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10 ABSTRACT

11 Mud volcanism, or sedimentary volcanism, represents one of the most intriguing phenomena 

12 of the Earth’s crust, with important implications in energy resource exploration, seismicity, 

13 geo-hazard and atmospheric budget of greenhouse gases. Since the first review papers were 

14 issued at the beginning of 2000s, a large amount of new geological, geophysical and 

15 geochemical data has been acquired, which clarified ambiguous concepts and significantly 

16 improved our knowledge of mud volcanism. Here, we offer an updated review of the 

17 knowledge and implications of mud volcanoes, with emphasis on: the terminology used to 

18 describe different processes and structures; the physical, chemical and morphological 

19 characteristics of the several fluid emission structures; the chemical properties of the released 

20 fluids, in particular the molecular and isotopic composition of the gas; the mud volcano 

21 formation dynamics; and the several implications for petroleum exploration, geo-hazards and 

22 global atmospheric methane budget. This review integrates new fluids data collected in 

23 Azerbaijan and is complemented with field observations from various mud volcano provinces 

24 worldwide.

25 Although the total number of mud volcanoes on Earth is still uncertain, more than 600 main 

26 onshore structures, with a large variety in shapes and sizes, are documented in recent global 

27 data-sets, and several thousand are assumed to exist in the oceans. It is clear that: (a) mud 

28 volcanoes are broadly distributed throughout the globe in active margins, compressional 

29 zones of accretionary complexes, thrust and overthrust belts, passive margins, deep 

30 sedimentary basins related to active plate boundaries, as well as delta regions; (b) they are 

31 specifically located in hydrocarbon bearing basins, along anticline axes, strike slips and 

32 normal faults, and fault-related folds in Petroleum Systems; (c) they represent a specific 

33 category of natural gas/oil seepage manifestation, often related to deep and pressurised 
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34 reservoirs; (d) the main engine driving mud volcanism is given by a combination of 

35 gravitative instability of shales and fluid overpressure build-up, followed by hydrofracturing; 

36 (e) hydrocarbons are generally of thermogenic origin, while microbial gas is released in only 

37 a few cases. Mud volcanism on other planets (e.g. Mars and Titan), and microbial activity 

38 associated with gas seepage represent emerging issues and opportunities for future research.

39 Keywords: Mud volcanoes; gas seepage; diapirism; mobilised shales; morphology; sedimentary basins; 

40 hydrocarbons; hydrofracturing; methane; petroleum; seismicity.

41

42 Contents

43

44 1 Introduction

45

46 2 Fundamentals: terminology, distribution and morphologies of mud volcanoes......... 

47 2.1 Definitions and terminology ................................................................................ 

48 2.2 Main characteristics

49 2.3 Global distribution and settings............................................................ 

50 2.4 Morphologies……………….

51 2.5 Internal structure: feeder channel and roots

52

53 3 Mud and fluid emission structures

54 3.1 Plumbing system and cone structures......................................... 

55 3.2 Gryphons................................................................................................................. 

56 3.3 Pools ....................................................................................................................... 

57 3.4 Salsa lakes .............................................................................................................. 

58 3.5 Sinter structures ...................................................................................................... 

59 3.6 Mud density vs height ..................................................................................................... 

60 3.7 Diffuse degassing ………………

61

62 4 Fluid temperature and geochemistry

63 4.1 Temperature ...........................................................................................................  

64 4.1.1 Insights from temperature readings...... 

65 4.2 Molecular and isotopic composition of gas ………….

66 4.3 Water chemistry ........................................................................................................  

67 4.4 Learning from seasonal sampling and temporal variability ......................................................  

68

69 5 MV formation dynamics ...................................................................................................... 

70 5.1 Gravitative instability, fluid overpressure and hydrofracturing.................................................................... 

71 5.2 Constraints in modelling 

72 5.3 MVs and seismicity



3

73

74 6 Implications.......................................................................................................

75 6.1 Hydrocarbon exploration ..................... 

76 6.2 Geohazards……............................................ 

77 6.3 Methane emission to the atmosphere ………

78

79 7 A leading case-study: the Caspian mud volcanism

80

81 8 Emerging issues and future research

82 8.1 Mud volcanism on other planets............................................................. 

83 8.2 Seepage and microbial activity…………………………

84

85 9 Sediment-hosted geothermal systems

86 10 Conclusions .........................................................................................................

87 References .....................................................................................................................

88

89 Supplementary Material: Methods and data tables  



4

91 1 Introduction

92

93 Mud volcanoes (hereafter reported as MVs) are surface expressions of focused fluid flow 

94 inside hydrocarbon-bearing sedimentary basins. They are a specific category of hydrocarbon 

95 seeps, connected hydraulically to petroleum (natural gas and oil) rich sediments and 

96 accumulations, which may or may not have commercial importance. Mud volcanism, or 

97 sedimentary volcanism, represents one of the most intriguing phenomena of the Earth’s crust, 

98 not least for its implications in energy resource exploration, seismicity, hazard and 

99 atmospheric budget of greenhouse gases. MVs can, in fact, (a) indicate subsurface petroleum 

100 accumulations, (b) may react to or reveal precursor signals of earthquakes, (c) induce hazards 

101 for people and industrial facilities, and (d) release large amounts of methane into the 

102 atmosphere. For these reasons MVs, occurring both onshore and offshore, have been the 

103 object of wide research since the early 1900s (e.g. Goubkin and Fedorov, 1938). Books and 

104 review papers, published since the end of 1990s (e.g. Guliyev and Feizullayev, 1997; Milkov, 

105 2000; Dimitrov, 2002; Kopf, 2002), summarised the basic and important concepts of MVs, 

106 describing their distribution, the tectonic settings, activity and products, as well as the 

107 mechanisms of formation. However, after those reviews, in the last 15 years, a great deal of 

108 new geological, geophysical and geochemical data has been acquired, which clarified 

109 ambiguous concepts and significantly improved our knowledge of MVism. The scope of the 

110 present review is to provide updated information on the meaning and implications of MVs, 

111 some of which have been neglected in previous reviews. Today, the list of peer-reviewed 

112 articles dealing with MVs occurring in Europe, Asia, America, Oceania and almost all 

113 marginal seas, is immense: it is not the aim of this paper to provide an inventory of all the 

114 available works. Rather, our main objectives are to summarise, discuss and provide new 

115 concepts regarding:

116 (a) the terminology used to describe different processes and structures, which appear to 

117 be confused in some articles (Section 2);

118 (b) the physical, chemical and morphologic characteristics of the several fluid emission 

119 structures (Section 3);

120 (c) the chemical properties of the released fluids, in particular the molecular and isotopic 

121 composition of the gas (Section 4);

122 (d) the MV formation dynamics (Section 5);

123 (e) the implications of MV for petroleum exploration, geo-hazards and global 

124 atmospheric methane budget (Section 6).
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125

126 As an illustrative case study, we provide an overview of the MVism in the Caspian Basin 

127 (Section 7) that a) represents all the main characteristics of a typical geological setting prone 

128 to the formation of MVs; b) displays the largest density and variety of MV types on Earth; 

129 and c) has been extensively studied for both scientific and petroleum exploration purposes. In 

130 this respect, we provide 22 new, unpublished, compositional and isotopic data from four MVs 

131 in Azerbaijan. Gas and water samples were collected and analysed in 2005 and 2006, as 

132 described in the Supplementary Material. These data confirm and complete some general 

133 concepts addressed in Section 4.2.

134 We then discuss emerging issues and opportunities for future research, including MVism on 

135 other planets (Mars and Titan), and microbial activity associated with MV seepage (Section 

136 8). Finally, a short discussion is dedicated to Sediment-Hosted Geothermal Systems (SHGS, 

137 Section 9), which are peculiar fluid flow systems incorporating some similarities with MVs, 

138 and thus may be confused with them, but that substantially are driven and controlled by 

139 different factors, i.e. they do not represent sedimentary volcanism. 

140

141 2 Fundamentals: terminology, distribution and morphologies of mud 

142 volcanoes 

143

144 2.1 Definitions and terminology

145

146 MVs (Fig. 1) are the surface expression of subsurface processes characterised by movements 

147 of large masses of sediments and fluids, collectively indicated as “sedimentary volcanism”. 

148 The subsurface processes, which may or may not give rise to MVs, are generically referred to 

149 as “piercement structures”, which include diapirs, diatremes, domes, dewatering pipes, mud 

150 intrusions, mud mounds, chimneys, pipes (see definition, for example, in Kopf, 2002; and in 

151 Skinner and Mazzini, 2009). “Mud volcano” has often been considered as a descriptive term, 

152 indicating substantially and generically a surface discharge of mud, water and gas, 

153 independent of the geological processes and settings that drive and control the fluid 

154 manifestation. As a result, the term was often incorrectly applied to volcanic (magmatic) or 

155 geothermal and non-sedimentary settings, resulting in an unintended divergence of consistent 

156 scientific discussion. For example, some hydrothermal manifestations at the Yellowstone 
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157 geothermal system or CO2-rich mofettes in Central Italy have been labelled as MVs (e.g. 

158 Etiope and Martinelli, 2009).

159 Etiope and Martinelli (2009) and Etiope (2015) challenged the misuse of the MV term and 

160 proposed, following basic and converging discussions in Milkov (2000), Dimitrov (2002), 

161 Kopf (2002), a more rigorous criterion in the definition of MV. More specifically the authors 

162 highlight four major points that are characteristic of MVs:

163 a) The discharge of at least a three-phase system (gas, water, and sediment - and occasionally 

164 oil).

165 b) Gas and saline water related to a diagenetic or catagenetic hydrocarbon production system 

166 (accordingly gas is dominated by methane and subordinately C2+ hydrocarbons).

167 c) The involvement of sedimentary rocks with a gravitative instability resulting from rapid 

168 sedimentation, leading to the formation of mobile shales, diapirs or diatremes.

169 d) The (common) presence of breccia within the discharged material.

170 MV gas is typically dominated by methane (microbial or thermogenic in origin as discussed 

171 in Section 4.2). In some cases, however, gas can be mainly CO2 or N2 where hydrocarbon 

172 systems are located close to subducting slabs and relatively high geothermal gradient 

173 environments (e.g. Motyka et al., 1989) or are related to  the final stages of thermogenic gas 

174 generation (Baciu et al., 2007; Etiope et al., 2011a). However, MVs are always associated 

175 with, what in petroleum geology literature is known as, “Total Petroleum System” (Magoon 

176 and Schmoker, 2000). Accordingly, MVism represents a peculiar form of “petroleum seepage 

177 system”, as defined by Abrams (2005), and a MV is its surface “seep” expression, often (but 

178 not always) linked to natural gas or oil reservoirs (Etiope, 2015). Another typical peculiarity 

179 is given by the existence of shale diapirism as a result of gravitative instability and 

180 overpressure of low density sediments (mobilised shales), as discussed in more detail in 

181 Chapter 5.

182 This MV definition is therefore based on the genetic mechanism, implying the existence of 

183 sedimentary volcanism. The term ‘‘mud volcano’’ cannot be used for any gas manifestation 

184 resembling a mud pool or where extrusive mud gives rise to small conic edifices, as may 

185 happen for certain CO2-vents related to geothermal or hydrothermal environments, as 

186 explained above. The issue is not only a semantics problem. The attribution of ‘‘mud 

187 volcano’’ to a surface gas manifestation implies the existence of a series of specific 

188 geological processes and features. Presently, much MV research is being carried out, 

189 including numerous publications in planetary geology (for example, MVism on Mars). 
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190 Erroneous attributions of terrestrial MVs can lead to confusion, misinterpretations and 

191 misquotations.

192

193

194 Suggested Location for Fig. 1 MV_general

195

196 2.2 Main characteristics

197

198 The main engine driving the dynamics of MVs (i.e. sedimentary volcanism) is given by a 

199 combination of gravitative instability of shales and overpressure of gas in reservoirs or 

200 generated at greater depth and migrated through fractures. Other processes may contribute to 

201 MV formation and activity, however. A more detailed discussion on MV formation is given 

202 in Chapter 5. 

203 MVs episodically experience violent eruptions of large amounts of predominantly 

204 hydrocarbon gas (mainly CH4 and, in minor amounts, heavier gaseous hydrocarbons) and low 

205 amounts of CO2, N2, He, mixed with water, oil, mud and rock fragments forming the so 

206 called “mud breccia”. In 1989, after the discovery of the mud diapiric belt in the 

207 Mediterranean, Cita et al. (1989) coined the term mud breccia to describe a melange of water, 

208 mud and clasts of different size containing a mix of lithologies of the different strata 

209 brecciated through the feeder channel. The origin of the erupted fluids and solids varies 

210 depending on the geological setting. Petrography and vetrinite-maturity studies of breccias 

211 suggest that the roots of some MVs can reach up to 15-25 km (Sobissevitch et al., 2008). 

212 However this issue is a subject of debate since elevated sediments buoyancy would be 

213 essential to compensate the enormous pressure required to overcome the overburden and 

214 allow fluids and sediments to reach the surface from such depths. In this respect, recent 

215 studies and simulations have identified the porosity waves as a mechanism by which deep 

216 fluids trapped in ductile rocks may be expelled and migrate towards the surface (Connolly 

217 and Podladchikov, 2015; Yarushina et al., 2015).

218

219 The activity, or typification, of MVs can be divided into four main categories (Mazzini et al., 

220 2009b): 

221  Eruptive: eruptions can be violent and spectacular events during which sudden bursts 

222 of mud breccia reach several tens of meters in height and burning plumes of gas and oil can 

223 occur. These episodic violent events are related to the time required by the system to generate 
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224 new overpressure at depth essential to breach the seal in the upper part of the conduit (or 

225 region of diffused upwelling). Eruptions commonly last a few days or less. 

226  Dormant/sleeping: this represents the time interval in between eruptions. The majority 

227 of MVs are currently in this condition, generally characterised only by gas and water seepage 

228 with variable intensity (including non-visible miniseepage), commonly focused in bubbling 

229 pools, gryphons, salsas (see details below). Typically during this quiescence period, the 

230 volcano gradually gathers new overpressure at depth.

231  Extinct: there is no evidence of recent MV activity; no signs of erupted fluids or solids 

232 are documented in historic time. Weak gas seepage can continue to persist.

233  Fossil: it refers to paleo-MVs, ancient buried structures observable along stratigraphic 

234 sequence revealed by acoustic or drilling techniques (see examples in e.g. Bannert et al., 

235 1992; Delisle et al., 2002b; Clari et al., 2004; Istadi et al., 2009).

236

237

238 2.3 Global distribution and settings

239

240 MVs are broadly distributed throughout the globe in active margins (compressional zones of 

241 accretionary complexes, thrust and overthrust belts), passive margins, deep sedimentary 

242 basins related to active plate boundaries, as well as delta regions, or areas involving by salt 

243 diapirism. Fundamentally, MVs are located in petroliferous basins and are part of Petroleum 

244 Systems (Etiope, 2015). 

245 MVs occur both offshore (e.g. Black Sea, Gulf of Cadiz, Caspian Sea, Mediterranean Sea, 

246 Gulf of Mexico, throughout the Indian Ocean, Caribbean Sea, Norwegian Sea, Atlantic 

247 Ocean, Pacific Ocean, China Sea) and onshore in many countries (e.g. Jakubov et al., 1971; 

248 Barber et al., 1986; Brown and Westbrook, 1988; Cita et al., 1996; Ivanov et al., 1996b; 

249 Limonov et al., 1996; Woodside et al., 1998; Dia et al., 1999; Milkov, 2000; Delisle et al., 

250 2002b; Dimitrov, 2002; Kholodov, 2002; Pinheiro et al., 2003; Hensen et al., 2004; Mazzini 

251 et al., 2004; Shakirov et al., 2004; Yang et al., 2004; Viola et al., 2005; Baciu et al., 2007; 

252 Dupré et al., 2007; Isaksen et al., 2007; Praeg et al., 2009; Bruning et al., 2010; Tsunogai et 

253 al., 2012; Chen et al., 2014; Mascle et al., 2014; Hensen et al., 2015; Kirkham et al., 2017). 

254 The global distribution of MVs is today known thanks to a long list of discoveries. Among 

255 the earliest MV studies we cite those both onshore and offshore in the Caspian region 

256 (Jakubov et al., 1971), in the Black Sea (e.g. Ivanov et al., 1989 and Refs. therein) and the 
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257 Mediterranean Sea with the studies of the Prometeus Dome in the western Hellenic arc and 

258 the Cobblestone 3 Area (Cita et al., 1981; Cita et al., 1982) followed by the discovery of the 

259 diapiric fields, such as the Olimpi field, in the Mediterranean Ridge between 1988-1990 (Cita 

260 et al., 1989; Cita and Camerlenghi, 1990). This event triggered huge interest from numerous 

261 institutes and opened a new offshore cycle of discoveries. In particular the Russian led 

262 Training Through Research Programme (TTR) between 1991-2011 discovered and 

263 investigated the Main Mediterranean and Black Sea MV fields (Anaximander field, United 

264 Nations Rise in the Mediterranean; Alboran Sea; Tuapse Trough, Sorokin Through, Shatsky 

265 Ridge, Andrusov Ridge in the Black Sea). The TTR research extended outside the 

266 Mediterranean discovering the large field in the Gulf of Cadiz and further to the north in 

267 Norwegian Sea (Ivanov et al., 1992; Limonov et al., 1993; Limonov et al., 1994; Limonov et 

268 al., 1995; Ivanov et al., 1996a; Woodside et al., 1997; Kenyon et al., 1998; Kenyon et al., 

269 1999; Kenyon et al., 2000; Kenyon et al., 2001; Kenyon et al., 2002; Kenyon et al., 2003; 

270 Kenyon et al., 2004; Kenyon et al., 2006; Akhmetzhanov et al., 2007; Akhmetzhanov et al., 

271 2008; Ivanov et al., 2010). These missions prompted new interest in offshore MVs research 

272 and were followed by many other targeted missions and projects, in particular, in the Gulf of 

273 Cadiz, Alboran Sea, Anaximander Mountains and Nile Deep Sea Fan (Bellaiche et al., 2001; 

274 Mazurenko et al., 2002; Woodside et al., 2002; Pinheiro et al., 2003; Van Rensbergen et al., 

275 2004; Zitter et al., 2005; Berndt et al., 2007; Hensen et al., 2007; Dupré et al., 2008; Lykousis 

276 et al., 2009; Magalhães et al., 2012; Mascle et al., 2014). Other offshore known MV areas 

277 include the Gulf of Mexico where spectacular asphalt volcanoes are also present, and the 

278 region in the Caribbean Islands (Le Pichon et al., 1990; Henry et al., 1996; Olu et al., 1997; 

279 MacDonald et al., 2004). It is also worth mentioning the MVs present in Lake Baikal that 

280 have been studied during several expeditions and more recently during the new TTR 

281 programme Class@Baikal (Class@Baikal, http://www.baikal.festivalnauki.ru/en).

282 A global seep data-set (Etiope, 2015) indicates that MVs are located onshore in at least 26 

283 countries in Europe, Asia, the Americas and Oceania; none was documented in Africa. MVs 

284 are particularly widespread in Romania (about 200 structures), most of which are relatively 

285 small and a few meters wide. In Azerbaijan, classic papers report the existence of about 200 

286 onshore MVs (e.g. Guliyev and Feizullayev, 1997) but after checks of synonyms and 

287 repetitions, 178 MVs have been listed (CGG, 2015; Etiope, 2015);   these are predominantly 

288 hundreds of meters in height and covering individual areas of several km2. In Italy, 87 

289 structures have been identified (e.g. Etiope et al., 2007; Martinelli et al., 2012). Most are 

290 small mud cones (i.e. muddy gryphons  up to a few square meters wide) with the exception of 
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291 the large Maccalube, Santa Barbara, Salinelle at Paternò MVs in Sicily, Nirano, Regnano and 

292 other MVs in the Emilia Romagna region. A few to a few tens of MVs are located (in 

293 alphabetical order) in Alaska, China, Colombia, Crimea, Georgia, India (Andaman), 

294 Indonesia, Iran, Japan, Malaysia, Mexico, Mongolia, Myanmar, New Zealand, Pakistan, 

295 Papua New Guinea, Perù, Russia (Taman, Sakhalin, Lake Baikal), Taiwan, Timor Leste, 

296 Trinidad, Turkmenistan, and Venezuela (Etiope, 2015 and references therein).

297 It is however difficult to estimate the exact total number of MVs worldwide because, often, 

298 onshore oil/gas seeps or artesian mud seeps are wrongly considered. Likewise many offshore 

299 features have only been investigated with acoustic approaches, but sampling is needed to 

300 have the unambiguous evidence of a MV feature. Dimitrov (2002) suggests an estimate of 

301 900 onshore and 800 offshore MVs including known and inferred features. Etiope and 

302 Milkov (2004) report 926 onshore MVs and consider the existence of at least 300 MVs in 

303 shallow offshore (ocean shelves and coastal areas). 652 MVs are actually documented and 

304 listed in the global onshore seep data-set discussed by Etiope (2015) (see also CGG, 2015). 

305 Fig. 2 provides an overview of the main zones of MVs distribution on the globe. Therefore 

306 the map population can be increased significantly if we include also the inferred (i.e. not 

307 proved with certitude) offshore MVs, the interpreted diapirs, and the isolated gas, oil, and 

308 mud seeps that are often and ambiguously considered as MVs (Kvenvolden and Rogers, 

309 2005; Jerosch et al., 2006; Tinivella and Giustianiani, 2012). Based on observations of MV 

310 distribution density, Milkov (2000) suggested that the global number of deep-sea MVs might 

311 be in the order of 103 –105.

312 Field observations complemented with the study of satellite images demonstrated that MVs 

313 (as with other types of hydrocarbon seeps) are distributed along compressional margins, 

314 anticline axes, strike slips and normal faults, and fault-related folds. Faults (especially 

315 intersections of two faults) act as preferential pathways for deep fluids to gather and 

316 ultimately reach the surface (e.g. see Mazzini et al., 2009a and refs therein). For example 

317 numerous MVs onshore in Azerbaijan and in the Caspian Sea are located along the anticline 

318 axes (e.g. Jakubov et al., 1971; Bonini and Mazzarini, 2010), or along the Mediterranean 

319 ridge (Cita et al., 1989; Mascle et al., 2014), or along strike slips or normal faults in, for 

320 example,. the Gulf of Cadiz, in Indonesia or along the Apennines (Capozzi and Picotti, 2002; 

321 Viola et al., 2005; Mazzini et al., 2009a; Hensen et al., 2015). In particular Mascle et al. 

322 (2014) completed a distribution study of MVs in the Mediterranean, Black Sea and Gulf Of 

323 Cadiz reiterating that they are preferentially located along faults and tectono-sedimentary 



11

324 accretionary wedges, or are characteristic of thick depocenters in the passive continental 

325 margins. 

326

327 Suggested Location for Fig. 2 MAP

328

329

330 2.4 Morphologies 

331

332 The areal extension of MVs may range from the order of a square meter up to several square 

333 kilometres. Periodic eruptions can build up large volcanic edifices, which can reach the width 

334 of 4 km onshore and up to 12 km offshore (Orange et al., 2009). The highest MV is 

335 documented to be up to ~600 m in height (Yusifov and Rabinowitz, 2004). Estimates of the 

336 largest mud breccia volumes erupted by single MVs are up to 12 km3, while narrowly spaced 

337 MV complexes can reach volumes up to 250 km3. The mud flows of MV complexes can 

338 cover areas as large as 100 km2 (Dimitrov, 2002).

339 The morphology of MVs is variable and reflects the numerous properties that control the 

340 mechanisms of eruption/erosion. Dynamic and mechanical factors include the eruption 

341 frequency and vigour. For example, gas-dominated and powerful short-lived blasts tend to 

342 disperse the mud breccia over a broader surface resulting in a blocky morphology and 

343 relatively poor vertical development due to the lack of substantial solid deposits. Frequent 

344 viscous mud breccia eruptions produce large structures similar to the classical conical shapes 

345 of the strata volcanoes with numerous superposed flows. Conversely, smooth or flat and 

346 laterally extensive morphologies originate from the frequent water-dominated activity of 

347 MVs. Finally, the resulting shape can be affected by the width of the shallow conduit (e.g. a 

348 wider conduit will disperse the overpressure over a broader surface) and by the depth of the 

349 regions of diffused upwelling. Additionally size and morphology can be strongly affected by 

350 the pre-existing local topography, and by factors such as type of erosion (e.g. wind, rain, 

351 bottom currents – for offshore MVs), rates of basin subsidence, thickness of the affected 

352 sequence, and character of the confining strata or structure. Sustained overpressure produced 

353 in the subsurface after each eruption may prevent further sagging of the structure and will 

354 increase the cyclicity of the eruption. Investigated offshore MVs have overall large sizes and 

355 mud breccia flows (although thinner compared to onshore ones) and are capable of extending 

356 more laterally due to the low viscosity (i.e. water-saturated conditions) of the erupted 

357 sediments and the lack of desiccation processes.
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358 Because of the large variety in shapes and sizes, it is difficult to provide a defined 

359 classification of morphologies. Attempts have been proposed by a few authors based on local 

360 studies (Ivanov et al., 1996b; Dimitrov, 2002; Kholodov, 2002; Skinner and Mazzini, 2009) 

361 and more generic descriptions are given by e.g. Kopf (2002). Although the morphology of 

362 offshore MVs is also affected by different factors, many similarities can be observed with the 

363 onshore homologous. Here below, the various classifications are combined and updated 

364 (Fig.3, Fig. 4). We complement the published information with observations acquired during 

365 our fieldworks in Azerbaijan, Crimea, Trinidad, Romania, Indonesia, Iran, Italy. As 

366 Azerbaijan hosts the highest density and the largest onshore MVs, it also represents the ideal 

367 location to perform comparative studies of morphological varieties. Therefore particular 

368 emphasis and more detailed descriptions will be provided for some Azerbaijani MVs that 

369 were investigated during our fieldworks. Their known eruptive activity (documented in 

370 Aliyev et al., 2002) and the large scale morphologies observed in the field and with high 

371 resolution satellite images are described together with the seeping activities inside the crater.

372

373 Suggested Location for Fig_3_morphology

374

375

376  Conical: Most MVs display a cone-shaped morphology that is also similar to that of 

377 many classic magmatic volcanoes (Fig. 3A, Fig. 4A). This is characterised by a 

378 central circular crater surrounded by superposed units reflecting periodical and 

379 frequent vigorous eruptions of low viscosity mud breccia that form the flanks of the 

380 cone (e.g., Touragay, Akhtarma, Kalmas, Bolshoi Kyanizadagh, Saryndja, Keyrekie, 

381 Boyuk Kyanizadag, and most of the Azerbaijani MVs; Dzuhau-Tepe, in Kerch 

382 Peninsula; Chandragup, in Pakistan; Sand, in Iran; MSU, Yuzhmorgeologiya, in the 

383 Black Sea; Novorossiysk, in the Eastern Mediterranean; Captain Arutyunov, in the 

384 Gulf of Cadiz; Texel, San Remo, in the Mediterranean Sea) (Ivanov et al., 1992; 

385 Limonov et al., 1995; Ivanov et al., 1996a). At onshore localities, after each eruption, 

386 typically the crater is sealed resulting in following violent explosive bursts with strong 

387 tremors and self-ignited methane and hundreds of meters high burning plumes. Inside 

388 the crater, seeps of various types may be present and the flanks display tens of meters 

389 deep crevasses due to the preferential erosion of fine grained sediment. Several MVs 

390 also consist of single or multiple conical gryphons (Fig, 4D, E) typically several 
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391 meters in diameter and height (e.g. Digity, Cascadoux, in Trinidad; Salse Puianello, in 

392 Italy; Paclele Mari, Mici, in Romania, Gunung Sening, in Madura).

393

394 Touragay (Fig. 4A) is probably one of the classic examples of this type with truncated cone 

395 shape and a relatively flat plateau-like crater at its summit. Touragay is considered to be one 

396 of the largest onshore MVs with an estimated mud breccia deposit of 343 x 106 m3. The 

397 relatively steep slopes of the volcano present radiating scars with ravines. Its base can reach a 

398 diameter of 3.5-4 km and a height of 390m. The crater has a diameter of 400m where no 

399 evidence of active seepage is observed. The major recorded eruptions occurred in 1841, 1901, 

400 1924, 1932, 1947, and 1955.

401

402  Elongated: the shape of these volcanoes (Fig. 3B, Fig. 5D) is strongly affected by 

403 tectonic features (e.g. faults, anticlines) that control the collapse of the structure as well as the 

404 pathways for the fluids seeping on the surface (e.g. Lokbatan, Pirekeshkul, Arabkadim, in 

405 Azerbajan; Faro, in the Gulf of Cadiz; Kazan, in the Eastern Mediterranean Sea (Ivanov et 

406 al., 1996a). Bonini and Mazzarini (2010) suggested that the shape of elongated MVs reflects 

407 the conditions of different tectonic stresses and the average depth of pressurised source 

408 layers. 

409

410 Pirekeshkul sits to the east of Bojanata Mountain ~ 30 km NW of Baku. The MV crater has 

411 an elongated shape (50 m wide and ~160 m long) containing a N-S oriented ridge, of up to 

412 5m high active gryphons, that extends along the western flank of the crater. The MV 

413 elongated shape and the distribution of the seeps represent a classic example of structures 

414 tectonically controlled by the confining Gultamy anticline. No defined crater is 

415 distinguishable at Pirekeshkul MV. 

416

417 Lokbatan (Fig. 5D) is one of the most known MVs due to its frequent fiery eruptions. It is 

418 situated approximately 18 km SW from Baku in the Absheron region along the Lokbatan-

419 Puta anticlinal belt that curves towards the NW, also hosting other MVs (e.g. Shongar, 

420 Akhtarma Putinskaya, Kushkhana). Lokbatan has an elongated shape that coincides with the 

421 direction of the anticline axis and its mud breccia flows cover a surface of ~5 km2. One of the 

422 most spectacular recent eruptions occurred on 21st October 2001 (Mukhtarov et al., 2003; 

423 Planke et al., 2003) with a large burst of burning methane followed by a massive mud breccia 

424 flow that covered a surface of ~0.1 km2. Several meter scale depressions were observed on 
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425 the outskirts of the main crater and are interpreted as impacts of large mud breccia ejecta 

426 during this last eruption. Large clasts (up to 0.5m in size) can be observed in the mud flows. 

427 The main flow also defines a large graben containing horsts resulting in a NW elongated 

428 morphology of the MV. Planke et al. (2003) also suggested that this collapse is tectonically 

429 controlled by the orientation of the fold and volumetrically affected by the deflation of a 

430 shallow chamber after the eruption. Our fieldworks evidenced that this deflation was still 

431 ongoing in the crater between 2005 and 2006, as indicated by progressive collapse features 

432 within the crater. After the 2001 eruption, burning methane vents and diffuse seepage were 

433 observed for several years (e.g. cfr Fig. 6D in Planke et al., 2003; Etiope et al., 2004), but 

434 their intensity decreased over time. During our 2005 fieldwork we did not observe burning 

435 vents and portable methane sensors did not detect focused and relevant gas plumes. Lokbatan 

436 is one of the most active MVs that erupt periodically with a cyclicity of ~5-8 years. The first 

437 documented eruption of Lokbatan goes back to 1829. Other major eruptions were 

438 documented in 1864, 1887, 1890, 1904, 1915, 1918, 1923, 1926, 1933, 1935, 1938, 1941, 

439 1954, 1959, 1964, 1972, 1977, 1980, 1990, 2001, 2010 and 2012. The high rate of eruptions 

440 and the apparent absence of significant seeps, suggest that Lokbatan is able to seal off the 

441 main overpressure generated at depth and facilitate a shorter and more violent eruption.

442 The other MVs (Kushkhana, Akhtarma Putinskaya, Shongar) located to the NW along the 

443 same anticline, also do not show obvious evidence of seepage. Kushkhana and Akhtarma 

444 Putinskaya MVs have not been active for a long time (e.g. the most recent eruptions recorded 

445 at Akhtarma Putinskaya MV occurred in 1923, 1933, 1950) as also highlighted by the heavily 

446 altered mud breccias and the overall strongly eroded structure of the volcanoes. 

447

448

449 Suggested location for Fig_4_MV examples

450

451

452  Pie-shaped: these MVs (Fig. 3C) have relatively smooth dome-like morphology (e.g. 

453 Dashgil, Shongar, in Azerbajan; Dvurechenskii, in the Black Sea, Mercator, in the Gulf of 

454 Cadiz). 

455 Shongar MV has a smooth shape that shows evidence of recent mud flows extending radially 

456 from the crater (Fig. 5F). As for Lokbatan, evidence of post-eruption collapses is also 

457 revealed by distinct crevasses and concentric rings framing the crater.
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458 Moving 6.8 km west from the coast line of Cape Alyat, lies Dashgil MV whose crater is 

459 aligned with Bakhar and Bakhar Satellite MVs. Dashgil has a smooth pie morphology 

460 covering a surface of 5.5 km2 and an absolute height of ~90 m. The volcano has an 

461 asymmetric shape with flanks that rise steeply to the crater on the western side, and smoothly 

462 dipping flows towards the eastern Cape Alyat (Fig. 5E). The most recent eruptions occurred 

463 in 1882, 1902, 1908, 1926, 1958, and minor ones in 2001 and 2011. The western part of the 

464 volcano hosts a 200 m wide crater where numerous pools and large and small gryphons (up to 

465 almost 50) are present (Fig. 6A). A ridge of eroded gryphons and active pools occurs further 

466 north where an E-W oriented fault defines the outskirts of the crater (Mazzini et al., 2009b). 

467 Other faults with the same orientation frame the most recent mud breccia flow (towards the 

468 east) and appear to control the position of a large mud cone, and align two large salsa lakes 

469 towards the east, located outside the crater. Finally, an elongated ridge of ~3m high sinter 

470 cones stretches towards the east for ~250 m and partly frames the two salsa lakes. 

471 Interestingly, all these faults are subparallel to the E-W orientation of the main fold (see Fig. 

472 3 in Mazzini et al., 2009b). During the second week of October 2005 stronger activity of 

473 most of the seeps was observed for approximately 1 hour. However no correlation was 

474 observed with any major seismic event in the region. This presumably represented a diffused 

475 sudden release of the overpressure gathered inside the MV. Occasional vigorous gas-

476 dominated eruptions occurred in the past, as also indicated by the presence of sinter cones. 

477 Nevertheless the numerous seepages scattered throughout the volcano indicate that 

478 overpressure and hydrocarbons from great depth (Mazzini et al., 2009b) are constantly 

479 released. This permanent overpressure release prevents a gradual pressure build-up, 

480 presumably making eruptions less frequent or less vigorous than otherwise expected. For 

481 example, in 2001 and 2006, vigorous activities of warm mud eruptions were observed from 

482 some of the gryphons in Dashgil and Bakhar respectively. However this activity (that lasted 

483 only few days) cannot be defined as an explosive eruption in the classical term. We interpret 

484 this as an overpressure release that was not sufficient to trigger a large-scale eruption in sensu 

485 stricto but that was rather recycling already open seepage pathways. Another spectacular 

486 example of this type of MVs is the Pogachevskiy MV in Eastern Russia, Sakhalin. After its 

487 recent eruption on the 18th of August 2015 the nick name of “the gigantic human eye” was 

488 given to this structure. 

489

490  Multicrater: no defined crater (Fig. 3D) can be distinguished (e.g. Bakhar, in 

491 Azerbaijan, Hesperides, in the Gulf of Cadiz). 
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492 Bakhar MV (Fig. 5B) is situated on the easternmost tip of Cape Alyat, located on the crest of 

493 the Dashgil fold which also hosts Bakhar Satellite, Dashgil, Koturdag and, towards the east, 

494 Geradil MV located offshore in the Caspian Sea (Jakubov et al., 1971). Bakhar mud flows 

495 cover a surface of 2.2 km2, but a crater cannot be clearly distinguished. The shape of the MV 

496 is irregular and results from mud flows from different eruption sites. Three main eruptive 

497 clusters of sparsely distributed pools and gryphons can be defined. The main cluster is 

498 situated on the eastern side where the volcano reaches an absolute height of 14 meters. This 

499 location marks the most recent eruption that occurred in 1992 when several hundred meters 

500 of fire column were blasted in to the air followed by a mud breccia eruption. This mud flow 

501 formed an irregular shaped tongue elongating and diving into the Caspian Sea. Two more 

502 gryphon and pool fields are present in the western part. The north-westernmost field was 

503 found to be particularly active in January 2006 when warm (36°C) mud breccia flows were 

504 vigorously erupting from two gryphons. Towards the south an isolated large active gryphon 

505 (mud cone) reaches a height of ~10 m (Fig. 6C) which represents the highest point of the 

506 volcano (~23m, absolute height). The northern part of Bakhar is crossed by two parallel E-W 

507 oriented faults that frame the collapse of a large flow. Bakhar history shows several 

508 eruptions. The most significant have been recorded in 1853, 1859, 1886, 1909, 1911, 1926, 

509 1967, and 1992.

510 When focusing in regions with similar geological characteristics (e.g. Cape Alyat and the 

511 Dashgil fold hosting Bakhar, Bakhar Satellite, Dashgil, Koturdag MVs) it is interesting to 

512 notice that the structures that display more seepages have fewer eruptions, presumably since a 

513 longer period of time is required to gather significant overpressure build-up.

514 Similarly the Tredmar MV in the Black Sea (Ivanov et al., 1996b) shows an irregular shaped 

515 morphology with a presence of a large collapse structure in its southern part.

516

517  Growing diapir-like: are constantly extruding stiff mud breccia from the crater at the 

518 rate of tens of cm to some meters per year (Fig. 3 E). Slickensides along the stiff mud breccia 

519 tongues indicate the constant expulsion of sediment. They usually have significant elevation 

520 due to the very compacted and stiff material extruded that is difficult to be eroded. (e.g. 

521 Koturdag, in Azerbaijan; Raznokol, in Taman Peninsula). 

522 Koturdag MV (Fig. 5C) erects with a 183 m high conical shape situated 4.5 km SW from 

523 Dashgil. Koturdag represents the classical shape of most MVs with a circular crater (~220 m 

524 in diameter), collapsed terrace structures on its edges, and mud breccia flows that extend 

525 radially on each side of the mountain covering a surface of ~2 km2. The most recent mud 
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526 breccia flow extends from the central part of the crater towards the north. Sinter features are 

527 present on the edges of a large portion of the mud breccia tongue indicating the synchronous 

528 burning of methane during the extrusion. The activity of the last eruption did not halt in a 

529 short period of time, like it normally happens for other MVs, but progressively decreased as 

530 can still be seen in the crater, where a diapir-like structure shows the slow squeezing of 

531 highly compacted mud breccias as indicated by the striations throughout. Along the contact 

532 between the crater and the extrusion of the mud breccia a rim of sustained diffused gas 

533 seepage is present. On the eastern side of the crater one isolated gryphon was observed 

534 seeping mud, water and gas during October 2005. The historically recorded eruptions 

535 occurred in 1966, 1970, 1977. The constant extrusion of such large volumes of very stiff mud 

536 breccia suggests that large overpressure is present and that it is likely rooted at great depth, 

537 presumably through a fault as highlighted by a cross section image in Jakubov et al. (1971).

538 An offshore analogue for Koturdag MV could be Carlos Ribeiro MV (in the Gulf of Cadiz, 

539 and possibly Kula in the Mediterranean Sea) with similar stiff neck shape extending for ~3km 

540 and rapidly reaching 180 m in height (Kenyon et al., 2001; Lykousis et al., 2009).

541

542

543 Suggested location for Fig_5_satellite

544

545

546  Stiff neck: these structures are characterised by the presence of vertical tubes 

547 composed of carbonate sandstone or stiff mud breccia merging to form organ-type structures, 

548 or isolated features resembling chopped tree trunks (Fig. 3F). These circular tubes appear to 

549 be the result of multiple extrusions of the liquid sandy pulp through the permeable sandy or 

550 clayey plug in the MV crater (e.g. Kobek, Boya-Dagh, in Turkmenian (Kalitskii, 1914; 

551 Kholodov, 2002)).

552

553  Swamp-like: are MVs with very low elevation characterised by the eruption of water 

554 rich fine grained mud breccia (Fig. 3G, Fig. 4F). The high viscosity of the erupted material 

555 does not allow the construction of edifices and the MV develops laterally from a central 

556 crater (Astrakhanka, in Azerbaijan, Kipyashchii Bugor, Bulganak in Turkmenistan; Tabin, in 

557 Malaysia; Palo Seco, Devil's woodyard, Lagon Bouffe, in Trinidad; Pangangson, in Java; 
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558 Gunung Bulag, in Madura, Lipad, in Borneo; Saint Ouen l’Aumône, in the Mediterranean 

559 Sea (Kholodov, 2002; Deville et al., 2003; Lykousis et al., 2009)).

560

561  Plateau-like: are structures with relatively low elevation and relatively steep and 

562 narrow flanks with a large flat plateau surface occupied by the crater of the MV (Fig. 3H, Fig. 

563 1D). Ring-like structures are typically present in the wide craters where viscous mud breccia 

564 is intermittently erupted. The thick mud can eventually overflow to build a positive 

565 morphology, however the gradual collapse of the crater may prevent the build-up of 

566 significant elevations (e.g. Akhtarma Pashali, in Azerbaijan; Isis, Amon, Menes, in the 

567 Eastern Mediterranean (Dupré et al., 2008; Mascle et al., 2014)).

568

569  Impact crater-like: occurring after powerful blasts able to remove the plugging 

570 sediments, and followed by secondary deflations and collapse phase of the crater (Fig. 3I, 

571 Fig. 4C, G). The elevation is typically low (e.g. Bakhar satellite, in Azerbaijan, Morne 

572 Diablo, in Trinidad). The morphology of these structures resembles the impact craters 

573 observed on other planets.

574 Bakhar Satellite MV (Fig. 4C, Fig. 5A) sits 1.7 km to the west of Bakhar. This volcano is the 

575 youngest structure described in the area and has been for long considered a satellite feature 

576 connected to Bakhar MV plumbing system. However it defines a distinct shape with mud 

577 flows spreading radially over a rugged and boulder-rich surface of 0.5 km2 and reaching a 

578 maximum relative height of ~10m around the crater. The 78 m wide crater has an almost 

579 perfect circular shape with a ~10m deep caldera. One third of the caldera is occupied by a 

580 small lake that results from the drainage of the fluids seeping from the three gryphons and 

581 from a dozen scattered pools. Collapse terraces along the flanks of the crater reveal the 

582 gradual subsidence of the caldera after the powerful explosive eruption that in 1998 blasted 

583 away a gryphon field and a large portion of capping sediment. Remains of an eroded and 

584 isolated gryphon, active in the past, are visible 255 m SW from the crater. This peculiar 

585 morphology resulting from a sudden blast, could represent the primordial shape of MVs that, 

586 after cyclical eruption evolve in positive and conical shaped structures. 

587

588  Subsiding structure: this type of morphology occurs as the result of gradual 

589 subsidence in the crater area and the region around the whole MV (Fig. 3J). The MV 

590 therefore has typically very low elevation and often the crater zone is occupied by seepage 



19

591 features. Radial subsidence structures are often observed rimming the crater zone (e.g. 

592 Arabgadim, Akhtarma Pashali, in Azerbaijan; Bleduk Kuwu, in Java; Chirag, in the Caspian 

593 Sea, Amsterdam, in the Mediterranean Sea) (Lykousis et al., 2009). 

594

595  Subsiding flanks: Gradual subsidence at the flanks of MVs is common, however at 

596 some of these structures this phenomenon if very pronounced especially at offshore MVs 

597 with moats framing the base (Fig. 3K, Fig. 1E, Fig. 4B, Fig. 5G). This is presumably 

598 occurring due to the huge overburden represented by the load of the volcano itself (i.e. at the 

599 base of the structure). Seismic images show that it is common to observe a faulted zone 

600 coinciding with the edges of the MV structure (e.g. Napag, Iran; Håkon Mosby, Norwegian 

601 Sea, TREDMAR, Eastern Mediterranean, many of the MVs in the Gulf of Cadiz, among 

602 those e.g. Bojardin, Al Idrissi, Anastasya (Akhmetzhanov et al., 2008; Foucher et al., 2010)).

603

604  Sink-hole type: These MVs consist of a large salsa lake occupying the whole crater 

605 where gas bubbling occurs at several locations (Fig. 3L, Fig. 4H). Typically they do not 

606 display any elevation and the whole structure essentially appears like a sinkhole (e.g. 

607 Naftliche, Sofikam, Incheh, Ain, in northern Iran; Pink Porsykel, in Turkmenistan) (Oppo et 

608 al., 2014). The mechanisms forming these types of structures are not well studied and we 

609 speculate that a constant collapse occurs due to the constant expulsion of large volumes of 

610 gas. The closest morphological analogues are the offshore pockmarks very common in the 

611 hydrocarbon rich provinces (i.e. Mazzini et al., 2016 and refs therein). 

612

613

614 2.6 Internal structure: feeder channel and roots

615

616 The internal structure of MVs has been largely debated. The surficial part of the networked 

617 conduits terminating as in gryphons, salsa lakes and pools on the surface, is described in 

618 section 3. The shallow subsurface may be investigated using Electrical resistivity tomography 

619 (ERT) that may provide realistic, albeit strongly smoothed, images of the spatial electrical 

620 resistivity distribution (e.g. Istadi et al., 2009; Zeyen et al., 2011; Bessonova et al., 2012). 

621 Pioneering geo-electrical studies at MV sites revealed presence of mud chambers, or mud 

622 reservoirs, at ~50-100 m depth typically located below active gryphon structures (Accaino et 

623 al., 2007; Lupi et al., 2016). The deeper and more inaccessible geometry of the conduit zone 
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624 where diffused upwelling occurs is commonly explored using geophysical approaches 

625 (typically deep 2D or 3D seismic or geo-electrics targeting the shallow surface). Despite the 

626 efforts, it is very difficult to obtain clear images inside this feeder zone since this is 1) 

627 heterogeneous, consisting of brecciated and mixed lithologies and 2) typically fluid-rich 

628 (water/gas) thus attenuating the seismic signal. Therefore it remains unclear if e.g. 1) during 

629 the eruptive phases the movement of solids and fluids occurs through a system of networked 

630 large fractures distributed inside the feeder zone, or if 2) their whole cylindrical structure is 

631 involved in the mass movement. Combing information from seismic images, estimates of 

632 flow rates during the eruption, and maximum size of the erupted clasts, it appears that the 

633 first scenario is more plausible (Collignon et al., 2016). Likewise, remains unsolved the 

634 hypothesis of the presence of additional shallow chambers where fluids overpressure is 

635 periodically recharged and released after each eruption or, for example, at the surface seepage 

636 sites. Shallow seismic images of MVs show the so-called “Christmas tree” structures (Fig. 

637 1C) which may be interpreted as evidence of various superposed eruptive events intercalated 

638 by hemipelagic depositional sedimentary events. Some authors suggest that these “wings” 

639 could represent clastic intrusions rather than effusive events. 

640

641

642 3 Mud and fluid emission structures

643

644 3.1 Plumbing system and cone structures

645

646 The morphology of the MVs, their distribution, typology, and varying geochemistry of the 

647 seepage sites, give insights into the eruption mechanism and the subsurface plumbing system. 

648 Field observations conducted in several MV provinces on different continents consented to 

649 classify the different seepage features that develop in the craters after powerful eruptions. 

650 Three main seepage features can be observed in the onshore dormant craters of the studied 

651 MVs: gryphons, pools and salsa lakes. At these sites water, gas, oil and mud seep with 

652 different intensity, mode and proportions. No obvious patterns or correlation in seepage 

653 activity was observed even at neighbouring sites inferring intricate pathways in the 

654 subsurface. The factors controlling the seepage of fluids are still largely debated and the 

655 alternatives suggested involve the changes of atmospheric pressure, tidal or seismic events, or 

656 the intermittent release of the gathered overpressure. Large and vigorously active gryphons 
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657 and salsa lakes are usually permanent structures; the others are prone to become eroded, 

658 occluded, or to change position following variations of the permeability of the subsurface 

659 seepage system. Sinter structures represent ignition of seeping fluids (i.e. methane) on the 

660 surface. Onshore Azerbaijani MVs display all these features.

661

662

663 3.2 Gryphons

664

665 Gryphons are positive features with a conical shape (Fig. 6). Here gas, water, oil and mud are 

666 continuously expelled with variable density and volume. These structures normally gather in 

667 fields or cluster in the central part of the crater or follow trends controlled by tectonic features 

668 (e.g. faults) like in the Dashgil, Pirekeshkul MVs. In e.g. Bakhar MV, where a defined crater 

669 is not distinguishable, gryphons are grouped in fields (Fig. 5B) that correspond to the 

670 locations where the most recent eruptions occurred.

671

672 Suggested Location for figure 6

673

674 The body of the gryphons consists of layered superposed mud flows resulting from the semi-

675 continuous mud eruption. The dipping of the flanks commonly reach angles >45° (depending 

676 on the grain size and density of the erupted material). These structures may occur in clusters 

677 of several units or as single isolated features and may vary in height from few tens of 

678 centimetres and are commonly not taller than ~3-4 m. Exceptionally high gryphons can reach 

679 >10 m in height (e.g. Fig. 6C). These tall structures may also be called mud cones.

680

681 The position of gryphons can regularly mutate due to the continuously evolving plumbing 

682 system in the subsurface, seepage mode, and the way the surface sediments react to these 

683 changes. For example, during arid and hot periods when the seepage of fluids is combined 

684 with high evaporation, the upper part of the gryphon conduits can dry up and become 

685 cemented. If a newer overpressure is not able to pierce through the old conduit, the fluids will 

686 find a new pathway fracturing through the flanks of the cones. This process will initiate a 

687 new cone that, with time, will build up and incorporate the older structure (Fig. 7_TOP). 

688 Other factors that significantly affect the morphology of the gryphons are the meteoric 

689 phenomena. For example, when the erosion caused by the rain (the most important factor) 

690 exceeds the amount of mud and clasts erupted, the gryphon will be flattened and its 
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691 undisturbed development will be altered. Only gryphons with vigorous activity will maintain 

692 the steep shape of their flanks. Kholodov (2002) report the presence of carbonate-cemented 

693 sediments (Kobek MV) resulting in stiff neck gryphons less erodible than those composed of 

694 loose mud. Similar structures are also described at Boya Dag MV (Kalitskii, 1914). During 

695 their growth, neighbouring gryphons can merge forming larger structures with multiple 

696 seepages in the crater and, on a larger scale, can result in ridges giving insights about the 

697 preferential orientation of the seepage sites (e.g. Dashgil, Pirekeshkul MVs). Onderdonk et 

698 al. (2011) reported detailed and periodical 3D monitoring of gryphons evolution suggesting 

699 that considerable subsidence is ongoing at these sites.

700

701 Suggested Location for figure 7

702

703

704 Three different types of gryphons could be identified depending on the amount of water, gas, 

705 sediment/mud breccia ejected (Fig. 6): the splatters, the bubblers and the “clast-rich” (Fig. 7 

706 BOTTOM).

707

708  The spatters are normally characterised by a narrow crater pierced by a void conduit 

709 from which mud bursts periodically (sometimes ejected up to a few meters in the air) forced 

710 by the pulsating gas overpressure. At these sites the water content is commonly limited and 

711 the mud has a high viscosity (Fig. 6G).

712  The bubblers have larger craters (occasionally up to few meters in diameter) filled 

713 with mud through which gas bubbles with pulsations. Mud periodically overflows once the 

714 pool in the crater becomes full (Fig. 6D-E).

715  The clast-rich gryphons are the tallest and usually erupt dense sediment containing 

716 clasts (Fig. 6F). At these sites the eruption of mud breccia is vigorous and the temperature 

717 measurements of the spewed fluids reveal constant values during the day and the seasons (see 

718 section 4.1 on T readings).

719

720 Several of the described metre-scaled gryphons have been sectioned in order to verify their 

721 internal structure. The excavations showed that below the crater of the splatters, exists a 

722 sizable conduit that connects to an internal muddy chamber where gas gurgles more or less 

723 continuously allowing the periodic gushing or mud splats towards the surface. Even the 
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724 bubbling gryphons show an internal chamber (although smaller) and a narrower conduit 

725 compared with the splatters. This narrow conduit acts as a continuous bypass for the rise of 

726 mud and gas in the crater where a muddy pool remains gathered during the continuous 

727 bubbling. No internal chamber was observed at the clast-rich gryphons that are fed by deeper 

728 rooted conduits. 

729

730

731 3.3 Pools

732

733 Pools are subcircular seepage features without or with low elevation that can be isolated or, 

734 more commonly, distributed at the feet of the gryphons. The diameter of the pools may vary 

735 from few centimetres up to around a meter and they are usually shallow (centimetres up to 

736 few tens of cm). At these sites, water is continuously released together with gas and a minor 

737 amount of fine grained sediment. Interestingly, pools situated a few tens of centimetres apart 

738 can seep fluids with a different composition revealing much higher e.g. oil content (Fig. 8 A, 

739 B, E) indicating a distinct plumbing system in the close subsurface. Some of these pools were 

740 drained and sectioned in order to describe the internal structure. Observations show that most 

741 of the pools, in particular the small ones, have a typical funnel shape with a central conduit 

742 (Fig. 8C, D, G). The larger pools (>50 cm) where vigorous gas seepage may occur, reveal 

743 indentations all around the margin suggesting progressive erosion by the turbulent flow and 

744 gradual expansion of the pool (Fig. 8F).

745 Similarly to what was observed at gryphon sites, numerous pools have an episodic seepage 

746 activity normally lasting up to one minute during which a vigorous release of fluids occurs. 

747 The newly formed pools are often observed due to the strikingly different colour of the 

748 seeping mud (typically light grey) compared with the surrounding brownish oxidised mud on 

749 the surface (Fig. 8G).

750 Mazzini et al. (2009b) interpreted in their Figure 7 the plumbing system of gryphon-pool 

751 complex based on field observations and gas/water analyses. As most of the pools are 

752 consistently located around the gryphons, it is suggested that the overburden of the gryphons 

753 causes collapse and fracturing through which the deep fluids migrate, mixing with shallow 

754 meteoric waters. At gryphon sites, evaporation is likely to have a limited influence as 

755 gryphons contain dense mud and differ morphologically (e.g. from pools) ‘‘isolating’’ the 

756 fluids inside the crater and in the internal chambers. 18O values of gryphons’ waters support 
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757 a confined seepage of fluids through the feeder channel allowing a bypass through the 

758 intervals charged with meteoric fluids.

759

760 Suggested Location for figure 8

761

762 The pulsating behaviour of single seepage sites has been observed also during offshore 

763 monitoring (e.g. Akhmetzhanov et al., 2007). This is interpreted as the continuous inflation 

764 and deflation of the conduit system once a sufficient overpressure is reached and fluids burst 

765 out. 

766

767

768 3.4 Salsa lakes

769 Salsa lakes (Fig. 9) are not a common feature in MV craters. Like pools, these are subcircular 

770 gas and water seepage sites that can reach several tens of meters in diameter and several 

771 meters in depth. The large amount of gas and water vigorously venting at these sites, allows 

772 the lakes to last through the years despite the seasonal evaporation. Typically a small amount 

773 of mud is seeping at these sites. Classic examples can be observed e.g. in Dashgil MV (Fig. 

774 9A-B) where two salsa lakes measure ~30m and 15m in diameter and respectively ~10 and 

775 ~9 m deep (Delisle et al., 2005). Another example can be observed in the central part of the 

776 Garadag MV crater where large bubbles of mud spurt in a ~15 m wide lake (Fig. 9C) or the 

777 large lake at the centre of Ain MV (Iran) reaching a diameter of 50 m.

778 Attempts to monitor the amount of methane released from one of the Dashgil salsa lakes was 

779 conducted by positioning a floatable raft on the top of the main venting point (Delisle et al., 

780 2005; Kopf et al., 2010b; Kopf et al., 2010a). The results revealed that an average of 70 l/min 

781 of methane is continuously vented from the salsa lakes with frequent stronger pulsations 

782 releasing the gathered overpressure, presumably from a deeper seated chamber and 

783 sometimes related with seismic activity.

784

785 Suggested Location for figure 9

786

787

788 3.5 Sinter structures

789
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790 Sinter structures are the evidence of vigorous and constant seepage of burning methane. This 

791 process presumably initiated after the self-ignition of venting methane and continued with the 

792 baking of the erupted mud breccia. This results in black to reddish brown coloured molten 

793 mud breccia. When this burning process occurs at gryphon sites, it will result in the formation 

794 of sinter cones (e.g. Fig. 10A-D). If instead the burning methane is localised at the edges of a 

795 large mud breccia flow, sinter striations will indicate the direction of the burned mud flow 

796 (e.g. Koturdag MV, Fig. 10 E-F). Diffused sintering may occur in the crater where multiple 

797 seepage sites persist once the eruption of mud breccia is terminated (Fig. 10 G-H, e.g. 

798 Lokbatan MV). 

799

800 Suggested Location for figure 10

801

802

803 3.6 Mud density vs height

804

805 The density of the erupted mud and detailed measurements of the seeping features have been 

806 collected at numerous locations in Azerbaijan, Indonesia, and Trinidad. Measurements at all 

807 localities show that taller structures erupt denser mud. Overall a statistical distribution of the 

808 topographic elevation versus the density of the erupted mud shows two main clusters. The 

809 low elevation pools are grouped within density values between 1-1.2 g/cm3, while the height 

810 of the gryphons increases consistently with the density of the erupted mud. Measurements of 

811 gryphons in several MVs set this threshold at 1.2 g/cm3.

812

813

814 3.7 Diffuse degassing

815

816 In addition to the visible fluid manifestations described above, MVs also release gas through 

817 invisible and diffuse exhalation from the muddy ground. Such an invisible gas emission is 

818 called “miniseepage” (Etiope et al., 2011b). Miniseepage is a sort of degassing halo that 

819 surrounds the vents, but for many MVs it extends throughout the muddy area. Measurements 

820 of gas flux along profiles in MVs suggest that miniseepage can spread over tens of thousands 

821 of square meters and that the total, integrated, output of gas to the atmosphere may be higher 

822 than that from focused, visible emissions. For example, at the Tokamachi MV in Japan 

823 (Etiope et al., 2011b), methane flux from the miniseepage surrounding bubbling pools and 
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824 gryphons is almost three times higher than the flux from visible bubble plumes. Positive CH4 

825 fluxes, from tens to thousands of mg m−2 day−1, were recorded over 4,900 m2, up to 90 m 

826 from the MVs crater. The total methane output from macro-seepage (the sum of emissions 

827 measured from all vents) was estimated to be approximately 5 tonnes/year. Total gas output 

828 from miniseepage, derived using spatial interpolations between individual gas measurements 

829 (e.g. using the “natural neighbour” interpolation technique), yielded an output of 

830 approximately 16 tonnes of CH4 per year. Therefore, more than 75 % of total methane 

831 emissions from the MV occurred from miniseepage surrounding visible vents. Similar 

832 observations were reported for MVs in Taiwan, Italy, Romania (Baciu et al., 2007; Etiope et 

833 al., 2007; Hong et al., 2013).

834

835

836 4 Fluid temperature and geochemistry

837

838 4.1 Temperature

839

840 The main factors that seem to control the temperatures recorded at the seepage sites can be 

841 summarised as: 1) water-sediment content, 2) exposed surface area of the seep itself and 

842 affected shallow volume, and 3) origin of the seeping fluids. As will be described in the 

843 following sections, the temperature can be affected by other factors such as the air surface 

844 temperature, the local heat flow, and gas flux. Therefore temperature readings can be a useful 

845 tool to study the behaviour of dormant MVs. To our knowledge there is no record of 

846 temperature readings at the crater zone of erupting MVs. Although not from the crater, 

847 Mukhtarov et al., (2003) documented measurements of up to 75°C along mud breccia flows 

848 at the flanks of Lokbatan MV after the 2001 eruption. The only successful attempt to measure 

849 the temperature of an active mud eruption is documented by Mazzini et al. (2007) at the Lusi 

850 eruption site in Indonesia (~100°C). It should be noted however, that at this locality there is a 

851 high geothermal gradient (42°C/km) unlike the typical sedimentary basins where MVism is 

852 common. In fact, it is important to note that the Lusi eruption, ongoing since May 2006, 

853 should not be considered a MV but rather a sediment-hosted hydrothermal system (see also 

854 following chapters and Mazzini et al., 2012).

855 Offshore measurements have been completed e.g. at Isis MV (Mediterranean Sea) and Håkon 

856 Mosby MV (Norwegian Sea) revealing respectively up to 26°C and 40°C (Kaul et al., 2006; 
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857 Feseker et al., 2008; Feseker et al., 2009). More than a year (431 days) of monitoring at 

858 Håkon Mosby MV revealed 25 pulses of hotter subsurface fluids accompanied by small 

859 eruptions which represent similar events to those observed onshore during the dormancy of 

860 MVs (Feseker et al., 2014). Campaigns completed at the K-2 MV in Lake Baikal showed the 

861 presence of gas hydrates and revealed the presence of low and high thermal anomalies that 

862 are interpreted to result from a shallow fluid circulation that interacts with a dynamic hydrate 

863 system just below (Poort et al., 2012). 

864 Overall, seeps temperature readings at onshore dormant MVs reveal typical values rarely 

865 exceeding 30°C. The complexity of the interpretation of temperature measurements at 

866 seepage sites has been discussed by Mazzini et al. (2009b). The authors highlighted the 

867 importance of differentiating between a) the type of seepage (e.g. pool, gryphon, salsa) and b) 

868 warm or cold field season. Generally, pools targeted for measurements reveal varying 

869 temperatures in contrast with gryphons that have more stable and higher values. Similar and 

870 comparable conclusions were reached by Svensen et al. (2009a) and by Mazzini et al. (2011) 

871 after seasonal measurements. Deville and Guerlais (2009) pointed out that dormant seeps are 

872 effected by slight temperature variations attributed to clogging and unclogging of deep 

873 fractures that periodically facilitate the rise of hotter fluids and higher mud/gas content. 

874

875

876 4.1.1 Insights from temperature readings

877

878 Our repeated seasonal temperature measurements in 2005 and 2006 indicate that all the 

879 seepages are affected by the diurnal temperature variations, however this occurs in a different 

880 manner.

881 Pools reveal variations from a maximum of 21°C during the mild season, to a minimum of -

882 0.6°C during the winter, showing that their temperature is strongly controlled by external 

883 conditions. Gryphons are instead less affected by diurnal and seasonal temperature variations 

884 as observed by repeated measurements during two extreme seasons. Earlier on, we suggested 

885 that many of the large gryphons are the result of the merging of smaller structures. This is 

886 also supported by the fact that inside some large gryphon craters up to fifteen distinct 

887 seepages were observed, each one with diverse temperature with difference >3°C. 

888 Our nine months monitoring at Dashgil MV salsa lakes (Fig. 11) showed strong variations in 

889 the temperature values at 4 m depth. The highest T values (23.5 ºC) were recorded at the 

890 beginning of July, while the lowest (4.2 ºC) at the beginning of February. Although partly 
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891 discontinuous, the record of the air temperature shows a similar trend with cyclical 

892 fluctuating values with a minimum reached on 25th January (-5.3 ºC) and a maximum on 15th 

893 April (30.9 ºC). Statistical analyses and the cross-correlogram for air temperature versus 

894 water temperature (detrended time series) reveal a delay of 5.05 days of the water values 

895 compared with air values. The same temperature monitoring was tested with a thermometer 

896 deployed at ~1.5m depth. The values revealed daily variation of the fluids that are consistent 

897 with the air variation, with a delay of around 4-5 hours.

898 To summarise, our comparative measurements of different types of seeps suggest that the 

899 large seasonal temperature variations observed at pool sites are interpreted as the result of 

900 several factors. These water-dominated features are characterised by small dimensions and 

901 are thus easily affected by external temperature. For example, the lowest temperatures are 

902 reached at smaller pools during the winter time. Furthermore, previous research (Mazzini et 

903 al., 2009b) also demonstrated that pool sites have a water composition heavily controlled by 

904 meteoric fluids thus indicating that the presence of deep hotter fluids (if present) is largely 

905 overprinted. In contrast, gryphons have deep originating seeping fluids, thus explaining the 

906 fairly constant seasonal mud temperature at these locations. Other crucial factors are the 

907 larger size of the gryphons and the high amount of sediment expelled, conferring high heat 

908 retention. We interpret the temperature behaviours of the salsa lake as a result of two 

909 combined factors: 1) the large water mass present in the salsa and 2) the air temperature. The 

910 salsa water temperature is almost completely controlled by air temperature. The delay and the 

911 dampening/smoothing of the curve is due to slow heating and cooling of the large water 

912 mass. Moreover, the average air and water temperatures are of comparable magnitude, 

913 although the water generally has slightly warmer values. Again this could be ascribed to the 

914 delay during the overall cooling trend. If this is the case, any heat input from deeper units 

915 must be small compared with the heat exchange with the atmosphere. Mazzini et al., (2009b) 

916 revealed a mixed origin of the pools’ water, including deep and shallow fluids, but the 

917 presented temperature readings indicate that the flux of deep (warmer) fluids is not sufficient 

918 to significantly affect the large water mass present at salsa lake sites.

919

920 Suggested Location for Fig 11 Tlog

921

922

923 4.2 Molecular and isotopic composition of gas 

924
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925 The gas released by MVs is the typical hydrocarbon-rich natural gas of the petroleum-bearing 

926 sedimentary basins. Methane is the main gaseous compound, often above 80 vol.%, followed 

927 by carbon dioxide (CO2), nitrogen (N2), other alkanes (ethane to butane) and trace amounts of 

928 helium (He) (e.g. Milkov et al., 2003; Etiope et al., 2009a). The gas can be thermogenic, 

929 produced by thermal degradation of organic matter or oil cracking (catagenesis) in relatively 

930 deep sediments at temperatures typically up to 230-240 °C, or microbial, produced at lower 

931 temperature and in more recent or shallower sediments (diagenesis) by methanogenic 

932 microbes (domain of archaea, not bacteria), utilising CO2 reduction or acetate fermentation 

933 pathways (Whiticar, 1999). We do not use the ambiguous term ‘”biogenic” since in different 

934 disciplines (biology, petroleum geology, astrobiology) it was used as synonymous with either 

935 ”microbial” or “thermogenic”. Microbial and thermogenic gas is termed “biotic” because of 

936 its derivation from biologic compounds, mainly lipids and carbohydrates, liberated from 

937 marine and terrestrial organic matter. Abiotic gas is instead generated by magmatic and gas–

938 water–rock reactions (e.g., Fischer-Tropsch type reactions) that do not directly involve 

939 organic matter  (Etiope and Sherwood Lollar, 2013).

940 A worldwide statistical evaluation of the stable C and H isotope composition of CH4 and 

941 C1/(C2+C3) (methane/ethane+propane) ratio indicates that 76% of onshore MVs release 

942 thermogenic gas (13CCH4≈-46.4 ‰ VPDB as average of 201 MVs). Only 4% of MVs release 

943 microbial gas (13CCH4 < -55 ‰ VPDB), and 20% release mixed gas (Etiope et al., 2009a) 

944 (Fig. 12A-B). Our new molecular and isotopic composition data from four MVs located in 

945 different oil field regions in Azerbaijan (Dashgil, Bakhar, Pirekeshkyul and Koturdag MVs; 

946 see Supplementary Material) are within the thermogenic range. More detailed studies should 

947 verify, however, whether some of the gas considered microbial because of 13C-depleted 

948 composition, can actually be an early mature thermogenic gas (often neglected in natural gas 

949 geochemistry), which may have 13CCH4 values as low as -70 ‰ VPDB (e.g. Milkov and 

950 Dzou, 2007). The fact that MVs gas is mostly thermogenic is a direct consequence of the 

951 processes and environment leading to mud (sedimentary) volcanism. Most sedimentary 

952 basins hosting MVs are characterised by high sedimentation rates in Cenozoic time (more 

953 than 1 km/My), significant thicknesses of undercompacted sedimentary cover (several km) 

954 and overpressure, which are favourable conditions for mud diapirism and volcanism. Almost 

955 always, MVs are connected with deep hydrocarbon reservoirs whereby gas derives from 

956 mature source rocks, within or after the “oil window” maturation level. MVs releasing 

957 microbial gas are, instead, generally the result of rapidly subsiding Pliocene–Quaternary 
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958 basins (more rare conditions), with mobilised shales associated to neo-tectonic compressional 

959 stress and faulting. 

960 While the isotopic composition of CH4 released by MVs is approximately the same of CH4 at 

961 the reservoir (i.e. there is no significant isotopic fractionation during the advective gas 

962 migration in fault-controlled seepage systems), the molecular composition is often different 

963 and characterised by a C1/C2+ ratio (the Bernard ratio) higher than that of the reservoir 

964 (Etiope et al., 2009a). Molecular fractionation by advection is a sort of distillation 

965 (differential segregation) of light hydrocarbon molecules as a function of their adsorption and 

966 solubility properties. The effect is that gas seeping to the surface has less ethane and propane 

967 (i.e., it is dryer, with a higher C1/(C2+C3) ratio) than the original. By comparing MV gas and 

968 reservoir gas it has been observed that molecular fractionation is typical of slow degassing 

969 MVs, because ascending gas significantly interacts (with longer residence times) with water 

970 and sediments (Etiope et al., 2009a). Secondary methanogenesis, following oil 

971 biodegradation, can also lead to increased C1/(C2+C3) ratios (e.g. Milkov and Dzou, 2007; 

972 Etiope et al., 2009b).

973 Our new data from the four MVs in Azerbaijan (Table S1A) confirm these phenomena, as 

974 illustrated in Fig. 12A. All MV gas samples (except one, as explained below) have a higher 

975 Bernard ratio compared to the original gas of the main reservoirs (e.g., Dashgil oil field) in 

976 the area. In particular the Dashgil MV data show that the more fractionated samples (with 

977 higher C1/(C2+C3) ratio) are released from vents located on the peripheral sectors of the MV, 

978 while the vents in the central crater sectors show a lower C1/(C2+C3) ratio closer to that of the 

979 subsurface reservoir. Similar results are obtained from seepage sites on the outskirts of the 

980 craters of other MVs. Although more data would be necessary to confirm this type of lateral 

981 variation, we may provisionally hypothesise that marginal and flank vents, related to 

982 secondary channels, may release gas that has experienced higher residence time in the 

983 subsurface, thus longer water-gas-mud interactions, which in turn may lead to enhanced 

984 molecular segregation. The sample with the lowest C1/C2+ ratio (~25) measured at Koturdag 

985 MV (AZ06-27 in Supplementary Material), is quite unusual for MVs (see a global data-set in 

986 Etiope et al., 2009b). This geochemical feature seems to be strictly related to the 

987 extraordinary type of the seepage and its migration channel. A diffuse but vigorous seepage 

988 of gas occurs along the ~35 m long contact between the crater and the extrusion of compacted 

989 mud breccia (Fig. 10E-F). This seepage is dry, without significant water discharge. We 

990 suggest that at this location, a large volume of highly compacted mud breccia is extruded 

991 (although slowly) due to the large overpressure of deep rooted gas. We envisage that this gas 
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992 has a direct connection with deep accumulations from which methane is able to rise quickly 

993 towards the surface with the mud breccia along the feeder channel. This channel is produced 

994 and maintained as very permeable by the contact with the active diapir. The data also confirm 

995 previous studies (Mazzini et al., 2009b) in showing that the gas composition at each MV is 

996 not related to the type of seepage (i.e. gryphon, pool, salsa). The main factor controlling the 

997 molecular composition is the phase (gas vs liquid) and intensity (flux vs residence time) of 

998 the emission (Etiope et al., 2009a; Etiope et al., 2011b).

999 Basically, a low flux MV can be considered as a “natural refinery”. Vigorous and erupting 

1000 MVs, instead, have the same molecular composition of reservoir gas. The ‘‘Bernard’’ ratio is 

1001 in fact lower during MV eruptions: the ratio changed from 630 to 140 during an eruption of 

1002 the Regnano MV (Italy) in 1998 (Etiope et al., 2007). Similarly, the ratio of Dashmardan MV 

1003 in Azerbaijan varied from 9790, before its eruption of September 1976, to 591 during the 

1004 post-eruptive high-flux state. The same phenomenon is reported for Trinidad where the C2+ 

1005 concentration was higher in the MVs with more recent eruptions (Deville et al., 2003).

1006 Not considering this alteration mechanism may lead to severe mistakes in interpretations of 

1007 gas origin. For example, if the stable carbon isotopic composition of methane, δ13CCH4, is not 

1008 analysed, high C1/C2+ ratios, with high CH4 content (for example, above 95 vol.%) relative to 

1009 ethane and propane, may lead one to think that the gas is microbial. In fact, many MVs have 

1010 a Bernard ratio typical of microbial gas (>500), but isotopic data and petroleum system 

1011 evaluations clearly indicate that the gas is, instead, thermogenic (e.g., Etiope et al. 2009a). As 

1012 a result, since it does not always reflect the original gas composition, the ‘‘Bernard ratio’’ 

1013 may be misleading when applied to MVs.

1014

1015

1016 Suggested Location for Fig. 12 gas water chem

1017

1018

1019 Another important characteristic of MV gas is the frequent occurrence of “heavy CO2”, i.e., 

1020 CO2 with positive 13C values, often >5 ‰ VPDB (Fig. 12C). CO2 occurring in thermogenic 

1021 hydrocarbon reservoirs, generally a by-product of kerogen maturation in catagenesis (Hunt, 

1022 1996), has negative 13C values typically ranging from -15 to -25 ‰ (Jenden et al., 1993; 

1023 Etiope, 2015). Heavy CO2 is instead a residual CO2 after consumption by secondary 

1024 methanogenesis that follows oil biodegradation in relatively shallow (<2000 m deep) 
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1025 reservoirs. Oil biodegradation by microorganisms gradually destroys n-paraffins (n-alkanes 

1026 or normal alkanes) and oil density and viscosity increase. These modifications have negative 

1027 economic consequences for oil production and refining Petroleum biodegradation is 

1028 considered to occur in many conventional oil reserves and its detection by heavy CO2 (and 

1029 13C enrichment also in C2+ alkanes; Etiope et al., 2009b and references therein) in MVs in 

1030 explorative areas may help in the evaluation of the quality of subsurface reservoirs prior to 

1031 drilling. The new data of the four Azerbaijan MVs (Supplementary Material) show the 

1032 variability of 13CCO2 values within the same MV; this may suggest that the different vents of 

1033 a MV can be related to different circulation systems: some vents are located in 

1034 correspondence with oil-saturated (where oil is biodegraded) structures, others not. This is 

1035 consistent with the general recognition that MV systems may not be uniform, but can be 

1036 structured in different sub-systems and isolated blocks (Feyzullayev and Movsumova, 2001). 

1037 However, variations of 13CCO2 with time for the same vent, observed in Etiope et al. (2009b), 

1038 and the fact that 13CCO2 variability has also been observed directly in gas reservoirs 

1039 (Pallasser, 2000) suggest that CO2 carbon isotopes are intrinsically highly unstable and can be 

1040 affected by multiple gas–water–rock interactions. The “heavy” CO2 of Koturdag MV 

1041 (Supplementary Material) is associated to 13C-enriched ethane and propane (compared to the 

1042 reservoir), which suggests biodegradation of oil along the seepage system, above the main 

1043 reservoir.

1044 .

1045 Finally, as mentioned in Section 2.1, the concentrations of CO2 or N2 in some MVs may be 

1046 higher than that of CH4. This may be the result of mixing with geothermal gases, especially 

1047 when the sedimentary basin is adjacent to volcanic or high heat flow regions; or due to effects 

1048 of source rock over-maturation. High CO2 concentrations (exceeding 20 vol.%) were reported 

1049 for MVs in Crimea (up to 64 vol.%), Russia (up to 29 vol.%), and Trinidad (up to 25 vol.%) 

1050 (Etiope et al., 2009b and references therein).  N2-rich gases are released during the final stage 

1051 of gas generation, after CH4 formation has ceased. Large N2 amounts can also be produced by 

1052 the metamorphism of clayey, ammonium-containing, sedimentary rocks and magmatic 

1053 sources (Zhu et al., 2000; Etiope et al., 2011a). Examples of N2-rich MVs are found in Papua 

1054 New Guinea (≤76 vol.%; Baylis et al., 1997) and in Romania (up to 98 vol.%; Etiope et al., 

1055 2011a).

1056

1057
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1058 4.3 Water chemistry

1059 The origin of waters expelled from MVs is not always easy to track down. Throughout the 

1060 kilometres-sized vertical conduits, chemically distinct formation waters from different 

1061 sedimentary intervals mix, interact, and react between each other and with the different rocks 

1062 and sediments to produce a complex cocktail that is finally expelled at the MV surface. For 

1063 these reasons the composition of MV waters is dramatically different from that of the nearby 

1064 non-MV environments. 

1065 There are mostly three main original sources of water at dormant MVs that get mixed during 

1066 the burial history of the sediments or during the rise through the piercing systems of diffused 

1067 upwelling. Mazzini et al (2009b) provided an overview of the origin of these three waters 

1068 erupting at different seepage features within the MV craters. The main characteristics of each 

1069 one of these three groups can be described as follows: (1) marine or fresh pore water 

1070 mechanically entrapped during the fast burial of the source sediments. Depending on the 

1071 porosity of the entrapping sediments and on the sedimentation rates, the presence of e.g. 

1072 significant amounts of marine pore waters may increase the total salinity (i.e. Na, Cl content); 

1073 (2) mineral-bound waters chemically expelled during clay mineral diagenesis. This is 

1074 probably the most important source of water in the MV systems. During their burial with 

1075 gradually rising pressure and temperature, the rocks progressively increase the mineral 

1076 dehydration process, releasing significant amounts of structural water. These smectite-illite 

1077 transformations (i.e. illitization) typically start at temperatures around 60 °C and are nearly 

1078 completed at 160 °C and usually occur at depths between 2–5 km. These low salinity fluids 

1079 are typically characterised by increased values of 18O, B and Li content and decreased 

1080 values of D (Dählmann and de Lange, 2003); and (3) shallower meteoric waters, that, in the 

1081 case of onshore MVs, will result in a decrease in elements as well as a specific isotopic 

1082 signature that falls along the Global Meteoric Water Line (GMWL). The GMWL plots the 

1083 equation of the typical relationship between hydrogen and oxygen isotope ratios in natural 

1084 terrestrial waters, expressed as a worldwide average (Craig, 1961). The composition of the 

1085 fluids erupted at onshore MVs may be further modified by subaerial surface processes and 

1086 be, for example, diluted by rain and/or concentrated by evaporation and dissolution of salt 

1087 crusts typically present around seeping sites. Similarly, depending on the sampling technique 

1088 used for targeting MVs offshore, the true signature of deep fluids may be modified by 

1089 significant input of shallow interstitial water or bottom water. 
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1090 Indeed every setting presents its own peculiarities. In the subsurface, many factors control the 

1091 chemistry of formation waters and their mixing and reaction history: These may include: the 

1092 porosity and the depositional environment of the host formations (e.g. marine, non marine), 

1093 the temperature and the pressure gradients, the presence of gas hydrates or tectonic structures 

1094 that control the migration of fluids and trigger different types of mineralogical and 

1095 geochemical reactions (Carpenter and Miller, 1969; Fournier and Truesdell, 1973; Hanor, 

1096 1994; Worden, 1996; Dia et al., 1999; Kopf and Deyhle, 2002; Dählmann and de Lange, 

1097 2003). Besides the setting, water composition may also be affected by local tectonics. The 

1098 combinations are numerous. For example, depending on their location and geological 

1099 structures, MV feeding systems may intersect brine rich formations, evaporites or salt diapirs 

1100 (e.g. Jakubov et al., 1971; Lagunova, 1974; Dia et al., 1999; Aliyev et al., 2002; Planke et al., 

1101 2003). Passive margins (e.g. Gulf of Mexico) or restricted basins (Palaeo-Tethyss) with a hot 

1102 (palaeo) climate tend to have buried evaporite deposits or residual brines with high Cl 

1103 content. Numerous MVs in these areas, including the Mediterranean, display this typical Cl-

1104 rich signature as brines originating from e.g. the underlying Messinian evaporites emerging to 

1105 the seafloor (Aloisi et al., 2000; Dählmann and de Lange, 2003; Hensen et al., 2007; Scholz 

1106 et al., 2009; Haffert et al., 2013). As MVs are often associated with hydrocarbon reservoirs, 

1107 brines escaping from oilfields may also mix with the fluids rising from greater depth 

1108 increasing e.g. the Cl, B, Br, K and Zn content (Collins, 1975; Aliyev et al., 2002; Planke et 

1109 al., 2003). Alternatively, the presence of neighbouring magmatic volcanic systems or deep 

1110 sourced hydrothermal fluids may result in waters with signatures showing enrichment in Li 

1111 and B. Deviating Sr isotope ratios (87Sr/86Sr) from seawater are indicative of leaching of 

1112 sediments or crustal rocks at high temperatures or re-crystallisation of deeply buried 

1113 carbonates both of which are in agreement with a deep water source(Scholz et al., 2009; 

1114 Hensen et al., 2015). On the other hand, MV fluids may also be affected by low-temperature 

1115 weathering of silicate minerals (Aloisi et al., 2004). The targeted study of some elements 

1116 such as iodide and bromide content may be used to indicate organic matter diagenesis in 

1117 sediments and rocks (Martin et al., 1993; Dia et al., 1995; Gieskes and Mahn, 2007; Lu et al., 

1118 2007; Scholz et al., 2010) since their increase is directly correlated with an increasing 

1119 intensity of organic matter decomposition.

1120

1121 Previous studies also demonstrated that in subaerial conditions distinct water chemistry is 

1122 observed depending on the type of seepage locality. The study reported by Mazzini et al 

1123 (2009b) focused on detailed measurement of the onshore Dashgil MV describing the different 
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1124 geochemistry of the three main seep systems: (a) gryphons; (b) pools; and (c) salsa lakes. The 

1125 results of our broader water collection from several MVs reveal that the conclusions from 

1126 these authors can be also applied to other structures, and not just to Dashgil MV. The seeping 

1127 waters show a wide range in solute content. 

1128

1129 Our new data from the six MVs in Azerbaijan (Table S1B) show that overall the gryphons 

1130 expel water with lower Cl contents in contrast with the water-dominated pools and salsa lakes 

1131 (the most hypersaline). Trace elements like B and Li are higher in the muddier gryphons and 

1132 pools compared to in the salsa lakes. Overall, chlorinities are higher than in the Caspian Sea 

1133 and comparable to the nearby Dashgil and the offshore Guneshli oil fields production waters. 

1134 Gryphons usually have the most 18O enriched waters while samples with D lower than -30‰ 

1135 are generally from pools. Sampling of the salsa lakes during the fall season show consistently 

1136 higher Cl and 18O compared with the winter campaigns, while gryphons do not display a 

1137 clear seasonal trend. Some general conclusions can be summarised regarding the plumbing 

1138 system based on water analyses. 

1139

1140 Gryphons

1141 Water from clay dehydration occurring at depth seems to be the main source feeding the 

1142 gryphons. This is consistent with a) low salinities, b) high 18O values and c) high Mg/Ca 

1143 ratios. This supports the scenario of the expulsion of deep rooted mud breccia clasts often 

1144 observed at gryphon sites where virtually constant temperature is measured throughout the 

1145 year. The “contamination” of shallow meteoric fluids appears to be negligible, most likely 

1146 due to the semi-constant expulsion of overpressured mud from depth. 

1147

1148 Salsa lakes

1149 Compared to gryphons, salsa lakes display lower B, SO4, and Li suggesting that evaporation 

1150 has a stronger control on water geochemistry. A mix of shallow meteoric (predominant) and 

1151 deeper (in smaller amount) waters is expected here. The high salinity recorded could be 

1152 ascribed to the dissolution of halite crusts near the summit and in situ evaporation during the 

1153 warmer season. 

1154

1155 Pools
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1156 A remarkable variety in composition is recorded at pool sites. The different rates and vigour 

1157 characterising the various pools as well as the lower 18O values suggest a strong input of 

1158 meteoric fluids. 

1159

1160

1161 4.4 Learnings from seasonal sampling and temporal variability

1162

1163 Seasonal variations in the isotopic composition of rain and snow can periodically alter the 

1164 water composition of the subaerial seeps resulting in differences in the 18O and D when 

1165 comparing summer and winter sampling. For example, during the winter (or during colder 

1166 and dryer climate) 18O and D have lower values when plotted along the GMWL and 

1167 compared with the higher values for the summer (or hotter climate) periods. This difference 

1168 is typically visible at pools or salsa lake sites that are more affected by meteoric fluids. 

1169 Fig.12 D shows the results of the water samples collected in Azerbaijan. Along the GMWL 

1170 the samples with frozen water sampled at Koturdag and samples of Garadag after a heavy 

1171 rain are plotted. All the other samples have 18O clustered between 1 and 9 ‰. Interestingly 

1172 the results also reveal a large spread of results in the isotopic and solute (Table S1B) 

1173 composition from a single MV. These results highlight that an extensive (i.e. differentiating 

1174 the type of seeping structure sampled) and seasonal campaign is necessary for broad and solid 

1175 interpretations. This paradox can be easily observed when comparing these results with a 

1176 collection of 18O and  D waters from MVs worldwide (see refs in figure). For example the 

1177 variations in water 18O-D of Dashgil MV cover a large part of the data from many 

1178 structures worldwide, emphasising the need for targeted campaigns and careful 

1179 interpretations. The difficulty in monitoring and sampling MV waters is challenging for 

1180 offshore structures where the sampling location cannot be as accurate as onshore and 

1181 therefore seawater contamination/mixing can easily occur. 

1182

1183

1184 5 MV formation dynamics

1185

1186 5.1 Gravitative instability, fluid overpressure and hydrofracturing

1187
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1188 As mentioned in Chapter 2, the main engine driving the formation of MVs (i.e. sedimentary 

1189 volcanism) is generally a combination of gravitative instability of shales and fluid 

1190 overpressures (e.g. Kopf, 2002; Revil, 2002). Gravitative instability is due to the overall low 

1191 density of clay-bearing strata that can be buoyant in the surrounding units. This is generally 

1192 due to rapid sedimentation rates in subsiding basins. Such instability is a prerequisite for MV 

1193 initiation: the shale can start uprising (mobilised shale) autonomously by buoyancy (shale 

1194 diapirism), often supported by hydrofracturing (Revil, 2002), combined with fluid 

1195 overpressures that can accelerate and sustain the motion of fluid-rich sediments (mud and 

1196 rock fragments) up to the surface. 

1197

1198 Fluid overpressures can develop in the same “instable” (mobile) shale or in surrounding 

1199 sedimentary rocks, other shales, reservoir rocks or fractures. Overpressure in shales may be 

1200 due to volumetric expansion due to generation of hydrocarbons from kerogens, or additional 

1201 cracking of heavy hydrocarbons into lighter ones. Additional mechanisms may include the 

1202 thermal effect in pore fluids as temperature gradient increases, dehydration reactions (e.g. 

1203 volume increase by opal A/CT quartz, or illitization of clay minerals) and to disequilibrium 

1204 compaction (Revil, 2002), i.e. imbalance between pressure build-up due to lithostatic loading 

1205 or compressive tectonic stresses and pressure dissipation by fluid flow. Indeed, mechanical 

1206 compaction during gradual burial or sudden events (slides, slumps, thick turbidite deposits) 

1207 increases intragranular overpressure. At locations with high rates of basin sedimentation 

1208 and/or subsidence, a large amount of seawater is trapped in the intergranular spaces inducing 

1209 exponentially higher overpressure during the burial of the undercompacted units. 

1210 If the mobilised shale, ascending by buoyancy, meets pressurised fluids in reservoirs and 

1211 fractures, its motion upwards can be accelerated and sustained up to the Earth’s surface. Input 

1212 of allochtonous fluids, external to the sedimentary system, such as deeper geothermal or 

1213 volcanic fluids, may also contribute to overpressure build-up. In submarine environments, 

1214 dissociation of gas hydrates can also induce gas liberation and pressure increases. 

1215 In any case, overpressured sediments must be initially isolated by impermeable barriers (i.e., 

1216 must be pressurised compartments). Hydrofracturing, i.e. the opening of the impermeable 

1217 barriers, allows for the pressurised gas-water-sediment motion towards the surface and the 

1218 brecciation of sedimentary units. Hydrofracturing can be just due to the increase of fluid 

1219 pressure creating fractures, which may connect the pressurised fluid system to pre-existing 

1220 permeable pathways (faults). Fracturing may also be due to tectonic stresses, fault 

1221 reactivation and seismicity as described below.
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1222 In practice, the MV formation should foresee the following processes (also depicted in Fig. 

1223 13):

1224

1225

Gravitative 

instability 

(shale buoyancy)

Fluid 

overpressure Hydrofracturing

Fluid flow along 

permeable 

fractures/faults

1226

1227 This combination of factors must be seen as a specific petroleum seepage system, according 

1228 to the definition of Abrams (2005).

1229 The final stage of MV growth is its manifestation to the surface. This may happen in a 

1230 gradual manner with progressive and slow release of mud and fluids, or in violent and 

1231 parossistic forms (eruption). In the second case, a MV birth scenario envisages that when 

1232 overburden weight is not sufficient to contrast the pressure of the migrating fluids and the 

1233 growth of the piercement towards the surface, a critical depth is reached. At this threshold 

1234 depth fracturing and breaching of the uppermost units occur, sometimes facilitated by 

1235 external factors (e.g. earthquakes). Solid earth tides have also been proposed as a mechanism 

1236 to influence eruptions and geological phenomena such as seismic activity (Guliyev and 

1237 Feizullayev, 1997; Tanaka et al., 2004; Métivier et al., 2009).

1238 Another peculiarity of MVism is the transport to the surface of breccia, defined in Section 

1239 2.2. The brecciated sediments present throughout the feeder channel have a reduced cohesion. 

1240 As the breaching to the surface occurs, the accumulated pressure suddenly drops and the low 

1241 cohesion media are easily fluidised and ultimately vacuumed to the surface. It is well known 

1242 that some of the clasts erupted at MV sites originate from several kilometres in depth (i.e. 

1243 some Caspian MVs have roots as deep as 15 km) and that they can reach the size of some 

1244 meters. Is it likely that during the eruptions, MVs have an open conduit of several 

1245 kilometres?

1246 The mechanisms described above do not necessarily imply significant subsurface movements 

1247 of the brecciated sediments prior to the eruption, nor during the growth of the emerging 

1248 diapir. One possible scenario is that the large clasts reach the surface after several eruptive 

1249 cycles. In other words each eruption contributes to the rise of the oldest sediments. We 

1250 envisage that the youngest eruptions have a larger amount of old rocks. 

1251

1252
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1253 5.2 Constraints in modelling 

1254

1255 Few attempts have been made to model the dynamics of piercement structures and MVism 

1256 (e.g. Gisler, 2009 and references therein; Zoporowski and Miller, 2009). Mazzini (2009) 

1257 suggested a simple scenario describing the birth of a MV beginning from the initial growth at 

1258 its roots where an initial fluid overpressure is present. Revil (2002) stressed the importance of 

1259 hydrofracturing and hydro-mechanical non-linear shock waves. Nermoen et al. (2010) 

1260 attempted some sand box experiments to investigate the processes controlling the fluidisation 

1261 prior to the eruption. Conversely Lance et al. (1998) and Murton and Biggs (2003) completed 

1262 some analogue experiments and numerical modelling to understand the morphology of some 

1263 offshore MVs based on expelled mud rheology and isostatic parameters. In any case, all 

1264 models are limited in dimension and resolution, and require much better constraints on the 

1265 parameters of the erupting systems. For example modelling attempts to predict the longevity 

1266 and behaviour of mud eruptive systems have been shown to be incorrect demonstrating that 

1267 the processes in the region of diffused upwelling are poorly understood (Davies et al., 2011; 

1268 Rudolph et al., 2011). Therefore there is the absolute need to use models based on direct field 

1269 observations and tight constraints. 

1270 Exploratory efforts are continuing to probe the development of morphologies and 

1271 phenomenologies and how they depend on the rheology of the erupted fluids and that of the 

1272 country rocks, and on the depth, nature, and overpressure of the source material. Indeed, there 

1273 are important parameters that are crucial to model clastic eruptions and could be tentatively 

1274 divided in two main groups: internal and external parameters. The first group can include the 

1275 geometry of the feeder zone that may consist of intricate networks or single or multiple pipe-

1276 shaped conduits crossing one or several stacked reservoirs. In addition, deformations 

1277 including volumetric contractions (or “peristalsis”) of the conduit during the eruption and the 

1278 coupling between volumetric contractions and fluid flow may occur. Key parameters to be 

1279 considered for modelling are chemical and multiphase reactions and multiphase flows. For 

1280 example, the interaction between fluids with different chemical and isotopic composition, and 

1281 the properties of the erupted mud (e.g. density, viscosity), including changes in the density of 

1282 rising fluids in response to changing pressure and temperature. External parameters that may 

1283 alter the piercement behaviour may include seismic events. These can periodically alter the 

1284 critical equilibrium of the MVs inducing fluidisation, opening new fractures or allowing 

1285 influx of deeper and/or hotter fluids. External fluids emitted in the system may generate 

1286 additional overpressures as well as trigger e.g. higher temperature reactions with the organic 
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1287 matter present in the sediments producing new gas or altering the mineralogy of the 

1288 sediments. 

1289

1290

1291 5.3 MVs and seismicity

1292

1293 It is well known that gas migration, seepage and, in particular, eruptions of MVs, can be 

1294 stimulated by earthquakes, i.e. by the passage of seismic waves or by co-post-seismic 

1295 changes in crustal stress and permeability (e.g. Chigira and Tanaka, 1997; Guliev and 

1296 Feizullayev, 1997; Linde and Sacks, 1998; Delisle et al., 2002a; Kopf, 2002; Hieke, 2004; 

1297 Nakamukae et al., 2004; Manga and Brodsky, 2006; Ellouz-Zimmermann et al., 2007; 

1298 Lemarchand and Grasso, 2007; Mau et al., 2007; Mellors et al., 2007; Walter and Amelung, 

1299 2007; Judd and Hovland, 2007 ; Eggert and Walter, 2008; Mazzini et al., 2009a; Lupi et al., 

1300 2014; Bonini et al., 2016). Many MVs and piercement systems erupted within a few days or 

1301 months after earthquakes (e.g. Abikh, 1939; Chigira and Tanaka, 1997; Guliyev and 

1302 Feizullayev, 1997; Aliyev, 2004; Miller et al., 2004; Baciu and Etiope, 2005; Martinelli and 

1303 Dadomo, 2005; Mellors et al., 2007 and references therein; Manga et al., 2009; Madonia et 

1304 al., 2011), but it is sometimes difficult to distinguish a true seismic trigger from a mere 

1305 coincidence. While reports of correlations between earthquakes and MV eruptions are 

1306 widespread, little is known about the processes triggered by passing seismic waves and 

1307 whether delayed triggering is possible. 

1308 Manga et al. (2009) suggest a relationship between earthquake magnitude and the distance 

1309 over which a variety of responses can be documented, such as increases of stream flows, 

1310 liquefaction effects, changes in geysering activity, alterations at magmatic and mud 

1311 volcanoes. Based on their plot, the authors propose a threshold (combining magnitude and 

1312 hypocentral distance) for triggering responses in the above systems. For example they 

1313 suggest that MV activity can be triggered by a seismic event with magnitude 5 if it happens 

1314 within a distance of 20 km; hundreds of km are sufficient for earthquakes with M> 7. 

1315 Nevertheless this threshold could be subject to modifications. For example, the Manga et al. 

1316 (2009) plot shows outliers for liquefaction examples and MVs events. Delle Donne et al. 

1317 (2010) provide a similar type of plot reporting measured data on liquefaction effects and 

1318 responses observed in magmatic volcanoes. The  authors provide examples highlighting that 

1319 all these systems are sensitive to even further and less powerful events (i.e. M 5.5 at more 

1320 than 200 km and M>7 at ~1500 km). Ultimately additional occurrences could be included in 
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1321 the plots that, once again, indicate that these types of piercements may be sensitive to events 

1322 occurring even thousands of kilometres away from the epicentre (Brodsky et al., 2003; West 

1323 et al., 2005; Sil and Freymueller, 2006; Farías et al., 2014). Among the remarkable instances 

1324 we cite: the changes in Yellowstone geysers eruption behaviour after the 2002 M 7.9 Alaskan 

1325 Denali earthquake (Husen et al., 2004); the alterations recorded at the Salse di Nirano MV 

1326 after the June 2013 M 4.7 event occurring 60 km away (Lupi et al., 2016); the sudden 

1327 eruption of Napag MV (Fig. 4B, Fig. 5G) triggered just after the 2003 M 6.6 Bam earthquake 

1328 (distance of ~430 km) (Dang_news, 2016); the eruption of a new MV in Pingtung after the 

1329 2016 M 5.5 earthquake occurring in Taiwan nearly 250 km away (O'Neill, 2016); the 

1330 enhanced venting reported by locals at the Kalang Anyar, Gunung Anyar, and Polungan MVs 

1331 located ~270 km away from the 2006 M 6.3 Yogyakarta earthquake (Mazzini et al., 2009a); 

1332 the formation of the MV island offshore Gwadar (Pakistan) few hours after the September 

1333 2013 M 7.7 earthquake occurring 410 km far from the coast (Avouac et al., 2014). As a side 

1334 comment, it is interesting to remark the last peculiar case of dynamic triggering. On the 

1335 16.04.2013 a Mw 7.8 dip-slip earthquake occurred 315 km away from Gwadar without 

1336 triggering any response. However, five months later (i.e. on the 24.09.2013) a Mw 7.7 strike-

1337 slip earthquake occurred further than the previous event (i.e. 410 km) triggering the eruption 

1338 of the new mud island (Fig. 14B). One of the reasons underlining the trigger-non trigger 

1339 occurrence may be related to the difference between the amount of S-waves generated by dip 

1340 slip and strike slip earthquakes. For instance, Lupi et al., (2013) show that hydrothermal 

1341 systems in a critical state are more sensitive to S waves than P waves. Dip-slip and strike slip 

1342 earthquakes impose a different directivity of shear-wave radiation with strike slip earthquakes 

1343 projecting more shear horizontal waves parallel to the earth surface in both body and surface 

1344 waves.

1345 These observations highlight that more research is needed in this field and that it is arduous 

1346 and may be misleading to trace schematic thresholds, especially considering that it is difficult 

1347 to estimate how critically stressed each system is in a given moment. In this respect, the MV 

1348 eruptions cited above are consistent with the empirical threshold line indicated by Delle 

1349 Donne et al. (2010) rather than the Manga et al. (2009) that does not seem to be appropriate 

1350 (Fig. 14A).

1351 Despite the many incertitudes, it is clear that seismicity affects shale liquefaction, fluidisation 

1352 and loss of strength, fracture opening, increased hydraulic permeability, removing of 

1353 hydraulic barriers, and bubble nucleation and growth are possible specific mechanisms of 
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1354 eruption triggering. Obviously reactivated faults represent an ideal pathway to release fluids 

1355 from greater depth. Laboratory experiments showed that strike-slip movement (shearing) is 

1356 an efficient mechanism (Mazzini et al., 2009a). Strike-slip faulting can significantly reduce 

1357 the critical fluid pressure, in turn inducing sediment deformation and fluidisation. Given a 

1358 fluid overpressure at depth, localisation of tectonic stresses may induce fluidisation in 

1359 situation that would otherwise be stable.

1360

1361

1362 6 Implications

1363

1364 6.1 Hydrocarbon exploration

1365

1366 MVs, other hydrocarbon seeps and buried piercement structures, are common in many 

1367 petroleum provinces worldwide and represent ideal targets for hydrocarbon exploration. The 

1368 largest seepage and MV provinces are also among the major hydrocarbon exploration and 

1369 production regions (e.g., the North Sea, the Caspian Sea, the Gulf of Mexico, the Black Sea, 

1370 the Sea of Okhotsk, the Sea of Japan). Many large onshore hydrocarbon fields were 

1371 discovered after drilling around MVs in Europe, the Caspian basin, Asia and the Caribbean 

1372 (Ansted, 1866; Ciocardel, 1949; Link, 1952; Martinis, 1962; Jakubov et al., 1971; Shnyukov 

1373 et al., 1986; Rhakmanov, 1987; Guliyev and Feizullayev, 1997; Etiope et al., 2009b). At 

1374 these localities reservoirs are staked at multiple levels through the feeder zone. These 

1375 structures have been intensively studied by academia and the oil industry as they represent an 

1376 open window of deep seated plumbing systems. These natural boreholes can provide relevant 

1377 information regarding the nature and the processes involving hydrocarbon systems. 

1378 In particular, in Azerbaijan, Jakubov et al. (1971) documented the intimate relationship 

1379 between MVs, petroleum reservoirs, and structural traps (e.g. anticlines). The feeder channels 

1380 for the MVs, normally rooted below the reservoir levels (commonly at 1-3 km depth), act as 

1381 pathways for fluids during the eruptions and possibly during the dormant stage (Planke et al., 

1382 2003). The processes at various levels of the MVs, i.e. roots, reservoir, and shallow system, 

1383 still remain poorly understood. 

1384 Knowing the molecular and isotopic composition of the gas released by MVs (see Section 

1385 4.2) allows the assessment of origin and quality of the hydrocarbons stored in the reservoirs. 

1386 For example, MV gas analyses may help to discriminate shallow microbial gas from deeper 



43

1387 thermogenic accumulations, and may suggest the presence of oil and undesirable non-

1388 hydrocarbon gases, such as CO2, N2 and H2S. MV gas can also indicate subsurface petroleum 

1389 biodegradation, which has an important impact on hydrocarbon quality and may influence 

1390 exploration and production strategies. Thus, MV gas geochemistry can contribute to 

1391 assessing, prior to or without drilling, a petroleum system, which is particularly useful in 

1392 frontier or partly unexplored areas.

1393 Finally, while it is clear that petroleum extraction from reservoirs may affect the activity of 

1394 MVs nearby, due to the lowering of the fluid pressures (Etiope, 2015), the impact of MV 

1395 activity into petroleum production is poorly known. The geodynamic relationship between 

1396 reservoirs and MVs behaviour remains  unclear also due to the limited data available. Some 

1397 conclusions can be inferred from the frequent erupting MVs, such as Lokbatan. For example 

1398 after the 2001 and 2010 Lokbatan eruptions (I. Gulyev pers. comm.), the oil production from 

1399 the numerous wells located all over the MV remained essentially unaltered. This implies that 

1400 the two systems are either not connected or that during the eruption deeper seated 

1401 mechanisms are predominant. One hypothesis is that during the eruptions, the flanks of the MV 

1402 feeder channel is sealed by the rising fluids, therefore compartmentalising and not affecting the 

1403 conditions of the reservoirs intersecting the conduit or the region of diffused upwelling. Since in some 

1404 instances a production increase from some wells has been even recorded, we suggest that the 

1405 overpressure increase inside the feeder zone may also affect the external zone hydraulically connected 

1406 to the productive reservoirs. 

1407

1408 6.2 Geohazards 

1409

1410 Geohazards are geological situations and/or features that can present critical conditions 

1411 resulting in damage or risk. Although MVs are ideal targets for hydrocarbon exploration, they 

1412 do represent geohazards for the following reasons:

1413 a) the potentially violent release of large amounts of hydrocarbons and mud

1414 b) the degradation of soil (or sediments at seafloor) and quicksand effect

1415 c) episodic dissociation of submarine gas hydrates. 

1416

1417 a) Explosive eruptions of self-igniting methane are not unusual either onshore or offshore 

1418 (Bagirov et al., 1996; Aliyev et al., 2002). This phenomenon is probably related to the high 

1419 velocity of the vented gas that may reach supersonic speed and thus self-combust causing 

1420 spectacular fiery eruptions. The 6th of February 2017 eruption of Otman Bozdag MV in 
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1421 Gobustan (Azerbaijan) is the most recent example of such type of event. In 2014 a tragedy 

1422 occurred in Italy when two children, 7 and 9 years old, died in a sudden eruption of mud in 

1423 the Maccalube MV in Sicily. The children were walking along a path open to the public, 

1424 close to a quiescent crater that suddenly erupted producing a mud column several meters 

1425 high. The Piparo MV in Trinidad erupted in February 1997 with mud ejections 50 m high. 

1426 Residents of the nearby village managed to escape rapidly from their houses before mud 

1427 spilled into the village crushing roofs.

1428

1429 b) Many MVs have craters and muddy pools that represent a potential threat. Small MVs, 

1430 such as those occurring in northern and central Italy, which are easily accessible a few meters 

1431 from busy main roads (e.g., Pineto in the Abruzzi Region or Ospitaletto in Emilia Romagna) 

1432 have craters less than 1 m wide, but the fluid mud is more than 2–3 m deep and can be a 

1433 lethal trap. MVs can also perturb soil foundations and urban facilities (Etiope, 2015). 

1434 It is not uncommon to find numerous settlements around or even on the crater zone (!) of 

1435 MVs. Among the numerous examples we can cite Liyushan (Taiwan), Piparo (Trinidad), 

1436 Kalang Anyar, Gunung Anyar, Pulungan (Indonesia), Gobu (Azerbaijan), Serra de Conti, 

1437 Santa Barbara, Salinella Stadio di Paternò (Italy). 

1438 Large areas covered by thick erupted mud breccia flows, pose severe geohazards in case if 

1439 liquefaction following on from e.g. seismic activity.

1440

1441 c) Offshore MVs are frequently associated with provinces of gas hydrate deposits (e.g. 

1442 Tinivella and Giustianiani, 2012). As these buried methane reserves are likely to be exploited 

1443 in the future, an improved understanding of MVs and buried piercement structures is relevant 

1444 for the petroleum industry to reduce the potential hazard posed for drilling and platform 

1445 construction, and pipeline routings. Sidewall slumping at onshore and offshore MVs is a 

1446 common phenomenon that should be considered for production installations. Indeed inflation 

1447 and deflation mechanisms constantly occur at active MVs. 

1448

1449

1450 6.3 Methane emission to the atmosphere 

1451

1452 MVs are one of the five categories (including gas-oil seeps, microseepage, submarine 

1453 seepage and geothermal-volcanic manifestations) of geological sources of methane that are 

1454 currently considered a major contributor for the atmospheric methane budget (Etiope and 
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1455 Klusman, 2002; Ciais et al., 2013; Etiope, 2015). In total geological sources release about 60 

1456 Mton CH4 per year, of which onshore MVs contribute for about 25-30% (Etiope, 2015). 

1457 Geological emissions are the second most important natural source of methane after 

1458 wetlands, and account for about 10 % of total methane emissions from anthropogenic and 

1459 natural sources (Ciais et al., 2013).

1460 As for the other geological emission categories, global methane emission estimates from 

1461 MVs have been derived using the same procedures adopted for natural and anthropogenic gas 

1462 sources, as recommended by the air pollutant emission guidebook of the European 

1463 Environment Agency (see Etiope, 2015 and refs. therein). The procedures are based on the 

1464 distinction between “point sources” and “area sources”, and on the concepts of “ activity” and 

1465 “emission factor”. In the case of MVs, a “point source” refers to macro-seeps or vents (see 

1466 Section 3) with a flux expressed in kg/day or tonnes/year. An “area source” is the diffuse 

1467 seepage (i.e., miniseepage, as described in Section 3.7) with a flux generally expressed in mg 

1468 m−2 day−1). “Activity” is practically the number of focused vents or the area of diffuse 

1469 degassing. Each MV includes point sources, vents, bubbling pools, and an area source, the 

1470 miniseepage. Therefore the total gas emission from a MV is the sum of all of the point 

1471 sources plus total outputs from the invisible diffuse miniseepage surrounding the vents. The 

1472 “emission factor” is the total emission divided by the area of the seepage (areal emission 

1473 factor: kg m−2 day−1). For MVs, the “emission factor” incorporates emissions from vents and 

1474 miniseepage, and can also be expressed in terms of a “point emission factor” (kg day−1). In 

1475 this case, “activity” corresponds to the number of emission points. In practice, the global 

1476 methane emission from a MV can be estimated by multiplying the areal emission factor by 

1477 the global area formed by all MVs (for example, as estimated by Etiope and Milkov, 2004), 

1478 or by multiplying the point emission factor by the global number of MVs.  Emission factors 

1479 of MVs have been assessed on the basis of hundreds of direct flux measurements in the field, 

1480 in Italy, Romania, Azerbaijan, Japan and Taiwan (see Etiope, 2015 and refs. therein).

1481 The single vents or craters of small MVs (e.g. 1–5 m high) can release up to tens of tonnes of 

1482 methane per year. An entire MV (hosting tens or hundreds of vents) can continuously emit 

1483 hundreds of tonnes of CH4 per year, and eruptions from MVs can release thousands of tonnes 

1484 of CH4 within a few hours. However, only very approximate and indirect estimates are 

1485 available for gas outputs during eruptions (e.g. Guliyev and Feizullayev, 1997). 

1486

1487 Estimates of the CH4 measured flux at MV areas during their dormancy periods (i.e. from 

1488 seeps, gryphons and miniseepage), vary between 100 and 10,000 tonnes km−2 year−1, with a 
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1489 global average of 3,150 tonnes km−2 year−1. Global CH4 emission estimates published in the 

1490 literature range from 5 to 20 Mton/y (Dimitrov, 2002; Etiope and Klusman, 2002; Etiope and 

1491 Milkov, 2004; Etiope et al., 2011b). These estimates increased over time as a result of new 

1492 experimental flux data that include both focused venting and diffuse miniseepage. The latest 

1493 estimates (20 Mton/y) were also based on classifications of MV sizes in terms of area, 

1494 following a compilation of data from 120 MVs and updated emission factors (Etiope et al., 

1495 2011b). The largest uncertainty is related to emissions during eruptions, for which there are 

1496 not direct flux measurements, yet.

1497

1498

1499 7 A leading case-study: the Caspian Basin mud volcanism

1500

1501 The South Caspian Basin is a Tertiary back-arc basin with an up to 25-30 km thick 

1502 sedimentary package making it one of the deepest basins in the world (see Planke et al., 2003 

1503 and refs therein). Sedimentation rates during the Quaternary, as high as 2.4 km/Ma deposited 

1504 5-8 km of sediments during the last 5 million years. Due to the local low geothermal 

1505 gradients (10-18 °C/km) immature source rocks for oil generation can be present down to 

1506 great depths (up to 14 km according to Abrams and Narimanov, 1997; and Nadirov et al., 

1507 1997).

1508 Today the Caspian Basin is one of the richest oil and gas provinces and represents one of the 

1509 regions with the highest abundance and variety of continental and offshore MVs broadly 

1510 distributed onshore in the Gobustan area (eastern Azerbaijan), the Apsheron Peninsula, 

1511 throughout the Southern Caspian Basin and, on the eastern size of the Caspian, in 

1512 Turkmenistan overlying the faulted and hydrocarbon-bearing anticlines (Jakubov et al., 

1513 1971). This is related to three main factors: 1) rapid Quaternary infill of one of the world’s 

1514 deepest sedimentary basins, 2) the rapid Miocene-Pliocene sedimentation and burial lead to 

1515 increased maturation of organic material, diffuse methane generation in deeply buried clay 

1516 units, and 3) compressional tectonics leading to anticline traps, and frequent seismicity that 

1517 possibly triggers eruptions (Inan et al., 1997; Nadirov et al., 1997; Guliyev et al., 2004; 

1518 Mellors et al., 2007). Due to this rapid basin subsidence, and the basin infill, the natural 

1519 sediments dewatering did not cope with the high sedimentation rate. Lithostatic load 

1520 transferred to pore water pressure resulted in overpressured units. The pressure and gravity 

1521 disequilibrium of these under-compacted shales made them buoyant due to low viscosity and 

1522 plasticity. In this thick and under-compacted basin, hydrocarbon generation and maturation is 
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1523 still ongoing, particularly in the deeply buried (8.5-11 km) Maikop Formation (Fowler et al., 

1524 2000). 

1525 Mud breccia studies highlighted that numerous MVs in the Gobustan area of Azerbaijan are 

1526 rooted at least within the Oligocene–Miocene section of the organic-rich Maikop Formation 

1527 (and perhaps deeper?). This formation, typically 1–2 km thick, is considered as the main 

1528 source of both the extruded mud and the petroleum and is located between 8.5- and 11-km 

1529 depth offshore Baku, and at 5.5-km depth underneath the offshore Shah Deniz structure (Inan 

1530 et al., 1997; Fowler et al., 2000). Clasts and sediments from deeper formations suggest that in 

1531 some cases the source could be as deep as 14 km (Inan et al., 1997; Cooper, 2001). 

1532 More than 400 active MVs were considered to exist in this region (Jakubov et al., 1971; 

1533 Aliyev et al., 2002), of which numerous are located offshore; about 180 MVs are however 

1534 documented onshore in Azerbaijan (Etiope, 2015). Almost 300 historic small and large MV 

1535 eruptions are then documented (Aliyev et al., 2002). 

1536 The Caspian Sea is exceptionally rich in hydrocarbon fields in particular in the southern part 

1537 that also contains the highest density of MVs. The 75% of these structures is located at the 

1538 top of anticlinals or coinciding with faults that in some instances are detached at the basement 

1539 level (Ginsburg and Soloviev, 1994; Dadashev et al., 1995; Corthay and Aliev, 2000; Yusifov 

1540 and Rabinowitz, 2004). Others are positioned on the flanks of folds. Based on acoustic data, 

1541 Huseynov and Guliyev (2004) concluded that the shape of the offshore MVs in the Caspian 

1542 Sea varies from convex, concave, flat or buried. MVs with low relief (several tens of meters) 

1543 are concentrated primarily in the north-eastern portion of the south Caspian Basin; MVs with 

1544 large vertical relief (greater than 200 m) are clustered in the southwest part of the basin. 

1545

1546

1547 8 Emerging issues and future research

1548

1549 8.1 Mud volcanism on other planets 

1550

1551 The phenomenon of MVism was suggested for other planets in the solar system (Bradak and 

1552 Kereszturi, 2003; Fortes and Grindrod, 2006) and in particular for Mars (e.g. Tanaka et al., 

1553 2003; Skinner and Mazzini, 2009; Oehler and Allen, 2010; Etiope et al., 2011c). 

1554 On Titan, a Saturn’s moon, theoretical studies addressed the possibility of sedimentary 

1555 volcanism associated to fluid and solid phases that, however, may be chemically and 
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1556 physically different from the terrestrial ones: for example liquid hydrocarbons and “mud” 

1557 composed by light acetylene-rich sediments, whose upward migration may be triggered by 

1558 density inversion due to overlaying layers of pure ice (Fortes and Grindrod, 2006). Radar 

1559 images acquired by the Huygens-Cassini probe suggested the presence of subcircular 

1560 structures that have been interpreted as potential MV edifices (Fortes and Grindrod, 2006).

1561 On Mars, several studies reviewed the possible regions where martian sedimentary basins 

1562 might fulfil the requirements for MVism and where satellite surveys reveal images similar to 

1563 those observed in MV provinces on Earth. Possible MVs have been reported from Utopia, 

1564 Isidis, Scandia, Chryse Planitia, Acidalia Planitia, Valles Marineris and Arabia Terra (Davis 

1565 and Tanaka, 1995; Tanaka, 1997; Tanaka et al., 2000; Tanaka et al., 2003; Farrand et al., 

1566 2005; Tanaka, 2005; Kite et al., 2007; Rodriguez et al., 2007; Skinner and Tanaka, 2007; 

1567 Tanaka et al., 2008; Allen et al., 2009; McGowan, 2009; Oehler and Allen, 2009; Skinner and 

1568 Mazzini, 2009; McGowan and McGill, 2010; Oehler and Allen, 2010; Pondrelli et al., 2011; 

1569 Ivanov et al., 2014; Komatsu et al., 2016; Okubo, 2016). Acidalia Planitia is the martian 

1570 region with the highest number of mounds resembling terrestrial MVs, with estimated 

1571 >40,000 structures of which 18,000 have been mapped (Oehler and Allen, 2010; Etiope et al., 

1572 2011c).

1573 Overall, the satellite images collected from the martian surface provide convincing 

1574 evidence of the geomorphological resemblance with the MV features observed on Earth. 

1575 Nevertheless, so far, there is no possibility to prove that one of the main forces activating 

1576 these extra-terrestrial phenomena is the same as described for MVs on Earth (i.e., the 

1577 presence of overpressured gas and mobilised shales). The variable detection of methane in the 

1578 martian atmosphere, coupled with its relatively short lifetime (Mumma et al., 2009 and Refs. 

1579 therein) should imply the presence of active seepage, i.e. gas emission structures in the 

1580 martian subsoil. MVs may represent, then, one of these methane emitting structures. Martian 

1581 MVs should be candidate landing sites in future exploration missions (as suggested by 

1582 Skinner and Mazzini, 2009; and by Etiope et al., 2011c), as they represent natural windows 

1583 into underground sedimentary rocks and environments which may reveal precious 

1584 information about potential occurrence of methane and deep biosphere life.

1585

1586

1587 8.2 Seepage and microbial activity

1588
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1589 Extensive research has been conducted to study the activity of microbial colonies thriving 

1590 offshore at MV (or pockmarks) sites where the diffuse methane seepage is common.  

1591 Sediment microbial communities may vary with differing gas seep regimes or with a 

1592 temporary halt in the gas release (e.g. Coelho et al., 2016 and refs therein). Offshore methane 

1593 seepage is typically coupled to anaerobic methane oxidation operated by microbial colonies 

1594 of archea and bacteria. This reaction releases C ions that bind with Ca present in the seawater, 

1595 ultimately resulting in authigenic carbonates precipitation (Valentine and Reeburgh, 2000; 

1596 Boetius and Suess, 2004; Boetius and Wenzhöfer, 2013). Methanogenic carbonates are 

1597 indeed common features at many pockmarks and MV sites (Kocherla et al.; Magalhães et al.; 

1598 Hovland et al., 1987; Naehr et al., 2000; Greinert et al., 2001; Gontharet et al., 2007; 

1599 Akhmetzhanov et al., 2008; Greinert et al., 2010; Haas et al., 2010). For example, spectacular 

1600 and remarkably thick microbial mats colonies were observed growing inside the carbonates 

1601 of Dolgovskoy Mound and Odessa MV, or at CH4 venting sites in the North-western Black 

1602 Sea shelf (Michaelis et al., 2002; Mazzini et al., 2004; Mazzini et al., 2008; Bahr et al., 2009). 

1603 Microbial colonies (Fig. 15) thriving in and around onshore fluid seepage sites are also a 

1604 frequent phenomenon. These colonies commonly grow around the edge of the pools or frame 

1605 the gryphon’s craters where the water is less muddy and tends to stagnate as the bubbling of 

1606 the seeping gas does not create turbulence. The most impressive colonies were observed 

1607 during our 2006 fieldwork inside the Dashgil MV salsa lakes where mats can reach a 

1608 thickness of 15-20 cm on embayments at the edge of the salsa lakes. The pigments of the 

1609 microbial communities vary from brownish to pinkish and greenish colour. In numerous 

1610 instances, a foamy film was observed, containing numerous micro bubbles floating on the 

1611 surfaces of the seeps. This suggests that the production of oxygen is currently ongoing and 

1612 that photosynthesis is likely to be present at sites where green coloured colonies are thriving. 

1613 Despite the essentially ubiquitous distribution of such colonies at onshore MV sites, very 

1614 little is known about the microbial processes driving their growth and, to our knowledge, no 

1615 systematic studies about methanogens and methanotrophs have yet been completed. A first 

1616 step to initiate the study of this onshore phenomenon has been done by a few authors that also 

1617 completed some challenging investigations about colonies growing in the subsurface 

1618 (Yakimov et al., 2002; Alain et al., 2006; Heller et al., 2011; Cheng et al., 2012; Green-

1619 Saxena et al., 2012; Heller et al., 2012; Sun et al., 2012; Wrede et al., 2012; Kokoschka et al., 

1620 2015). However, the existence of diffuse seepage throughout the muddy cover of onshore 

1621 MVs (e.g. Hong et al., 2013) suggests that microbial methane consumption is not pervasive 

1622 and could only be significant in focused, localised zones.
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1623

1624

1625 Suggested Location for Fig. 14 microb col

1626

1627

1628

1629 9. Sediment-hosted geothermal systems

1630

1631 Some fluid-mud emission manifestations, apparently resembling MVs, are in reality not 

1632 driven by sedimentary volcanism, and accordingly, as discussed in Section 2, they should not 

1633 be considered MVs. It is the case of hybrid systems where magmatic or hydrothermal CO2-

1634 rich and vapour-rich fluids, related to igneous intrusions and high temperature geothermal 

1635 fluids, cross organic-rich and CH4-rich sedimentary rocks, producing at the surface complex 

1636 gas and mud mixtures of different origins. These hybrid systems may be grouped under the 

1637 name of “sediment-hosted geothermal systems” (SHGS). The term “sediment-hosted 

1638 hydrothermal system” (SHHS) may also be used to define systems that are a subset of the 

1639 “geothermal” family. In fact, not all the geothermal systems, including those in sedimentary 

1640 basins, present hydrothermal “hot water” circulation (Jackson, 1997). Some basins may host 

1641 hot dry rock systems or CO2-rich gas-phase systems as those described in e.g. Ciotoli et al. 

1642 (2016). 

1643 The main SHGS examples are those of the Salton Sea geothermal field in California (e.g. 

1644 Helgeson, 1968; Svensen et al., 2009a; Mazzini et al., 2011), the Guaymas Basin rift zone in 

1645 the Pacific (Welhan and Lupton, 1987), the LUSI mud eruption in Indonesia (Mazzini et al., 

1646 2012), the aligned eruptions in central Java (Mazzini et al., 2014), the Tiber-Delta gas system 

1647 near Rome (Ciotoli et al., 2016), and the areas with large igneous intrusions such as in the 

1648 Northeast Atlantic, in South Africa and Australia (Jamtveit et al., 2004; Holford et al., 2013). 

1649 SHGSs are typically dominated by geothermal CO2 (from thermometamorphism of 

1650 carbonates or magma-mantle degassing) with concentrations typically exceeding 90 vol.%, 

1651 but associated to variable CH4 amounts that are generally higher (orders of 1-5 vol.%; 

1652 Mazzini et al., 2011; Ciotoli et al., 2016) than those of pure volcanic-geothermal fluids 

1653 (typically in the order of ppmv and, where some organic-rich rocks are involved, up to 0.1-

1654 0.5-1 vol.%). The methane of SHGS is generally thermogenic, from deep source rocks and 

1655 reservoirs overlying the CO2-rich geothermal circulation system. 
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1656 Gas in SHGS can be of considerable interest for petroleum exploration and global climate 

1657 change studies, because (1) it may be the result of enhanced thermal maturity of sedimentary 

1658 source rocks, (2) it can be a significant natural source of greenhouse gases (CO2 and CH4) for 

1659 the atmosphere (Etiope, 2015) and (3) a potential driver of past climate changes (Svensen et 

1660 al., 2004; Svensen et al., 2007; Svensen et al., 2009b; Iyer et al., 2013). However, pure MVs 

1661 and SHGSs may share many similarities regarding the surface manifestations, notoriously the 

1662 powerful eruptions of brecciated sedimentary units and the formations of pools or gryphons 

1663 in the crater zone. For these reasons SHGS are often confused with MVs (e.g., Salton Sea, 

1664 and several Javanese mud eruptions) although their origin, mechanisms and reactions are 

1665 different. The most striking example of misattribution of the term “MV” is that of the Lusi 

1666 mud eruption in Java. Geological and geochemical investigations have in fact shown that this 

1667 spectacular clastic-dominated geysering system is driven by CO2 and vapour rich hot fluids 

1668 connected to the igneous and hydrothermal system of the adjacent Arjuno-Welirang volcanic 

1669 complex (Mazzini et al., 2012).

1670

1671 10. Conclusions

1672

1673 This work provides an updated overview of the meaning and implications of mud volcanoes, 

1674 based on a wide selection of recent literature and field observations, complemented with 

1675 unpublished data that we acquired during the last 15 years. We emphasise the importance of 

1676 the terminology for proper attribution of the term “mud volcano” (not all gas-water 

1677 manifestations releasing mud are mud volcanoes), and the relevance of different processes 

1678 and structures. The main points are summarised as follows:

1679

1680 (1) Mud volcanoes are broadly distributed throughout the globe in active margins, 

1681 compressional zones of accretionary complexes, thrust and overthrust belts, passive margins, 

1682 deep sedimentary basins related to active plate boundaries, as well as delta regions.

1683 (2) They are specifically located in petroliferous basins, along anticline axes, strike slips and 

1684 normal faults, and fault-related folds.

1685 (3) They represent a specific category of natural gas/oil seepage manifestation (they may 

1686 belong to a Petroleum Seepage System), often related to deep and pressurised hydrocarbon 

1687 reservoirs; therefore, they are ideal targets for hydrocarbon exploration as they may confirm 

1688 the existence of relevant subsurface reservoirs.
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1689 (4) The total number of mud volcanoes on Earth is still uncertain: about 900 structures on 

1690 land were suggested in past literature; more than 600 main onshore structures, with a large 

1691 variety in shapes and sizes, are specifically documented and listed in recent global datasets. 

1692 Several thousand may occur in the deep oceans.

1693 (5) The main engine driving mud volcanism is given by a combination of gravitative 

1694 instability of shales and fluid overpressure build-up, in shales, reservoir rocks or fractures, 

1695 followed by hydrofracturing of impermeable barriers.

1696 (6) Hydrocarbons are generally of thermogenic origin, while microbial gas is released only in 

1697 a few cases. 

1698 (7) Fluids and solids are commonly seeping in craters during the dormant stages forming 

1699 structures such as pool, gryphons and salsas. Mud often derives from mobilised shales (not 

1700 necessarily related to hydrocarbon source rocks); water may derive from very deep sources, 

1701 or from reservoir connate waters, or from illitization in shales, sometimes mixed with 

1702 meteoric water. The petrographic study of the clasts present in the mud breccia provides a 

1703 simple tool to reconstruct the full stratigraphy at depth.

1704 (8) Onshore mud volcanoes are an important source of greenhouse gas (methane) for the 

1705 atmosphere, releasing globally up to 20 ton CH4/year. The gas is not only emitted by central 

1706 craters or visible manifestations, but also from diffuse invisible exhalation throughout the 

1707 muddy cover.

1708 (9) Mud volcano geometries are highly variable, and depend on the fluid rheology and 

1709 eruption processes and subsequent erosion. 

1710 (10) Seismic data provide important information of the large-scale and deep anatomy of the 

1711 structures. They show, for example, that piercing structures can play an efficient role in 

1712 hydrocarbon trap formation (i.e. lateral seals). 

1713 (11) Mud volcanism on other planets (e.g. Mars and Titan), and microbial activity associated 

1714 to gas seepage represent emerging issues and opportunities for future research.

1715
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2479 Figure captions 

2480

2481 Fig. 1. (A) Conceptual drawing summarising the main elements characterising most MVs as well as 

2482 main sources of fluids. (B) Example of tall erupting gryphon at the summit of Bakhar MV with 

2483 intricate mud flows. (C) 2D high-resolution seismic image through the pie-shaped Mercator MV (left) 

2484 and Buried MV (right) in the Gulf of Cadiz (courtesy of C. Berndt). Note the Christmas tree structures 

2485 in the Buried MV. (D) Multibeam (Digital Terrain Model at 2 m) through two “twin” mud cones 

2486 within the Menes caldera (from Mascle et al., 2014). Note the plateau-like shape of the crater zone. 

2487 (E) Combined multibeam bathimentry and sidescan sonal image from Bojardin MV, TTR-16 cruise, 

2488 2006 (from Akhmetzhanov et al., 2008). Note the circular moat formed around the subsiding flanks.

2489

2490 Fig.2. Overview of the main clusters of MVs distributed around the globe (modified and updated 

2491 after: TTR Program Global Database; Milkov, 2000; Dimitrov, 2002; Kopf, 2002; Hensen et al., 

2492 2004; Shakirov et al., 2004; Kvenvolden and Rogers, 2005; Jerosch et al., 2006). Note that in our 

2493 figure, we include the clusters of the structures that have been confirmed as MVs; however in the 

2494 literature additional inferred structures may be mentioned although their attribution is uncertain 

2495 (described as e.g. diapirs or phreatic springs with some mud, or not necessarily manifesting on the 

2496 surface). 

2497

2498 Fig. 3. Various morphologies of MVs: (A) conical, (B) elongated, (C) pie-shaped, (D) multicrater,  

2499 (E) growing diapir-like, (F) stiff neck, (G) swamp-like, (H) plateau-like, (I) impact crater-like, (J) 

2500 subsiding structure, (K) Subsiding flanks, (L) sink-hole type.

2501

2502 Fig. 4. Various morphologies and features present in MVs. (A) The Touragay MV, Azerbaijan, is one 

2503 of the largest onshore MVs displaying a typical conical morphology with a 500m wide crater and a 

2504 ~4.5 km wide conical shape. (B) Napag MV, Iran, with a tall conical feature in its central part (90 m 

2505 wide) surrounded a by a flat area where concentric collapse occurs (cfr. Fig. 5G). (C) Impact crater-

2506 like morphology for Bakhar satellite MV with gryphons and pools in its central part (D) Small conical 

2507 gryphon (2 m in diameter) at the Salse di Puianello MV, Italy. Note the oil seepage. (E) Digity MV, 

2508 Trinidad, consisting  of a single gryphon of a few meters in height. (F) Swamp-like morphology for 

2509 Palo Seco MV, Trinidad, with numerous interconnected pools and salsas inside the forest and with no 

2510 substantial elevation. (G) Impact crater-like Morne Diablo MV, Trinidad, where the whole crater is 

2511 occupied by a large lake. (H) Sink-hole type Naftliche MV, Iran, with a central crater (up to 150 m 

2512 wide) hosting a lake where gas and water seepages occur. (I) Salse di Nirano MV, Italy, with 

2513 numerous gryphons and pools erupting fluids and mud inside a subcircular depression. (J) Bulganak 

2514 MV, Crimea, with numerous scattered pools in a gently depressing crater.

2515



70

2516 Fig. 5. Combined DEM data and Quickbird satellite images of some of the MVs described herein. (A) 

2517 Impact crater-like Bakhar satellite MV (Azerbaijan): A distinct internal crater can be observed in the 

2518 centre of the low elevation feature. The remarkably deep crater highlights the explosive nature of the 

2519 most recent eruption and the consequent collapse. (B) Multicrater Bakhar MV (Azerbaijan): Clusters 

2520 of pools and gryphons are present throughout the feature. A clear crater cannot be distinguished since 

2521 the eruptive activity of the volcano was not focused on a single location. (C) Growing diapir-like 

2522 Koturdag MV (Azerbaijan) with conical shape and different overlapping mud breccia flows 

2523 distributing radially from the central crater. The crater diapiric expulsion of mud breccia from the 

2524 crater forms a tongue that extends towards the northern part of the volcano. (D) Elongated Lokbatan 

2525 MV (Azerbaijan) with the most recent mud flow extending west (darker coloured mud breccia). An 

2526 elongated graben frames the mud flow. Hundreds of extraction wells surround the MV. (E) Pie-

2527 shaped Dashgil MV (Azerbaijan) with mud breccia flows that extend predominantly towards the east 

2528 following the dipping of the terrain. The crater can be seen on the western side of the structure. (F) 

2529 Circular shaped Shongar MV (Azerbaijan) with a well-defined crater on its central part and numerous 

2530 mud flows distributed concentrically. (G) Napag MV (Iran), with concentric collapse rings (yellow 

2531 dashed lines) and a central elevated zone. The darkest coloured mud breccia flows towards the south-

2532 west, were erupted after the 2003 Bam earthquake. (H) Subsisding Gharniarigh MV (Iran) with a 

2533 central island inside the crater.

2534

2535 Figure 6. Various examples of gryphons from several MVs. (A) Gryphon field in Dashgil MV crater. 

2536 Man for scale inside the field. (B) Large gryphon resulting from the merging of several confining 

2537 gryphons. Inside the gryphon up to 15 different bubbling spots were observed. (C) Tall gryphon (mud 

2538 cone) on Bakhar MV. The structure reaches 10 m in height (man for scale on the left side of the 

2539 gryphon). (D-E) Craters of gryphons where oily fluids and methane are continuously seeping with the 

2540 low viscosity mud. This periodically overflows on the flanks of the structures. (F) Large bubbles 

2541 formed in a 1m wide gryphon of Dashgil MV. The high viscosity mud contains mud breccia clasts 

2542 visible also on the bubble rim before the bursting. (G) Top view of a splatter gryphon. From the void 

2543 conduit bursts of mud are intermittently ejected. 

2544

2545 Fig. 7. Top: cartoon of simplified morphological evolution of a gryphon. A) section of a gryphon 

2546 during its normal activity. B) the upper part of the gryphon’s conduit is occluded and a new lateral 

2547 pathway is reached on the flank of the gryphon. C) The new gryphon grows and incorporates the 

2548 original one. Bottom: section of several types of gryphons described.

2549

2550 Fig. 8. Examples of pools generally occurring on the outskirts of the gryphon sites. (A) 1 m wide 

2551 bubbling pool situated on the northern outskirts of Dashgil MV crater. Note the smaller pool to the 

2552 left where almost exclusively oily fluids are seeping. (B) Oil- and iron-rich pool in a field of water-
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2553 dominated pools. (C-D) Most pools have a circular shape and, despite their small elevation, mimic 

2554 miniature caldera-like features where fluids are bubbling. (E) Irregular-shaped small pool seeping oily 

2555 fluids. (F) Small pool seeping at the periphery of salsa A in Dashgil MV. (G) Newly formed small 

2556 pool seeping water and gas. Only a small amount of grey mud is expelled that clearly differentiates 

2557 from the surface oxidised brownish mud that surrounds the pool. 

2558

2559 Fig. 9. Examples of salsa lakes at MV sites. (A-B) salsa lake in Dashgil MV during dry (A) and wet 

2560 (B) season. (C) Large salsa in the crater of Garadag MV (D) Large salsa in Ain MV. (E-F) Detail of 

2561 gas vented out at salsa lakes.

2562

2563 Fig. 10. Examples of sinter features at MV sites. (A) Sinter cones on the south eastern part of Dashgil 

2564 MV (cfr. Fig. 3 in Mazzini et al., 2009b). These cones are interpreted as former gryphons. (B-C-D) 

2565 detail of sintered mud breccia showing molten mud (C) and clasts in their internal structure (D). (E) 

2566 Image of Koturdag MV crater. During the most recent eruption, burning methane occurred at the 

2567 contact between the crater and the extruded dense mud breccia. This resulted in sinter striations of 

2568 cooked mud breccia that indicate the synchronous burning and extrusion. (F) Detail of sinter striations 

2569 in Koturdag MV. (G) Panoramic view of Lokbatan MV crater (see men for scale). The reddish 

2570 coloured zone represents the crater sinter zone where methane continued to burn after the October 

2571 2001 eruption. Note the concentric collapse features rimming the crater are interpreted as evidence of 

2572 the deflation of a shallow chamber. In the background are numerous oil wells that surround the MV. 

2573 (H) Burning methane in Lokbatan MV observed in November 2002.

2574

2575 Fig. 11. Nine months of water and air temperature logging at one of the Dashgil salsa lakes. The two 

2576 curves reveal a similar trend indicating the strong control of the air temperature over the large mass of 

2577 water in the salsa lake.

2578

2579 Fig 12. (A) Methane stable carbon isotope composition versus methane/(ethane+propane) ratio for gas 

2580 samples collected in different vents from four MVs in Azerbaijan (data reported in Supplementary 

2581 Material, Table S1A). The small dots refer to MVs and other seeps from a global data-set (Etiope et 

2582 al., 2009a; Etiope, 2015). M: Microbial; T: Thermogenic. The diagram shows molecular fractionation 

2583 in the gas released from MVs compared to the original reservoir gas; gas released in peripheral vents 

2584 are more fractionated than the gas in central craters (see text for explanations). (B) Stable C and H 

2585 isotope composition of methane released from MV worldwide (from Etiope et al. 2009 and additions 

2586 from Etiope et al. 2011b). TO: thermogenic with oil; TC: thermogenic with condensate; TD: dry 

2587 thermogenic. (C) Relationship between  13C of CO2 and CO2 concentration in MV (from Etiope et al, 

2588 2009b), including the new Azerbajan MV data reported in this work. The two lines refer to a mixing 

2589 trend similar to the model of Jeffrey et al (1991). (D) 18O and  D of waters from MVs worldwide 
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2590 (from Dia et al., 1999; Dählmann and de Lange, 2003; Lavrushin et al., 2005; Hensen et al., 2007 and 

2591 refs therein) including the Azerbaijan new data (Table S1B) reported in this work. The present day 

2592 global meteoric water line (GMWL) is also indicated. Note the values of the melt water from snow at 

2593 the Koturdag summit and the Garadag sample after rain.

2594

2595 Fig. 13. Cartoon sketching the growth stages of a MV from its initial subsurface formation to final 

2596 manifestation on the surface with eruption of mud breccia. During its growth towards the surface, the 

2597 piercement structure collects the contribution of different fluids and eventual reservoirs at different 

2598 stages (e.g. arrows). Modified after Mazzini (2009).

2599

2600 Fig. 14. Relationship between earthquake magnitude and the distance over which a variety of mud 

2601 volcano responses have been documented. (A) Modified from Manga et. al., (2009) to include 

2602 additional triggered responses from distant earthquakes on MV systems. The figure shows that several 

2603 of these events appear well-above the Manga et al, (2009) empirical line and that instead the Delle 

2604 Donne et al. (2010) threshold line appears more appropriate. (B) Satellite image of Pakistan and Iran 

2605 (see countries inset map with indicated rectangle) showing the focal mechanisms of two large 

2606 magnitude earthquakes occurred in the region and a newly formed mud island offshore of Gwadar. 

2607 The M 7.8 normal faulting event did not trigger any documented geological response in the far field 

2608 while the M 7.7 strike slip event promoted the formation of the new mud volcanic eruption forming 

2609 the Gwadar Island. The red point indicates the geographic location of the newly formed mud island. 

2610 Inset maps show the areal image of the island 

2611

2612 Fig. 15. Examples of microbial colonies at seepage sites. (A-B) Greenish-coloured microbial colonies 

2613 thriving around the gryphon neck and along the fluids flow lines; (C) similar brownish colonies 

2614 growing close to a poorly active pool; (D) dark brown microbial colony growing inside a small pool 

2615 where oily (?) fluids (note the bubbles colour) constantly seep; (E) greyish foamy  microbial colonies 

2616 floating within a small oil seeping pool. Similar types of colonies have been observed also in the 

2617 Salton Sea hydrothermal seeps; (F-G) extensive brownish colony growing on the edges of a large 

2618 gryphon system; microbial colonies commonly grow at this location where the gas bubbling creates 

2619 less turbulence; (H) detail from image G showing microbubbles within the microbial colonies 

2620 suggesting production of oxygen (?) during the thriving of the colonies.

2621
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2623 Mud volcanism: an updated review (SUPPLEMENTARY MATERIAL)

2624

2625 Adriano Mazzini 1, Giuseppe Etiope 2

2626

2627 1 Centre for Earth Evolution and Dynamics, University of Oslo, Norway

2628 2 Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 2, Italy, and Faculty of Environmental Science 

2629 and Engineering, Babes Bolyai University, Cluj-Napoca, Romania

2630

2631 Methods

2632 Published material is complemented with new and unpublished data that form a substantial 

2633 contribution to the observations reported herein. These data were collected mainly during fieldwork 

2634 studies conducted in October 2002, September-October 2005 and January 2006. Particular efforts 

2635 were focused on eleven MV structures (Dashgil, Bakhar, Bakhar Satellite, Keireki, Garadag, 

2636 Lokbatan, Akhtarma Putinskaya, Kushkhana, Shongar, Pirekeshkul, Koturdag) situated in the region 

2637 around Baku. Field mapping and observations were combined with in situ temperature measurements 

2638 and sampling of seeping fluids. Detailed GPS measurements were taken using a Thales Mobile 

2639 Mapper used as a rover system combined with a Thales reference station for positioning correction. 

2640 The reported heights represent absolute values and do not consider the negative elevation of the 

2641 Caspian Sea (i.e. -29 m bsl). The reported historical record of the eruptions refers to Aliyev et al. 

2642 (2002) and it is updated with most recent events. 

2643 Quickbird satellite images with RGB true colour view and 0.5 m resolution were acquired during 

2644 January 2006 over the Cape Alyat peninsula and the Lokbatan region.

2645 Temperature measurements were taken with a hand held TFX 392 SK-5 thermometer with a precision 

2646 of 0.1 °C. Temperature monitoring of one of the salsa lakes in Dashgil MV was acquired during the 

2647 period 11-10-2005 to 12-07-2006. For this monitoring, StowAway TidbiT loggers were used, 

2648 operating in the -20 to +70 ºC range, with a reported accuracy of 0.20 ºC, a resolution of 0.16 ºC (both 

2649 at 20 ºC), and a response time of  ~5 minutes. All loggers were programmed for temperature 

2650 measurements every 4th minute. The logger in the salsa lake was deployed at ~4 m depth. The total 

2651 number of individual measurements is 21763. Air temperature and humidity was measured 

2652 simultaneously at one location in the immediate vicinity of the seeps, using a HOBO Pro RH/Temp 

2653 logger, mounted on a monitoring float in the centre of the salsa lake. Methane seepage was detected 

2654 using a Drager Pac Ex2 Methane sniffer (lower detection limit of 0.1%).

2655 The density of expelled mud and waters were measured by a commercial electronic scale, with 

2656 accuracy greater than ~ 2% for the relevant mass of the measured samples. 

2657 Gas and water analyses were completed using the same methodology described in Mazzini et al. 

2658 (2009b).
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