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Mucosal surfaces such as exist in the air-

ways or the gut have pleiotropic tasks

that include absorption, macromolecule

transport, barrier and secretory func-

tions. However, large mucosal surfaces

(for example, greater than 300 m2 in human gut) are continu-

ously exposed to millions of potentially harmful antigens from

the environment, food and bacteria. To meet this task, mucosal

surfaces possess a unique immune system that tightly controls

the balance between responsiveness and non-responsiveness

(tolerance). It consists of an integrated network of tissues, lym-

phoid and non-lymphoid cells, and effector molecules such as

antibodies, chemokines and cytokines for host protection.

Recent data suggest that antigen-presenting cells (APCs; such

as macrophages and dendritic cells (DCs)), T lymphocytes and

their cytokines play a key role in orchestrating a specific mu-

cosal immune response1–8. In particular, the signature cy-

tokines of distinct T-cell subsets and the transcriptional

regulation of T-cell differentiation appear to be of fundamental

importance in mucosal immunity. However, uncontrolled mu-

cosal T-cell responses may lead to immunologic diseases such

as allergy, hypersensitivity and inflammation. Thus, a more de-

tailed understanding of T-cell differentiation and cytokine sig-

naling is essential for greater insight into mucosal immune

responses in health and disease.

A key component of the mucosal immune defense against

pathogens is mediated by CD4+ T lymphocytes that can differ-

entiate into functionally distinct subsets. Whereas T-helper 1

(Th1) cells secrete the cytokines interferon-γ (IFN-γ) and tumor

necrosis factor-β (TNF-β), Th2 cells secrete interleukin-4 (IL-4),

IL-5, IL-9 and IL-13. In addition, Th3 and regulatory

CD25+CD4+ T (TR) cells exist that produce transforming growth

factor-β (TGF-β) and IL-10, respectively9,10. Here we review the

molecular and immunologic principles underlying Th1/Th2-

cell polarization in the mucosal immune system. For in-depth

reviews of TR and Th3 cells and their role in suppression of mu-

cosal immune responses and oral tolerance, we refer readers to

other sources3,5,9. We will focus on recent data regarding

Th1/Th2 polarization with particular reference to the mucosal

immune system of the gut and the lung. These data provide

novel insights into pathogenic mucosal T-cell responses and

have important implications for the design of novel therapeu-

tic strategies in allergic responses and in chronic intestinal in-

flammation.

Structure and function of the mucosal immune system

The mucosal immune system is structurally and functionally

divided into sites for antigen uptake and processing at induc-

tive sites on one hand, and effector sites engaging lympho-

cytes, granulocytes and mast cells on the other hand11.

Organized secondary lymphoid tissues (for example, Peyer’s

patches and tonsils) in the gastrointestinal and upper respira-

tory tracts have been shown to represent key inductive sites for

mucosal immunity. The two prototypes of this mucosa-associ-

ated lymphoreticular tissue (MALT) are the gut-associated lym-

phoreticular tissue (GALT) and the nasal-

associated lymphoreticular tissue

(NALT), which both possess APCs, T

lymphocytes and immunoglobulin A

(IgA)-committed B cells (Fig. 1). There

are two different important outcomes of immune responses

generated by organized lymphoid structures in the MALT (Fig.

1). One result is the development of B cells capable of produc-

ing antigen-specific immunoglobulins that can reach the

draining lymph nodes and other mucosal tissues where they

differentiate into plasma cells. A second major outcome of the

entry of antigen and antigen presentation by DCs is the activa-

tion and differentiation of T cells that subsequently can mi-

grate out of the MALT and reach mucosal as well as peripheral

nonmucosal tissues. Such T cells can secrete cytokines that are

essential for the induction of suppressive T-cell responses and

oral tolerance (for example, IL-10 and TGF-β)5,9,11. Alternatively,

mucosal Th1 and Th2 cells can produce pro-inflammatory cy-

tokines (Fig. 2).

Due to the high antigen load of mucosal surfaces the mu-

cosal immune system exhibits immunologic ‘hyporesponsive-

ness’ or unresponsiveness to most antigens. On the other hand

the mucosal immune system must also be capable of inducing

effective cell-mediated and antibody-mediated immune re-

sponses towards selected antigens11. Given the complex and

highly interactive nature of the MALT and its diverse tasks, it is

clear that this system may be highly sensitive to disturbances

caused by bacterial antigens and other pathogens; in particular

in situations where a genetic predisposition exists. In fact,

there is growing evidence that chronic inflammatory diseases

in the mucosa such as inflammatory bowel disease (IBD) and

allergic asthma are due to a dysregulation of the mucosal im-

mune system and pathological T-cell responses in a genetically

susceptible host12–15.

Role of T cells in chronic mucosal inflammatory disease

A key role for T lymphocytes in pathogenic immune responses

at mucosal effector sites has been clearly established in recent

years. In particular, an essential role for T lymphocytes has

been demonstrated in animal models of allergic asthma and

experimental colitis (Fig. 3)8,16–19. Although chronic asthma in

patients is thought to be mainly mediated by Th2 cells, both

Th1 and Th2 cells have been shown to induce pulmonary in-

flammation and airway hyperresponsiveness in animal models

and antigen-specific Th1 cells (in contrast to Th3 cells) cannot

counteract Th2-induced lung inflammation in an adoptive

transfer model20. Conversely, both Th1 and Th2 cells induce

chronic intestinal inflammation in vivo18,21–25 and the action of

these cells may be suppressed by cytokines produced by TR and

Th3 cells26,27. Interestingly, most Th1 models of chronic intesti-

nal inflammation exhibit a transmural inflammation as seen in

patients with Crohn disease, an inflammatory bowel disease

thought to be mediated by Th1 cells. In contrast, at least some

of the Th2 models are characterized by a more superficial

colonic inflammation and epithelial hyperplasia as seen in pa-

Mucosal immunity relies on the delicate balance between antigen responsiveness and tolerance. The polarization

of T helper cells plays a key role in maintaining or disrupting this equilibrium.
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tients with ulcerative colitis, an IBD thought to be mediated by

T cells producing IL-5 rather than IFN-γ (ref. 28).

Th1/Th2 polarization and the role of DCs

After differentiation and migration to the peripheral immune

organs, CD4+ T cells are termed naive T precursor cells and are

functionally immature29–31. The activation and differentiation

of these cells requires at least two separate signals. The first sig-

nal is delivered by the T-cell receptor/CD3 complex after its in-

teraction with antigen/major histocompatibility complex on

APCs. The second signal is produced by a number of costimula-

tory or accessory molecules on the APC that interact with their

ligands on T cells (for example, CD28/B7-1, CD28/B7-2,

OX40/OX40L, ICOS/B7H). This signal is also important for the

pathogenesis of T cell–mediated mucosal inflammation, as

blockade of the CD28/B7, OX40/OX40L and ICOS/B7H sys-

tems has been shown to profoundly suppress mucosal diseases

such as experimental allergic airway inflammation and/or

chronic intestinal inflammation in mice32–35.

The cytokines themselves

play the most critical role in T-

helper cell polarization29,30,36.

Two pivotal cytokines that con-

trol Th1 and Th2 differentiation

are IL-12 (p35–p40) and IL-4, re-

spectively. These two cytokines

induce the generation of their

own T-helper subset, and simul-

taneously inhibit the produc-

tion of the opposing subset29.

Whereas mice lacking IL-12 p40

or the IL-12 receptor β2 chain

have defective Th1 responses,

mice that lack IL-4 or its recep-

tor fail to develop Th2 cells in

response to various stimuli. The

cytokine IL-18 also modulates

Th1 development. And al-

though IL-18 alone can not in-

duce Th1 cell differentiation, it

strongly augments IL-12-depen-

dent Th1-cell development and

effector functions, probably due

to IL-18-induced upregulation

of IL-12Rβ2 chain expression on

T cells and AP-1-(c-fos/c-jun)

dependent trans-activation of

the IFN-γ promoter37,38. The im-

portance of this observation is

underlined by the finding that

mice lacking IL-18 exhibit de-

fective Th1 responses in vivo39.

Another cytokine, IL-13, ap-

pears to play an important role

in Th2 development. While its

function is partially overlapping

with IL-4, IL-13 can drive Th2

development and IgE synthesis

in an IL-4-independent fashion

in certain situations40.

Although the cytokines that

regulate T-helper cell polariza-

tion are known, the original sources of these cytokines in vivo

have been a matter of debate41. Recent evidence suggests a key

role for DCs in orchestrating the lineage commitment of naive

T helper cells31,42. In mice, two subsets of CD11c+ DCs (CD8α+

and CD8α– DCs) have been identified that induce distinct

classes of antigen-specific T-cell responses in vivo31. Whereas

splenic CD8α+ DCs elicit Th1 responses, CD8α– DCs favor Th2

responses and similar data have been obtained using CD8α-

sorted DCs from the Peyer’s patches in the mucosal immune

system41 (Fig. 2). Although both DC subsets can be found in the

murine Peyer’s patches, antigen-pulsed DCs from the Peyer’s

patches have been shown to induce Th2-type rather than Th1-

type T-cell responses42. The latter bias is also true for DCs from

the respiratory tract, which preferentially induce Th2 cytokine

responses43. The DC molecules that induce Th2 responses are

unknown, however CD8α+ DCs can be induced by bacterial

antigens and IFN-γ to produce large amounts of IL-12/p35–p40

heterodimer, which seems essential for their potential to in-

duce Th1 differentiation31. Similar to the murine system,
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Fig. 1 Inductive sites of the MALT: Whereas the NALT appears to be the major inductive site for mucosal

immunity to inhaled antigens, the GALT (for example, Peyer’s patches in the small bowel and colonic follicles

in the large bowel) is the major inductive site for the gastrointestinal tract. The Peyer’s patches of the GALT

consist of a follicle-associated epithelium with specialized epithelial cells known as M cells, a subepithelial

dome overlying B-cell follicles, and interfollicular regions enriched in T cells11. Following ingestion, antigens

and microorganisms are transported from the gut lumen to the dome region through specialized M cells.

Here they encounter APCs such as DCs leading to cognate interactions between APCs and T cells. DCs can

also migrate to the interfollicular regions (enriched with T cells and containing high endothelial venules (HEV)

and efferent lymphatics) to initiate immune responses upon antigen uptake. The generation of mucosal im-

mune responses in the NALT seems to follow similar principles. In fact, the organized lymphoid structures in

the NALT share some structural features with the Peyer’s patches such as M cells and are composed of loose

networks in which lymphocytes (B-cell follicles, parafollicular areas with T cells), DCs and macrophages are

embedded. Following induction in the MALT, mature lymphocytes leave the inductive sites and migrate to

the effector sites such as the lamina propria and the lung where they can induce pro-inflammatory as well as

suppressive immune responses. Among the pro-inflammatory signals cytokines produced by mucosal Th1

and Th2 effector cells have a central regulatory role.
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monocyte-derived myeloid CD11c+ DCs have been shown to

induce IL-12-dependent Th1 responses in humans, whereas

plasmacytoid CD1a– DCs derived from CD11c– pre-DCs favor

Th2 responses41.

Whereas many key aspects of Th3 and TR development re-

main unresolved, much progress has recently been made in un-

derstanding the key principles of Th1/Th2 polarization at the

transcriptional level. T lymphocytes transit through sequential

stages of cytokine activation, commitment, silencing and

physical stabilization during polarization into differentiated ef-

fector Th1 and Th2 cells, a process tightly controlled by regula-

tory transcription factors44–47. The implications of recent studies

on the transcriptional regulation of T-helper cell differentia-

tion for mucosal immunity with specific emphasis on IBD and

allergic asthma are discussed below.

Th1 differentiation and IBD

Inflammatory bowel diseases such as Crohn disease are defined

as chronic inflammations of the gastrointestinal tract not due

to specific pathogens. Crohn disease is characterized by a dis-

continuous, transmural inflammation that can occur any-

where in the gastrointestinal tract, whereas ulcerative colitis is

characterized by a more superficial, continuous colonic infla-

mation that affects the mucosa and submucosa12. Interestingly,

recent evidence suggests that IL-12 driven Th1 T cells play an

important pathogenic role in Crohn disease.

The IL-12/p35–p40 heterodimer produced by CD8α+ DCs or

macrophages is a critical cytokine that induces Th1 T-cell dif-

ferentiation, a function that requires activation and phospho-

rylation of the transcription factor STAT4 (signal transducer

and activator of transcription 4) in T cells31,48,49 (Fig. 4). The

roles of IL-12 and STAT4 activation for Th1-mediated intestinal

inflammation are well documented. In particular, it has been

shown that Crohn disease in humans and Th1-mediated ani-

mal models of IBD are associated with increased IL-12 produc-

tion (Fig. 3) and neutralizing antibodies to IL-12 suppress Th1-

mediated chronic intestinal inflammation, presumably by the

prevention of Th1 T-cell development and the induction of

Fas-mediated T-cell apoptosis24,50–52. Conversely, STAT4-defi-

cient T cells failed to induce Th1-mediated colitis in an adop-

tive transfer system, whereas STAT4 transgenic mice develop

Th1-mediated colitis21,24. However, it is not clear whether the

effects of STAT4 in vivo can be entirely attributed to IL-12, since

IL-23 (p19–p40) has been recently shown to activate STAT4 in

T cells, and p19 transgenic mice develop multi-organ inflam-

mation including gut inflammation53,54. IL-18 is also important

for mucosal Th1 responses and activates the transcription fac-

tors AP-1 (c-fos/c-jun) and nuclear factor-κB (NF-κB) in T cells.

The functional importance of IL-18 is underscored by recent

studies that demonstrate suppression of Th1-mediated intesti-

nal inflammation upon blockade of IL-18 expression or func-

tion55–58. Collectively these data have important implications

for Crohn disease, an IBD of unknown origin, that is thought

to be mediated by IL-12- and IL-18-driven mucosal Th1 cells

and genetically linked to mutations in the NOD2/CARD15

gene  that presumably controls immune responses against bac-

terial infections in the gut3,13,14,59,60. In fact, novel therapeutic

methods for this disease that are currently being tested in clin-

ical trials include neutralizing IL-12 antibodies, and methods

to decrease IL-18 in this disease may be anticipated in the near

future.

Although the transcription factors STAT4 and STAT1 have

been implicated in Th1 differentiation and IFN-γ regulation

(Fig. 4), STAT proteins are expressed in both Th1 and Th2 sub-

sets and may not have a unique role in directly regulating the

transcription of the IFN-γ gene. Indeed, some IFN-γ production

is retained by STAT4- and STAT1-deficient T cells61,62. Thus, it

appears that alternative regulatory pathways exist to control

IFN-γ gene expression. Further insight elucidating Th1 lineage

commitment and IFN-γ expression has recently been provided

by the cloning of a novel transcription factor of the T-box fam-

ily, denoted T-bet63. T-bet has been found to be expressed by

IFN-γ-producing Th1 but not Th2 cells and increased tran-

scripts for T-bet have been reported to occur within 72 hours

after stimulation of T cells under Th1-inducing conditions45,63.

The functional role of T-bet in regulating IFN-γ production in

Th1 cells is supported by recent studies showing profound sup-

pression of IFN-γ production in CD4+ but not CD8+ T cells from

T-bet-deficient mice64. Retroviral transduction of primary de-
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Fig. 2 Cytokine production by mucosal T-helper cells in response to

antigens. Antigens can be presented by APCs such as DCs to T cells. In the

normal gut immune system, immature DCs seem to preferentially induce

TR and Th3 T-cell responses. However, in the presence of cytokines such as

IL-12 and IFN-γ produced by CD8α+ DCs, T cells can differentiate into Th1

effector cells, whereas IL-4 can induce Th2 T-cell differentiation31,41.

Whereas Th1 cells express the IL-12 receptor β2 chain and the IL-18 re-

ceptor, Th2 cells express an IL-1-like molecule, denoted T1/ST2, that ap-

pears to regulate Th2 effector functions both in the peripheral and the

mucosal immune systems94,95. Th2 T cells produce large amounts of cy-

tokines such as IL-4, IL-5, IL-9 and IL-13 that regulate antibody produc-

tion and allergic responses. In contrast, Th1 cells produce high levels of

IFN-γ and induce delayed-type hypersensitivity reactions and

macrophage activation. Although most of our knowledge of these DC-

and cytokine-driven pathways of T-cell differentiation has been derived

from experiments using peripheral T lymphocytes, it appears that similar

principles exist for mucosal T cells.R
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veloping T cells or even fully polarized Th2 cells with T-bet in-

duces high levels of IFN-γ production and simultaneously re-

presses production of IL-4 and IL-5 (ref. 63). T-bet thus appears

to be an important factor for Th1 development and the regula-

tion of T-cell effector function by simultaneously suppressing

Th2 cytokine production and inducing Th1 cytokine gene

transcription63,64. This finding is also relevant for the mucosal

immune system, as T-bet-deficient T cells fail to induce Th1-

mediated experimental colitis65. This observation may not be

attributed to the effects of T-bet on IFN-γ, since T cells from

IFN-γ-knockout mice are capable of inducing Th1-mediated

colitis in an adoptive transfer system24, and points potentially

towards a more general role of T-bet in Th1 T-cell differentia-

tion, perhaps via induction of IL-12 receptor β2 chain expres-

sion and chromatin remodeling66. 

Th2 differentiation and implications for allergic asthma

Th2 development and IL-4 production are known to be regu-

lated by ubiquitous as well as Th2-specific factors29,47,67. Various

transcription factors such as c-maf, GATA-3, NFATc1, NIP45,

JunB and STAT6 have been shown to induce or augment Th2

cytokine production, although only c-maf and GATA-3 are ex-

pressed selectively in Th2 cells29,68–74. In particular, GATA-3 has

been shown to promote expression of several Th2 cytokines,

including IL-4, IL-5 and IL-1347,70,75–77.

GATA-3 is a pleiotropic transcription factor of the C4 zinc-fin-

ger family expressed in T-cells, mast cells, eosinophils, ba-

sophils, embryonic brain and kidney that binds to a DNA

sequence characterized by a 5′-GATA-3′ core element. GATA-3

was found to be selectively expressed in Th2 but not in Th1 cells

and to have an important role in chromatin remodeling and cy-

tokine gene expression in T cells29,70. In particular, GATA-3 is im-

portant for the expression of IL-5 in T cells by trans-activation

of the IL-5 promoter. Although GATA-3 only weakly trans-acti-

vates the IL-4 promoter directly, adjacent GATA-3 binding sites

in the IL-4 locus can strongly enhance transactivation of the IL-

4 promoter by GATA-3 in T cells77. The functions of GATA-3 on

Th2-cytokine gene promoters can be suppressed by repressor of

GATA (ROG), a recently cloned lymphoid specific repressor of

GATA-3 induced transactivation78. In addition, ectopic expres-

sion of GATA-3 in developing Th1 cells leads to upregulation of

IL-4 and IL-5 and downregulation of IFN-γ. The latter effect ap-

pears to be partly due to downregulation of the IL-12 receptor

β2 chain44,70,76. Finally, ectopic expression of GATA-3 is suffi-

cient to at least modestly induce Th2-specific cytokine expres-

sion even in committed Th1 cells79.

Studies in retrovirally infected T cells have shown that the

activation of GATA-3 occurs upon stimulation of the IL-

4/STAT6 signaling pathway71 suggesting that the exposure of

naive T cells to IL-4 may be an early event that induces GATA-3

activation and Th2-cell differentiation. However, GATA-3 can

fully reconstitute Th2 development in STAT6-deficient T cells

suggesting that it is a master switch both in STAT6-dependent

and -independent Th2 development75. Finally, GATA-3 has

been shown to exert STAT6-independent autoactivation, creat-

ing a feedback pathway stabilizing Th2 commitment75.
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Fig. 3 Induction of pathogenic Th1 and Th2 immune responses at

effector sites of the mucosal immune system using Th1-dependent

chronic intestinal inflammation and Th2-dependent airway/lung in-

flammation as examples. In the former example (left), lymphocytes

migrate to the lamina propria where they reencounter bacterial, lu-

minal antigens. IL-12-driven Th1 effector cells then produce pro-in-

flammatory cytokines (IFN-γ and TNF) that activate macrophages to

produce pro-inflammatory mediators (for example, IL-6, IL-12 and IL-

18) that in turn activate T lymphocytes. The net balance of this sce-

nario is a Th1-mediated inflammation of the gut; a situation similar to

Crohn disease in humans3,60. In the latter example (right), lympho-

cytes migrate to the lung where they reencounter inhaled antigens. B

lymphocytes produce antigen-specific immunoglobulins such as IgE

that binds to its high-affinity receptor on mast cells (FcεRI).

Furthermore, Th2 effector cells produce various pro-inflammatory cy-

tokines (for example, IL-4 and IL-13) that cause local inflammation.

Finally, IL5 produced by Th2 cells causes expansion of eosinophils

that contribute to lung injury in asthma.The net balance of this sce-

nario is a local Th2-mediated inflammation; a situation similar to al-

lergic asthma in humans40,96.
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Based on the above data, it was of par-

ticular interest to analyze the expression

and functional role of STAT6 and GATA-

3 in patients with atopic asthma; a dis-

ease thought to be mediated by mucosal

Th2 cells and genetically linked to a cell-

membrane protein (TIM1) at chromo-

some 5q that appears to regulate IL-4 and

IL-13 production by T cells67,80. Allergic

asthma is a chronic inflammatory disease

characterized by airway inflammation

and hyperresponsiveness that affects

about 10% of the population in the

United States81. Th2 T cells and their sig-

nature cytokines IL-4, IL-9 and IL-13

have key pathogenic roles in asthma2,82.

For instance, transgenic overexpression

of either IL-13 or IL-9 in the lung has

been shown to result in AHR and airway

inflammation in mice83–85. Furthermore,

recent studies showed an increased ex-

pression of both STAT6 and GATA-3 in

asthmatic airways suggesting that these

factors may be involved in the regulation

of Th2 cytokine responses in patients

with asthma86. Additional studies in mice

showed that STAT6-deficient mice were

protected from Th2-mediated bronchial

inflammation and airway hyperreactiv-

ity (AHR) in a mouse model of asthma87

suggesting that STAT6 is an important

factor for the development of AHR in

asthma. Finally, in an adoptive transfer

model of allergic asthma using in vitro-

differentiated antigen-specific Th2 cells,

injection of STAT6+/+ Th2 cells into

STAT6–/– mice failed to induce lung in-

flammation and AHR. In contrast, trans-

fer of STAT6+/+ Th2 cells into STAT6+/+

mice induced lung inflammation and

AHR suggesting that STAT6 is essential

for both Th2-cell trafficking and effector

function in asthma88.

With regard to GATA-3 it was shown

that transgenic expression of a domi-

nant-negative form of GATA-3 in T cells

prevents allergic airway inflammation in

a mouse model of asthma, indicating

that GATA-3 is an important factor in

mediating allergic airway inflammation in vivo89. Furthermore,

local targeting of GATA-3 expression in the lung using anti-

sense phosphorothioate oligonucleotides led to suppression of

established airway inflammation, AHR and IL-4 production in

experimental asthma, suggesting that GATA-3 regulates both

airway inflammation and AHR in chronic asthma90. NF-κB p50

seems to mediate overexpression of GATA-3 in allergic airway

inflammation91, as p50-deficient mice failed to show high

GATA-3 expression and Th2 cytokine production in experi-

mental asthma.

Finally, a recent observation suggests that mice deficient for

the transcription factor T-bet display T cell–dependent AHR

and bronchial inflammation92. This is consistent with the find-

ing that lung T cells in patients with allergic asthma display re-

duced T-bet expression compared to controls92 and supports a

role for T-bet in controlling the hallmark features of allergic

asthma. Indeed, increased amounts of Th2 type cytokines such

as IL-4 and IL-13 were recovered from the lung of T-bet defi-

cient mice consistent with the idea of a potentially Th2-medi-

ated disease. These recent data establish T-bet as an important

factor in controlling T cell–mediated mucosal immune re-

sponses. Taken together with the data on GATA-3, it thus ap-

pears that the mucosal balance between GATA-3 and T-bet

strongly determines the T-cell fate at mucosal surfaces (Fig. 4)

and that the regulation of this balance is a key factor in under-

standing T cell–mediated mucosal immune responses.
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Fig. 4 Cytokine signaling in T lymphocytes via IFN-γ, IL-12 and IL-4. Upon binding to its recep-

tor on the T-cell surface, IFN-γ induces activation of STAT1 and consecutively of T-bet97. T-bet is a

master transcription factor for Th1 T cells that induces Th1 cytokine production as well as IL-12 re-

ceptor β2 chain expression while it simultaneously suppresses Th2 cytokine production63. IL-12 in-

duces Th1 T-cell differentiation via activation of STAT4 and consecutive induction of IFN-γ
production, but it does not induce T-bet activation directly38,63,64. In contrast, IL-4 induces Th2 cy-

tokine production in mucosal T cells by activation of STAT6 followed by activation of the master

transcription factor GATA-3 (refs. 70,75,76,89,90). GATA-3 has been shown to exert STAT6-inde-

pendent autoactivation, creating a feedback pathway stabilizing Th2 commitment (blue arrows). In

addition to GATA-3, c-maf and NFATc1 have been shown to regulate IL-4 production in T cells. In

recent years, there is a growing interest in cytokine- or cytokine signaling-directed therapies for T

cell-mediated mucosal diseases such as Crohn disease and allergic asthma using either recombinant

cytokines or anti-cytokine strategies96,98. The latter strategies have proven more beneficial in clinical

trials so far and include, for example, neutralizing antibodies (such as against IL-4 in asthma and

against TNF in Crohn disease) and soluble receptor antagonists (for example, IL-4 receptor antago-

nists in asthma)96,98,99,100.
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Perspectives

In the last five years, tremendous progress has been made to-

wards a molecular understanding of Th1/Th2 polarization. It is

now becoming increasingly clear that these findings have

major pathophysiological relevance for mucosal immunity. In

particular, the balance between T-bet and STAT6/GATA-3 acti-

vation is of central importance for immune responses of mu-

cosal T cells (Fig. 4). Overexpression of GATA-3 predisposes for

Th2-mediated diseases such as allergic asthma, whereas activa-

tion of T-bet appears to be an essential step for Th1-mediated

mucosal diseases such as Crohn disease. One important ques-

tion will be whether patients with such diseases exhibit a ge-

netic predisposition for overproduction or functional changes

in these transcription factors. In fact, a recent study suggests a

potential link between STAT6 variants on chromosome 12q

and atopic asthma93.

Recent findings on transcriptional polarization of T cells not

only give valuable new insights into the immunopathogenesis

of mucosal diseases, but also provide a rationale for selective

targeting of transcription factors and signaling cascades in mu-

cosal T cells in autoimmune and chronic inflammatory dis-

eases. At least in animal models, targeting of GATA-3 is

beneficial in experimental asthma89,90, whereas suppression of

T-bet inhibits Th1-mediated chronic intestinal inflammation.

The obvious potential advantage of such approaches is that

they target the expression and function of multiple pro-inflam-

matory cytokines simultaneously rather than of a single cy-

tokine. For instance, suppression of GATA-3 expression in the

lung would presumably suppress IL-4, IL-5 and IL-13 produc-

tion concurrently. However, given the pleiotropic role of these

transcription factors in the immune system, systemic targeting

of these factors might cause various side effects suggesting that

local targeting (for example, inhalation for the lung or intralu-

minal application for the gut) may be preferable. In any case,

the predominance of T-bet or GATA-3 appears to determine the

fate of mucosal precursor T cells. Uncovering the precise sig-

nals that induce and perpetuate T-bet and GATA-3 signals in

mucosal T cells will likely provide another crucial advance in

our understanding of mucosal immunity.
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