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Abstract

The MUC1 protein is aberrantly expressed on an estimated 75% of all human solid tumor cancers. We recently reported that
a transmembrane cleavage product, MUC1*, is the predominant form of the protein on cancer cells [1]. Further, our
evidence indicated that MUC1* functions as a growth factor receptor on tumor cells, while the full-length protein appeared
to have no growth promoting activity. Here, we report that MUC1* acts as a growth factor receptor on undifferentiated
human embryonic stem cells (hESCs). Cleavage of the full-length ectodomain to form MUC1*, a membrane receptor,
appears to make binding to its ligand, NM23, possible. Unexpectedly, we found that newly differentiated cells no longer
express the cleaved form, MUC1*, or its ligand, NM23. Newly differentiated stem cells exclusively present full-length MUC1.
Antibody-induced dimerization of the MUC1* receptor on hESCs stimulated cell growth to a far greater degree than
currently used methods that require the addition of exogenous basic fibroblast growth factor (bFGF) as well as factors
secreted by fibroblast ‘‘feeder cells’’. Further, MUC1* mediated growth was shown to be independent of growth stimulated
by bFGF or the milieu of factors secreted by feeder cells. Stimulating the MUC1* receptor with either the cognate antibody
or its ligand NM23 enabled hESC growth in a feeder cell-free system and produced pluripotent colonies that resisted
spontaneous differentiation. These findings suggest that this primal growth mechanism could be utilized to propagate large
numbers of pluripotent stem cells for therapeutic interventions.
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Introduction

Stem cells are classified as totipotent, pluripotent or multipotent.

A totipotent stem cell, such as a fertilized egg, is capable of

developing into a complete organism. Pluripotent stem cells,

exemplified by undifferentiated embryonic cells, are able to

develop into any cell or tissue type. Multipotent stem cells, found

for example in bone marrow, are able to develop into a limited

subset of cell types. Pluripotent stem cells hold the greatest promise

for therapeutic use because they possess the ability to become

virtually any cell type in the human body. In principal, pluripotent

stem cells could be used to replace damaged tissues in organs that

have traditionally been thought not to have a significant potential

for functional self-repair such as heart muscle, spinal cord, brain

tissue and kidney [2–6]. However, to implement these therapies,

one must have the ability to produce a replenishable supply of

pluripotent stem cells, on a large scale, that can then be induced to

differentiate into the desired cell types. Certain technical hurdles

must be overcome before clinical therapies using pluripotent stem

cells can become a reality.

First, improved methods for propagating pluripotent stem cells

and ensuring their pluripotency must be developed. Currently, it is

not possible to culture embryonic stem cells (ESCs) without

initiating some degree of spontaneous differentiation. Growing

ESCs under optimized conditions yields only about 65–75%

undifferentiated, pluripotent stem cells. The remainder spontane-

ously differentiate. This is a problem because the cells that have

initiated differentiation appear to secrete factors that encourage

neighboring cells to also differentiate. To maintain a useful supply

of pluripotent stem cells, the undifferentiated colonies, or portions

of those colonies, must be manually dissected away from those that

have begun to differentiate, then re-plated for further growth. This

process is labor intensive and inaccurate because it depends upon

the technician’s visual assessment of cell and colony morphology in

the determination of which colonies remain undifferentiated. An

additional problem is that there is an upper limit of about 100

generations that embryonic stem cells can be passaged before they

lose pluripotency. Higher passage numbers often correlate with

increased risk of abnormal karyotypes or genetic drift, wherein

abnormal cells with a selective growth advantage overtake and

suppress the pluripotent population [7].

The state of the art for culturing hESCs requires the addition of

a milieu of poorly understood factors from fibroblast ‘‘feeder

cells’’. Some of these factors appear to be necessary to maintain

the undifferentiated state, while others likely trigger differentiation.

Factors secreted from fibroblasts are supplied either by growing

the hESCs over a layer of fibroblast feeder cells [8] or by growing

the stem cells over matrigel-coated surfaces and feeding with
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growth media that has been supplemented with conditioned media

from fibroblasts [9]. Basic fibroblast growth factor (bFGF) has

been identified as a mitogenic factor that helps maintain cultures

in the undifferentiated state and is added to stem cell growth

media for optimal yield of undifferentiated stem cells [10].

There is also the need for improved methods for identifying and

isolating pluripotent stem cells from a mixed pool of undifferen-

tiated and differentiated cells. It is evident that local environment

plays a critical role in the process of stem cell differentiation.

Pluripotent stem cells can be influenced to differentiate into

particular cell types when grown over more mature cells [11]. It

may be that transplanted pluripotent stem cells differentiate into

the cell type of the local environment in response to factors

secreted by those cells/tissues. One can imagine that the

contamination of pluripotent stem cells with even a small number

of cells that have already committed to a particular differentiation

pathway would be sufficient to confound the ordered differenti-

ation process in a way that could have disastrous outcomes.

Whether stem cells are transplanted as pluripotent or at an

intermediate stage of tissue type differentiation, successful stem cell

treatments may benefit from pure populations of stem cells and a

detailed understanding of the molecular triggers that initiate the

various steps along the path from undifferentiated to mature cell.

Reliable, high throughput methods for rapidly identifying and

isolating pluripotent stem cells, in a manner that preserves cell

viability, have not yet been developed.

Therefore, what are needed are methods to identify and isolate

pluripotent stem cells, to propagate pure populations in the

undifferentiated state and to understand the molecular mecha-

nisms that maintain pluripotency as well as those that trigger

differentiation. To that end, we focused upon mechanisms that

drive malignant growth related to so-called tumor stem cells. We

focused on a cell surface protein that appears to mediate the

growth of a large class of cancer cells and asked if it also mediates

the growth of stem cells. This protein, MUC1, is a transmembrane

protein that is expressed on normal epithelia that line the

respiratory, reproductive and gastrointestinal tracts. On healthy

tissue, MUC1 is clustered at the apical border. But, on cancerous

tissues MUC1 is over-expressed and uniformly distributed over the

entire cell surface [12,13]. An estimated 75% of all human solid

tumor cancers aberrantly express the MUC1 protein [14]. The

role of MUC1 in the healthy state has not been studied as

extensively as its role in cancer, where there is significant evidence

that it promotes tumor cell growth and survival [15–18].

In a recent article, we showed that a membrane-anchored

MUC1 cleavage product, MUC1*, that retains only 45 amino

acids of the original extracellular domain, is the predominant form

of the protein on human cancerous tissues; the bulk of the

extracellular domain is cleaved and shed from the tissue surface

[1]. We further demonstrated that MUC1* has growth factor

receptor-like activity wherein ligand-induced dimerization of the

short extracellular domain activates the MAP kinase signaling

pathway and stimulates cell growth. Blocking the ligand binding

site of the extracellular domain inhibited cell growth in a dose-

dependent manner. The purpose of the present studies was to

investigate the possible roles of the two forms of the MUC1

protein, MUC1* and full-length MUC1, in the growth and

differentiation of human embryonic stem cells.

Results

We used three antibodies to probe the expression of MUC1 on

hESCs: two that recognize the full-length protein (MUC1-FL) and

one that recognizes the cleavage product, MUC1*. Both VU4H5

and HMPV are commercially available antibodies that bind to

epitopes in the tandem repeats of the full-length protein (Fig. 1A).

VU4H5 preferentially binds to underglycosylated MUC1, while

HMPV recognizes full-length MUC1 in a glycosylation-indepen-

dent manner and can bind to the fully glycosylated protein. Anti-

MUC1* is a rabbit polyclonal antibody that was raised against a

synthetic peptide that corresponds to the first forty-five (45)

membrane-proximal amino acids of the extracellular domain,

which comprises most if not all of the extracellular domain of the

cleavage product, MUC1* (Fig. 1B). As we previously reported

[1], although the epitope for Anti-MUC1* is present in the full-

length protein, Anti-MUC1* does not bind to MUC1-FL when

analyzed by Western blot or immunocytochemistry. Immunopre-

cipitation experiments show that Anti-MUC1* reacts very weakly

with MUC1-FL. One possible explanation is that full-length

MUC1 contains a self-aggregation domain that likely contributes

to the protein’s characteristic clustering and could sterically hinder

the binding of ligands to the adjacent region which is the Anti-

MUC1* epitope. Cleavage of MUC1 on cancer cells releases the

bulk of the extracellular domain, including most if not all of the

self-aggregation domain. It is not known whether or not Anti-

Figure 1. Schematic and antibody recognition of full-length MUC1 versus the membrane-bound cleavage product MUC1*. A. Full-
length MUC1 protein (MUC1-FL) is comprised of a cytoplasmic tail (CT), a transmembrane domain (TM), a self-aggregation domain (SAD), and
hundreds of tandem repeats (TRs). B. Cleavage product, MUC1*, consists of the cytoplasmic tail, transmembrane domain, and at least 45 amino acids
of the extracellular domain (ECD). Although the exact site(s) of cleavage remain somewhat uncertain, to our knowledge, no cleavage sites have been
reported that leave less than a 45 amino acid ECD. Binding sites for antibodies VU4H5 and Anti-MUC1* are marked.
doi:10.1371/journal.pone.0003312.g001
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MUC1* binds to alternative splice isoforms, such as MUC1/X,

MUC1/Y or MUC1/Z [19,20], which, like MUC1*, contain the

Anti-MUC1* epitope and lack the tandem repeat region; one way

that they differ from MUC1* is that their extracellular domains

are more than one hundred (100) amino acids longer and contain

the self-aggregation domain. Although MUC1/Y is not cleaved, it

has been reported that MUC1/X/Z can be cleaved to yield a

membrane-attached fragment that is essentially indistinguishable

from the MUC1-FL cleavage product [21], and thus would likely

be recognized by Anti-MUC1*.

MUC1 Expression on Human Embryonic Stem Cells
Immunofluorescent cytochemistry experiments were performed

on H9 and H14 human embryonic stem cells (hESCs). The stem

cells were probed with Anti-MUC1*, VU4H5 and HMPV as well

as with antibodies against a panel of known markers of the

undifferentiated state [22,23]. Both undifferentiated and differen-

tiated hESCs were analyzed. Undifferentiated hESCs were

obtained by culturing them under conditions that have been

shown to support the undifferentiated state, followed by manual

dissection of colonies that morphologically appeared to be

undifferentiated, and plating onto chamber slides for further

growth and antibody staining. At this final stage, cells were

deemed to be undifferentiated if they stained positive for OCT4

[24]. hESCs were induced to differentiate by withholding

exogenous bFGF for 14 days or longer [25]. Differentiation was

confirmed, by visual inspection, testing negative for the presence of

OCT4, and testing positive for the presence of the three germline

markers: alpha fetoprotein for endoderm [26], smooth muscle

actin for mesoderm [27], and nestin for ectoderm [28]. Stem cells

used in these experiments were shown to be of normal karyotype

(Fig. S1).

Immunocytochemistry experiments showed that MUC1* is

highly expressed on undifferentiated hESCs; double staining

experiments with an antibody against OCT4 confirmed that the

cells that expressed MUC1* were in fact undifferentiated stem cells

(Fig. 2A). DAPI staining revealed that both MUC1* and OCT4

were expressed by essentially all the undifferentiated cells (data not

shown). Figure 2B shows that MUC1* expression also co-localized

with SSEA4, another marker for undifferentiated hESCs [29],

although expression between these two did not always precisely co-

localize. MUC1* co-localized to a similar extent on undifferen-

tiated hESCs with Tra 1–81 and Tra 1–60 [30] which are also

indicators of the undifferentiated state (Figs. 2 C,D). MUC1*

appears to be surface-expressed as evidenced by antibody staining

in the absence of added detergent (Figs. 2 B–D). Control

experiments for all immunocytochemistry imaging are shown in

Figure S6.

Unexpectedly, we found that although the cleaved form,

MUC1*, is highly expressed on undifferentiated hESCs, no full-

length MUC1 was detectable. Undifferentiated stem cells stained

positive for MUC1* and OCT4 but negative for full-length

MUC1 (Fig. 3A–C). In stark contrast, newly differentiated

embryonic stem cells exclusively expressed full-length MUC1 but

not the cleaved form, MUC1*. Differentiating stem cells tested

positive for full-length MUC1 and negative for both MUC1* and

OCT4 (Fig. 3D–F). No full-length MUC1 was detectable on

undifferentiated H9 or H14 hESCs, whether probed with the

VU4H5 antibody or HMPV; after differentiation, both cell lines

stained positive for MUC1-FL using either antibody (Fig. S2 A–H;

Fig. S3 A–F). Both cell lines stained positive for the presence of

MUC1* in the undifferentiated state, but not in the differentiated

state (data not shown). We cannot rule out the possibility that Anti-

MUC1* is also staining an alternative splice isoform such as

MUC1/X, MUC1/Y or MUC1/Z. However, Western blot

analysis of H9 hESCs revealed a 20 kD Anti-MUC1* reactive

species that co-migrated with the MUC1 cleavage product from

T47D breast cancer cells and with transfected MUC1*1110, that

contains only forty-five (45) amino acids of the extracellular

domain (Fig. S4). It follows that this low molecular weight species

is the cleavage product of full-length MUC1, since it runs with an

apparent molecular weight that is roughly half the apparent

molecular weight of MUC1/Y and MUC1/Y is not cleaved.

We further investigated the observed switch from MUC1* to

MUC1-FL as stem cells enter the differentiation process. Closer

inspection of many antibody-stained colonies revealed that there

were rare transition regions that simultaneously expressed OCT4,

the gold-standard marker for pluripotency, and full-length MUC1,

which appears to be a marker for differentiation. Figure 4A–C

shows that the edge of a colony that has begun to differentiate

simultaneously expressed OCT4 and MUC1-FL. Other transition

zones expressed MUC1-FL, MUC1* and OCT4 (Fig. 4D–I). It is

notable that within these mixed populations, MUC1* appeared to

faithfully co-localize with OCT4, while OCT4 sometimes co-

localized with MUC1-FL.

Expression of MUC1 Cleavage Enzymes on hESCs
MMP14 (MT1-MMP) and TACE (ADAM 17) have been

reported to be enzymes that cleave MUC1 on human uterine

epithelial cells [31,32]. If MMP-14 and TACE also cleave MUC1

on embryonic stem cells, then one might expect high expression

levels on undifferentiated cells, where MUC1 is cleaved, and lower

expression on differentiating cells where it is not. Immunofluores-

cent imaging revealed that both cleavage enzymes, MMP14 and

TACE, are robustly expressed on undifferentiated stem cells that

were completely devoid of full-length MUC1 (Fig. 5A–C).

However, on newly differentiated stem cells, where MUC1-FL

immunoreactivity was present, there was a marked decrease in

MMP14 and TACE expression (Fig. 5 D–F). The merged image of

a triple staining experiment, which also included DAPI staining,

shows that approximately 50% of the cells present stained positive

for the cleavage enzymes (Fig. 5F) compared to virtually 100% on

undifferentiated colonies (data not shown). These findings support

the idea that cleavage enzymes MMP14 and TACE cleave MUC1

on embryonic stem cells.

MUC1* Ligand Expression on hESCs
NM23 is normally a cytoplasmic protein but is often secreted by

tumor cells [33]. It can exist as a monomer, dimer, tetramer or

hexamer, depending upon concentration [34]. NM23 has recently

been identified as a ligand for MUC1* that stimulates the growth

of tumor cells by dimerizing two MUC1* receptors [1]. We,

therefore, looked for NM23 expression by hESCs. Figure 6 A–C

depicts a triple staining experiment in which a hESC colony was

stained with DAPI and antibodies against NM23 and MUC1*.

The merged image (Fig. 6C) shows that expression of MUC1* and

NM23 precisely co-localize, but are not expressed on newly

differentiating cells at the edge of the colony. Another colony that

had been stained with DAPI and antibodies against NM23 and

OCT4 confirms that NM23-positive cells were in fact undifferen-

tiated. Differentiated hESCs did not stain positive for the presence

of NM23 (Fig. 6 D–F). These results are consistent with the idea

that NM23 could also be a ligand of MUC1* on hESCs.

MUC1*-Mediated Stem Cell Growth
We previously reported that [1], bivalent Anti-MUC1*,

stimulated the growth of MUC1-positive tumor cells, whereas

the monovalent Fab fragment of that same antibody potently

Pluripotent Stem Cells
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inhibited growth. Experiments indicated that the bivalent antibody

dimerized the MUC1* receptor, which activated the MAP kinase

proliferation pathway, but the monovalent Fab blocked the

interaction between MUC1* and its native ligand NM23. We

were also able to demonstrate that NM23, and in particular the

mutant that preferentially forms dimers [35], like the bivalent

antibody, stimulated the growth of MUC1-positive tumor cells.

We performed similar experiments to determine whether

ligands of MUC1* could mediate the growth of pluripotent

hESCs. Undifferentiated stem cells were grown on matrigel-coated

wells and cultured according to current methods which included

feeding with minimal stem cell media that had been supplemented

with 30% conditioned media from Hs27 fibroblast feeder cells.

Cells were treated with bivalent Anti-MUC1* or the monovalent

Fab, in the presence or absence of exogenous bFGF. The addition

of Anti-MUC1* to undifferentiated hESCs had a dramatic,

stimulatory effect on cell growth. Treating hESCs with bivalent

Anti-MUC1* for forty-one (41) hours, in the presence or absence

of added bFGF, resulted in cells that were more viable and

abundant than control cells that were cultured according to

standard methods, which included adding bFGF. In stark contrast,

the addition of the monovalent Fab fragment of Anti-MUC1*

Figure 2. MUC1* co-localizes with OCT4 and other markers of pluripotency on undifferentiated human embryonic stem cells
(hESCs). Undifferentiated H9 hESCs were cultured according to standard methods on chamber slides then double stained with Anti-MUC1* and
antibodies that recognize known markers of pluripotency: A. MUC1* is co-expressed with OCT4 on undifferentiated hESCs. B. MUC1* and SSEA4 co-
localize to a great extent on undifferentiated hESC colonies. C. MUC1* and Tra 1–81 partially co-localize on undifferentiated hESC colonies. D. MUC1*
and Tra 1–60 are co-expressed on hESCs. Dotted lines indicate the border of the undifferentiated colony. Scale bars = 100 mm.
doi:10.1371/journal.pone.0003312.g002
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Figure 3. The cleaved form, MUC1*, is expressed on undifferentiated human embryonic stem cells while the full-length, uncleaved
protein (MUC1-FL) is expressed on differentiated stem cells. A–C. Undifferentiated H9 hESC colonies were triple stained with antibodies
against: A. MUC1*, B. OCT4, and C. MUC1-FL. The dotted line indicates the border of the undifferentiated colony. D–F. H9 hESC colonies were
induced to differentiate by withholding bFGF for 14 days. Visual inspection indicated that the colonies had differentiated. The hESC colonies were
triple stained with antibodies against: D. MUC1*, E. OCT4, and F. MUC1-FL. Scale bars = 100 mm.
doi:10.1371/journal.pone.0003312.g003

Figure 4. Transition zones between undifferentiated and differentiated hESCs simultaneously express full-length MUC1 and OCT4.
hESCs grown without bFGF for 14 days appeared to be MUC1-FL positive and OCT4/MUC1* negative. However, rare transition regions were found
that expressed all three proteins. A–C. The leading edge of an undifferentiated stem cell colony that has begun to differentiate stains positive for: A.
MUC1-FL. B. OCT4. C. The merged image shows that MUC1-FL and OCT4 are expressed by the same cells. The border between undifferentiated and
differentiated portions of the colony is marked by the dotted line. D–F. Another transition region simultaneously expressed: D. MUC1-FL. E. MUC1*.
F. OCT4. However, tracking of individual cells indicates that MUC1* appears to faithfully co-localized with OCT4. Scale bars = 100 mm.
doi:10.1371/journal.pone.0003312.g004
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resulted in nearly total cell death within 12 hours of treatment

(Fig. 7A–F). Presumably the monovalent Fab competed with

MUC1*’s native ligand, NM23, for binding and blocked receptor

dimerization. The growth effects of the MUC1*-targeting

antibodies were quantified by measuring the fluorescence at

530 nm for live cells grown under each test condition. In the

absence of added exogenous bFGF, the addition of bivalent Anti-

MUC1* resulted in a greater than 2-fold enhancement of cell

growth compared to the control (Fig. 7G). A plot of normalized

cell growth with added bFGF defined as 100%, is shown in

Figure 7H. Bivalent Anti-MUC1* greatly enhances the growth of

undifferentiated stem cells and does not require the addition of

exogenous bFGF. Notably, the addition of bFGF cannot rescue

stem cells when treated with monovalent Anti-MUC1*. A similar

experiment was performed in which the effects of bivalent Anti-

MUC1*, its monovalent Fab, and a control Fab, on H9 and on

H14 hESCs were measured (Fig. S5 A,B). The results were

essentially the same as those depicted in Figure 7.

Since it appeared that MUC1*-mediated growth of hESCs was

independent of the addition of basic fibroblast growth factor

(bFGF), we investigated whether or not MUC1*-mediated growth

required any fibroblast-derived factors. Specifically, we tested

whether or not the addition of the MUC1* dimerizing antibody

was sufficient to support the long-term growth of pluripotent

hESCs in minimal media and in the absence of fibroblast feeder

cells, their extracts, or purified bFGF. Undifferentiated H9 hESCs

were plated at very low density onto matrigel and cultured for five

weeks in either minimal stem cell media or minimal media

supplemented with 30% conditioned media from Hs27 fibroblast

feeder cells. The stem cells were treated every 48 hours with

either: a) nothing; b) bFGF; c) bivalent Anti-MUC1*; or d) bFGF

and bivalent Anti-MUC1*. Throughout the course of treatment,

the plates were inspected for the appearance of new colonies.

Their numbers and morphology were recorded and tabulated in

Table 1.

In the absence of conditioned media from fibroblast feeder cells,

the only condition that supported the growth of pluripotent stem

cells was the addition of Anti-MUC1*, alone (Table 1). The

condition that included Anti-MUC1* and bFGF did not produce

any pluripotent cells, nor did the addition of bFGF alone. The

addition of Anti-MUC1* produced the first colony, the largest

colony (completely covered the well) and after five weeks of

stimulation with Anti-MUC1* it remained 100% positive for OCT4

(Fig. 8A,B). Stem cells grown under these conditions did not

spontaneously differentiate. However, the withdrawal of the Anti-

MUC1* antibody, after five weeks, did induce the onset of

differentiation. None of the other conditions tested produced any

OCT4-positive cells when grown in the absence of conditioned

media from fibroblasts. Stem cells grown in minimal media that had

been supplemented with conditioned media from fibroblast feeder

cells produced a mixture of undifferentiated and differentiated

colonies in response to treatment with Anti-MUC1* (Fig. 8C,D) or

bFGF (Fig. 8E,F). However, treatment with Anti-MUC1* produced

colonies sooner and produced more undifferentiated cells than

Figure 5. The expression of MUC1 cleavage enzymes, MMP14 and TACE, is high on undifferentiated hESCs but significantly lower
on differentiated cells. A–C. Stem cells colonies that were deemed to be undifferentiated by visual inspection and by staining positive for the
presence of OCT4 were stained with antibodies against MUC1-FL and the cleavage enzymes. A. Undifferentiated hESC colonies were stained with an
antibody that recognizes MMP14. VU4H5, which recognizes MUC1-FL, did not stain this colony (data not shown). B. Undifferentiated hESC colonies
were stained with an antibody that recognizes TACE. C. The same undifferentiated colony was also treated with VU4H5 (binds to MUC1-FL) but no
immuno-reactivity was detected. D–F. Stem cells that were induced to differentiate by withholding bFGF for 14 days were stained with the same
antibodies as in A–C. D. Newly differentiating stem cell colonies co-express MMP14 (red) and MUC-FL (green). E. Similarly, newly differentiating stem
cell colonies co-express MUC1 cleavage enzyme TACE (red) and MUC1-FL (green). F. Triple staining of colonies with anti-TACE (red), VU4H5 (green)
and DAPI (blue) showed that roughly 50% of the differentiating cells expressed the cleavage enzyme. An experiment using an antibody against
MMP14 gave essentially the same result. Scale bars = 100 mm.
doi:10.1371/journal.pone.0003312.g005
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treatment with bFGF. Long-term growth supplemented with bFGF

and Anti-MUC1, together, did not support the growth of

undifferentiated colonies in either media (Fig. 8E,F).

To verify that the stimulation of stem cell growth that we

observed was in fact due to the activation of the MUC1* receptor,

we measured the stimulatory effect of Anti-MUC1* as a function

of antibody concentration. H9 hESCs were plated at

1.96104 cells/well (in triplicate) on matrigel-coated 96-well plates.

Cells were cultured in minimal media without any added fibroblast

extracts or growth factors. Anti-MUC1* was added at concentra-

tions that ranged from 0 to 2 ug/ml. Media plus antibody was

changed every other day. After ten (10) days most wells had

reached 75% confluency. Cell numbers were measured by staining

with Amido Black and measuring absorbance at 570 nm. A plot of

cell growth as a function of antibody concentration indicates that

the bivalent antibody stimulates stem cell growth in a dose-

dependent manner (Fig. 9). A control experiment performed in

parallel, wherein stem cells were plated at the same density but

grown according to standard protocol which included the addition

of 30% conditioned media from fibroblast feeder cells and

exogenous bFGF. The degree of cell growth that was achieved

using the state of the art conditions is denoted on the graph.

Our studies next focused on whether the MUC1* ligand,

NM23, could also stimulate embryonic stem cell growth and/or

support the growth of pluripotent stem cells in a feeder-free

system. H9 hESCs were seeded at 1.26105 cells/well in 24-well

plates and cultured for eight (8) days, supplemented with either

nothing, bFGF, Anti-MUC1*, recombinant NM23 or NM23-

S120G, which is a mutant that preferentially forms dimers. The

results are shown in Table 2. The ligand of MUC1*, NM23, also

stimulated and supported embryonic stem cell growth in minimal

media devoid of bFGF or feeder-cell extracts. NM23, NM23-

S120G and Anti-MUC1* all produced undifferentiated stem cell

colonies. Neither the addition of bFGF nor the null control

produced any stem cell colonies. As a control, an aliquot of the

cells was plated at the same density and grown in 50% conditioned

media from Hs27 fibroblasts and bFGF. During the eight-day

growth period, this condition generated single undifferentiated

cells, but no colonies.

Another long-term growth experiment was performed to assess

the effects of Anti-MUC1*, NM23wt and NM23-S120G on the

rate of stem cell growth and their differentiation state. Results are

summarized in Table 3. After four (4) weeks of culturing H14

embryonic stem cells in minimal stem cell media, and in the

absence of conditioned media from fibroblast feeder-cells or

bFGF, cells treated with either Anti-MUC1* or NM23 grew faster,

formed colonies sooner and resisted the onset of differentiation to a

far greater degree than state of the art methods.

Discussion

We have shown that undifferentiated embryonic stem cells do

not express full-length MUC1. Rather, they express a low

molecular weight cleavage product, MUC1*, which we previously

demonstrated has growth factor receptor-like activity on tumor

cells. NM23, which was shown to be an activating ligand of

MUC1* on cancer cells, co-localizes with MUC1* on pluripotent

cells. Unexpectedly, we found that newly differentiated cells no

longer express cleaved MUC1* or its ligand, NM23. Newly

differentiated stem cells present full-length MUC1. Transition

zones between undifferentiated and differentiating cultured stem

cells can be found that continue to express OCT4, while also

expressing uncleaved, full-length MUC1, which appears to be a

marker for the onset of differentiation. Thus, the switch from

Figure 6. The MUC1* ligand, NM23, co-localizes with MUC1* and OCT4 on undifferentiated hESCs but immuno-reactivity of all
three proteins is lost in the portion of the colony that has begun to differentiate. Undifferentiated H9 hESC colonies stained positive for
NM23, MUC1* and OCT4. Newly differentiating colonies did not react with antibodies against any of the three proteins. Co-expression of NM23 with
OCT4 and MUC1* is best seen in colonies that have begun to differentiate. The dotted line marks the border between undifferentiated and
differentiated portions of the colonies. Triple staining experiments were performed using: A. anti-NM23 (green). B. Anti-MUC1* (red). C. anti-NM23
(green), anti-MUC1* (red) and DAPI (blue). A similar colony was stained with: D. anti-NM23 (green). E. anti-OCT4 (red). F. anti-NM23 (green), anti-
OCT4 (red) and DAPI (blue). Scale bar = 100 mm.
doi:10.1371/journal.pone.0003312.g006
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cleaved MUC1* to the full-length protein may be one of the first

detectable signals of the onset of differentiation. These results

imply that MUC1* may be a more accurate marker of

pluripotency than OCT4 and thus antibodies that recognize

MUC1* could be used to search for, identify and isolate pure

populations of pluripotent stem cells. Anti-MUC1* has been used

extensively in our labs to effectively identify and sort both live and

fixed MUC1*-positive cancer cells using FACS. These methods

can be readily extended to identifying and sorting live embryonic

stem cells, which could automate and improve the procedure for

separating out stem cells that remain pluripotent from those that

have begun to differentiate. At present this is an imprecise and

labor-intensive process that depends on the technician’s ability to

visually discriminate between cell types then manually dissect

pluripotent cells without contaminating the pool with cells that

have already entered the differentiation process.

Figure 7. MUC1* mediates growth of pluripotent human embryonic stem cells. Undifferentiated H9 hESCs were grown for 41 hours in the
presence of bivalent Anti-MUC1* (Bivalent Ab), which can dimerize the receptor, the monovalent Fab of Anti-MUC1* (Monovalent Ab), that blocks
receptor dimerization, and/or basic fibroblast growth factor (bFGF). The results were quantified as follows. A–F. A live/dead (green/red) calcein assay
was performed 41 hours post treatment. Photos record the results. A. Treatment with bivalent Anti-MUC1* (Bivalent Ab) and bFGF produced mostly
viable cells (green) and very few dead cells (red). B. Treatment with the monovalent Fab of Anti-MUC1* (Monovalent Ab) and bFGF resulted in
essentially total cell death within 12 hours. C. Treatment with bFGF alone produced mostly viable cells. D. Treatment with bivalent Anti-MUC1* alone
produced more viable cells than with the addition of bFGF. E. Treatment with monovalent Anti-MUC1* killed essentially all cells. F. Treatment
without antibodies or bFGF resulted in more dead cells and less viable cells. G. A bar graph shows that after 41 hours of treatment with Anti-MUC1*
(Bivalent Antibody) there were more than 2-times the number of live cells than without the antibody (No Ab). Treatment with the monovalent Fab
(Monovalent Ab) killed all the cells. Fluorescence of live cells in a calcein assay is plotted. Data are represented as mean fluorescence units6SEM. H.
The percentage hESC growth is plotted for undifferentiated cells grown in the presence or absence of bFGF and with bivalent or monovalent Anti-
MUC1* (Bivalent Ab, Monovalent Ab). Student’s two-tailed test was used for statistical analysis. The graph shows that Anti-MUC1* with or without
bFGF stimulated growth roughly twice as well as with bFGF.
doi:10.1371/journal.pone.0003312.g007
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As on cancer cells, MUC1* functions as a growth factor

receptor on pluripotent embryonic stem cells. Under conditions

that included adding conditioned media from fibroblast feeder

cells, antibody-induced dimerization of the extracellular domain of

MUC1* stimulated the growth of hESCs more than two-fold

better than current methods and importantly without requiring the

addition of exogenous bFGF. Further, the addition of MUC1*

dimerizing ligands, Anti-MUC1* or NM23, enabled the growth of

pluripotent stem cells in feeder-cell-free and bFGF-free minimal

growth media. In fact, stem cell growth supported by the addition

of MUC1* ligands to minimal media resisted spontaneous

differentiation and produced more pluripotent cells than any

other growth condition that we tested. In contrast, neither minimal

stem cell growth media nor media plus bFGF produced any

undifferentiated stem cells. Stem cells that were cultured in

conditioned media from fibroblasts plus bFGF generated a

mixture of undifferentiated and differentiated colonies and the

colonies were smaller than those produced by MUC1* stimulation.

Thus, in addition to mediating the growth of embryonic stem cells,

MUC1* may be a modulator of differentiation. The data

presented strongly suggest that MUC1* is a critical marker for

the identification and isolation of pluripotent embryonic stem cells

as well as a key mediator of the growth and differentiation of

pluripotent stem cells.

Methods

Anti-MUC1* Antibodies
Polyclonal: Rabbits were immunized with a synthetic peptide

corresponding to the first forty-five (45) amino acids of the

extracellular domain, GTINVHDVETQFNQYKTEAASPYNL-

TISDVSVSDVPFPFSAQSGA, conjugated at the C-terminus

with KLH and affinity purified by column chromatography.

Papain digestion, then purification over a protein A column

produced monovalent Anti-MUC1*, collected from the flow-

through (QCB). The specificity of Anti-MUC1* was extensively

characterized by Western, FACS, immunocytochemistry, co-

immunoprecipitation, and nanoparticle experimentation [1].

ES Cells and Culture
H9 or H14 hESCs (WiCell) were cultured at 37uC and 5% CO2

on either mitomycin-C inactivated Hs27 human foreskin fibro-

blasts (ATCC) in 6 well plates (BD Falcon). hESC culture media

consisted of DMEM/F12/GlutaMAX I with 20% Knockout

Serum Replacement, 1% non-essential amino acids stock, 0.1 mM

b-mercaptoethanol (all from Invitrogen) and 4 ng/ml human basic

fibroblastic growth factor (bFGF, Peprotech). Cells were passaged

by manual dissection every 5–7 days at a ratio of 1:3 and medium

was changed every 48 hours. In some experiments, hESCs were

grown on matrigel (BD Biosciences) with hESC culture media

supplemented with 30% Hs27-conditioned medium and 4 ng/ml

bFGF. In other experiments in which Anti-MUC1* was added,

conditioned media and bFGF were omitted.

Immunofluorescence of ES Cells
Manually dissected H9 or H14 cells were plated in 8-well

chamber slides (Nunc) either pre-seeded with mitomycin-C

inactivated Hs27 human foreskin fibroblasts or pre-coated with

matrigel. For undifferentiated cells, cells were fixed 5–7 days after

plating. For differentiated cells, bFGF was removed from the

Table 1. H9 hESCs cultured in minimal media for five weeks.

Growth Conditions Time to First Visible Undifferentiated Colony Morphology

Week 1 Week 2 Week 3 Week 4

30% Conditioned Media from Hs27 Fibroblast Feeder Cells

nothing - - - - 3/4 wells fibroblast-like cells; 1/4
wells also had 1 small OCT42

colony

bFGF 4 ng/ml - - 2/4 wells had colonies growing 2/4 wells mixture of partially
differentiated OCT4+/OCT42

colonies; 2/4 wells fibroblast-like
cells

anti-MUC1* 1 ug/ml - 2/4 wells had colonies fast growing fast growing More undifferentiated cells; 2/4
wells mixture of OCT4+/OCT42

colonies+1 all OCT4+ colony; 2/4
wells fibroblast-like cells

bFGF 4 ng/ml & anti-MUC1*
1 ug/ml

- - - - 4/4 wells OCT42 fibroblast-like
cells

Minimal Stem Cell Growth Media

nothing - - - - 2/4 wells no live cells; 2/4 wells had
OCT42 fibroblast-like cells

bFGF 4 ng/ml - - - - 1/4 wells no live cells; 3/4 wells had
OCT42 fibroblast-like cells

anti-MUC1* 1 ug/ml - 1/4 wells had colonies fastest growing fastest growing largest colony; 1/4 wells 100%
OCT4+ undifferentiated colony
covered entire well – 1/4 wells
OCT42 fibroblast-like cells; 1/4
wells no live cells

bFGF 4 ng/ml & anti-MUC1*
1 ug/ml

- - - - 2/4 wells no live cells; 2/4 wells
OCT42 fibroblast-like cells

doi:10.1371/journal.pone.0003312.t001
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culture medium 5–7 days after plating and cells were allowed to

differentiate for 14 days before fixation. Cells were washed with

PBS prior to fixation with 4% paraformaldehyde in 0.1 M

cacodylate buffer for 15 minutes at 4uC. Cells were blocked for

1 hour with 1% BSA and 1% donkey or goat serum in PBS. 0.1%

NP-40 was used with antibodies against intracellular antigens.

Figure 8. Minimal media plus Anti-MUC1* supports the long-term growth of 100% pluripotent hESCs without added bFGF or
conditioned media. H9 hESCs were plated at very low density (46104 cells per chamber slide well) over matrigel-coated wells then grown for 5
weeks under a variety of test conditions. The resulted colonies were stained with antibodies against OCT4 and DAPI to assess pluripotency.
Photomicrographs are shown. A,B. The photo shows a single colony that completely filled the well of the chamber slide when hESCs were cultured in
minimal stem cell medium to which Anti-MUC1* was added. OCT4 and DAPI staininig showed that 100% of the cells were pluripotent. The addition of
bFGF or Anti-MUC1* and bFGF cultured under the same conditions produced no pluripotent cell growth (data not shown). C,D. hESCS grown in
media supplemented with Anti-MUC1* and media supplemented with fibroblast (Hs27)-conditioned medium produced partially as well as
completely undifferentiated colonies (pictured). E,F. The addition of bFGF and conditioned medium from fibroblasts, which is standard hESC culture
medium for feeder-free systems, produced only partially undifferentiated colonies; dotted lines indicate edge of pluripotent portion of the colony.
G,H. Cells grown in conditioned media, bFGF and Anti-MUC1* addition resulted only in OCT4-negative, fibroblast-like cells. Scale bars = 100 mm.
doi:10.1371/journal.pone.0003312.g008
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Primary antibodies were diluted in block and incubated with cells

for 1 hour at 4uC. The following antibodies were used: OCT4

(Santa Cruz, Clones H-134 and C-10, 1:100 dilution), SSEA4

(Chemicon, Clone MC-813-70, 2.5 mg/ml), Tra 1–60 (Chemicon,

#MAB4360, 2.5 mg/ml), Tra 1–81 (Chemicon, #MAB4381,

5 mg/ml), full-length MUC1 (VU4H5, Santa Cruz Biotechnology,

1:50 dilution; BD Biosciences, Clone HMPV, 1:500 dilution) and

Anti-MUC1* (Minerva, 1:250 dilution), control Fab (Jackson

ImmunoResearch, #315-007-003), MMP14 (Chemicon,

#AB8345, 5 mg/ml), TACE (Chemicon, #AB19027, 5 mg/ml)

and NM23 (Santa Cruz, Clone NM301, 1:100 dilution; BD

Biosciences, Clone 56, 1:100 dilution). Cells were washed 3 times

in PBS for 5 minutes prior to incubation for 30 minutes with

secondary antibodies: AlexaFluor 488 Goat anti-rabbit IgG,

AlexaFluor 555 Goat anti-mouse IgG, AlexaFluor 350 Goat

anti-rabbit IgG (Invitrogen, 1:200); Goat anti-mouse IgM-TR

(Santa Cruz, 1:100). Cells were washed 3 times in PBS for

5 minutes prior to coverslip mounting using an anti-fade mounting

medium (Biomeda). Nuclei were visualized by DAPI staining

(1 mg/ml) for 5 minutes. Immunostained cells were visualized on

an Olympus BX-51 epifluorescent microscope.

ES Cell Short-Term Growth Assay
Quantification of MUC1*-mediated growth. H9 or H14

cells were manually dissected and grown on matrigel-coated wells

of a 96 well plate (BD Falcon). Culture media consisted of hESC

media supplemented with 30% Hs27-conditioned medium and

4 ng/ml bFGF. Medium was changed and antibodies added every

other day at a final concentration of 1 mg/ml for bivalent anti-

MUC1* and 100 mg/ml for monovalent anti-MUC1*.

Experiments were performed in triplicate. 41 hours-post

antibody treatment, live and dead cells were quantified with the

LIVE/DEAD viability/cytotoxicity kit (Molecular Probes),

following manufacturer’s instructions. In other experiments, cells

were quantified using Amido Black (Sigma-Aldrich, #A8181).

Cells were visualized on an Olympus IX70 inverted epifluorescent

microscope and images were captured with a digital camera

(QCapturePro). Fluorescence was measured using a Victor3V

plate reader (Perkin Elmer).

ES Cell Long-Term Growth Assays
OCT4 immunofluorescence of hESC colonies treated with

anti-MUC1*. H9 or H14 cells were trypsin-dissociated and

Figure 9. Anti-MUC1* stimulates the growth of pluripotent stem cells in a dose-dependent manner. H9 hESCs at passage 67 were plated
at very low density (1.96104 per well, in triplicate) over matrigel-coated 96-well plates. Cells were cultured in minimal stem cell media, supplemented
with Anti-MUC1* antibody to a final concentration of 0, 80 ng/ml, 0.25 ug/ml, 0.5 ug/ml, 1 ug/ml, or 2 ug/ml and cultured for 10 days. Media plus
antibody was replaced every other day. After 10 days of growth, cells were stained with Amido Black according to manufacturer’s instructions and
absorbance at 570 nm was measured on a microplate reader. Stem cell growth was plotted as a function of Anti-MUC1* concentration. The dashed
line marks the amount of cell growth that was measured for the control, in which cells were grown in 30% conditioned media from Hs27 feeder cells,
supplemented with 4 ng/ml bFGF.
doi:10.1371/journal.pone.0003312.g009

Table 2. H9 hESCs cultured in minimal media for 8 days.

Growth Conditions Confluency Number of colonies Morphology

Minimal Stem Cell Growth Media

NM23 1 nM ,50% 1 colony 1 undifferentiated colonies in 1 of 2 wells

NM23-S120G 1 nM ,50% 3+2 colonies 3 undifferentiated colonies in 1 well; 2
undifferentiated colonies in the other

anti-MUC1* 80 ng/ml ,50% 1 colony 1 undifferentiated colonies in 1 of 2 wells

bFGF 4 ng/ml .25% 0 No colonies; fibroblast-like cells

nothing ,25% 0 No colonies; fibroblast-like cells

Control - 50% Conditioned Media from Hs27 Fibroblast Feeder Cells

bFGF 4 ng/ml ,50% 0 No colonies but single undifferentiated cells

doi:10.1371/journal.pone.0003312.t002
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seeded in 8-well chamber slides pre-coated with matrigel at

46104 cells/well (H9) or 8.26104 cells/well (H14). Media was

changed and antibodies added every other day at a final

concentration of 1 mg/ml for bivalent anti-MUC1* until discrete

colonies were visible.

Culture conditions include ‘minimal stem cell medium’ (hESC

media without feeder-conditioned medium) and Hs27-conditioned

medium, with and without bFGF supplementation. For each

condition, cells were grown in quadruplicate. Cells were washed

with PBS and fixed as described. OCT4 immunostaining was

conducted as described.

Karyotype Analysis of ES Cells
Exponentially growing cultures of cells used in experiments

described were prepared in T-25 flasks pre-seeded with Hs27

feeder cells. Karyotype analysis was performed by Cell Line

Genetics (Madison, WI).

Supporting Information

Figure S1 Stem cells used were of normal karyotype. Karyotype

analysis of H9 cells at A. passage 50 and B. passage 89 show

normal diploid karyotypes.

Found at: doi:10.1371/journal.pone.0003312.s001 (0.79 MB TIF)

Figure S2 Two antibodies that recognize different glycosylation

states of full-length MUC1 detect full-length protein on differen-

tiated H9 stem cells but not on undifferentiated H9s. A. HMPV

antibody that recognizes full-length MUC1 in a glycosylation-

independent manner, does not stain undifferentiated H9 stem cell

colonies. The dashed line indicates the edge of the stem cell

colony. B. Dapi staining verifies that cells are present. C. HMPV

stains the differentiated portion of an H9 colony, to the left of the

solid line, but not the portion to the right that remains

undifferentiated. D. Dapi staining shows that cells are present on

both sides of the solid line demarking the border between

differentiated and undifferentiated. E. VU4H5 antibody that is

able to recognize under-glycosylated full-length MUC1 does not

stain an undifferentiated H9 stem cell colony. F. Dapi staining

verifies that cells are present. G. Control antibody does not stain.

H. Dapi staining. Scale bar = 100 mm.

Found at: doi:10.1371/journal.pone.0003312.s002 (6.76 MB TIF)

Figure S3 Two antibodies that recognize different glycosylation

states of full-length MUC1 detect full-length protein on differen-

tiated H14 stem cells but not on undifferentiated H14s. A. HMPV

antibody that is able to bind to fully glycosylated full-length

MUC1, does not stain undifferentiated H14 stem cell colonies.

The dashed line indicates the edge of the stem cell colony. B. Dapi

staining verifies that cells are present. C. HMPV stains the

differentiated portion of an H14 colony, to the right of the solid

line, but not the portion to the right that remains undifferentiated.

D. Dapi staining shows that cells are present on both sides of the

solid line demarking the border between differentiated and

undifferentiated. E. VU4H5 antibody that is able to recognize

under-glycosylated full-length MUC1 does not stain an undiffer-

entiated H14 stem cell colony. F. Dapi staining verifies that cells

are present. Scale bar = 100 mm.

Found at: doi:10.1371/journal.pone.0003312.s003 (5.27 MB TIF)

Figure S4 H9 hESCs present a 20 kD MUC1 species that is

apparently the cleavage product of MUC1-FL. Lysates were

prepared from a single cell clone of MUC1*-1110 (45 amino acids

of the extracellular domain) transfected HCT-116 cells and H9

hESCs. Equal amounts of the protein were loaded onto a 12%

SDS gel. The gel was run according to standard methods and then

blotted with rabbit polyclonal Anti-MUC1*. Both cells produced

the characteristic 20 kD MUC1* protein band.

Found at: doi:10.1371/journal.pone.0003312.s004 (0.81 MB TIF)

Figure S5 Bivalent Anti-MUC1* stimulates the growth of

pluripotent H9 and H14 hESCs, while the monovalent Fab of

the same antibody killed essentially all of the stem cells.

Undifferentiated H9 and H14 stem cells were cultured in

matrigel-coated plates in media supplemented with 30% condi-

tioned media from Hs27 fibroblast feeder cells and 4 ng/ml bFGF.

Bivalent Anti-MUC1*, the monovalent Fab of Anti-MUC1*, or a

control Fab were added to growing cultures. After twenty-five (25)

hours, the number of live cells was measured using a Calcein AM

assay wherein fluorescence at 535 nm was recorder on a micro

plate reader. A. H9 hESCs. B. H14 hESCS.

Found at: doi:10.1371/journal.pone.0003312.s005 (0.55 MB TIF)

Table 3. H14 hESCs cultured in minimal media for four weeks.

Growth Conditions Week 1st colony appeared Number of colonies Morphology

Minimal Stem Cell Growth Media

NM23 1 nM Week 2 2 colonies 2 large undifferentiated colonies in 1 of 1 wells;
centers of colonies appear to begin to differentiate
during week 3; by end of week 4, most of each colony
remains undifferentiated

NM23-S120G 1 nM Week 2 7 colonies 7 large undifferentiated colonies in 1 of 1 wells;
centers of colonies appear to begin to differentiate
during week 3; by end of week 4, most of each colony
remains undifferentiated

anti-MUC1* 80 ng/ml Week 2 5 colonies 7 large undifferentiated colonies in 1 of 2 wells;
centers of colonies appear to begin to differentiate
during week 3; by end of week 4, most of each colony
remains undifferentiated

bFGF 4 ng/ml - 0 No colonies

nothing Week 2 2 colonies 2 very small, differentiated colonies

Control - 30% Conditioned Media from Hs27 Fibroblast Feeder Cells

bFGF 4 ng/ml Week 2 5 5 mostly differentiated colonies

doi:10.1371/journal.pone.0003312.t003
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Figure S6 Controls for ICC images. A-H are images of

secondary antibody controls that were performed as a part of

the immunocytochemistry experiments as described and pictured

in the figures of the article. Scale bar = 100 mm.

Found at: doi:10.1371/journal.pone.0003312.s006 (4.93 MB TIF)
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