–399.
[4] William J. Dally. 1992. Virtual-channel flow control. IEEE Trans. Parallel Distrib. Syst. 3, 2 (1992), 194–205.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

33:22 C. Li et al.

[5] William J. Dally and Hiromichi Aoki. 1993. Deadlock-free adaptive routing in multicomputer networks using virtual
channels. IEEE Trans. Parallel Distrib. Syst. 4, 4 (1993), 466–475.

[6] William James Dally and Brian Patrick Towles. 2004. Principles and Practices of Interconnection Networks. Elsevier.
[7] Reetuparna Das, Soumya Eachempati, Asit K. Mishra, Vijaykrishnan Narayanan, and Chita R. Das. 2009. Design and

evaluation of a hierarchical on-chip interconnect for next-generation CMPs. In Proceedings of the 15th IEEE Interna-

tional Symposium on High Performance Computer Architecture (HPCA’09). 175–186.
[8] Josĺę Duato. 1993. A new theory of deadlock-free adaptive routing in wormhole networks. IEEE Trans. Parallel Distrib.

Syst. 4, 12 (1993), 1320–1331.
[9] Binzhang Fu, Yinhe Han, Jun Ma, Huawei Li, and Xiaowei Li. 2011. An abacus turn model for time/space-efficient

reconfigurable routing. In Proceedings of the 38th ACM/IEEE Annual International Symposium on Computer Architecture

(ISCA’11). 259–270.
[10] Binzhang Fu and John Kim. 2017. Footprint: Regulating routing adaptiveness in networks-on-chip. In Proceedings of

the 44th ACM/IEEE Annual International Symposium on Computer Architecture (ISCA’17). 691–702.
[11] Paul Gratz, Changkyu Kim, Karthikeyan Sankaralingam, Heather Hanson, Premkishore Shivakumar, Stephen W. Keck-

ler, and Doug Burger. 2007. On-chip interconnection networks of the TRIPS chip. IEEE Micro 27, 5 (2007), 41–50.
[12] Joel Hestness and Stephen W. Keckler. 2011. Netrace: Dependency-tracking traces for efficient network-on-chip ex-

perimentation. The University of Texas at Austin, Department of Computer Science, Technical Report (2011).
[13] Syed Ali Raza Jafri, Hamza Bin Sohail, Mithuna Thottethodi, and T. N. Vijaykumar. 2013. apSLIP: A high-performance

adaptive-effort pipelined switch allocator. ECE Technical Reports Paper 451 (2013), 1–14.
[14] N. Jiang, D. Becker, G. Michelogiannakis, and W. Dally. 2012. Network congestion avoidance through speculative reser-

vation. In Proceedings of the 18th IEEE International Symposium on High Performance Computer Architecture (HPCA’12).
1–12.

[15] Nan Jiang, Daniel U. Becker, George Michelogiannakis, James Balfour, Brian Towles, David E. Shaw, John Kim, and
William J. Dally. 2013. A detailed and flexible cycle-accurate network-on-chip simulator. In Proceedings of the 14th

IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS’13). 86–96.
[16] N. Jiang, L. Dennison, and W. J. Dally. 2015. Network endpoint congestion control for fine-grained communication.

In Proceedings of the 29th ACM Annual International Conference on Supercomputing. 1–12.
[17] Gwangsun Kim, Changhyun Kim, Jiyun Jeong, Mike Parker, and John Kim. 2016. Contention-based congestion man-

agement in large-scale networks. In Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchi-

tecture. 1–13.
[18] Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. 2005. Interconnections in multi-core architectures: Understand-

ing mechanisms, overheads and scaling. In Proceedings of the 32nd ACM/IEEE International Symposium on Computer

Architecture (ISCA’05). 408–419.
[19] Cunlu Li, Dezun Dong, and Xiangke Liao. 2018. Eca-Router: On achieving endpoint congestion aware switch allocation

in the on-chip network. In Proceedings of the 36th IEEE International Conference on Computer Design. 506–509.
[20] Cunlu Li, Dezun Dong, Xiangke Liao, Ji Wu, and Fei Lei. 2016. RoB-Router: Low latency network-on-chip router

microarchitecture using reorder buffer. In Proceedings of the 24th IEEE Annual Symposium on High Performance Inter-

connects (HOTI’16). 68–75.
[21] Sheng Ma, Natalie Enright Jerger, and Zhiying Wang. 2011. DBAR: An efficient routing algorithm to support multiple

concurrent applications in networks-onchip. In Proceedings of the 38th ACM/IEEE Annual International Symposium on

Computer Architecture (ISCA’11). 413–424.
[22] Sheng Ma, Natalie Enright Jerger, and Zhiying Wang. 2012. Whole packet forwarding: Efficient design of fully adaptive

routing algorithms for networks-on-chip. In Proceedings of the 18th IEEE International Symposium on High Performance

Computer Architecture (HPCA’12). 1–12.
[23] Nick McKeown. 1999. The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM Trans. Netw. 7, 2 (1999),

188–201.
[24] G. Michelogiannakis, N. Jiang, D. Becker, and W. Dally. 2013. Channel reservation protocol for over-subscribed chan-

nels and destinations. In Proceedings of the 27th ACM Annual International Conference on Supercomputing. 1–12.
[25] George Michelogiannakis, Nan Jiang, Daniel Becker, and William J. Dally. 2011. Packet chaining: Efficient single-cycle

allocation for on-chip networks. In Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchi-

tecture. 83–94.
[26] Shubhendu S. Mukherjee, Federico Silla, Peter Bannon, Joel Emer, Steve Lang, and David Webb. 2002. A comparative

study of arbitration algorithms for the Alpha 21364 pipelined router. In ACM SIGARCH Computer Architecture News,
Vol. 30. 223–234.

[27] Robert Mullins, Andrew West, and Simon Moore. 2004. Low-latency virtual-channel routers for on-chip networks. In
Proceedings of the 31st IEEE Annual International Symposium on Computer Architecture (ISCA’04). 188–197.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

MUA-Router: Maximizing the Utility-of-Allocation for On-chip Pipelining Routers 33:23

[28] Li-Shiuan Peh and William J. Dally. 2001. A delay model and speculative architecture for pipelined routers. In Pro-

ceedings of the 7th IEEE International Symposium on High Performance Computer Architecture (HPCA’01). 255–266.
[29] Supriya Rao, Supreet Jeloka, Reetuparna Das, David Blaauw, Ronald Dreslinski, and Trevor Mudge. 2014. Vix: Virtual

input crossbar for efficient switch allocation. In Proceedings of the 51st ACM Annual Design Automation Conference.
1–6.

[30] Daniel Sanchez, George Michelogiannakis, and Christos Kozyrakis. 2010. An analysis of on-chip interconnection
networks for large-scale chip multiprocessors. ACM Trans. Arch. Code Optim. 7, 1 (2010), 4.

[31] J. Santos, Y. Turner, and G. Janakiraman. 2003. End-to-end congestion control for infiniband. In Proceedings of the 11th

Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’03). 1123–1133.
[32] Chen Sun, Chia-Hsin Owen Chen, George Kurian, Lan Wei, Jason Miller, Anant Agarwal, Li-Shiuan Peh, and Vladimir

Stojanovic. 2012. DSENT-a tool connecting emerging photonics with electronics for opto-electronic networks-on-chip
modeling. In Proceedings of the 6th IEEE/ACM International Symposium on Networks on Chip. 201–210.

[33] Paul V. Gratz, Boris Grot, and Stephen W. Keckler. 2008. Regional congestion awareness for load balance in
networks-on-chip. In Proceedings of the 14th IEEE International Symposium on High Performance Computer Architecture

(HPCA’08).
[34] Ke Wu, Dezun Dong, Cunlu Li, Shan Huang, and Yi Dai. 2019. Network congestion avoidance through packet-chaining

reservation. In Proceedings of the 48th ACM International Conference on Parallel Processing (ICPP’19). 58:1–58:10.

Received May 2021; revised January 2022; accepted February 2022

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 33. Publication date: May 2022.

