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1.  Introduction 

Traditional medical optical techniques for imaging 
biological tissues only make use of radiant flux and three 
wavelength bands of light to implement basic colour 
imaging. State-of-the-art optical imaging has broadened 

the possibilities considerably and allowed the observation 
of biological tissue from new perspectives based on 
additional image contrast mechanisms. Light 
spectroscopic methods, including point spectroscopy and 
spectral imaging, utilize wavelength variations from 
diffuse reflectance, fluorescence or Raman scattering to 
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obtain compositional information of tissue [1]. 
Interferometric methods take advantage of the coherence 
and phase of light to analyse scattering related to tissue 
microstructures [2] and fluid flows [3, 4]. Optical 
polarization is another fundamental property of light that 
is able to provide an interesting and unique insight into 
tissue [5].  

Polarization serves as a relatively simple and 
economical gating tool to separate photons undergoing a 
small number of scattering events from those which are 
multiply scattered, and it has been used as a popular add-
on option for many biomedical-optical techniques 
including elastic scattering spectroscopy (ESS), 
multispectral imaging, conventional white light imaging, 
fluorescence imaging etc. More specifically, compared 
with polarization blind ESS, polarized light elastic 
scattering spectroscopy (PLSS) is able to facilitate 
scattering spectrum analysis of tissue epithelia – from 
where the majority of cancers originate – by removing 
considerable multiply-scattered background signals. 
PLSS has become as an emerging research field since the 
late 1990’s and numerous biomedical applications have 
been proposed thereafter. Polarization-gated imaging may 
enhance image contrast for superficial tissues [6, 7] and 
deeper vascular structures [8], and confers a limited but 
cost effective depth resolved imaging ability [9, 10] in 
comparison with polarization insensitive imaging. 

Tissue intrinsic polarization properties, namely tissue 
depolarization, birefringence and diattenuation also 
convey morphological, micro-structural and 
compositional information of tissue with great potential 
for label free characterization of tissue pathological 
changes, e.g. nuclear enlargement of cells, collagen 
remodelling to which conventional polarization blind 
imaging is not that sensitive [11, 12]. The characteristic 
polarization information of interest is carried by a 4×4 
matrix named a Mueller matrix and this can be 
experimentally obtained from Mueller polarimetry and 
polarimetric imaging. In recent years, an increasing 
number of biomedical applications of Mueller 
polarimetric imaging techniques have been proposed [5], 
e.g. oral cancerous legion detection [13], cervical cancer 
and colon cancer detection and staging [12, 14-19], 
assessment of cancer therapy [20], partial bladder 
obstruction diagnosis [21], guiding mass spectrometry for 
instant pathology [22], characterizing collagen fibres [23], 
and these have demonstrated advantages over polarization 
blind imaging . 

Mueller polarimetric imaging is however, mainly 
based on bulky free-space optics with many systems 
operated in transmission geometry. It often involves time 
sequential acquisition of a number of radiometric images 
which makes real time implementation challenging. The 
fusion of the polarimetric imaging technique and optical 
instruments like medical endoscopes for real time surgical 
guidance and optical diagnostic applications would 
require proper miniaturization, which is one of the 
challenges to translate the technique from an optical 

laboratory to the clinic. The acquisition time of 
polarimetric images still needs to be shortened for real 
time applications. Clinical interpretation of polarimetric 
images remains another challenge. Such interpretation 
would have to be based on a considerable investigation of 
the correlation of the polarimetric image contrast and its 
histological origins, which may involve physical 
interpretation of polarimetric data, modelling and 
simulation of polarized light propagation in complex-
structured anisotropic tissues, microscopy and tissue 
pathological studies, as well as systematic clinical trials 
and statistical measures of the performance of 
polarimetric imaging. 

Thanks to the compelling potential of polarimetric 
imaging, some of these challenges have been addressed in 
recent studies. This review introduces the basis of the 
Stokes-Mueller formulism, polarization properties of 
biological tissues and considerations in the construction of 
Mueller polarimetric imaging devices for surgical and 
diagnostic applications including primary configurations, 
optimization procedures and calibration methods. The 
instrumental polarization properties of several widely-
used biomedical optical components and instruments 
represented by traditional rigid endoscopes, GRIN lenses 
and single mode fibres, are outlined in this review. 
Advances in interpretation methods of the comparatively 
implicit 4×4 Mueller matrix over the past decades have 
enabled physically meaningful polarization properties - 
that is, depolarization, retardance and diattenuation - to be 
recovered from highly depolarizing turbid media like 
biological tissues. This has facilitated investigation of the 
correlation between those physically meaningful 
polarization properties with the medically meaningful 
pathological origins. Several interpretation methods are 
briefly introduced in this review. An increasing number of 
biomedical applications of Mueller polarimetric imaging 
techniques have been proposed, and this has paved the 
way for translational and preclinical trials. Progress made 
on the integration of medical endoscopes and single mode 
fibres with Mueller polarimetric ability has been detailed, 
followed by a summary of recent progress and the future 
outlook for surgical and diagnostic applications of these 
techniques.  

2.  Stokes parameters and Mueller matrices  

Polarization characterizes the oscillation states of the 
electric (or magnetic) field of a light wave. The 
disturbance of a plane time-harmonic transverse field may 
either be along a single direction or may rotate 
periodically at the wave frequency, known respectively as 
the linear polarization and circular/elliptical polarization 
states. The disturbance may also be along a random 
direction in the temporal and spatial domains, which is 
known as unpolarized (fully random) or partially 
polarized (partially random) light. The above description 



of polarization is based on classical electrodynamics. It 
should be mentioned that the concept of polarization may 
also be applied to individual photons which are either 
right or left circularly polarized determined by the spin 
angular momentum of the photon according to quantum 
mechanics [24]. The classical description is normally 
sufficient for tissue polarimetry measurements.  

The term “polarization” may conventionally refer to 
the state of polarization (SOP) of a coherent wave, an 
overall temporal and spatial average SOP for incoherent 
waves, or polarization properties characterizing the 
transformation of SOPs. The oscillation state of the 
electric field vector E of light waves is conventionally 
used to represent SOPs. The solution of Fresnel’s wave 
equations for a plane time-harmonic light wave 
propagating along the z axis in a Cartesian coordinate 
system x-y-z in terms of the electric field are 
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where E0x, E0y, ω, k, δx and δy stand for the amplitudes 
along the x and y axis, the angular frequency, the wave 
number and the phases of the two orthogonal electric 
fields along the x and y axis respectively. The direction of 
the x axis is perpendicular to the z axis but otherwise 
arbitrary, and is also sometimes expressed as “horizontal” 
in the following discussion (“horizontal” in quotation 
marks means it may not be necessarily the same as the 
horizontal direction in the world coordinate system). By 
factoring out the time-space propagator (ωt-kz), Equation 
(1) can be expressed in the form of a two-element vector 
[Ex , Ey] that is widely used to characterize polarized light, 
called a Jones vector. A Jones matrix is accordingly 
defined to be a 2×2 complex matrix that represents a 
transfer function of Jones vectors. The Jones formulism is 
preferred when studying phenomena involving coherent 
superposition e.g. interference. Jones vectors are unable to 
characterize a statistically averaged SOP per unit 
area/time of light, namely, fully polarized light, partially 
polarized light and unpolarized light, resulting from the 
stochastic nature of partially coherent and incoherent 
waves. The overwhelming majority of light sensors are 
based on radiometry which measures the spatial and 
temporal average of optical energy flux density 
(characterized by the Poynting vector) of a light wave per 
unit time referred to as irradiance or intensity with the unit 
Watt/m2, which makes it difficult to explicitly determine 
Jones vectors defined in the amplitude and phase domain 
of the electric field.  

Four parameters developed by George Gabriel Stokes 
can address the problems above. The parameters are 
determined by a set of radiometric intensity measurements 
using “horizontal” (IH), “vertical” (IV), +45° (I45), -45° (I-

45) linear, as well as left (IL) and right (IR) circular 
polarization analysers. The parameters are conventionally 
written as a four-element vector named the Stokes vector 
S, written as 
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The degree of polarization (DOP) of light refers to the 
(averaged) intensity of the polarized portion of the light 
beam out of the (averaged) total intensity. It can be easily 
interpreted from a Stokes vector 
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The DOP is 1 for fully polarized light, 0 for unpolarized 
light, and in the range 0-1 for partially polarized light. The 
DOP can never be more than 1 for a physically realizable 
Stokes vector [25]. Similarly, degree of linear polarization 
(DOLP) and degree of circular polarization (DOCP) of 
light are the (averaged) intensity of the linearly polarized 
and circularly polarized portion of the light beam out of 
the (averaged) total intensity respectively, 
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One of the advantages of using Stokes parameters is that 
they are explicitly determined by several radiometric 
intensity measurements rather than from the complex 
electric field that is difficult to measure. Another 
advantage is that Stokes parameters are able to 
characterize statistically averaged SOPs of light per unit 
area/time, namely, fully polarized light, partially 
polarized light and unpolarized light. Stokes parameters 
are able to characterize all the SOPs. Additional care 
should be taken in practice when they are used with 
coherent light sources that may result in speckles [10, 26-
28]. For example, the size of the detector used for Stokes 
polarimetry should normally be large enough to cover a 
sufficient number of speckles, that is, the detection area 
should be much larger than a typical speckle size, in order 
to determine the depolarization property of a turbid media 
[26, 29].  

To graphically display a SOP of light, a Euclidean 
space constructed by three standard orthogonal bases 
corresponding to the last three elements of a Stokes vector 
S1-S2-S3 (referred to as Poincare domain in this review) is 
widely used, as shown in Figure 1. In this domain, a SOP 
is represented by a vector determined by [S1/S0, S2/S0, 
S3/S0], and the DOP of light is therefore the length of this 
vector. All of the possible SOPs of fully polarized light 
constitute a sphere with a radius 1 - named the Poincare 
sphere by convention - while vectors for partially 
polarized light are distributed within the sphere. 



 

Figure 1. The Poincare sphere is defined in a Euclidean space 
constructed by three standard orthogonal bases corresponding to 
the last three elements of a Stokes vector S1-S2-S3 (referred to as 
Poincare domain in this review). The blue vector represents a 
SOP of light, which represented by a vector determined by [S1/S0, 
S2/S0, S3/S0]. All of the possible SOPs of fully polarized light 
constitute a sphere with a radius 1 - named the Poincare sphere - 
while vectors for partially polarized light are distributed within 
the sphere. 

The SOP of light may be transformed during polarized 
light-matter interactions, and such a transformation 
reflects the polarization properties of matter. The 
mathematical description of the Stokes vector 
transformation is a 4×4 matrix named a Mueller matrix, 
which was devised by Hans Mueller in 1947 [30]. If the 
SOP of the incident light is characterized by the input 
Stokes vector Sin, the polarization properties of the matter 
is described by the Mueller matrix M, and the SOP of 
emergent light is represented by the output Stokes vector 
Sout, then the process of the interaction is given by the 
following set of linear equations, 
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Mueller matrices are a transfer function of Stokes vectors, 
and are defined in Stokes vector space, so they inherit the 
advantages of Stokes vectors. Since Stokes vectors are 
explicitly measurable and are able to describe partially 
polarized light, a Mueller matrix can be relatively easily 
determined experimentally and also contains 
depolarization information, which is of great value for 
highly scattering media with strong depolarization like 
biological tissues.  

3.  Fundamental polarization properties  

There are in essence three fundamental polarization 
properties of matter, namely, depolarization, diattenuation 

and retardance [31]. Diattenuation refers to the 
phenomenon that the transmittance (or reflectance) of 
matter depends on the SOP of incident light. Dichroism is 
a synonym to diattenuation and is usually used to 
characterize the diattenuation properties of materials. The 
magnitude of diattenuation D is a scalar defined by a 
maximum and a minimum transmittance (or reflectance) 
represented by Tmax and Tmin as 
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Tmax and Tmin can be readily obtained from the first row of 
the Mueller matrix based on the definition of 
transmittance (or reflectance) and the Mueller calculus 
[25], 
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The diattenuation vector D is defined as [32] 
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m12 and m13 refer to “horizontal” and 45° linear 
diattenuation parameters, and contribute to the total linear 
diattenuation value. m14 represents circular diattenuation. 
Thus, the magnitude of diattenuation D is the length of the 
diattenuation vector D and ranges from 0 (representing no 
diattenuation) to 1 (representing full diattenuation), 
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A canonical form of the diattenuation matrix MD can be 
constructed based on the diattenuation vector D [31], 
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where I(3) stands for a 3×3 identity matrix. Matter may 
demonstrate no diattenuation with MD an identity matrix 
(the magnitude of diattenuation D is equal to 0), partial 
diattenuation as one of its polarization properties, or pure 
diattenuation as its sole polarization property (the 
magnitude of diattenuation D is equal to 1). Diattenuators 
are those elements that show pure diattenuation only. 
When the magnitude of linear diattenuation of such an 
element is close to 1, it is referred to as a linear 
diattenuator, also conventionally called a linear polarizer.  

In comparison to diattenuation that is mainly in the 
amplitude domain, retardance is a polarization dependent 
process in the phase domain of light. Retardance refers to 



the phenomenon of phase difference between two 
orthogonally polarized components of light when 
propagating through some medium. Retardance 
characterizes a rotation transformation in the Poincare 
domain. Therefore, retardance is represented by the 
following Mueller matrix[31], 
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in which mR is a 3D rotation matrix. The magnitude of 
retardance is the effective rotation angle in radians 
determined from the rotation matrix by 
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Retardance can be further broken down into linear 
retardance and circular retardance [31]. Linear retardance 
may stem from reflection, refraction, scattering, 
birefringent materials and form-birefringence effects. 
Birefringence is a conventional term to characterize such 
optical properties of materials with varying refractive 
indices (real part) for linearly polarized light with 
different polarization direction. Linear retardance can be 
outlined by two parameters: a linear phase retardance 
value δL in radians, and an anisotropy axis (e.g. fast axis 
of a waveplate) orientation angle φ, both of which are 
often used to reconstruct retardance images in 
polarimetric imaging. Linear retardance contains three 
consecutive rotations in the Poincare domain: a rotation of 
2φ in the S1-S2 plane, a rotation of δL in the S2-S3 plane and 
a rotation of -2φ in the S1-S2 plane. A linear retardance 
matrix can thereby be written as  
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A physical element with only homogeneous linear 
retardance is a waveplate, also known as a linear retarder. 
Circular retardance, also known as optical rotation, optical 
activity and circular birefringence originates from the 
different (real part of) refractive indices for left and right 
circularly polarized light. Circular retardance 
geometrically represents a rotation of δC along S1-S2 plane. 
Its Mueller matrix only depends on the circular phase 
retardance value δC and is specified by  
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A general retardance matrix MR is normally regarded as a 
product of linear retardance matrix and circular retardance 
matrix, 
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Thus linear phase retardance value and circular phase 
retardance value can be readily calculated from the 
retardance matrix that is normally given in a Mueller 
matrix decomposition procedure. One of the ways to yield 
these values is 
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The third property, depolarization refers to a process 
of loss in coherency of phase or amplitude of an electric 
field, manifesting a reduction of DOP of the incident light. 
Physically, depolarization originates from the average 
effects of rapidly temporally, spatially and/or spectrally 
varying retardance and diattenuation [25], which are 
normally related to disordered media like turbid media 
and rough surfaces, as well as broadband light sources. 
The Mueller matrix of a depolarizing medium is normally 
diagonal, written as [31], 
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Δ2, Δ3 and Δ4 denote the principal polarization 
maintaining powers along three principal axes in the 
Poincare domain. The depolarization power is 
accordingly defined in a complementary way as 1-|Δ2|, 
1-|Δ3| and 1-|Δ4| [31]. In the product decomposition 
method for Mueller matrices represented by Lu-
Chipman’s polar decomposition method, a more general 
form of a depolarization matrix (without considering 
polarizance) can be written as 

1 0

0
M

m




 
  
 

    (18) 

in which mΔ represents the bottom right 3×3 elements of 
MΔ and is a symmetric matrix. The eigenvalues of mΔ 
reveal the principal polarization maintaining powers. 

Beside the depolarization power there are a number of 
other parameters to characterize depolarization including 
depolarization index and average degree of polarization 
[33, 34]. These two parameters can be obtained from 
Mueller matrices directly rather than through a 
decomposition procedure. The depolarization index (DI) 
was first proposed by Gil et al. according to a geometric 
scheme of depolarization in “configuration space”, which 
is a 16 dimensional vectorized Mueller matrix hyperspace 
where the axes/basis correspond to the 16 elements of the 
Mueller matrix [34]. All the non-depolarizing Mueller 
matrices are distributed on a hyper-spherical surface in 



this hyperspace. All the depolarizing matrices are inside 
the hyper-sphere. DI is expressed as 
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The numerator of the second term is the distance from an 
ideal depolarizer to the interpreted Mueller matrix in the 
hyperspace. The denominator is the radius of the 
hyperspherical surface of non-depolarizing Mueller 
matrices. DI is 1 for an ideal depolarizer and 0 for non-
depolarizing matrices. The average degree of polarization 
is defined based on the DOP of the emergent light from a 
sample. As shown in Equation (5) and (3), the DOP of the 
emergent light can be considered as a function of the 
incident polarization state (represented by its Stokes 
vector Sin), and is determined by the product of the 
Mueller matrix of the sample and Sin. The average degree 
of polarization is thus obtained from the arithmetic mean 
of the DOP of emergent light corresponding to all of the 
possible SOPs of fully polarized incident light.[33]. These 
depolarization parameters are useful tools to study 
depolarization [35-37] especially when it is not necessary 
to further invert the Mueller matrix for retardance and 
diattenuation information. 

4.  Polarized light and biological tissue 

As a result of refractive index non-uniformity at a micro-
scale arising from, for example, extracellular proteins like 
collagen fibrils, cell membranes, cytoplasms, nuclei, 
organelles etc. [11, 38-40], elastic scattering is a major 
optical interaction between polarized light and biological 
tissue. Besides scattering, there are a range of absorbers in 
tissue including oxygenated and deoxygenated 
haemoglobin, melanin, water, adipose tissue and fat [41, 
42]. Hence, biological tissues are recognised as highly 
scattering media with considerable optical absorption. 

The polarization analysis during a single scattering 
event in tissue can be conducted through a number of 
scattering theories [43-45]. Among them, Mie scattering 
theory for spherical scatterers is widely employed for 
tissue scattering analysis [11, 46, 47], which for a single 
scattering event manifests a Mueller matrix in the form of 
a diattenuated retarder, represented by MDR [43] 
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where * denotes the complex conjugate, and P1 and P2 are 
complex functions of scattering angles, refractive indices 
of the particle and medium and size parameters of 
particles (diameter/wavelength), which can be directly 
determined from Mie scattering theory. An individual 
scattering event is not a depolarization process for a 
chosen scattering plane and does not lead to loss of total 
DOP of light, although there might be conversion between 
DOLP and DOCP due to scattering-induced retardance 
and diattenuation. (Nevertheless, as is the case for 
experimental situations with a finite small numerical 
aperture and a finite far field, averaging over scattering 
planes leads to depolarization.) The linear diattenuation 
and linear retardance stemming from a single scattering 
event is a function of the scattering angle as well as the 
refractive index and size parameter of the scatterer. 
Diattenuation and retardance is usually more pronounced 
for spherically asymmetric particles. Note that although 
Mie scattering theory can be used for a sphere of any size, 
when the size of the scatterer goes down to a dimension 
much smaller than the wavelength, the Rayleigh 
approximation of Mie theory or Rayleigh scattering 
theory can be applied for convenience. The particles that 
meet the Rayleigh limit are called Rayleigh scatterers, and 
those for which the size is comparable or larger than 
wavelength are called Mie scatterers by convention in this 
review. The element d in Equation (20) becomes zero for 
Rayleigh scatterers, and its Mueller matrix thus reduces to 
a diattenuation matrix without retardance.  

2 2

2 2

cos ( )+1 cos ( )-1 0 0

cos ( )-1 cos ( )+1 0 0

0 0 2cos( ) 0

0 0 0 2cos( )

DM

 
 




 
 
 
 
 
 

 (21) 

Before leaving tissue of considerable optical thickness, 
light may undergo multiple scattering, which randomizes 
not only the direction of light propagation but also the 
polarization state, resulting in depolarization and 
normally the reduction of both DOLP and DOCP. The 
depolarization power of tissue is normally defined as one 
minus the “polarization maintaining power”. The 
polarization maintaining power essentially refers to the 
ratio between non-depolarized emergent light intensity 
and the total emergent light intensity. Notice that the 
information in a depolarization power image is 
completely equivalent to a polarization maintaining power 
image. 

Contributions to the non-depolarized emergent light 
include those photons undergoing a single or a limited 
number of scattering events, mainly conveying 
information about a superficial tissue volume within 
which light is not multiply scattered. Hence, the 
depolarization power image (or polarization maintaining 
power) can be used to enhance the contrast for the 
superficial non-depolarized tissue region, corresponding 
to the epithelium from which a great number of diseases 
and cancers originate [48]. Contributions to the 



depolarized portion of the emergent light include photons 
undergoing multiple scattering, which have longer 
average pathlengths and mainly convey the information 
from deeper tissue. The mechanism explained above is 
known as polarization gating and is normally used to 
distinguish light undergoing a small number of scattering 
events from that which is multiply scattered. Demos et al. 
reported that such a mechanism could be used to enhance 
the image contrast for both tissue surface and subsurface 
[49, 50]. Jacques et al. used polarization gating to reveal 
the disruption of the normal texture of the papillary and 
upper reticular dermis in human skin [6, 7]. As a highly 
cost effective solution to raise the image contrast, 
depolarization techniques have been applied to minimally 
invasive surgery [51-53] and optical diagnostics [54, 55]. 
In most of these studies, depolarization power (or 
polarization maintaining power) images were estimated 
from passive polarization detection by recording images 
using co-polarization and cross-polarization with respect 
to the illumination polarization. The difference between 
co-polarization and cross-polarization images was used to 
represent the polarization maintaining power image. The 
cross-polarization image itself is used to characterise the 
fully depolarised multiple scattering image with 
information about deeper tissue. 

In non-imaging spectroscopy techniques such as 
elastic scattering spectroscopy (ESS), polarization may be 
used to decouple single-scattering spectra from multiple-
scattering ones. A great number of diseases like most 
cancers originate from the epithelium that is located in the 
regime of single-scattering. Modelling single-scattering to 
quantify the information of interest about scatterers is far 
less challenging and requires less computation than with 
modelling multiple-scattering that involves a series of 
stochastic processes. Perelman et al. developed a 
scattering spectroscopy technique to identify the light 
component that is singly scattered by near-surface 
epithelial cell nuclei [56], since the near-backward 
scattering light from the cells is dominated by cell nuclei 
[56-58]. Perelman used a model based method to select 
single-scattering spectra from the multiple-scattering 
spectra. The technique was significantly improved by 
introducing polarization gating to extract single-scattering 
spectra from multiple-scattering ones, proposed by 
Backman et al. in 1999 [11]. Polarized light scattering 
spectroscopy incorporating Mie scattering analysis 
allowed interrogation of the epithelial cell nuclear size 
distributions from the diffuse background [11, 59, 60]. 
The first PLSS system was constructed in free space with 
approximately collimated light and well-defined 
scattering angles approximating to 180o, so that Mie 
theory could be easily used to study the scattering 
spectrum [11]. The system was further improved by using 
a Fourier lens and a scanning slit spectrometer in order to 
obtain the wavelength-resolved spectrum and the angle-
resolved spectrum at the same time [61, 62]. PLSS fibre 
optic probes were then developed by Sokolov et al. [63] 
and Mourant et al. [64], and were used for characterising 

mammalian cells [64] and detecting local tissue changes 
in the oral cavity [65]. More advanced fibre optic probes 
for PLSS made use of gradient-index (GRIN) lens to 
implement depth selective measurement from a range of 
near surface depths (100-200 μm) to interrogate blood 
supply [66, 67]. A great number of translational studies 
for diagnosis of breast cancer [68], prostate cancer[69], 
intraoperative determination of sentinel lymph node status 
in the breast [70], colonic lesions [71], oral premalignancy 
[72], high grade dysplasia and cancer in Barrett’s 
oesophagus [73, 74], cervix neoplasia [75, 76], 
investigation of the nature of aceto-whitening in cervix 
cancer inspection [77-82], gold nanoparticle sizing [83], 
and monitoring apoptosis in cell cultures [84-86] have 
demonstrated that LSS provides a promising solution for 
cell culture monitoring, tissue surveillance and biopsy 
guidance in a relatively simple and cost effective 
configuration.  

It is noted that in many of these applications of 
polarization gating techniques it is assumed for simplicity 
that the tissue is isotropic with negligible diattenuation 
and retardance, therefore only linear depolarization 
images/spectra need to be obtained by measuring co-
polarized and cross-polarized images/spectra with respect 
to incidence polarization. However, these approximate 
depolarization signals may be dependent on the angle 
between incidence polarization and invisible principal 
axes (e.g. fast axis in linear retardance) of anisotropic 
tissues. This invisible angle is difficult to control in 
practice, and would result in potential irreproducibility 
during measurements and lead to errors in 
image/spectrum analysis. 

Mueller polarimetry can be applied to anisotropic 
tissues, since linear and circular depolarization as well as 
other polarization parameters of interest can be achieved 
independent of tissue anisotropy using proper 
interpretation methods of Mueller matrices (which will be 
introduced in Section 5). The mechanisms for 
depolarization of linearly and circularly polarized light are 
not exactly the same. Without consideration of absorption, 
DOLP reduces during multiple scattering processes since 
the reference frames (scattering planes for one scattering 
event) are significantly scrambled in a series of 
consecutive scattering events occurring in three 
dimensional space [87]. That is, linear depolarization 
arises from the non-coplanar trajectories of light rays in 
scattering media. The possibility of non-coplanarity 
increases as the number of scattering events rises [87]. 
Circular depolarization is caused by the propagation 
direction of circularly polarized light and the 
randomization of its helicity [88]. It has been found that 
in a suspension of spherical scatterers linear 
depolarization is lower than circular depolarization for 
small spheres (Rayleigh scatterers), and also for large 
spheres with relative refractive index close to 1 (following 
Rayleigh-Gans approximation or the first Born 
approximation, known as optically “soft” or “tenuous” 
[43]), whereas the reverse is true for large spheres with 



relative refractive index much larger than 1 (Mie 
scatterers) [14, 87-92]. It was also reported that linearly 
polarized light is better preserved through longer 
propagation distances than circularly polarized light in 
most biological tissues including fat, tendon, artery, 
myocardium, colon, bladder [14, 16, 17, 20, 93-95] due to 
the significant contribution from relatively low refractive 
index large scatterers like cell nuclei and presence of 
Rayleigh scatterers including various cell organelles and 
other biological particles [14, 96]. A known exception 
with linear depolarization larger than circular 
depolarization is blood, since red blood cells are anuclear 
and do not have abundant organelles [93]. Overall, the 
comparison of tissue linear and circular depolarization can 
provide interesting information about scatterers (e.g. 
scatterer sizes) which might produce more applications in 
the future [89, 97]. Different depolarization mechanisms 
for linearly and circularly polarized light also result in the 
non-depolarized backscattered linearly and circularly 
polarized light probing different tissue volumes, allowing 
depth resolved imaging of isotropic tissue by adjusting the 
ellipticity of the incident polarization [9, 98].  

Besides scattering, tissue absorption also has a 
significant influence on depolarization. In general, 
multiply scattered photons are more likely to be absorbed 
due to longer propagation pathlengths. As a result, 
absorption reduces average propagation pathlengths or 
average number of scattering events, leading to a weaker 
depolarization effect [94, 99, 100]. The absorption may 
therefore actually cause interference with scattering 
analysis based on depolarization spectra, which deserves 
more attention and effort to correct. An individual 
molecule with anisotropic structures, like amino acids, 
may manifest polarization dependent absorption 
(diattenuation) [101], but absorption by bulk tissue does 
not exhibit polarization dependence in most cases as a 
result of the random spatial distribution of the molecules 
in tissue.  

The scattering induced retardance from spherical and 
randomly oriented non-spherical scatterers in tissue is 
normally weak in the multiple-scattering regime. The 
observable tissue retardance mainly originates from 
anisotropic fibrous tissue structures like collagen fibrils 
and elastin fibres, which are equivalent to uniaxial 
birefringent crystals [101-103]. Cancerous tissue is 
typically associated with changes in collagen components, 
e.g. deposition of collagen fibrils resulting from an 
increased number of fibroblasts [104]. Detecting these 
structural proteins - particularly the content and 
organizations of collagen - is of significance because it is 
one of the most fundamental components in tissue and can 
be used as a marker for cancer [104, 105]. Besides cancer 
detection, retardance is also applied to the investigation of 
collagen rich tissues and related diseases like partial 
bladder outlet obstruction [21, 106], osteoarthritis and 
other cartilage diseases [107], or determining 3D direction 
of collagen fibres in knees [23] and retina (often imaged 
by polarization sensitive OCT) [108-110]. 

There may also be a contribution to circular tissue 
retardance from asymmetric chiral molecules like glucose. 
Accurate monitoring of blood glucose levels non-
invasively is a long-standing challenge and a solution is 
strongly desired for diabetic patient management and to 
prevent complications. Circular retardance is proportional 
to the concentration of glucose, and therefore transdermal 
measurement of circular retardance would provide a 
potential solution. It has been demonstrated that the 
glucose concentration could be detected non-invasively 
from a turbid medium experimentally in transmission 
[111-113] and in simulation for reflection using a 
polarization sensitive Monte Carlo method [113]. The 
actual physiological concentration of glucose in blood is 
extremely low (4.4 to 6.1 mMol/L), even in 
hyperglycaemia (up to 10 mMol/L) [114], and 
additionally optical rotation induced by glucose is as small 
as 0.00095°cm-1(mMol/L)-1[115]. Therefore a polarimeter 
with extremely high accuracy would be required, 
particularly in reflection mode, and other tissue 
polarization properties may still influence the optical 
rotation and interfere with detection. 

Tissue diattenuation is normally less pronounced than 
depolarization and retardance for bulk tissues, although 
this may not fully apply to polarization sensitive OCT that 
provides tomographic information, but this is not in the 
scope of this review. 

5.  Interpretation of Mueller matrix into 

fundamental polarization properties 

Polarized light-tissue interactions convey rich tissue 
information, and Mueller matrices provide the foundation 
for a comprehensive assessment of tissue in terms of 
polarization. Retardance and diattenuation strongly 
entangle with depolarization as a result of the strong 
scattering nature of biological tissues. Moreover, in 
practice, the measured Mueller matrix is also dependent 
to the azimuthal orientation between the invisible 
anisotropic axis of tissue and the defined “horizontal” axis 
of a Mueller matrix which is difficult to control in practice 
and may lead to variations during inter/intra sample 
measurements. It is therefore important to interpret 
Mueller matrices in terms of fundamental polarization 
properties with an intuitive physical explanation so as to 
1) facilitate investigation and understanding of 
biophysical origin of the polarimetric signals, and 2) 
obtain azimuthal orientation angle independent 
parameters to maintain the reproducibility of results.  

Remarkable advances have been made to interpret 
Mueller matrices in terms of these fundamental 
polarization properties. A number of methods including 
Lu-Chipman’s polar decomposition [31], reverse polar 
decomposition [116], symmetric decomposition [117], 
differential decomposition [118-123] and root 



decomposition [37, 124], Mueller matrix transformation 
techniques [125-131], Cloude’s sum decomposition [132], 
serial parallel decomposition [133], etc. have been 
developed. Interpretation of Mueller matrices is still a 
very active research field so more advances can be 
expected. Here we present a very brief review of some 
methods that have been successfully translated to the 
study of tissue.  

5.1 Factor product decomposition 

One of the earliest proposed and most widely adopted 
methods is Lu-Chipman’s polar decomposition, in which 
a Mueller matrix is decomposed into a three-factor 
product of a depolarization matrix, a retardance matrix 
and a diattenuation matrix in sequence, expressed by 

( ) ( ) ( )LC R LC D LCM M M M     (22) 

It is noted that MΔ(LC) here is a modified depolarization 
matrix containing polarizance parameters in its first 
column. Lu-Chipman’s decomposition has been validated 
with well-controlled turbid media which turned out to 
yield reliable measures of the fundamental polarization 
properties [113, 134, 135], and is thus a popular 
interpretation method applied in a considerable number of 
tissue polarimetry studies [12, 13, 18-20, 136, 137].  

The idea behind Lu-Chipman decomposition is to find 
an equivalent cascade of a diattenuator, a retarder, and a 
depolarizer that has the same effective Mueller matrix to 
the recorded Mueller matrix. There may exist other 
equivalent cascades derived from other product based 
decomposition methods. In the reverse decomposition 
method which is also a three-factor product 
decomposition derived from Lu-Chipman’s polar 
decomposition method, a Mueller matrix is modelled as a 
cascade of a depolarizer, a diattenuator and a retarder that 
is exactly in reverse order with respect to Lu-Chipman’s 
polar decomposition model. The interpreted Mueller 
matrix can then be decomposed into  

( ) ( ) ( )D rev R rev revM M M M      (23) 

MΔ(rev) here is also a modified depolarization matrix 
containing diattenuation parameters in its first row. It is 
noted that the order and the number of the equivalent 
elements in the decomposition models do have an 
influence in the interpreted depolarization, retardance and 
diattenuation properties [138]. Comparison studies of Lu-
Chipman and reverse decomposition showed that these 
two methods yield consistent decomposition results 
providing that the magnitude of diattenuation of the 
medium is low [139]. The same study further confirmed 
that diattenuation is generally lower compared to other 
polarization effects in turbid media and bulk tissues [139]. 

In many cases, the Mueller matrix of a depolarizer 
remains diagonal rather than symmetric as in the above 
two decomposition method. Symmetric decomposition 
addresses this issue by employing a five factor product 
decomposition, [117] 

2 2 ( ) 1 1D R diag R DM M M M M M    (24) 
This method may have advantages when investigating 
depolarizing media with tilted input and output interfaces 
in which case interface refraction induced diattenuation 
and retardance match with the equivalent cascade of five 
elements [29]. It is noted that the symmetric 
decomposition cannot be applied for a special class of 
Mueller matrices known as non-Stokes diagonalizable 
Mueller matrices [117, 140, 141].  

5.2 Differential decomposition and root 

decomposition 

Another important recent development was the extension 
of the differential decomposition method into turbid 
media polarimetry, which is becoming a complementary 
alternative to the product decomposition method 
discussed above. Differential decomposition has been 
validated in simulations as well as phantom and tissue 
experiments and has demonstrated advantages for 
quantifying fundamental polarization properties of many 
homogeneous samples [118, 121-123, 142]. 

For a light beam propagating along the z axis, the 
Mueller matrix M(z+dz) can be written in the form of an 
iterated differential function as [118] 

( +d )= (d ) ( )= + dM z z U z M z I m z    (25) 

where U(dz) is the differential propagation matrix, I 
denotes an identity matrix as the initial value condition 

M(z=0)=I, and m is the differential matrix with 
information about the fundamental polarization properties 
of interest. The equation can also be written as [118], 

d / d =M z mM      (26) 
If the medium can be assumed to be continuous and has a 
uniform depolarization distribution over a distance of b 
along z axis, m is then z independent and can be solved. 
The solution can be then given by[118]  

=exp( )M bm  

=ln( )m L M      (27) 

b can be regarded as a scalar parameter that does not 
interfere with the interpretation of m in terms of 
depolarization, retardance and diattenuation. m can be 
derived from the matrix logarithm of the Mueller matrix 
L. The fundamental polarization properties can be 
determined by constructing the Lorentz anti-symmetric 
and symmetric components Lm and Lu,[118, 119, 122] 
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G is diag(1,-1,-1,-1) known as the Minkowski metric 
tensor. For a medium with depolarization, the polarization 
parameters can be then determined from Lm and Lu, 
summarised in [119, 143] 
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A key physical model that differential decomposition 
relies on is that the polarization properties of the analysed 
medium have a uniform distribution along the optical path. 
It is noted that the root decomposition method [37, 124], 
which can be regarded as an extended product 
decomposition method, employs exactly the same model. 
Hence, the root decomposition and differential 
decomposition are completely equivalent [120]. The root 
decomposition can be expressed in the form of a limit as 

 lim n
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This limit can be solved analytically, 
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Therefore, V generated from root decomposition is equal 
to L generated from differential decomposition. The 
fundamental properties can be interpreted from V in the 
same way as from L. 

The accuracy of the decomposition results depends 
on how well the medium matches the decomposition 
method assumptions [120]. When the medium properties 
are closer to a model that is a cascade of three or five 
polarizing elements, the factor product based method may 
be more appropriate. For media with uniformly distributed 
polarization properties, differential decomposition and 
root decomposition may demonstrate advantages [123, 
143]. Hence, in practice, the selection of decomposition 
method should be made on a case-by-case basis, 
especially for biological tissues with complex structures. 

5.3 Azimuthal angle insensitive interpretation 

method 

The measured Mueller matrix is dependent upon the 
azimuthal orientation between the invisible anisotropic 
axis of tissue and the defined “horizontal” axis of a 
Mueller matrix, which may lead to variation during inter- 
and intra-sample measurements. Besides the 
decomposition methods reviewed in the previous sections, 

Mueller matrix transformation techniques have also been 
introduced recently to address this issue and have been 
validated and used in a number of biological tissue studies 
[125-131]. The following rotation-independent 
parameters were proposed based on experimental data and 
simulation result analysis  
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   (31) 

The parameters A and b are strongly correlated with tissue 
anisotropy and depolarization respectively [127, 129, 144]. 
Since only linear polarization is dependent upon the 
spatial azimuthal angles, these rotation independent 
parameters were obtained from the top-left 3×3 elements 
in a Mueller matrix which correspond to linear 
depolarization transformations. This computationally-
light interpretation method would be promising in high 
resolution real time polarimetric image analysis as well as 
partial Mueller polarimetry like 3 × 3 Mueller polarimetry. 

6. The biomedical applications of Mueller 

polarimetric imaging 

Interpretation of Mueller matrices can improve the 
understanding of how the fundamental polarization 
properties of tissue correlate with pathological features in 
a consistent and reproducible manner, and form a bridge 
between polarimetric data and clinically meaningful 
information. Therefore, a number of image contrast 
mechanisms besides traditional unpolarized radiation 
intensity have been obtained from Mueller polarimetric 
imaging, and have a broad range of applications.  

It was demonstrated that early stage cancerous human 
colon is less depolarizing than healthy colon through ex 

vivo measurements with a multispectral Mueller 
polarimetric imaging system [14]. Using the same system, 
it was also shown that tissue depolarization could provide 
useful image contrast to quickly identify the stage of colon 
cancer development [16], and the relevant 
histopathological reasons were discussed in terms of 
tissue layers [17] and tissue absorption and scattering [15]. 
The system was also found to be a promising tool to 
evaluate colon cancer progression and residual cancerous 
tissue after radio-chemical therapy [20]. As displayed in 
Figure 1(a) which is an illustrative example to exhibit the 
advantages of polarimetric imaging over polarization 
insensitive imaging, significant differences in tissue linear 
retardance and depolarization in healthy and precancerous 
regions of human cervix were observed [12] and it was 
noted that cervical tissue depolarization is capable of 



revealing morphological changes in the epithelium, with 
the retardance sensitive to the morphological changes in 
the stroma [19]. 62% sensitivity and 64% specificity were 
achieved by optimizing a simple tissue retardance 
threshold [18]. Another application demonstrated the 
ability of polarimetry to characterize the micro-
organizational state of the myocardium and to monitor 
regenerative treatments of myocardial infarction [145]. 
Additionally, by measuring regional birefringence of 
bladders, organizational anisotropy as a function of 
distension pressure could be revealed [106, 137], as well 
as local structural disorders of the bladder wall caused by 
partial bladder outlet obstruction, as exhibited in Figure 
2(d). The retardance contrast between healthy and 
obstructed regions of the bladder would be potentially 
useful to guide augmentation surgeries and monitoring the 
tissue functionality following tissue engineering therapies 
[21]. Mueller polarimetry or polarimetric imaging has 
furthermore been used to investigate muscles [146], 
normal and precancerous human cervix [147], oral [13] 
and lung tissues [148], radiofrequency ablated porcine 
myocardial tissue [149], skeletal muscle [150], growth of 
bacteria colonies [151], skin [152-155] including 
melanoma [156], animal tissues [144], bladders [137], the 
orientation of collagen fibres in 3-D space [23], red blood 
cell suspensions [157], etc. 

The majority of the studies mentioned in the preceding 
paragraph were conducted on bulk tissue in reflection 
mode, which has significance for in vivo tissue diagnosis. 
A number of applications of Mueller polarimetric imaging 
are instead based on detecting unstained thin tissue cuts 
[22, 131, 144, 158-162] in a transmission geometry. Since 
Haematoxylin and Eosin (H&E) staining and other 
staining techniques require time and elaborate sample 
preparation by a well-trained and experienced pathologist 
for diagnosis, unstained Mueller microscopy may be used 
for rapid and low cost pathological inspection [159, 160] 
and instant tissue characterization [136, 163]. As shown 
in Figure 2(b), polarimetric imaging has been utilized to 

guide scanning mass spectroscopic analysis of a 
pathological slide of breast cancer tissue to detect 
suspicious cancerous regions. Mass spectrometry is able 
to give quantitative pathological classification but suffers 
from long acquisition time if used to generate an image. 
Polarimetric imaging, especially depolarization imaging 
was demonstrated to be helpful to improve scanning 
efficiency and significantly shorten the diagnostic time 
[22]. In Figure 2(c), a pathological slide of a liver sample 
with fibrosis was imaged by polarimetric microscopy. 
Compared with the polarization insensitive image on the 
left, the image on the right was reconstructed based on the 
retardance and fast axis orientation information of the 
sample, and is able to significantly enhance the 
birefringent fibrous structures arising from liver fibrosis 
[164]. Mueller polarimetry has also been used to study 
autofluorescence of tissue to differentiate histological 
biopsy sections of benign (dysplasia) and malignant 
(adenocarcinoma) uterine cervical tumours [165] and 
rectal walls [162]. 

Mueller polarimetric spectroscopy - as an extension to 
polarized light scattering spectroscopy - can not only 
provide depolarization spectra that are independent of 
azimuthal angle, but can also probe additional information 
about tissue diattenuation and retardance for tissue 
diagnosis [166]. Mueller matrix descriptions have been 
extended towards tissue autofluorescence spectroscopy 
and initially explored for cervical cancerous tissue 
diagnosis, as shown in Figure 2(e). The additional linear 
and circular diattenuation spectra possess potential 
advantages over elastic scattering based approaches. 
Contrast can be observed between normal and 
precancerous groups attributed to the loss of anisotropic 
organization of collagen, which suggests that fluorescence 
diattenuation and polarizance originating from anisotropic 
organization of collagen in the connective tissue may 
serve as potentially useful diagnostic metrics [167]. 

 



 
Figure 2 Application of Mueller polarimetry for tissue diagnosis. (a) Human cervical tissue with precancer (CIN3). From left to right 
are polarization insensitive image, depolarization image, retardance image and fast axis orientation image. The region with CIN3 
demonstrated a considerably lower magnitude of retardance than healthy regions. The contrast cannot be observed in the corresponding 
polarization insensitive image (b) Polarimetry guided mass spectroscopic analysis of a pathological slide of breast cancer. From left 
to right are polarization insensitive image, depolarization image obtained from complete Mueller polarimetric imaging, scanning mass 
spectrometry, a demonstration of classification of healthy and cancerous sites. The observed depolarization contrast is likely also 
influenced by anisotropy (alignment) of the muscle background related to pathological changes of breast cancer. (c) Pathological slide 
of a liver sample with fibrosis. The left image is polarization insensitive. The right image is reconstructed based on the retardance and 
fast axis orientation information which significantly enhances the birefringent fibrous structures arising from liver fibrosis. The 
colorimetric representation strategy is the hue-saturation-intensity visualization scheme (hue=fast axis orientation, saturation=100%, 
intensity=retardance value). (d) Retardance image of rat bladders. The left image was obtained from a healthy bladder. The right one 
was from a rat suffering from bladder obstruction. The obstructed bladder demonstrated a high retardance value, which would be 
useful to guide surgeries and monitor tissue function following tissue engineering therapies. (e) Linear diattenuation spectra of 
autofluorescence from human cervical tissues. The mean spectra from 15 precancerous [CIN I (four), CIN II (six), and CIN III (five)] 
and five normal tissue sections are plotted and the error bar is the standard deviation. The inset figure top right shows circular 
diattenuation spectra. Contrast can be observed between normal and precancerous groups attributed to the loss of anisotropic 
organization of collagen. The figures were reproduced from [12, 21, 22, 164, 167].

 
 

7. Design of a Mueller polarimetric imaging 

system 

7.1 Measurement of Mueller matrices 

In order to obtain all the elements in a 4×4 Mueller matrix 
of a sample, at least four linearly independent input Stokes 
vectors are required and their output Stokes vectors should 

be analysed individually to construct at least 16 linear 
equations of Mueller matrix elements, denoted by  

sample in1 in2 in3 in4 out1 out2 out3 out4[ , , , ] [ , , , ]M S S S S S S S S  (32)  

As demonstrated in Figure 3, a polarimetric imaging 
system therefore consists of a light source, a polarization 
state generator (PSG) to generate required input Stokes 
vectors Sin, a polarization state analyser (PSA, normally 
called Stokes polarimeter if used alone) to determine the 
output Stokes vectors Sout, and a light detector or image 
sensor to record all the required states. 



 

Figure 3 A general configuration of a Mueller polarimeter. A 
polarimetric imaging system consists of a light source, a 
polarization state generator (PSG), a polarization state analyzer 
(PSA), and a light detector or image sensor. 

The required input Stokes vectors constitute a matrix 
represented by MPSG. Equation (32) can be rewritten as 

sample out1 out2 out3 out4[ , , , ]PSGM M  S S S S   (33) 

Each output Stokes vector Sout i (i=1,2,3,4) in the right hand 
part of Equation (33) are obtained from polarization 
insensitive radiometric intensity measurements P i (i=1,2,3,4) 
by the light detectors or image sensors, via a data 
reduction matrix MPSA. The process can be described by 

out1 out2 out3 out4 1 2 3 4[ , , , ] [ , , , ]=PSAM S S S S P P P P P  (34) 

Using Equation (33), Equation (34) can then be expressed 
by the following linear equation that characterizes the 
entire process of measurement, 

PSA sample PSGM M M  P     (35) 

Note that MPSG and MPSA are named the instrumental 
matrices of the PSG and the PSA respectively in Mueller 
polarimetry. Thus, the Mueller matrix of the sample is 
determined by solving Equation (35), 

1 1P sample PSA PSGM M M , (36) 

Both MPSG and MPSA entail at least four linear 
independent state vectors such that neither of the ranks of 
MPSG and MPSA are less than four to ensure this linear 
equation has a unique solution; that is, P should contain at 
least 16 the radiometric measurements to solve Equation 
(35). When MPSA and MPSG satisfy the minimal 
requirement for the matrices’ ranks, but are not square 
matrices (i.e. P contains more than 16 radiometric 
measurements), this implies oversampling of the 
polarimetric system and their inverses should be replaced 
by Moore–Penrose pseudoinverse matrices MPSA

 and MPSG 
defined by  

1 1( )T T
pA A A A
   (37) 

where A can be replaced by either MPSA or MPSG. The 
Moore-Penrose pseudoinverse can be considered as 
computing the least squares solution of Equation (35). An 
oversampling system may contribute to a reduction of 
system noise (uncorrelated noise). 

7.2 Typical configurations: principles and 

devices 

As pivotal parts of a Mueller polarimeter, the PSG and 
the PSA are constructed to generate the required input 
SOPs and analyse the output SOPs so as to solve Equation 
(35) and obtain the Mueller matrix of the sample. The 
design of many passive polarization measurement devices 
like ellipsometers or Stokes vector polarimeters can be 
directly duplicated for the PSA and PSG. Here we 
introduce a number of typical architectures for Mueller 
polarimeters with different PSA and PSG designs. 

7.2.1 Fourier modulation techniques 

A classical technique of Mueller polarimetry is based 
on dual mechanically rotated retarders, which may 
incorporate Fourier analysis as first described by Azzam 
in 1978 [168], as shown in Figure 4(a). The PSA and the 
PSG for this kind of configuration is mirror-symmetric but 
both comprise a fixed linear polarizer and a rotating linear 
retarder. The two linear polarizers are kept parallel or 
perpendicular while the two retarders rotate at two 
different angular rates, for instance one of the optimal 
ratios for the increments is five to one [168]. Other 
optimal ratios can be found by condition number based 
polarimetric system optimization which will be discussed 
in the next section. The intensity is sequentially sampled 
during the rotation of the retarders, resulting in a 
modulated signal, which can be Fourier analysed (Fourier 
series or Fourier transform), and all the Mueller matrix 
elements can be derived from the Fourier coefficients. 
Fourier analysis here serves as an alternative method to 
the general method based on matrix inverse or 
pseudoinverse in Equation (36) and (37) to solve Equation 
(35). 

The primary advantages of this dual-rotated-retarder 
configuration are fewer moving parts, reduced 
instrumentation cost, and that the calibration can be done 
without the need for reference samples the following 
assumptions: 1) both the linear retarders used in the PSG 
and PSA exhibit no diattenuation and depolarization; 2) 
the increment of rotation of both the linear retarders is 
highly reproducible [169, 170]. The disadvantages are the 
long image acquisition time resulting from the mechanical 
components and that the signal is usually oversampled. 
Typical acquisition time for a single one million-pixel 
radiometric image by a normal image sensor is tens of 
milliseconds. Time sequential acquisition of the tens or 
hundreds of images required by this technique can take 
additional seconds or even minutes. Therefore, although 
oversampling may reduce uncorrelated system noise, it is 
generally not an efficient solution for real time 
polarimetric imaging of moving targets. However, it may 
suit single-point detection better since single-point 
detectors like photodiodes and photomultiplier tubes have 
response time typical in several nanoseconds. 

An important extension of Fourier modulation Mueller 
polarimetry in the past decade is the spectrally encoded 
snapshot Mueller polarimeter [171, 172] developed based 
on the channelled spectro-polarimetry technique [171, 



173]. In this case, modulation is achieved by non-rotated 
variable retarders for which the phase retardance is 
modulated. 

Spectrally encoded snapshot Mueller polarimeters 
take advantage of the wavelength dependant phase 
retardance of linear retarders (especially in a multiple 
order linear retarder), and the phase retardance of each 
retarder in the PSG and PSA is passively modulated in the 
wavelength domain. A typical snapshot Mueller 
polarimeter consists of: 1) a 0° linear polariser together 
with a 45° and 0° linear retarder for the PSG; 2) a 0° and 
45° linear retarder together with a 90° linear polariser for 
the PSA; 3) a spectrometer, as displayed in Figure 4(b). 
The spectral signal carrying the information about a 
Mueller matrix is modulated by the thicknesses of the four 
retarders. With the proper determination of the 
thicknesses of the four retarders, the various matrix 
elements are separated into independent channels in the 
Fourier domain. In detail, the Fourier transform of the 
spectra creates real and imaginary peaks whose 
magnitudes are expressed as a linear combination of 
Mueller matrix elements. One of the optimal choices of 

retarder thickness is 1-2-5-10. Another choice 1:1:5:5 may 
also be employed (by using a first order approximation of 
phase retardance expansion in terms of wavelength). 

A crucial assumption of spectrally encoded snapshot 
Mueller polarimetry is that the sample is achromatic 
within the working wavelength band in terms of its 
polarization properties. It is also assumed that all the 
linear retarders used in the polarimeter exhibit no 
diattenuation and depolarization. The validity of the 
former assumption relies on the spectral polarimetric 
properties of the sample, the spectral bandwidth of light 
sources employed as well as the spectral resolution of the 
spectrometer, and it is thus recommended to do spectral 
analysis before implementing the method. The spectra 
convey all the polarimetric information for one point on 
the sample and its Mueller matrix can be recovered via 
Fourier analysis. It is noticed that even with simultaneous 
acquisition of 16 Mueller matrix elements, polarimetric 
imaging may still entail raster-scanning devices or 
hyperspectral imaging devices, which still fails to avoid 
time sequential acquisition. 

 
Figure 4. (a) a typical Mueller polarimeter based on dual mechanically rotated retarders. (b) a typical spectrally 
encoded snapshot Mueller polarimeter.

 

7.2.2 Non-modulation techniques and variable retarders 

Many Mueller polarimeters are not based on 
modulation techniques and Fourier analysis, but the 
universal method based on matrix inverse or 
pseudoinverse in Equation (36) and (37). A typical 
configuration consists of a PSG and a PSA that have a 
smaller number of (normally four) states respectively so 
that only a limited number of (normally 16) measurements 
are sufficient to solve Equation (35) and obtain the 
Mueller matrix. 

A classic non Fourier modulation based configuration 
uses a combination of a rotatable or removable quarter 
waveplate and rotatable linear polarizer to generate or 
analyse all the elements defining the Stokes vector one by 

one, namely, “horizontal”, “vertical”, +45°, -45° linear 
and left, right circular polarizations. This configuration 
requires mechanical rotation of both the waveplate and the 
linear polarizer, or rotation of the linear polarizer and 
removal of the waveplate [30]. 

Many non-modulation configurations are based on the 
application of electronically-controlled variable retarders 
without any moving parts. A suitable combination of 
variable retarders and linear polarizers possesses the 
ability to generate or analyse any polarization state. 
Typically, two variable retarders and a fixed linear 
polarizer can be used for a single PSA or PSG, and as a 
result a Mueller polarimeter needs four variable retarders. 
There are various types of retarders available with 
different operating mechanisms. Photo-elastic modulators 
(PEM) are based on the photo-elastic effect (linear 
retardance can be controlled by stress) of transparent 



materials, induced using a high frequency quartz 
piezoelectric transducer attached to the end of the material. 
PEMs have a very high modulation frequency determined 
by the piezoelectric material in the transducer. They can 
be applied to Mueller polarimetric imaging, but normally 
require a high speed camera and small exposure time in 
scale of microsecond or less, in addition to careful gating 
and synchronisation [174, 175], which makes it difficult 
to use sometimes for small numerical aperture systems 
under relatively weak lighting conditions like endoscopy.  

Pockell’s cells use the electro-optical effect (linear 
retardance can be controlled by an external electric 
voltage in some crystals), but have the disadvantage of a 
small acceptance angle which limits their wide utilization 
in imaging applications. Liquid crystal variable retarders 
modulate the birefringence, although for nematic liquid 
crystals the response time is sensitive to the thickness with 
a typical range down to several to tens of milliseconds, 
much slower than PEMs and Pockell’s cells. For 
ferroelectric liquid crystals which modulate the 
orientation of the fast axis, the response times are on the 
scale of tens of nanoseconds with fixed retardance. Liquid 
crystal retarders are sensitive to temperature and require 
temperature control units for high precision measurements 
to prevent interference from room temperature variation, 
which increases the cost. Most of the commercialised 
temperature controlled liquid crystal variable retarders 
also have a limited aperture size. However, these variable-
retarder-based configurations have conspicuous 
advantages over mechanically-moving systems in terms 
of the response time, accuracy and reproducibility. 

7.2.3 Snapshot PSAs 

It is noted that the vast of majority of PSGs requires 
time sequential generation of required SOPs (known as a 
“division of time” architecture), with the exception of 
snapshot spectrally encoded Mueller polarimeters 
mentioned in Section 7.2.1. Nevertheless, a number of 
schemes for PSAs allow analysis of the emergent four 
Stokes parameters in a snapshot rather than a series of 
time sequential measurements, including: 1) employing 
mutliple beam splitters and four image sensors each of 
which has distinct polarization analysers, known as a 
“division of amplittude” architecture e.g. the setup in 
[176]; 2) employing diffractive optical elements or lens 
arrays to focus separate parts of the aperture onto separate 
image sensors or different areas of one image sensor e.g. 
the setup in [177], known as a “division of aperture” 
architecture; 3) making pixelated micro-polarizers or 
micro-retarder arrays directly on the image sensor pixels 
[178-180] known as a “division of focal plane” 
architecture. A good summary of these PSA 
architechtures including their advantages and 
disadvantages can be found in [181]. 

7.3 Optimisation 

Besides the minimum requirement concerning the 
rank, how to optimise MPSA and MPSG to minimise the error 
propagating from the measured radiometric matrix P to 
the resultant Mueller matrix of the sample Msample during 
two matrix inversions is another important issue. 
Normally, it is reasonable to consider MPSA and MPSG 
separately rather than simultaneously during optimization 
[182] so that the optimization is simplified to a classical 
problem about the backward stability of a linear equation. 
Considering a general linear equation with noise Δb added 
to the known vector b,  

1( )A
  x x b b  (38) 

How the absolute error Δx in the result x is sensitive to Δb 
is determined by the backward stability of the coefficient 
matrix A. The backward stability of A is dependent upon 
its orthogonality, indicated by its determinant; a matrix 
will become more orthogonal as its absolute value of 
determinant increases, leading to a better backward 
stability. In polarimetry, the matrix A can be replaced by 
the PSA and PSG instrumental matrices MPSA and MPSG 
determined by the state vectors selected. The determinant 
was first introduced as the parameter to assess the 
backward stability for polarimetry in [170]. The absolute 
value of the determinant corresponds to the volume 
enclosed by the end points of the PSA or PSG state vectors 
in the Poincare sphere. However, the determinant lacks a 
quantitative indication of the error and the backward 
stability of the matrix A is quantitatively assessed by its 
condition number defined by, 

1( )cond A A A
  (39) 

where || || denotes the matrix norm. It is noted that the 
matrix norm employed to characterize the backward 
stability and serve as the figure of merit to optimise the 
MPSG and MPSA in Eq. (10) could be the 1-norm, the 2-
norm (Euclidean norm) or the ∞-norm (sup-norm) [170, 
183]. Nevertheless, the 2-norm is more frequently used 
since it is simply the square root of the largest eigenvalue 
of MM*, where * stands for the conjugate matrix. The 
relationship between the relative error and the condition 
number is given by the inequality [184],  

( )cond A
 


x b

x b

 (40) 

The random error from radiometric measurement is 
statistically stable, and the maximum noise level is 
constrained mainly by the condition number. Thus the 
system signal-to-noise ratio can be assessed. The 
Frobenius norm has also been reported to assess the error 
propagation with the assumption that the noise in the 
measurement is uncorrelated, resulting in an equal 
variance [185]. 

7.4 Calibration 



Another essential consideration is calibration of 
polarimetric systems, a procedure to determine the real 
MPSG and MPSA which normally deviate from their nominal 
expectations and may lead to systemic error. There have 
been several calibration methods developed with various 
drawbacks such as assumptions or requirement for prior 
knowledge. For example, Fourier modulation based 
methods assume that the angular increment of rotating 
elements is perfect, or that the linear retarders used in the 
PSG and PSA do not have any diattenuation, or that linear 
polarizers show no retardance [186, 187]. These 
assumptions can simplify the calibration procedures - e.g. 
by avoiding the use of calibration samples - but are not 
always valid in practice and may result in systematic 
errors in some situations.  

Compain et al. proposed an eigenvalue calibration 
method (ECM) [188] that takes advantage of measuring a 
set of calibration reference samples so as to obtain a 
proper set of system responses to construct MPSG and MPSA 
[182, 188]. A commonly used reference sample set is air 
(for a null response), a linear polarizer orientated at 0° 
(defined) and 90° (approximately) for linear diattenuation 
responses and a quarter waveplate (retardance about 90°) 
for linear retardance responses with the fast axis 
orientated at 30° (approximately). The ECM is a popular 
calibration method in Mueller polarimetry because it 
requires the fewest assumptions and prior knowledge 
about the calibration samples, e.g. it is not necessary to 
precisely know about the retardance and orientation of the 
calibration waveplate, and the ECM provides the most 
comprehensive information about the PSG and the PSA in 
various types of Mueller polarimetric systems [188, 189].  

8. Instrumental polarization  

It is necessary to take consideration of the polarization 
properties of optical components and instruments used or 
altered for Mueller polarimetric imaging, since many of 
them are not designed for the use of polarization 
techniques, and the residual instrumental polarization may 
lead to significant errors if assumed to be highly 
polarization maintaining by default. Instrumental 
polarization does not have to be avoided since it can be 
calibrated in most cases. Nevertheless, depolarization 
would increase the condition number and reduce the 
robustness of the polarimetric imaging system and should 
be minimized. There are a number of factors that can 
affect the polarization properties of optical components, 
and are summarized here. 

8.1 Materials and strains 

Certain common optical materials contain intrinsic 
birefringence, such as sapphire, ruby, quartz, calcium 
fluoride and many other crystals. Plastics are widely used 

optical materials but usually demonstrate strong 
birefringence arising from the internal strains in the 
manufacturing process. Similar internal strain is believed 
to arise during fire-polishing of the surfaces for some 
uncoated moulded glass lenses with high numerical 
apertures (NA), e.g. NA=0.5, resulting in radially 
symmetric, tangentially oriented retardance patterns [190]. 
This stress birefringence can be relieved by annealing 
during lens fabrication [190]. External (thermal and 
mechanical) strains from fastening and mounting are also 
a potential source of birefringence due to the photo-elastic 
effect, which cannot be always successfully avoided in a 
compact optical instrument. 

8.2 Refraction and reflection at an interface 

Refraction and reflection at interfaces between ambient 
media and optical surfaces constitute the basis for imaging 
systems based on geometric optics. In general, this is non 
depolarizing, but linear diattenuation and sometimes 
linear retardance are present with values dependent on the 
incident angle and relative refractive index as derived 
from Fresnel’s equation. With normal incidence, 
refraction and reflection are completely polarization 
maintaining for linear and circular polarization. The 
Mueller matrix of refraction with normal incidence is 
represented by, 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

refractionM

 
 
 
 
 
 

 (41) 

When light reflects off a material with higher refractive 
index than the external medium with normal incidence, by 
convention, the Mueller matrix of reflection is, 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

reflectionM

 
 
 
 
  

 (42) 

The negative signs in m33 and m44 indicate a “flip” of 
polarization direction for the incidence 45° (and -45°) 
linearly polarized light and a “flip” of helicity for 
circularly polarized light, originating from reflectional 
symmetric transformation of the coordinate systems 
during the mirror reflection, as shown in Figure 5. Note 
that with normal incidence actual polarization direction 
and helicity do not change during reflection with respect 
to the world coordinates. The signs can be changed by 
defining different coordinate positive orientations. 



 
Figure 5. Reflection of 45° linearly polarized light (left) 
represented by the red line and circular polarized light (right) 
represented by the curved arrow with normal incidence at an 
interface with n2>n1. The direction of Rs and Rp are determined 
according to Fresnel’s equation. The actual polarization 
direction and helicity do not change during reflection with 
respect to the world coordinates. 

As a rule of thumb, many optical systems operating 
small numerical aperture beams are highly polarization 
maintaining. With non-normal incidence, the interface 
always tends to reflect the perpendicular component of 
electric field to the reflection plane (s polarization) more 
efficiently than the parallel component (p polarization), 
manifesting linear diattenuation, whereas the linear 
retardance is dependent on the attenuation indices of the 
materials that are often expressed as the imaginary part of 
relative refractive index. Low attenuation indices usually 
correspond to high material transparency, e.g. air, glass, 
and therefore the attenuation indices of the majority of 
high transparency optical materials are negligible. 
Reflection and refraction at the interfaces of materials 
with negligible attenuation indices are equivalent to linear 
diattenuators with the diattenuation varying with the 
incidence angle. The forms of their Mueller matrices are 
written as,  
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where θi and θr denote the incidence angle and refraction 
angle respectively. According to the Mueller matrix of 
refraction, a single uncoated lens should theoretically 

demonstrate a small symmetric radial diattenuation 
increasing with distance from the centre. The 
diattenuation for lenses with small numerical apertures is 
normally negligible. For optical systems with high 
numerical apertures, polarization ray tracing and 
polarization aberration theory [191-193] are helpful to 
analyse diattenuation and retardance at the exit pupils. It 
is noted that high numerical apertures may also result in 
spatial depolarization. 

One special polarization transformation in reflection is 
total internal reflection which does not reflect s and p 
polarizations with unequal efficiency, but merely leads to 
a phase shift between them. Therefore, total internal 
reflection is equivalent to a linear retarder in a form of 
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with the linear retardance δ determined by the incidence 

angle θi and the reflective refractive index n, 
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When the reflective material has non negligible 
attenuation indices, e.g. metal, reflection leads to linear 
retardance in addition to linear diattenuation, effectively 
forming a diattenuated retarder. The linear phase 
retardance monotonically increases with incidence angle. 
In Figure 6, the linear retardance and linear diattenuation 
induced by reflection from an air/aluminium interface and 
an air/silver interface at 632.8 nm were calculated 
according to Fresnel’s equation. Aluminium and silver are 
often used in reflecting mirrors including flat and 
parabolic mirrors. Flat mirrors are normally assumed as 
an ideal polarization maintaining component to calibrate 
a polarization system in a reflection mode and it is noted 
that the assumption is valid at near-normal incidence. The 
instrumental diattenuation and linear retardance may 
become an issue when the incidence angle deviates from 
the normal. An aluminium mirror is also more 
polarization maintaining at near normal incidence than a 
silver mirror. 

 
 
 



 

Figure 6 Linear retardance and linear diattenuation induced by reflection from an air/aluminium (Al) interface and an air/silver (Ag) 
interface at 632.8 nm. 

 

 8.3 Thin film coatings 

Thin film coatings are widely used to control reflectivity 
at surfaces of optical elements by utilizing optical 
interference. The coatings normally cause weak linear 
diattenuation and weak linear retardance stemming from 
the coherent superposition of light rays passing through 
the different layers, in addition to refraction and reflection. 
The weak linear diattenuation and linear retardance from 
a single layer antireflection coatings can sometimes be 
utilised to reduce instrument polarization in optical 
systems [194]. Residual retardance and diattenuation 
stemming from thin film coatings cause polarization 
aberrations [191-193, 195] that are of the fourth and sixth 
orders with respect to the incidence angle [194]. 

8.4. Rigid endoscopes 

Medical endoscopes are normally long and narrow optical 
instruments used to observe the interior of a hollow organ 
or body cavity through small incisions or natural body 
orifices. They currently play a vital role in screening, 
diagnosis and surgical treatment of many diseases non-
invasively or minimally-invasively. Most modern 
endoscopes comprise an illumination channel, an imaging 
channel, and sometimes an irrigation channel and a 
working channel for the insertion of medical instruments 
or manipulators. The illumination channel requires high 
coupling efficiency at the light port and high transmission 
in the visible range from (the light port at) the proximal 

end to the distal end of endoscope. The spatial distribution 
of light radiance illuminating the tissue should also be 
sufficiently wide and uniform. The most common choice 
to fulfil these requirements is the incoherent fibre bundle 
with large individual fibre cores which totally randomise 
the incident polarization. The Mueller matrix of the 
illumination channel approximates to an ideal depolarizer 
in the following form  
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0 0 0 0

0 0 0 0

0 0 0 0
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                                          (46) 

The imaging channel consists of an objective lens with a 
low numerical aperture, relay optics and an eyepiece. 
Generally, the objective lens system employs a plane-
concave lens to widen the field of view, followed by a 
positive focusing lens system which is able to make the 
rays converge, and deliver a demagnified real image to the 
successive relay optics mounted in a rigid outer tube. The 
rigid endoscope is preferred for many applications which 
do not absolutely require bending, e.g. laparoscopic 
surgery, and has preeminent resolution, wide field of view, 
wide range of working distances and low chromatic 
aberrations; properties that are difficult to emulate for 
flexible endoscopes. Currently the rod lens based rigid 
endoscope is still the most popular rigid endoscope owing 
to superior performance, although “chip at tip” devices are 
increasing in performance and popularity. 

 



Figure 7 (a) The measured Mueller matrix image of a Karl Storz laparoscope with normal crystal windows [196]. Each elemental 
image shows one element of the matrix across the whole field of view. The X-shaped artefacts in the in m24, m34 and m44 are caused 
by the small acceptance angle of two achromatic quarter waveplates used in the measurement, confirmed by simulation in [196]; (b) 
the simulated Mueller matrix image of a uniaxial birefringent crystal [196]. The similarity between (a) and (b) indicated that the 
laparoscope is effectively a uniaxial crystal with the crystal axis parallel to the optical axis of the laparoscope. (c) The measured 
Mueller matrix image of a Karl Storz laparoscope by replacing the birefringent protective windows with non-birefringent fused silica 
windows [53, 197]; (d) the measured Mueller matrix image of a GRIN lens [198].  

The polarization properties of the imaging channels of 
rod lens based rigid endoscopes have been investigated 
experimentally [196]. By measuring the Mueller matrices 
of laparoscopes from a prominent endoscope 
manufacturer, Karl Storz GmbH. (Figure 7(a)), it was 
revealed that a particular laparoscope was effectively a 
uniaxial crystal with the crystal axis parallel to the optical 
axis of the laparoscope shown in Figure 7(b), 
demonstrating spatially varying and symmetric phase 
retardance, with low diattenuation and depolarization (the 
X-shaped patterns in m24, m34 and m44 are ascribed to the 
small acceptance angle of two achromatic quarter 
waveplates used in the measurement, confirmed by 
simulation [196]). The retardance originates from the 
outer protective windows at both the distal and proximal 
ends that are made from a birefringent crystal (sapphire). 
If used in polarimetry, this endoscope would require 
careful calibration for the highly spatially varying 
retardance and additional efforts to avoid any small 
displacement between the endoscope and the image 
sensor after calibration. The endoscopes with less or no 
spatially varying retardance are therefore desirable for 
polarimetric imaging. 

A customised laparoscope with the birefringent 
windows replaced by fused silica was obtained. The 
Mueller matrices were measured again and displayed in 
Figure 7(c) [53, 197]. This is equivalent to a linear retarder 
with low phase retardance (27 degrees). The top left 3×3 
sub-matrix essentially demonstrated an identity form, 
which implies that the polarization properties of the 
customised laparoscope are not significant and can be 
called non-polarized or polarization maintaining for linear 
polarizations. The polarization effects of rigid endoscopes 
for linearly polarized light can then be removed for linear 
polarization imaging by simply replacing their crystal 
windows with non-birefringent material. Such 
endoscopes would simplify and reduce the requirements 
for the design of the PSA since the PSA does not have to 
be miniaturised to match the dimensions of endoscopic tip. 

8.5 GRIN lenses 

Gradient index (GRIN) lenses can also be used as 
endoscopic relay lenses, although producing colour 
images is challenging due to the excessive dispersion of 
GRIN lenses. However, they offer advantages when 
working in environments requiring extremely small 
dimensions, since a GRIN lens can be manufactured down 
to 0.2 mm in diameter [199]. The Mueller matrix of a 
GRIN lens was measured in [200] and is reproduced in 
Fig. 5(d) and is similar to a conventional Karl Storz 
laparoscope but with fewer orders in the conoscopic 
interference pattern. Therefore, a GRIN lens is also 
equivalent to a uniaxial crystal with the crystal axis 
parallel to the optical axis of the lens, with low 
diattenuation and depolarization. Such a GRIN lens has 
been optimised and used as a point detection-based 
snapshot Stokes polarimeter [200, 201]. It was also altered 
to become a Stokes polarimetric imaging device with the 
conoscopic interference pattern removed by a pre-
determined matrix division procedure [198]. 

8.6 Single mode fibres 

From the perspective of polarimetry, realistic single mode 
fibres are strongly birefringent and weakly diattenuating. 
A circularly symmetric design for single mode fibres 
would be perfectly polarization maintaining (without any 
birefringence and diattenuation), and the Mueller matrix 
would be represented by an identity matrix. However, 
there exist many random symmetry-breaking 
imperfections in a fibre including the geometric 
asymmetry (e.g. slightly elliptical cores) and intrinsic 
mechanical stress induced by the fibre manufacturing 
process, as well as extrinsic stresses induced by bending, 
twisting, squeezing, temperature changes and other effects 
[202]. These asymmetries cause that two orthogonal 
polarizations of the fundamental mode (HE11) to 



propagate with different velocities, known as polarization 
mode dispersion (PMD) [203]. In high speed fibre optic 
communications, PMD causes pulse broadening, leading 
to an increase in bit-error rate. The effect for polarimetry 
is that a single mode fibre is birefringent and behaves 
similarly to a phase retarder. The polarization properties 
may be controlled by bending, twisting and squeezing the 
fibre, which is the basis of fibre polarization controllers. 
Generally, the phase retardance is proportional to the 
curvature of bending and applied squeezing pressure, and 
the orientation of effective optic axis is controlled by 
subtle twist so as to construct an equivalent fibre optic 
Soleil-Babinet compensator. For a silica fibre bent into a 
single loop, the phase retardance is specified by,  
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where d is the diameter of the fibre, D is the diameter of 
the loop, λ is the wavelength, and a is a constant (1.33 for 
silica) introduced by the photoelastic effect.  

The asymmetries of fibres also cause the differential 
absorption of light for the two orthogonal axes, known as 
the polarization dependant loss (PDL) in fibre optics. PDL 
exactly corresponds to diattenuation in polarimetry and 
can be determined directly by Mueller polarimetry. It is 
worth mentioning that ‘polarization maintaining’ fibres 
(PM fibres) are actually not strictly polarization-
maintaining. A systematic high birefringence is 
intentionally introduced in PM fibres so that the 
birefringence generated by the random asymmetries is 
almost negligible compared to the systematic 
birefringence, and the systematic birefringence prohibits 
coupling between the two orthogonal principle 
polarization directions. Therefore a PM fibre can only 
maintain two linear polarization states along the two 
orthogonal principle polarization directions of the fibre. 

9. Mueller polarimetric endoscope and fibre 

Mueller polarimeter 

Mueller polarimetric imaging has enormous potential for 
tissue sensing and characterization. The technique is 
strongly desirable for further validation in the form of 

preclinical trials and clinical pilot studies. However, this 
technique has not progressed into an in vivo stage. A 
primary obstacle is the lack of a suitable endoscopic 
system to implement Mueller polarimetric imaging. Such 
a system would normally require endoscope-compatible 
designs of the PSG and the PSA, which may be highly 
complex and expensive. The utilisation of an endoscope 
with non-polarized imaging channel will be able to 
simplify the design of the PSA, which will allow the 
analysis of tissue reflectance SOPs at the proximal end of 
the scope without complex miniaturization [53, 196]. 
However, since the illumination channel depolarizes the 
incident light significantly, one solution would be to only 
miniaturize the PSG and place it at the distal end. 

9.1 3 × 3 Mueller polarimetric endoscope 

In one approach developed by the authors [94], 3×3 
Mueller polarimetry was used to measure the top left 3×3 
sub-matrix of a complete 4×4 Mueller matrix, which is 
capable of revealing a large proportion of useful 
polarization information. 3×3 Mueller polarimetry can be 
implemented involving linear polarization alone and 
therefore simplifies the system design and the 
measurement procedures by obviating the need for phase 
retarders. 3×3 Mueller polarimetry was first adopted for a 
Mueller polarimetric endoscope to detect tissue linear 
depolarization and retardance, the most noticeable 
polarization parameters. A ring shaped linear polarizing 
film shown in Figure 8 was fixed on the top of the distal 
end of the illumination channel (double crescent shaped 
as displayed in Figure 8(a)). The full miniaturization of 
the PSG was avoided by rotating the endoscope to 
generate 0°, 45° and 90° linear polarized light. The 
backscattered light from the tissue was imaged through 
the nearly polarization maintaining rigid endoscope to the 
linear PSA at the proximal end. A typical acquisition time 
of a Mueller polarimetric image using this endoscope is 
11.6 s. It is noted that the angle of view, the working 
distances of this polarimetric endoscope is not affected by 
the polarimetric devices, but mainly determined by the 
laparoscope employed. The angle of view of the 
laparoscope was about 70° and its working distance 
ranges from 0.5 cm to over 15 cm. The digital resolution 
of the system is dependent on the CCD camera used.   

 



Figure 8. A 3 × 3 Mueller polarimetric endoscope. (a) View of the distal end of endoscope. (b) Ring shaped linear polarizing film 
covering illumination channel. (c) Side-view of the endoscope. The figure was reproduced from [94]. 

The acquired 3×3 Mueller polarimetric images were 
interpreted using a similar method to polar decomposition 
for a complete Mueller matrix [204]. As a result, linear 
depolarization, retardance and linear diattenuation can be 
obtained to reconstruct images. The abdomen of a rat was 
imaged using this endoscope and one set of results is 
displayed in Figure 9. The organs can be discriminated 
based on their different polarization properties, for 
example, the liver demonstrated a remarkably low 
depolarization (represented by a high polarization 
maintaining power in Figure 7 (b)) because the liver 
contains the most blood of all the imaged organs. The 
multiply scattered light undergoes strong absorption by 
haemoglobin at 546 nm. The polarized singly scattered 
light take up the largest portion of total reflectance and 
hence the liver presents a highest polarization maintaining 
power. In contrast, since haemoglobin does not absorb as 
much at 628 nm as it does at 546 nm, the polarized 
incidence can be further depolarized and backscattered by 
deeper tissue resulting in a low polarization maintaining 
power. The stomach showed different retardance to the 
other organs at both the wavelengths. The distinguished 
retardance property of the stomach might be related to the 
very thick muscular layer in stomach which is birefringent.  

It is noted that there are some underlying assumptions 
that were not fully addressed in the first paper introducing 
the interpretation method of 3×3 Mueller matrices in [204]. 
Firstly, the circular diattenuation should be known or 
otherwise could be assumed to be zero; secondly, the 
depolarization matrix has to be in a diagonal form; thirdly, 
the linear depolarization for 0°/90° and -45°/+45° should 
be identical. The assumptions - especially the latter two - 
cannot be satisfied in many cases, especially for 
anisotropic tissues. Based on Monte Carlo simulation and 
tissue phantom studies, Wang et al. assessed the 
difference between the results obtained from 3×3 Mueller 
matrix decomposition [204] and 4×4 Mueller polar 
decomposition [205], and found that the parameters 
derived from the 3×3 Mueller matrix decomposition are 
usually not the same as those from the 4×4 Mueller matrix 
decomposition but demonstrate similar qualitative 
relations to changes in the microstructure of the sample, 
such as the density, size, and orientation distributions of 
the scatterers, and birefringence of the interstitial medium. 
Another emerging interpretation method named “Mueller 
matrix transformation method” introduced in Section 5.3 
may be more promising to extract the useful linear 
depolarization and retardance related information of tissue 
from 3×3 Mueller matrix images. 

 
Figure 9. (a) Unpolarized image of a rat abdomen, small bowel (red arrows), stomach (purple arrows), liver (white arrows) and fat 
(blue arrows). (b) linear polarization maintaining power image at 546 nm (c) linear polarization maintaining power image at 628 nm. 
Linear retardance at (d) 546 nm and (e) 628 nm (represented by the cosine of linear phase retardance value). The images show a field 
of 5.5 cm × 5.5 cm with a working distance of 5 cm. The figure was reproduced from [94]. 

The optimization of the PSG and PSA for 3×3 Mueller 
polarimetry can be based on maximizing the determinant 
and minimizing the 2-norm condition number of their 
instrumental matrices. In our later study [197], we showed 
that one set of optimal configurations is obtained when the 
PSG generates 0°, 60° and 120° linearly polarized light 
with 0°, 60° and 120° linear polarizers as analysers in the 
PSA. 

9.2 Complete Mueller polarimetric endoscope 

4×4 Mueller polarimetry was also achieved in our 
previous work [137, 206] by using a rotating endoscope 
sheath as shown in Figure 9. A ring shaped horizontally 
positioned linear polarizing film was attached on the 

illumination channel of the stationary laparoscope. At the 
distal end of the sheath, a ring shaped rotatable quarter 
retarding film was mounted. The rotation of the sheath 
was controlled by a motorised rotation stage at the 
proximal end of the laparoscope. The fast axis of the 
rotatable retarding film was selected to be -45°, 0°, 30° 
and 60° in order to generate the optimal polarization states 
according to the optimisation done for a rotating-retarder 
Stokes polarimeter in [183]. A free-space PSA was used 
at the proximal end of the endoscope. The free-space PSA 
and the endoscope, which was effectively a linear retarder, 
can be considered as an endoscopic PSA. A typical 
acquisition time of a Mueller polarimetric image using 
this endoscope is about 30 seconds due to the slow 
rotation stage and a slow time sequential PSA. A much 
faster Mueller polarimetric endoscope system based on a 



non-time sequential PSA and a PSG based on a faster 
motor can potentially work in real time. It is noted that the 
angle of view, the working distances of this polarimetric 
endoscope is also mainly determined by the laparoscope 
employed, and the digital resolution of the system is also 
dependent on the CCD camera. 

This complete Mueller polarimetric endoscope (MPE) 
has been used to image a porcine bladder tissue in high 
definition [137]. As shown in Figure 10, the endoscope 
comprehensively characterized polarization properties of 
a stretched porcine bladder by measuring Mueller 
matrices, and thus provided a number of useful image 
contrast mechanisms besides traditional unpolarized 
radiation intensity, including linear depolarization, 
circular depolarization, crossed-polarization, 
birefringence and the fast axis orientation. Figure 10(h) 
demonstrates that image contrast was enhanced by the 
circular depolarization (second column), linear 
depolarization (third column) and crossed-polarization 
(fourth column) images compared to the polarization 
insensitive image (first column) in two representative sub-
regions indicated by the squares in Figure 10(d). In the 
upper sub-region, the fibrous structures could hardly be 
observed in the polarization insensitive image, but could 
be easily distinguished in the depolarization and crossed-
polarization images due to polarization gating effect 
introduced earlier. The fibrous structures observed in 
depolarization were mainly distributed near the tissue 
surface, and those in the cross polarization image were in 

deeper tissue. The image contrast was also quantified 
according to the grey-level co-occurrence matrix method 
[207] and image gradient assessment over the bladder 
sample, and a remarkable rise of image contrast by 
depolarization and crossed-polarization images were 
further confirmed.  

The serosa of the bladder imaged here is known to 
consist mainly of collagen and elastin fibrils according to 
second harmonic generation microscopy [21] and 
electronic microscopy studies [208]. Structures consisting 
of birefringent collagen and elastin, that cannot be 
visualized by traditional unpolarized endoscopes, have a 
critical role in detection of epithelial cancer, obstructive 
disease of bladders [21], etc. The total phase retardance 
arising from the bladder serosa was successfully observed 
and appeared to be spatially varying. A high retardance 
normally corresponds to well organized (aligned) fibrils. 
The fast axis orientation image is mainly related to the 
spatial orientations of fibrils. A continuous rise of 
retardance and an increasingly uniform distribution of fast 
axis orientation were also observed when stretching the 
bladder, because the spatially disordered anisotropic 
micro-structures of collagen and elastin become better 
aligned due to the applied one dimensional mechanical 
force in the stretching process (recorded in a video shown 
in the original paper). These subtle changes were 
apparently not detectable by polarization insensitive 
imaging.



 

Figure 10. A high definition 4 × 4 Mueller polarimetric endoscope (MPE). (a) The Mueller polarimetric endoscope consists of a 
stainless steel sheath, a motorised rotation stage, a rigid endoscope, a polarization state analyser (PSA) and a CCD image sensor. The 
part that rotates during acquisition is represented in red, and the stationary part is in purple. (b) retardance image, (c) the fast axis 
orientation image, (d) polarization insensitive image for comparison, (e) circular depolarization, (f)linear depolarization images, and 
(g) crossed-polarization image of the stretched porcine bladder. (h) As an example to illustrate image contrast enhancement, the 
unpolarized (first column), circular depolarization (second column), linear depolarization (third column) and crossed-polarization 
(fourth column) images of two representative sub-regions indicated by the squares in (d) were demonstrated. Image contrast was 
quantitatively assessed by employing two metrics – the grey-level co-occurrence matrix analysis (GLCM) [207] and the mean value 
of image gradient magnitudes that can be used to denote sharpness of texture in the image. The image contrast values calculated with 
the two metrics are displayed below each sub-image in (h), and higher values are superior. (b, c, e, f) were obtained by decomposing 
the Mueller polarimetric images. The areas enclosed by blue lines are affected by pixel saturation and are invalid. (b-g) shows an area 
about 7.8 cm × 7.8 cm with the working distance 8 cm. The figure was reproduced from [137] 

9.3 Polarimetric endoscopes based on stereo-

endoscopes 

Stereo-endoscopes make use of two separate imaging 
channels to provide surgeons with stereo vision during 
minimally invasive surgery. The two imaging channels 
can be used to acquire images in parallel, e.g. snapshot co-
polarized (CO) and cross-polarized (CR) images with 
respect to illumination polarization, and therefore 
demonstrate inherent advantages to accelerate acquisition 
speed for polarimetric imaging. Such an endoscope has 
been constructed in [51], as shown in Figure 11 (a, b), and 

was used to improve the image contrast in narrow band 
imaging procedures. This polarization endoscope can be 
used for real time polarization imaging. The in vivo results 
were obtained during a surgical procedure on a porcine 
subject. The depolarization image was constructed by 
using the equation (CO-CR)/(CO+CR) convey 
information about superficial tissue. The CR image 
conveyed information about deeper tissue. The porcine 
bladder tissues showed wavelength dependent variations 
and an increase of superficial blood vessel visibility under 
polarized detection because the high absorption of 
haemoglobin in the vessels leads to shorter pathlengths of 



backscattered light, resulting in a much lower 
depolarization, as demonstrated in Figure 11(c). The 

system was further developed to allow for the detection of 
the top left 2×2 Mueller matrix elements at video rate [52]. 

  
Figure 11 Polarized stereo-endoscope. (a) Tip optics. A linear polarizer placed over the endoscope face generates linear polarized 
light. The co-polarized (CO) component is detected through the right channel while a separate section with its polarization axis 
orthogonal collects cross-polarized (CR) light, (b) proximal optics. Bandpass filters and colour cameras were used for in vivo narrow 
band imaging. (c) Standard colour (left column) and pseudo-RGB-colour images reconstructed from tissue polarization information 
(right column) of porcine bladder. The values assigned in the red channel represente the signal from deep structures conveyed by CR 
image and those assigned in blue/green channels corresponde to more superficial tissue conveyed in (CO-CR)/(CO+CR) image. White 
arrows indicate vascular features whose visibility has been enhanced based on a Weber contrast measurement. The figure was 
reproduced from [51] 

 

9.4 Single mode fibre based laser Mueller 

polarimeter 

A single mode fibre Mueller polarimeter was first 
demonstrated in [209], by assuming that a single mode 
fibre is a pure retarder containing constant linear 
retardance and circular retardance, but no depolarization 
and diattenuation (no PDL). In our opinion, the 
assumptions are reasonable if relatively short fibres (e.g 
tens of centimetres) resulting in negligible PDL and a light 
source with small bandwidth (e.g. lasers) resulting in 
minimal spectral depolarization are employed in the 
system. The technique is based on two subsequent 
Mueller matrix measurements: a calibration measurement 
and a sample measurement, and it is also assumed that 
there is no bending and twisting that may strongly affect 
the PMD (or retardance property) of the single mode fibre 
during measurements so that the parameters obtained 
from the calibration remain the same during the sample 
measurements.  

In the calibration measurement, a fibre double-pass 
Mueller matrix was recorded by placing a mirror at the 
distal end of the fibre. The Mueller matrix of the first 
forward pass through the fibre can be represented by a 
retardance matrix containing both linear and circular 
retardance, expressed by 
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The second (backward) pass is then represented by 
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The double pass Mueller matrix can thus be written as 
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As a rotation matrix, Rot(x) is orthogonal, so the bottom 
right part of the matrix in Equation (50) becomes 
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Therefore, double-passing a single mode fibre is 
effectively a linear retarder with linear phase retardance 
δL and the fast axis orientation (2φ+δC). Since a fibre 
double-passing Mueller matrix has been obtained in this 
calibration measurement, the linear retardance δL and the 
summation of the fast axis orientation(×2) and circular 
retardance of the single mode fibre (2φ+δC) can be 



determined according to Equation (16) in Section 3, with 
φ and δC still unknown individually.  

In the sample measurement, the measured Mueller 
matrix Mm at the proximal end is determined by 

_   _m SMF b s SMF fM M M M    (52) 

where Ms denote the Mueller matrix of the sample 
investigated. With Equation (48), (49) and (52), the 
following equation can be derived,  
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     (53) 

With the δL and (2φ+δC) obtained in the calibration 
measurement, the right part of Equation (53) can be 
calculated. The Mueller matrix of the sample Ms cannot 
be fully determined due to the unknown fast axis 
orientation φ of the fibre, but it turned out that the effect 
of this unknown φ is equivalent to a rotation of the 
measured sample on the sample plane. Therefore, this 
does not affect absolute values of polarimetric parameters 
of the sample, except its absolute orientation axis values. 
This fibre Mueller polarimeter was validated by sensing a 
rotating waveplate on the top of a mirror as shown in 
Figure 12(b).  

This technique allowed Mueller polarimetry to be 
implemented through a flexible optical fibre for the first 
time and the acquisition of Mueller matrices for non-

depolarizing samples was demonstrated. It is a point-
detection technique and would need a scanning system to 
form images. It is also noted that a coherent light source 
(a laser) was employed in this polarimeter to guarantee the 
coupling efficiency. Therefore, this fibre polarimeter has 
to be used carefully due to the presence of speckle. It is 
known that a single mode fibre has a small core diameter 
of typically several microns. This diameter could be 
smaller than a speckle size induced by a laser 
backscattered from tissue, and as a result, the measured 
DOP of the emergent light from the tissue might be always 
close to 1 rather than being sensitive to tissue 
depolarization properties. 

 

 

 

Figure 12. (a) Schematic of the single mode fibre Mueller polarimeter. (PIBS: Polarization Insensitive Beam Splitter; MSM: Micro-
Switchable Mirror; PSG: Polarization State Generator; PSA: Polarization State Analyser). (b) The validation results by sensing a 
rotating waveplate sample on the top of a mirror. The vertical axis denotes linear retardance. The figure was reproduced from [209] 

9.5 High speed single mode fibre Mueller 

polarimeter  

The fibre Mueller polarimeter mentioned in Section 9.4 
was constructed based on tuneable ferroelectric liquid 
crystals. It took 70 ms for a single measurement of a 
Mueller matrix [209], which is not compatible with the 

demands of modern fast raster scanning systems for 
imaging [210]. Moreover, bending and twisting of the 
fibre are essential for endoscopic applications, and as 
reviewed in the last section, the PMD of a single mode 
fibre is extremely sensitive to bending and twisting of the 
fibre which may invalidate the crucial assumption that the 
linear retardance and circular retardance of the fibre 
should be unchanged.  



 

Figure 13. Schematic of the high speed single mode fibre Mueller polarimeter. (SLD: super luminescent diode, C: passive polarization 
state coding block, D: passive polarization state decoding block, NPBS: non-polarizing beam splitter cube, RM: reference mirror, PaR: 
50% partial reflector, PrM: probe mirror. or the Coding and Decoding blocks, P1, P2: linear polarizers are crossed, R1, R2, R3, R4 
are retarders oriented respectively at 45°, 0°, 0° and 45° according to the orientation of P1). The figure was reproduced from [210] 

The issue was recently addressed by Rivet et al. [210]. 
A spectrally encoded snapshot Mueller polarimeter was 
converted into a high speed single mode fibre Mueller 
polarimeter in this work [210]. As discussed in the 
previous section, for a spectrally encoded snapshot 
Mueller polarimeter, the phase retardance of each retarder 
in the PSG and PSA is passively modulated in the 
wavelength domain, rather than actively modulated by 
rotation of retarders in the time domain, so the time 
sequential PSA and PSG in Section 9.4 were replaced by 
the retarder plates of the coding and decoding blocks as 
shown in Figure 13.  

The technique is the same as Section 9.4, also based 
on two Mueller matrix measurements: a calibration 
measurement and a sample measurement procedure. 
Nevertheless, these two necessary Mueller matrix 
measurements were conducted simultaneously, and were 
recorded in one spectrum by the spectrometer. Calibration 
signals and backscattering signals from the sample were 
distinguished by making use of the coherence gating 
technique. A low coherence light source (a super-
luminescent diode) was employed in this work for 
coherence gating.  

In detail, there were in total three components to the 
light signal: 1) the light that passed forwards through the 
reference arm, was reflected by a mirror (‘RM’ in Figure 
13), then passed back through the reference arm; 2) the 
light that passed forwards through the probe arm, was 
reflected by a partial reflector at the distal end of the fibre 
(‘PaR’ in Figure 13), then passed back through the probe 
arm; 3) the light that passed forwards through the probe 
arm, transmitted through the partial reflector, 
backscattered from the sample, and passed back through 
the probe arm. The optical pathlength difference (OPD) 
between component 1 and component 2 was adjusted to 
be smaller than the coherence length of the source to 
create interference, while the OPD between components 1 
and 3 was beyond the coherence length. This interference 
appeared in the high frequency region of the Fourier 
domain of the spectrum, and conveys information about 

the Jones matrices for double-passing the probe and 
reference arms. It is noted that the Jones matrix for 
double-passing the reference arm could be predetermined, 
which allowed the Jones matrix for double-passing the 
probe arm to be obtained, which corresponds to the 
calibration measurement in Section 9.4. Therefore, the 
linear retardance δL and the summation of the fast axis 
orientation (×2) and circular retardance of the single mode 
fibre (2φ+δC) of the probe arm can be calculated. The 
backscattered signals represented by component 3 
corresponded to “the sample measurement” in Section 9.4. 
This signal did not interfere with components 1 and 2, so 
it appeared in the low frequency part of the Fourier 
domain of the spectrum. The Mueller matrix of the sample 
can thus be determined according to Equation (53). In this 
way, the two time sequential Mueller matrix 
measurements (calibration and sample measurements) in 
Section 9.4 were substituted by a simultaneous 
measurement of the wavelength spectrum. The Mueller 
matrix of the sample and the single mode fibre in the probe 
arm can thus be obtained at the same time (via Fourier 
analysis of the spectrum specified in spectrally encoded 
snapshot Mueller polarimetry [171, 172]). 

This polarimeter was validated using linear polarizers 
and waveplates. It is found that the retardance and the 
diattenuation of the components for validation can be 
more accurately extracted than depolarization. The 
technique achieved an acquisition rate as high as 70 kHz 
and is tolerant to fibre perturbations during acquisition, 
which is a significant step to develop a raster-scanning 
probe for Mueller polarimetric imaging. It is still assumed 
that all the optical elements (except the coding and 
decoding retarder plates) are achromatic and that the 
single mode fibre is a retarder without diattenuation and 
depolarization. The dispersion of the fibre can induce 
spectral depolarization and may invalidate the assumption 
that SMF is a pure retarder, leading to depolarization 
errors [210]. The polarimeter will be tested with scattering 
samples in the future [210]. 



10. Summary and outlook 

Mueller polarimetric imaging has demonstrated 
compelling potential for biomedical applications in recent 
years, as reviewed in this paper. The latest advances in this 
field include the investigation of the polarized light tissue 
interactions, the instrumentation of Mueller polarimeters, 
the interpretation of Mueller matrices and the 
development of Mueller polarimetric endoscopes and 
fibre sensors. The progress is paving the way to translate 
this technique into in vivo preclinical trials and for 
potential adoption into clinical practice for better tissue 
diagnosis and surgical guidance in the future. Many 
ongoing studies in this field are looking at further clinical 
applications, which can be combined with pathological 
inspections and statistical analysis to further translate 
physically meaningful data interpreted from the Mueller 
matrices into clinically meaningful data. The detection of 
optically thick tissues in a reflection mode would be more 
desirable and of more practical significance to apply the 
technique in surgery and optical biopsy than that in a 
transmission mode.  

Mueller polarimetric imaging may sometimes 
contain redundant information for some tissue types, e.g. 
isotropically depolarizing tissues, non-birefringent tissues, 
for which partial Mueller polarimetry and Stokes 
polarimetry would be sufficient. It would be desirable to 
ensure that the most meaningful data are collected so as to 
fundamentally simplify the instrumentation and 
acquisition, and reduce the cost.  

As a promising technique, Mueller polarimetric 
imaging for surgical and diagnostic applications is still in 
its infancy, and there is no doubt that much research still 
needs to be done. It is anticipated that Mueller 
polarimetric imaging can become an accessory imaging 
modality for surgical imaging in the future. 
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