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Abstract: Sterilizing immunity after vaccination is desirable to prevent the spread of infection from
vaccinees, which can be especially dangerous in hospital settings while managing frail patients.
Sterilizing immunity requires neutralizing antibodies at the site of infection, which for respiratory
viruses such as SARS-CoV-2 implies the occurrence of neutralizing IgA in mucosal secretions. Sys-
temic vaccination by intramuscular delivery induces no or low-titer neutralizing IgA against vaccine
antigens. Mucosal priming or boosting, is needed to provide sterilizing immunity. On the other side
of the coin, sterilizing immunity, by zeroing interhuman transmission, could confine SARS-CoV-2
in animal reservoirs, preventing spontaneous attenuation of virulence in humans as presumably
happened with the endemic coronaviruses. We review here the pros and cons of each vaccination
strategy, the current mucosal SARS-CoV-2 vaccines under development, and their implications for
public health.

Keywords: COVID-19; SARS-CoV-2; neutralizing antibody; BNT162b2; mRNA-1273; IgA; IgG;
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1. Introduction

Currently approved, intramuscularly injected COVID-19 vaccines (summarized in
Figure 1) effectively reduce severity of disease and symptomatic cases, but still allow for
asymptomatic infection. Most concerning from an epidemiological angle is that these
vaccines allow transmission of SARS-CoV-2 and the ability of the virus to replicate in
a vaccinated host has the potential for selecting vaccine-resistant variants. The current
COVID-19 vaccines primarily induce antibodies of the IgG class (predominantly of IgG1
and IgG3 subclasses [1]), and little or no respiratory IgA. Although IgG levels are com-
monly monitored in serum to assess immunity, this isotype, unlike IgA, is not secreted
into the mucosal lumen via the polymeric Ig receptor (pIgR), and must rely on passive
transport to accumulate at these sites. After systemic administration of IgG, only one out
of 1000 molecules in the serum reaches bronchoalveolar lavage (BAL) fluid [2–4]. Accord-
ingly, IgG artificially fused to pIgR-binding peptides are more represented in respiratory
secretions and more protective in animal-challenge models [5].

Since serum IgG does not effectively penetrate to the mucosal space and serum
measurements of vaccine-elicited IgG do not reflect protection from respiratory infection.
Nevertheless, after priming with an intramuscular vaccine, subsequent inflammation
triggers memory-B-cell migration and secretion of IgA at mucosal sites [6]. Furthermore,
any inflammation in the airways enhances serum antibody penetration to the site such that
serum immunity can provide early protection in the setting of a developing infection. Hence,
intramuscular vaccination does provide some measure of protection in the nasal airways
against SARS-CoV-2, as evident by reduction in symptomatic disease after infection.
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airways against SARS-CoV-2, as evident by reduction in symptomatic disease after infec-
tion. 

 
Figure 1. Schematic representation of mechanisms of action of currently approved intramuscular 
vaccines and next-generation mucosal vaccines. 

Asymptomatic infection accounts for one third of SARS-CoV-2-positive nasopharyn-
geal swabs (NPS), and nearly 75% of cases asymptomatic at the time of the positive NPS 
will remain asymptomatic [7]. These estimates are likely to be even higher in vaccinees, 
where breakthrough infections have been demonstrated in asymptomatic subjects [8]. A 
person might feel fine, but actually harbor replicating SARS-CoV-2 in the nasopharyngeal 
mucosa and be able to transmit it to others. Given that systematic daily PCR testing would 
be too invasive and expensive within randomized controlled trials (RCT), several investi-
gators have advocated use of random NPS PCR to improve estimates of vaccine efficacy 
(VE) against SARS-CoV-2 infection. Such viral-load measures could also be used to esti-
mate efficacy against transmission, assuming the existence of a relationship between viral 
load and transmissibility [9]. Further supporting this view are data from clinically ap-
proved monoclonal antibodies (mAb) to Spike protein—intravenous or subcutaneous in-
jection of anti-SARS-CoV-2 mAbs leads to suboptimal bioavailability in airways, sup-
pressing SARS-CoV-2 replication and lung injury, but allowing robust infection in nasal 
turbinates in animal models [10]. For this reason, topical delivery of anti-SARS-CoV-2 
mAbs is being investigated [11]. 

We discuss here strategies to prevent asymptomatic carrier status in vaccinees (i.e., 
how to induce the so-called “sterilizing immunity”), and the theoretical risks of this ap-
proach. 

2. The Difference between Infection and Disease 
This simple question is difficult to answer precisely. Vaccines elicit immune re-

sponses that are in place when the host encounters the specific microbe. To examine how 
vaccines work it is important to distinguish between infection and disease. Infection is the 
acquisition of the microbe by the host while disease is a state of the host–microbe interac-
tion when the host has incurred sufficient damage to affect homeostasis [12]. For most 
successful vaccines, the measure of efficacy has been reduction in disease since the 

Figure 1. Schematic representation of mechanisms of action of currently approved intramuscular
vaccines and next-generation mucosal vaccines.

Asymptomatic infection accounts for one third of SARS-CoV-2-positive nasopharyn-
geal swabs (NPS), and nearly 75% of cases asymptomatic at the time of the positive NPS will
remain asymptomatic [7]. These estimates are likely to be even higher in vaccinees, where
breakthrough infections have been demonstrated in asymptomatic subjects [8]. A person
might feel fine, but actually harbor replicating SARS-CoV-2 in the nasopharyngeal mucosa
and be able to transmit it to others. Given that systematic daily PCR testing would be too
invasive and expensive within randomized controlled trials (RCT), several investigators
have advocated use of random NPS PCR to improve estimates of vaccine efficacy (VE)
against SARS-CoV-2 infection. Such viral-load measures could also be used to estimate
efficacy against transmission, assuming the existence of a relationship between viral load
and transmissibility [9]. Further supporting this view are data from clinically approved
monoclonal antibodies (mAb) to Spike protein—intravenous or subcutaneous injection
of anti-SARS-CoV-2 mAbs leads to suboptimal bioavailability in airways, suppressing
SARS-CoV-2 replication and lung injury, but allowing robust infection in nasal turbinates
in animal models [10]. For this reason, topical delivery of anti-SARS-CoV-2 mAbs is being
investigated [11].

We discuss here strategies to prevent asymptomatic carrier status in vaccinees (i.e., how
to induce the so-called “sterilizing immunity”), and the theoretical risks of this approach.

2. The Difference between Infection and Disease

This simple question is difficult to answer precisely. Vaccines elicit immune responses
that are in place when the host encounters the specific microbe. To examine how vaccines
work it is important to distinguish between infection and disease. Infection is the acquisition
of the microbe by the host while disease is a state of the host–microbe interaction when the
host has incurred sufficient damage to affect homeostasis [12]. For most successful vaccines,
the measure of efficacy has been reduction in disease since the frequency of infection was
not measured. Most current vaccines elicit T-lymphocyte responses and primarily IgG,
which provides protection against systemic infection. Robbins et al. proposed that vaccines
functioned by neutralizing the infecting inoculum and that this process required a certain
amount of antibody [13]. If sites where initial infection might take place are sites accessible
to serum IgG then vaccines can prevent infection, but in most cases, vaccines prevent
disease by reducing the inoculum, which in turn reduced host damage and the likelihood
of disease. In the case of SARS-CoV-2 there is evidence that initial infection and replication
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occurs in the nasal ciliated cells [14], a site that is not accessible to serum IgG unless there is
inflammatory damage to the mucosal tissues that allows transudation of serum proteins to
the site. Hence, current vaccines for COVID-19 prevent disease but not infection.

3. How Sterilizing Immunity Works

Sterilizing immunity requires timely neutralization of the challenging invader by the
humoral immune system. This implies that antibodies are usually more relevant than
cell-mediated immunity, at least for viruses and microbes where infection can be directly
interfered with by specific antibody. On respiratory mucosae, IgA are the most effective
antibody class. Secretory IgA (sIgA), consisting of dimeric IgA, the J chain, and the secretory
component, is secreted from glands (e.g., salivary or mammary) and mucosa-associated
lymphoid tissue (MALT) onto mucosae, where it neutralizes pathogens. Of interest, sIgA in
pre-pandemic human breast milk [15,16] and saliva [17] cross-react with SARS-CoV-2, but
whether such heterologous immunity is protective remains unknown. sIgA, with their short
half-life of 6.3 days, also represent a useful biomarker for determining recent SARS-CoV-2
infection. Mucosal immunity is also being exploited for passive immunotherapies. For
example, several investigators have proposed edible [18] or intranasal [19] egg-derived
IgY for passive immunotherapy, and expression of viral antigens in the leaves of edible
plants (e.g., lettuce) is also being investigated to induce immunity [20] Similarly, inhalable
bispecific single-domain antibodies neutralize Omicron in a mouse model [21].

4. Clinically Successful Historical Precedents with Mucosal Vaccines

Many mucosal surfaces are potential sites for vaccine delivery (e.g., conjunctival, nasal,
oral, pulmonary, vaginal, and rectal mucosae); however, logistical and cultural reasons
have led researchers to focus mostly on oral, nasal, and pulmonary routes [22]. Respiratory
mucosal vaccines offer several practical advantages over traditional vaccination approaches,
facilitating mass-vaccination campaigns [23] —increased vaccine stability and shelf-life for
dry powdered vaccines, painless delivery using disposable inhalers at home [24] (which
reduce the requirements for highly trained health-care personnel), and promise eliciting an
immune response including sIgA [23].

Examples of clinically successful mucosal vaccines based on attenuated viruses include
oral vaccines for gastrointestinal viruses (poliovirus and rotavirus) and intranasal vaccines
for respiratory viruses (influenza virus and adenovirus).

The first successful polio vaccine developed by Jonas Salk in 1955 was inactivated
and administered intramuscularly. Like the current COVID-19 vaccines, it reduced the
risk of illness, but could not prevent infection. In 1960, Albert Sabin developed an oral
polio vaccine using three attenuated strains of poliovirus; this approach has led to almost
complete eradication of polio worldwide, with as few as 140 cases reported in 2020 in
Pakistan and Afghanistan. Nevertheless, recombination of the attenuated strain with wild
poliovirus led to local outbreaks caused by type 2 poliovirus included in the trivalent oral
vaccine (so-called vaccine-derived poliovirus (cVDPDV2)), with 1089 cases in 26 countries
in 2020. This encouraged, after April 2016, the removal of the strain from the trivalent oral
vaccine, and finally the return to inactivated vaccines [25,26].

Oral vaccines for rotavirus have been employed for some time in children, demon-
strating high efficacy and safety [27,28].

Intranasal influenza vaccines were first used in the 1960s in the former Soviet Union.
Licensed intranasal influenza vaccines for humans exploiting nasopharynx-associated
lymphoid tissue (NALT) include FluMist/Fluenz™ (MedImmune, Gaithersburg, MD,
USA) [29] and the Nasovac™ live attenuated nasal spray manufactured by the Serum
Institute of India. The same institute also developed an intranasal, live attenuated influenza
virus A(H1N1), vaccine [30]. None of major flu vaccine manufacturers has engaged with
mucosal vaccines yet, so that the majority of flu shots these days are still administered
intramuscularly.
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Oral vaccines against wild-type adenovirus serotypes 4 and 7 (Ad4 and Ad7) were
developed by the National Institutes of Health (NIH) and the US Department of Defense
(DoD) in the 1970s. They were originally co-administered [31,32] and then re-formulated in
2011 [33–37]. Both vaccines have increased safety since they do not disseminate systemically,
while inducing systemic serum homotypic nAb [34,36,37], and providing >90% efficacy
against illness at 12 weeks [33,34,36,37], which is durable for at least 6 years [38].

Hence, vaccines given by mucosal routes are effective and in clinical use. These
vaccines provide important precedents for controlling the COVID-19 pandemic and provide
great encouragement that similar vaccines can be deployed against SARS-CoV-2.

5. IgA Antibodies Play a Key Role in Neutralizing SARS-CoV-2 but Are Rarely
Elicited after Intramuscular Vaccination

Natural SARS-CoV-2 infection usually resolves with the appearance of serum monomeric
IgA. In fact, much of the neutralizing activity in convalescent plasma resides in the IgM
and IgA fraction [39,40]. However, while serum IgG to Spike protein is still present in 92%
of the participants after 7 months, serum IgA (and IgM) antibodies decline rapidly after the
first month post onset of disease [41–43].

Dimeric IgA in secretions similarly have a fundamental role in SARS-CoV-2 neutral-
ization [44]—after infection, very high serum IgA levels develop in patients with severe
COVID-19-associated acute respiratory distress syndrome (ARDS) [45], and Spike-specific
IgA is dominant in human breast milk [15,16,46].

In general, intramuscularly delivered vaccines induce poor mucosal IgA responses.
After the first immunization, BNT162b2 induces anti-Spike IgG1, IgG3, and IgA1 (and
sometimes IgG2 and IgA2) in serum, but only IgG in saliva. One to two weeks after the
second dose, IgG levels in saliva and the upper respiratory tract are boosted, while IgA
appear in some subjects [47]. Serum IgA has kinetics of induction and time to peak levels
(21 days after first dose and 7–10 days after second dose) that are similar to IgG, but a faster
decline (>23% reduction from peak at day + 80 after first dose) [48].

For human breast milk the isotype profile differs in the antibody response post-
COVID-19 and after vaccination. In contrast to natural infection, immunization with
mRNA vaccines during lactation increases anti-receptor-binding domain (RBD) IgA levels
in milk [49,50], but not in serum [50]. Unfortunately, only <10% of milk samples from
vaccinees have high IgA endpoint titers, but secretory antibody released in milk is both
stable and resistant to enzymatic degradation in neonatal mucosal tissues [3,4].

The paucity of IgA after non-mucosal vaccination suggests that systemically vaccinated
patients, while mildly symptomatic or asymptomatic, could still become infected with
SARS-CoV-2. There is no conclusive evidence yet as to whether asymptomatically infected
vaccinees are infectious since theoretically the virions could be immune-complexed and
not infectious [51–54], but the similar viral load seen in NPS from infected vaccinees versus
infected naives suggests there is a serious risk of transmission. However, vaccinated
individuals who develop symptomatic (e.g., breakthrough) infections are contagious for
SARS-CoV-2 [55]. Mild COVID-19 cases in seropositive human vaccinees with positive
PCR in different biological matrices (e.g., rectal swab) have also been reported [56], and
suggest that the infection in these vaccinees is not limited to the nasopharynx. The case
for asymptomatic, vaccinated carriers is of particular concern within hospital settings [8],
where patients undergoing clinic and surgical endonasal procedures commonly generate
aerosols [57].

Not all systemic vaccines are equally ineffective at inducing mucosal IgA. For example,
BNT162b2, but not CoronaVac, induced nasal anti-S1 IgA responses as early as 14 days
after the first dose in 72% of subjects, which persisted for up to 50 days after the second
dose in 45% of subjects [58], and also induced IgA in breastmilk [59]. Nevertheless, IgA
levels in mucosae induced by BNT162b2 or mRNA-1273 are low after the first dose, and
decline after the second dose.
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6. Respiratory Delivery of Vaccines Is Needed to Achieve Sterilizing Immunity against
SARS-CoV-2

Animal models involving the related coronaviruses SARS-CoV [60–70] and MERS-
CoV [60,71–74] show that mucosal vaccination induces long-lasting systemic and mucosal
immunity. Preclinical evidence from studies in rodents (mice, golden hamsters, and ferrets)
have been similarly positive for SARS-CoV-2 (reviewed in [23,75–79] and summarized in
Table 1), with the caveat that many studies have not yet been peer-reviewed. At least 14 mu-
cosal vaccines have progressed to the first phase of clinical trials as of 14 December 2021
(Table 2), and several could enter the market in 2022.

Routes other than intramuscular could also lead to antigen dose sparing, which can be
relevant to relieving manufacturing bottlenecks during pandemics. While this has been
proven for the subcutaneous route [80], it has not been formally proven for mucosal routes.

Although we lack formal studies on the efficacy of oral or inhaled vaccines in human
subjects lacking parts of the mucosal immune system (e.g., children after removal of the adenoids
and tonsils [81], or after appendectomy), it seems reasonable to assume that the remaining
mucosal immune system is enough to induce a response from the fact that there is no historical
record that these individuals are more susceptible after receiving other types of vaccines.

Table 1. Results of preclinical COVID-19 mucosal vaccines candidates 1.

Vaccine Adjuvant Schedule Animal
Model Efficacy Ref.

Live Live oral None

Post-pyloric
administration of
SARS-CoV-2 by

esophagogastroduo-
denoscopy

Rhesus
macaques

Limited virus replication in the
gastrointestinal tract and minimal to no
induction of mucosal antibody titers in

rectal swabs, nasal swabs, or
bronchoalveolar lavage.

[82]

Subunit

Recombinant RBD protein None Intranasal Mice High titers of serum IgG and nAb as well
as a significant mucosal immunity [83]

Recombinant RBD protein using
self-assembling Helicobacter

pylori–bullfrog ferritin
nanoparticles, purified from

mammalian cells and assembled
into 24-mer nanoparticles

None Intranasal Ferrets

No fever, body weight loss, or clinical
symptoms; rapid clearance of infectious
virus in nasal washes and lungs as well
as of viral RNA in respiratory organs.

[84]

RBD + 2 domains of the viral
nucleocapsid protein (N)

Heat-labile
enterotoxin B

(LTB)

Three-dose
vaccination

schedule
Mice

Enhanced post-dose-3 nAb, IgG, and IgA
production to S- and

N-protein-stimulated IFN-γ and IL-2
secretion by T cells

[85]

Heterologous
subcutaneous prime
with S1 protein and

oral booster

Rats
A single oral booster following two

subcutaneous priming doses elicited
serum IgG and mucosal IgA levels

S1 nanoparticles IL-15 and TLR
agonists

IM-
primed/intranasal

(IN)-boosted
mucosal vaccine

Rhesus
macaques

Weaker T-cell and antibody responses,
but higher dimeric IgA and IFNa. No

detectable subgenomic RNA in upper or
lower respiratory tracts

[86]

S1 protein from the beta variant in
PLGA CP15

Intranasal after WA
strain priming 1

year before

Rhesus
macaques

Serum- and bronchoalveolar lavage
(BAL)-IgG, secretory nasal- and

BAL-IgA, and nAb against the original
strain and/or beta variant

[87]

Virus-like
particles

(VLP)

Outer membrane vesicles of
Salmonella typhimurium

conjugated with the mammalian
cell culture-derived RBD

(RBD-OMVs)

None Intranasal

Golden
Syrian

hamster
(Mesocricetus

auratus)

High titers of blood IgG to RBD as well
as detectable mucosal responses; no

weight loss, lower virus titers in
bronchoalveolar lavage fluid, and less

severe lung pathology.

[88]

VLPs displaying RBD
(CuMVTT-RBD)

Tetanus-toxin;
TLR7/8
ligands.

Intranasal Mice

Strong RBD- and spike-specific systemic
IgG and IgA responses of high avidity;

Strong mucosal antibody and plasma cell
production in lung tissue

[89]

Thermostable VLP (e-VLPs)
harnessed with variable surface

proteins (VSPs) from Giardia
lamblia, affording them resistance

to degradation and expressing
pre-fusion stabilized form of S

and membrane protein (M)
expression

None I.m. prime-oral
boost

Mice and
hamsters

Complete protection from a viral
challenge; dramatically boosted the IgA

mucosal response of intramuscularly
injected vaccines.

[90]
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Table 1. Cont.

Vaccine Adjuvant Schedule Animal
Model Efficacy Ref.

Adenoviral
vectors

Adenovirus type 5 AdCOVID™ None Single-dose
intranasal Mice Elicits systemic and mucosal immunity [91]

Human adenovirus type 5 None Single dose
intranasal

mice and
ferrets

Complete protection in the upper and
lower respiratory tracts. [92]

Chimpanzee adenovirus encoding
prefusion-stabilized Spike None Single dose

intranasal

hACE2
transgenic

mice

High levels of nAbs, systemic, and
mucosal IgA and T cell responses, and

almost entirely prevents infection in both
the upper and lower respiratory tracts;

durable high nAb and Fc effector
antibody responses in serum and
S-specific IgG and IgA secreting

long-lived plasma cells in the bone
marrow. At 9 months after vaccination,

serum antibodies neutralized
SARS-CoV-2 strains with B.1.351,

B.1.1.28, and B.1.617.1 spike proteins and
conferred almost complete protection in

the URT and LRT

[93,
94]

Adenovirus 5- and 19a-vectored
vaccines None

Intranasal
vaccinations with
adenovirus 5- and

19a-vectored
vaccines following a

systemic DNA or
mRNA priming

Mice

Strong systemic and mucosal immunity;
high levels of IgA and tissue-resident

memory T cells in the respiratory tract.
Mucosal neutralization of VOC was also

enhanced. Importantly, priming with
mRNA provoked a more comprehensive
T cell response consisting of circulating
and tissue-resident memory T cells after
the boost, while a DNA priming induced

mostly mucosal T cells.

[95]

vaccinia
vectors

Mucosal homologous plasmid
and a heterologous immunization
strategy using a plasmid vaccine
and a Modified Vaccinia Ankara
(MVA) expressing Spike (S) and

nucleocapsid (N) antigens.

None Mucosal Mice

nAb in serum and bronchoalveolar
lavage; induction of Th1 and Th17

responses and polyfunctional T-cells
expressing multiple type-1 cytokines
(e.g., IFN-γ, TNFα, and IL-2) in the

lungs and spleen

[96]

Pre-fusion-stabilized Washington
strain Spike, expressed from a

highly attenuated,
replication-competent vaccinia
virus construct, NYVAC-KC.

None Intranasal Mice

Fully protected against disease and death
from the mouse-adapted strain of
SARS-CoV-2, SARS2-N501YMA30,
contains a spike that is also heavily

mutated, with mutations at four of the
five positions in the Omicron spike

associated with neutralizing antibody
escape (K417, E484, Q493, and N501).

[97]

Lentiviral
vectors Spike None

Systemic
prime-intranasal

boost

hACE2
transgenic
mice and
golden

hamsters

>3 log10 decrease in the lung viral loads
and reduces local inflammation [98]

Rhabdoviral
vectors

VSV-SARS2(+G) virions
generated by G protein
trans-complementation

None Oral Cynomolgus
macaques

Compared to parental VSV-SARS2,
G-supplemented viruses were orally

active in virus-naive and vaccine-primed
cynomolgus macaques, powerfully

boosting SARS-CoV-2 nAb titers

[99]

Live
attenuated
influenza

virus
vectors

LAIV-CA4-RBD
LAIV-HK68-RBD None

Systemic
prime-intranasal

boost

K18-hACE2
mice

Higher systemic and mucosal immune
responses, including bronchoalveolar

lavage IgA/IgG and lung polyfunctional
memory CD8 T cells, including against

VOC

[100]

1 Wording in many of the table cells was taken verbatim from the cited reference to maintain the exact meaning as
in the original report.

Table 2. Candidate COVID-19 mucosal vaccines in clinical trials and development progress.

Country Company Vaccine Name Technology Delivery
Route Schedule Development

Progress
NCT

Identifier

USA Altimmune AdCOVID™

Replication-
deficient

adenovirus 5
(RD-Ad5)

Intranasal
Single or
two-dose
intranasal

Phase I
(randomized) NCT04679909
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Table 2. Cont.

Country Company Vaccine Name Technology Delivery
Route Schedule Development

Progress
NCT

Identifier

Australia
Tetherex Phar-

maceuticals
Corporation

SC-Ad6-1 Adenovirus type
6 Intranasal Single or

multiple doses Phase I NCT04839042

USA–India

University of
Wisconsin–
Madison,

FluGen and
Bharat Biotech

BBV154
(CoroFlu™)

M2-deficient,
single replication
(M2SR) influenza

virus vector

Intranasal Two doses Phase I
(randomized) NCT04751682

USA
ImmunityBio,

Inc.
hAd5-S-Fusion

+ N-ETSD

Full-length S and
N + enhanced

T-cell stimulation
domain (ETSD)

Subcutaneous,
sublingual,

and oral
(capsule)

Single dose Phase I/II
(randomized)

NCT04732468
NCT04845191
NCT04591717

[101]

Vaxart Inc. VXA-CoV2-1
Non-replicating
Ad5 encoding

Spike [102]
Oral tablet One or two

doses
Phase II

(randomized)
NCT04563702
NCT05067933

China

Institute of
Biotechnology,
Academy of

Military
Medical

Sciences, PLA
of China

Ad5-nCoV Ad5-nCoV
I.m. prime,
intranasal

boost
Two doses Phase I

(randomized)
NCT04552366

[103]

Mexico
Laboratorio

Avi-Mex, S.A.
de C.V.

n.a.

Recombinant
Newcastle

disease virus
(NDV) vectored

vaccine

Intranasal
prime-i.m.

boost
Two doses Phase I NCT04871737

UK Codagenix COVI-VAC Live-attenuated
virus Intranasal Single or two

doses
Phase I

(randomized) NCT04619628

UK University of
Oxford

ChAdOx1
nCov-19

Chimpanzee
adenovirus

expressing Spike
RBD

Intranasal Single dose Phase I NCT04816019

USA CyanVac LLC CVXGA1-001

Parainfluenza
virus 5

(PIV5)-vectored
expressing

SARS-CoV-2
Spike

Intranasal Single dose Phase I NCT04954287

USA Meissa
Vaccines, Inc MV-014-212

Live attenuated
vaccine against
RSV expressing

Spike of
SARS-CoV-2.

Intranasal Single or two
doses Phase I NCT04798001

USA Symvivo
Corporation bacTRL-Spike

Live
Bifidobacterium

longum,
delivering
plasmids

encoding Spike

Oral Single dose Phase I NCT04334980

New
Zealand–

USA

Syneos Health–
VaxForm

LLC
CoV2-OGEN1 n.a. Oral

suspension Single dose phase I NCT04893512

Hong Kong University of
Hong Kong

DelNS1-nCoV-
RBD
LAIV

Live attenuated
influenza virus

expressing Spike
RBD

Intranasal Single dose Phase I NCT04809389
ChiCTR2000037782
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7. Sterilizing Immunity and the Future of SARS-CoV-2 Virulence

In the case of a vaccine not inducing sterilizing immunity, ongoing transmission is
expected to facilitate attenuation to human hosts, although experiences with such “leaky”
vaccines in farmed animals have not been conclusive. For example, using Marek disease
virus (MDV) in chickens, nonsterilizing vaccines may increase [104] or decrease [105] vir-
ulence. Generally, the more a virus circulates, the better should be its adaptation to the
host. Evolutionary models suggest that trade-off between virulence and transmissivity
maximizes pathogen fitness while reducing virulence, but it is unclear whether this is a
universal phenomenon for all viruses [106]. In fact, much depends on the relationship
between virulence and transmissibility and the cost of virulence for the microbe in ques-
tion [107]. For organisms that require virulence for transmission to a new host the capacity
for pathogenicity is essential to their survival and attenuation should not necessarily be
expected [107]). For SARS-CoV-2 we already know that asymptomatic spread is possible,
implying that virulence is not essential for transmissibility. The rapidity of attenuation
(decades to millions of years) stems from variables such as lethality and transmission
efficiency, making it impossible to draw predictions. While attenuation with circulation
among humans is not a universal trajectory, in the past many respiratory viruses have spon-
taneously attenuated in time, including coronaviruses (e.g., OC-43, which evolved from
the causal agent of the 1885–1894 Russian flu pandemic [108] to the virus currently causing
common flu). Evidence of mild spontaneous attenuation of human viruses also comes
more RNA viruses (e.g., influenza virus A(H1N1) [109,110], dengue virus type 2 [111],
and Ebolavirus, from HIV [112,113], although such pathogens are far from being aviru-
lent. The ongoing SARS-CoV-2 pandemic was an unprecedented opportunity to monitor
reproductive numbers (Rt) in real-time, and we observed an increase from 1.2 for the
original Wuhan strain to 4.0 for the current Delta-plus variant of concern (VOC) [114]:
in other words, more virulent and less transmissive variants were rapidly replaced by
more transmissive and less virulent variants. Currently, the evolutive process is ongo-
ing with more than 170 Delta sublineages competing each other [115] and another VOC,
dubbed Omicron, recently reported [116,117]. Given the increasing spread of attenuated
SARS-CoV-2 strains from asymptomatic carriers during lockdown periods, competition
of attenuated SARS-CoV-2 strains with the non-attenuated ones has been hypothesized to
contribute towards reducing overall virulence [118]. Attenuated viral strains have been a
pillar of immunization campaigns for decades, and their intended circulation should not
be underestimated.

On the other hand, vaccines causing sterilizing immunity in humans come with the
additional risk of preventing spontaneous attenuation by abrogating viral replication and
evolution thus pushing the virus into animal reservoirs, where it remains a zoonosis
with the possibility of reintroduction into human populations with variants with increased
morbidity and lethality (back-adaptation). SARS-CoV-2 is a panzootic virus, and, of interest,
all the four current VOCs are able to completely overcome the former Spike restriction for
mouse ACE2, and individual VOCs show higher affinities for rat, ferret, and civet ACE2
receptors thanks to N501Y and E484K substitutions in the RBD of Spike.

That said, increased circulation comes with the serious risk of an attenuated lineage
reverting to a more virulent one, via single nucleotide mutations, deletions, or recombi-
nation. Multiple coronavirus subgenera have a tendency for recombination in low GC
genome regions, non-coding regions, edges of genes, and nondisruptive Spike sites [119].
For SARS-CoV-2, two recombinant lineages are already in circulation (XA and XB).

Furthermore, RNA viruses are extremely prone to mutation, exposing them to so-
called “lethal mutagenesis” [120], which has been supposed to have caused the sudden
disappearance of SARS-CoV-1 [121]. With SARS-CoV-2, this hypothesis has been used
recently to explain sudden reduction in incidence of the Delta VOC in Japan [114], but
competition from more fit sublineages remains an alternative explanation. Hence, both
sterilizing and non-sterilizing vaccines are likely to have a major impact on the course of
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SARS-CoV-2 virulence evolution for humans, which could pose new future challenges as
humanity continues to confront the threat from this virus.

8. The Challenge of Vaccine Non-Responders

As with any social need, a compromise is often required between the unmet needs
of the vulnerable individuals and the general safety to the immunocompetent popula-
tion. Poor vaccine responses, persisting after three doses, remain a serious problem for
immunocompromised patients [122]. These individuals remain at risk for infection and
disease and represent a significant population given the success of modern medicine to
treat many oncologic and rheumatologic conditions with therapies that impair immunity.
Hence, the problem of non-vaccine-responding immunosuppressed individuals is likely to
complicate any efforts to contain or end the pandemic as these hosts remain vulnerable
to SARS-CoV-2 and, by replicating the virus for long times, represent an ideal landscape
for emergence of viral variants. Prophylaxis with passive immunotherapies is nowadays
feasible with s.c. mAbs cocktails (including long-acting antibodies), i.m. hyperimmune
sera, or i.v. convalescent plasma. While RCTs are ongoing, there is huge rationale for
expecting efficacy from such pre-exposure prophylaxis.

9. Are Systemic COVID-19 Vaccines Just “Selfish” Vaccines?

Systemic vaccines unable to provide herd immunity are recognized as “selfish” by
generalist press, i.e., they are considered beneficial exclusively for the vaccinee themselves,
who is spared from severe disease. Actually, this is a misperception given the obvious
social benefits from reduced COVID-19 mortality and morbidity and hospital decongestion,
the benefits of systemic vaccines go far beyond the mitigation of COVID-19 course. For
example, a shorter duration of viral shedding in NPS (despite peak loads largely similar to
unvaccinated cases) leads to reduction of community transmission and to lower probability
of within-host mutations. On a wider perspective, the heterogeneity of the SARS-CoV-2
lineages is inversely correlated with rate of vaccination (specifically demonstrated for the
Delta VOC on an individual perspective, viral isolates recovered from vaccine breakthrough
patients show 2.3-fold lower diversity in known SARS-CoV-2 B cell epitopes in comparison
to unvaccinated COVID-19 patients [123]. Hence, the vaccines are already potentially
taking a biological toll on viral fitness by reducing its genetic diversity.

10. Conclusions

Vaccines remains the best hope for ending the COVID-19 pandemic and reducing mor-
tality. The development of several effective vaccines within the first year of the pandemic
was a remarkable accomplishment. Mucosal vaccines were not the primary/first approach
taken with SARS-CoV-2 because at the beginning of the pandemic we had poor knowledge
of how sterilizing immunity worked against coronaviruses. Nevertheless, vaccines that
elicit systemic immunity without mucosal immunity are unlikely to end the pandemic
because these prevent disease and not infection, and every case of infection involves viral
replication with the opportunity for the emergence of vaccine-resistant variants. Every
preventive or therapeutic human intervention against a pathogen creates selective pressure
that can lead to the emergence of escape variants [124] and vaccines are no exception. This
may apply to competition among lineages as well as accelerated intra-vaccinee evolution.
The situation with COVID-19 calls for continued research in vaccine development and
given the extent of the global calamity brought by SARS-CoV-2 we anticipate the need for,
and development of, a new generation of vaccines that elicit mucosal immunity against
multiple viral antigens. Further studies combining post-vaccination monitoring and genetic
sequencing of SARS-CoV-2-positive cases are warranted to clarify the effects of altering the
natural viral evolution with vaccination campaigns.
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