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Abstract

Several module and class testing techniques have been applied to object-oriented programs, but
researchers have only recently begun developing test criteria that evaluate the use of key OO features
such as inheritance, polymorphism, and encapsulation. Mutation testing is a powerful testing technique
for generating software tests and evaluating the quality of software. However, the cost of mutation testing
has traditionally been so high it cannot be applied without full automated tool support.

This paper presents a method to reduce the execution cost of mutation testing for OO programs by
using two key technologies, Mutant Schemata Generation (MSG) and bytecode translation. This method
adapts the existing MSG method for mutants that change the program behavior and uses bytecode
translation for mutants that change the program structure. A key advantage is in performance: only two
compilations are required and both the compilation and execution time for each is greatly reduced.

A mutation tool based on the MSG/bytecode translation method has been built and used to measure
the speedup over the separate compilation approach. Experimental results show that the MSG/bytecode
translation method is about five times faster than separate compilation.
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1 Introduction

Object-oriented design, programming, and languages offer many advantages to software developers and
provide solutions to old problems. However, the novel object-oriented language features introduce new kinds
of problems that in some cases require novel solutions [6]. Researchers have been developing new methods
and techniques to test object-oriented software for a number of years. Early work focused on testing of data
abstractions and state behavior [7, 20, 21, 24, 31, 40, 55, 58]. Subsequent work looked into testing of classes
and issues such as what kind and how many objects should be instantiated and in what order classes should
be tested [8, 9, 26, 39]. More recently, researchers have looked at integration issues of OO software and
testing of complete classes [23, 27, 28, 54].
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Finally, researchers have started to look for ways to test the essential OO language features of inheritance
and polymorphism [4, 43, 54]. Several different ideas have been put forward, each with advantages and
disadvantages. One recent idea is to use mutation testing to test classes; approaches have been proposed by
Kim, Clark and McDermid [34, 35], Chevalley and Thévenod-Fosse [10, 11], Ma, Kwon and Offutt [43], and
Alexander et al. [3].

Mutation testing [25, 41] is a fault-based testing technique that measures the effectiveness of test cases.
Mutation testing is based on the assumption that a program will be well tested if a majority of simple faults
are detected and removed. Simple faults are introduced into the program by creating a set of faulty versions,
called mutants. These mutants are created from the original program by applying mutation operators, which
describe syntactic changes to the programming language. Test cases are used to execute these mutants with
the goal of causing each mutant to produce incorrect output. A test case that distinguishes the program
from one or more mutants is considered to be effective at finding faults in the program.

Mutation testing involves many executions of programs; thus cost has always been a serious issue. Many
techniques for implementing mutation testing have proved to be too slow for practical adoption. This paper
presents a design and results from an implementation of a mutation system that is based on a novel execution
strategy that combines mutation schemata [60] with bytecode translation.

1.1 Mutation Execution Speed

Several approaches have been developed to reduce the computational expense of the mutation testing. Untch
categorized the approaches into three strategies, do fewer, do smarter, and do faster [59, 60]. The do fewer
approaches try to run fewer mutant programs without incurring intolerable loss in effectiveness. The do
smarter approaches seek to distribute the computational expense over several machines or factor the expense
over several executions by retaining state information between runs. The do faster approaches focus on ways
to generate and run mutant programs as quickly as possible. These methods have been developed for
traditional programming languages, and are not all applicable to OO languages.

This paper presents a do faster method for OO inter-class mutation testing. This involves examining
whether existing do faster methods can be applied to object-oriented programs. This approach primarily
attempts to reduce the compilation time. These ideas have been implemented in an automated OO mutation
system, which has been compared with previous execution techniques. Most of the OO mutation operators
are independent of language; however, they have only been implemented in Java and so have some Java
dependencies. The implementation method depends on the use of reflection, so can only be used in languages
that support reflection.

The contents of the paper is as follows. Section 2 summarizes the current status of OO mutation testing.
Section 3 describes the existing cost reduction methods for mutation testing. Section 4, the main part of
the paper, presents the technique for executing mutation on OO programs and describes the tool. Section
5 presents experimental results from a cost comparison. Section 6 presents conclusions and discusses future
work.

2 Mutation Testing for OO Programs

OO programs have many characteristics that differ from traditional programs. They are often structured
differently and they contain new features such as encapsulation, inheritance, and polymorphism. These
differences and new features in OO programs change the requirements for mutation testing.

A major difference for testers is that OO software changes the levels at which testing is performed
[23, 27]. In OO software, unit and integration level testing can be classified into four levels: (1) intra-method,
(2) inter-method, (3) intra-class, and (4) inter-class. This classification follows definitions by Harrold and
Rothermel [27] and Gallagher and Offutt [23].

• Intra-method Level:
Intra-method level faults occur when the functionality of a method is implemented incorrectly. Testing
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within classes corresponds to unit testing in conventional programs. So far, researchers have assumed
that traditional mutation operators for procedural programs [2, 16, 51] will suffice for this level (with
minor modifications to adapt to new languages).

• Inter-method Level:
Inter-method level faults are made on the connections between pairs of methods of a single class.
Testing at this level is equivalent to integration testing of procedures in procedural language programs.
Interface mutation [16], which evaluates how well the interactions between various units have been
tested, is applicable to this level.

• Intra-class Level:
Intra-class testing is when tests are constructed for a single class, with the purpose of testing the class
as a whole. Intra-class testing is a specialization of the traditional unit and module testing. It tests
the interactions of public methods of the class when they are called in various sequences. Tests are
usually sequences of calls to methods within the class, and include thorough tests of public interfaces
to the class.

• Inter-class Level:
Inter-class testing is when more than one class is tested in combination to look for faults in how they are
integrated. Inter-class testing specializes the traditional integration testing and seldom used subsystem
testing, where most faults related to polymorphism, inheritance, and access are found.

Another difference for object-oriented languages is that mutation operators that handle new types of
faults [53] introduced by OO-specific features are needed. A set of class mutation operators [34, 35, 43] has
been developed for this purpose.

Third, an OO mutation system should be able to extract information and execute programs from an
object-oriented standpoint. For example, user-defined types (that is, classes) and references to user-defined
types must be handled. Control, data, inheritance and polymorphic relationships among components should
also be considered. The following subsections briefly summarize the previous research in OO mutation
testing. Most of this has focused on developing mutation operators rather than developing algorithms and
techniques for implementing them in usable and efficient tools.

The tool described in this paper implements both inter- and intra-class mutation operators. This paper
primarily focuses on studying the inter-class, or object-oriented, operators. Much is already known about
intra-class (statement level) mutation operators.

2.1 Class Mutation Operators

The first attempt to define mutation operators to detect faults related to OO-specific features was by Kim
et al. [35]. They designed thirteen class mutation operators that were extended to sixteen by Chevalley [10].
A subsequent systematic classification of OO specific faults in terms of language syntax by Offutt et al. [53]
revealed several types of OO faults that the previous operators do not model. Alexander et al. [3] proposed a
different scheme for mutating objects. Their approach relies on making changes to the data state of objects
during execution rather than the program.

Based on this fault classification and previous work, Ma et al. [43] developed a comprehensive set of class
mutation operators for Java. This set of 24 mutation operators is summarized in Table 1. Each mutation
operator is related to one of the following six language feature groups. The first four groups are based on
language features that are common to all OO languages. The fifth group includes language features that are
Java-specific, and the last group of mutation operators are based on common OO programming mistakes.
Complete and precise definitions of these operators were presented in a previous paper [43]. As is usual with
mutation operators, they are only applied in situations where the mutated program will still compile.

1. Information Hiding (Access Control)
In our experience, access control is a common source of mistakes among OO programmers. The
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Language Feature Operator Description
Access Control AMC Access modifier change

IHD Hiding variable deletion
IHI Hiding variable insertion
IOD Overriding method deletion

Inheritance IOP overriding method calling position change
IOR Overriding method rename
ISK super keyword deletion
IPC Explicit call of a parent’s constructor deletion
PNC new method call with child class type
PMD Instance variable declaration with parent class type

Polymorphism PPD Parameter variable declaration with child class type
PRV Reference assignment with other comparable type
OMR Overloading method contents change

Overloading OMD Overloading method deletion
OAO Argument order change
OAN Argument number change
JTD this keyword deletion

Java-Specific JSC static modifier change
Features JID Member variable initialization deletion

JDC Java-supported default constructor creation
EOA Reference assignment and content assignment replacement

Common EOC Reference comparison and content comparison replacement
Programming Mistakes EAM Accessor method change

EMM Modifier method change

Table 1: Mutation Operators for Inter-Class Testing

semantics of the various access levels are often poorly understood, and access for variables and methods
is not always considered during design. Poor access definitions do not always cause faults initially, but
can lead to faulty behavior when the class is integrated with other classes, modified, or inherited from.
The AMC mutation operator has been developed for this category.

2. Inheritance
Although inheritance is a powerful and useful abstraction mechanism, incorrect use can lead to a
number of faults. Seven mutation operators have been defined to test the various aspects of using
inheritance, covering variable hiding, method overriding, the use of super, and definition of constructors.

3. Polymorphism
Polymorphism and dynamic binding allow object references to take on different types in different
executions and at different times in the same execution. That is, object references may refer to objects
whose actual types differ from their declared types. In most languages (including Java and C++), the
actual type can be any type that is a subclass of the declared type. Polymorphism allows the behavior
of an object reference to differ depending on the actual type. Four operators have been developed for
this category.

4. Overloading
Method overloading allows two or more methods of the same class or type family to have the same name
as long as they have different argument signatures. Just as with method overriding (polymorphism), it
is important for testers to ensure that a method invocation invokes the correct method with appropriate
parameters. Four mutation operators have been defined to test various aspects of method overloading.
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5. Java-Specific Features
Because mutation testing is language dependent, mutation operators need to reflect language-specific
features. Java has a few object-oriented language features that do not occur in all OO languages and
four operators have been defined to ensure correct use of these features. They cover use of this, static,
default constructors and initialization.

6. Common Programming Mistakes
This category attempts to capture typical mistakes that programmers make when writing OO software.
These are related to use of references and using methods to access instance variables. Four operators
have been developed for this category.

2.2 Mutation Tools for OO Testing

Mutants are created from a test program using an automated mutation system. Test cases are then added
in an attempt to “kill” the mutants by differentiating the output of the original program from the mutant
programs.

Mutation tools must be designed and implemented differently for OO languages. Mutation operators
for conventional (non-OO) languages do not change type or data structure declarations. The mutation
operators that have been designed for Java do, so an OO mutation system needs to be able to make those
changes. It must also access information in a program from an OO standpoint. For instance, the CRT
operator, which replaces reference types with compatible types, needs to use inheritance relationships to
create mutants. Also, abstract syntax trees, which are typically used in procedural mutation systems, do
not allow immediate access to object-oriented features of the source code.

One of the first implementations for OO mutation was by Chevalley and Thévenod-Fosse [10]. They
pointed out that the traditional syntactic analysis technique is not sufficient for implementing an OO muta-
tion system and suggested using reflection [33, 44] to overcome this problem.

Reflection [33, 44] allows a program to (1) access its internal structure and behavior, and (2) manipulate
that structure, thereby modifying its behavior based on rules supplied by another program. Reflection is
a natural way to implement mutation analysis for several reasons. First, it lets programmers extract OO-
related information about a class by providing an object that represents a logical structure of the class
definition. This helps solve the first problem in implementing a mutation analysis system, parsing the
program. Second, it provides an API to easily change the behavior of a program during execution. This can
be used to create mutated versions of the program. Third, it allows objects to be instantiated and methods to
be invoked dynamically. Java provides a built-in reflection capability with a dedicated API [47]. This allows
Java programs to perform functions such as asking for the class of a given object, finding the methods in that
class, and invoking those methods. However, the Java language as defined does not provide full reflective
capabilities. Specifically, Java only supports introspection, which is the ability to introspect data structures,
but does not support alteration of the program behavior. Several reflection systems [12, 36, 57, 61] have
been proposed to complement the Java reflection API [47]. Because of differences in these systems, which
reflection system is selected can significantly affect the efficiency of mutation analysis and testing.

Chevalley and Thévenod-Fosse’s tool established the feasibility of applying mutation analysis to class-
level testing and identified three problems. First, the research was developed before the class mutation
operators were well established and did not support all the current mutation operators. Second, their tool
separately compiles each mutated class, a very slow process. Finally, their tool generates mutants but does
not support the execution of mutants and tests. The research project reported here started with Chevalley
and Thévenod-Fosse’s work and has the goal of addressing the remaining problems.

A previous paper [43] reported on mutation operators that more completely addresses potential OO
faults. This paper reports on algorithms and techniques for efficient implementation of a full class-level
mutation system. A followup paper [42] reported on a mutation tool that supports the entire process of
mutation testing.

However, these two approaches [10, 42] have a very serious drawback – low performance. They are slow
because they use an inefficient way to create mutant programs: creating a copy of the original source code
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and then changing it for each mutant. Although this approach is very simple, it is too computationally and
spatially expensive because hundreds of mutated programs must be stored and compiled. Therefore, a more
efficient method to improve the performance is needed to allow useful tools to be built.

To solve this problem, this paper proposes a novel approach that generates mutants directly from the
bytecode. Since the approach works directly on the bytecode, it is not necessary to recompile each mutant, a
serious performance problem with previous mutation tools. The following section briefly describes bytecode
translation toolkits. The paper then discusses a way to improve the performance of mutation testing, and
follows with results from a proof-of-concept implementation.

2.3 Bytecode Translation

Bytecode translation is a technique that has some abilities in common with reflection, but uses a very different
approach. Bytecode translation inspects and modifies the intermediate representation of Java programs,
bytecode. Since it directly handles bytecode, it has some advantages over source-level translation. First,
it can process an off-the-shelf program or library that is supplied without source code. Second, it can be
performed on demand at load time, when the Java virtual machine loads a class file.

Several toolkits are available for bytecode translation, including BCA [32], BCEL [15], Javassist [12],
JMangler [37], and JOIE [14]. This section presents some of the abilities of bytecode translation and discusses
how some of these tools implement them. The reader should be aware that this is not a complete survey or
comprehensive overview of the technique; the goal of this section is to provide enough background so that
the reader can understand how bytecode translation is used in this research.

1. Kinds of Translations
BCA [32], Javassist [12], and JMangler [37] place restrictions on the kinds of modifications that trans-
formers are allowed to make. The intent is to make it less likely that a change will result in a program
that would not have passed a compiler check and that will correctly run in the JVM. For example,
Javassist [12] does not allow existing fields and methods to be removed. However, BCEL [15] and JOIE
[14] allows all kinds of modifications to be made, including addition, change and removal of fields and
members, as well as arbitrary changes to code.

2. JVM Independence
BCA [32] requires a modified JVM to work with the class loading process. Therefore, programmers
must use a specific platform and a specific JVM. The other bytecode translators are implemented in
pure Java, so are independent of the JVM.

3. Correctness
All the transformed bytecodes should be structurally correct, and also be compatible with other binaries
that the classes are linked with. Otherwise the transformed class may not work correctly. Javassist
[12] and JMangler [37] enforce this restriction, but other bytecode translators do not.

4. Ease of Use
Bytecode translators can be difficult to use for developers who are not intimately familiar with Java
bytecode. BCA [32] and Javassist [12] were designed to be easy to learn with only a limited knowledge
of bytecode, and our experience has found this to be true. However, both BCA and Javassist cover a
limited set of modifications.

3 Overview of a Java OO Mutation System

This paper presents the design of and results from an OO mutation testing system that uses MSG [60]
and bytecode translation. It uses MSG to generate one “meta-mutant” program at the source level that
incorporates many mutants. The tool, MuJava, works directly on the bytecode; thus it only requires two
compilations: compilation of the original source code and compilation of the metamutants generated with
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MSG. This design allows faster performance than mutation systems that compile all mutants such as the
two previous OO Java systems [10, 42] and Proteum for C [16, 17]. Older tools such as Mothra [19] modified
and interpreted intermediate code that was designed specifically for mutation. Since interpretation generally
runs around 10 times slower than compiled programs, MSG and bytecode translation can be significantly
faster.

The class mutation operators have different characteristics from traditional mutation operators. In par-
ticular, they require changes to the structure of the program such as definitions of class variables. Traditional
mutation operators only change the behavior of the program, not the structure. Therefore new methods are
needed to change the structure.

This section describes how to deal with these problems. First, the Mutant Schemata Generation (MSG)
method [60], is adapted for class mutation operators that change the behavior of the program. It creates
a “meta” version of the test program that contains all mutants and requires only one compilation. A new
method based on bytecode translation is introduced for class mutation operators that change the structure
of the program. Since bytecode translation allows the structure of the bytecode to be changed directly, it
does not require additional compilation.

Mutants that change the behavior of the program are called behavioral mutants and the mutants that
change the structure of the program are called structural mutants. The class mutation operators from Table
1 fall into these categories as follows:

• Behavioral Class Mutation Operators
IOP, ISK, PNC, PRV, OMR, OAO, OAN, JTD, EOA, EOC, EAM, EMM

• Structural Class Mutation Operators
AMC, IHD, IHI, IOD, IOR, IPC, PMD, PPD, OMD, JSC, JID, JDC

Note that the experimental results in this paper do not use the AMC operator. AMC changes the
access level, which in the vast majority of the cases either creates a mutant program that will not compile
(breaking the access) or creates a mutant program that is equivalent to the original program (wider access).
The only situation where AMC can create a killable mutant is when it creates a naming conflict that is
resolved dynamically, and the mutant program is resolved differently from the original. This is such a rare
case that we feel the AMC operator is not useful, and include it in the discussion only because it appeared
in the previous conference paper [43]. Also, we merged OAO into OAN because the behaviors of these two
operators are similar. So, all the results from the OAN operator of this paper corresponds to the combined
results from both OAO and OAN operators.

Figure 1 illustrates the overall structure of MuJava. Behavioral mutants and structural mutants are
generated and executed by different engines, then their results are combined. The following subsections
describe the major steps summarized in this figure.

3.1 Generating and Running Behavioral Mutants

Traditional (non-OO) mutants are all behavioral in nature, so existing mutant generation techniques can
be used. This paper adapts the MSG method [60], which has been found to be significantly faster than
interpretive systems for traditional intra-class mutation operators. MuJava implements both inter- and
intra-class mutation operators, but this research primarily focuses on studying inter-class mutation. The
following subsections briefly describe MSG and how to use it to generate and execute behavioral mutants.

3.1.1 MSG Method

The MSG method encodes all mutants for a program into a specially parameterized program, called a
metamutant. The metamutant is derived from the program under test P, the metamutant is compiled
using the same standard compiler used to compile P, and it runs at compile-speeds. While running, the
metamutant has the ability to function as any of the mutant programs of P.
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Figure 1: Overall Structure of MuJava

To explain how one metamutant can represent all the functionality of an entire collection of mutants,
mutation analysis must be understood. Recall that for a program P, each mutant of P is formed as a result
of a single modification to some statement in P. Thus, each mutant of P differs from the original by only
one mutated statement. The way in which these statements are altered is dictated by the set of mutation
operators used.

Consider the arithmetic operator replacement (AOR) operator (AOR is not an OO mutation operator; it
is used to provide a simple example). The AOR operator replaces each occurrence of an arithmetic operator
by each of the other possible arithmetic operators. Applying this rule to the assignment statement Result =
A - B yields the following four mutated statements:

Result = A + B;
Result = A * B;
Result = A / B;
Result = A % B;

These mutations can be generically represented as

Result = A ArithOp B;

where ArithOp is a metaoperator abstract entity. The generic representation above can be rewritten as the
syntactically valid statement

Result = AOrr (A, B);

where the AOrr function performs one of the five possible arithmetic operations. AOrr is an example of a
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metaprocedure, a function that corresponds to an abstract entity in the schema. A statement that has been
changed to this type of generic form is said to have been metamutated. A metamutation is a syntactically
valid change that embodies other changes.

When generating the metamutant of a program P, a list of mutant descriptors is produced. This
list details the alternate operations to be used at each change point in the program. Using this list, the
metamutant is dynamically instantiated to function as any of the mutants of P.

3.1.2 Implementation Details

The process of generating and running behavioral mutants is illustrated in Figure 2. Major components
from Figure 1 are elaborated inside the behavioral mutants generator and behavioral mutants executor boxes.
Compile-time reflection [29] is used to analyze the original program source and to generate Java source for
mutants. MuJava uses OpenJava [56, 57] for compile-time reflection because it provides enough information
to generate mutants and it is easy to use. The MSG engine uses compile-time reflection to generate a
metamutant program that has a metaprocedure call and definitions of metaprocedures. The metamutant
is generated as source, then compiled. To execute mutants, the metamutant is loaded into the JVM, then
mutants are obtained by using the list of mutant descriptors to repeatedly instantiate the metamutant.

behavioral mutants executor

behavioral
mutants

generator

JVM

original
program

(source code)
generate

metamutant
(source code)

metamutant
(byte code)

compile
metamutant

(class)
test

result
load execute

mutanti
( object )instantiate

compile-time reflection
+ MSG

class loader Standard Java
reflection API [47]

Java compiler

... ...

Figure 2: Mutation Process for Behavioral Mutants

Four additional issues must be considered before using the MSG method for OO programming languages:
(I) object references, (II) polymorphism, (III) instantiation overhead, and (IV) the number of mutants. These
issues are illustrated below in the context of specific mutation operators; other operators are similar in nature.

I. Object
An object is a dynamically created instance of a class pointed to by references. Unlike traditional programs,
an OO program is executed by a set of objects. Most variable accesses and method calls are accomplished
by referring to an object. Therefore, the metaprocedure must be modified to accept an object reference as
an additional parameter.

Consider the OAN mutation operator that changes the number of the arguments in overloading method
invocations. Assume that there is a variable a of type A and class A has two overloaded methods with the
signatures void f (int, int, char) and void f (int, char). Then, for the statement below,

a.f (2, 3, ’c’);

two mutated forms, a.f(2,‘c’) and a.f(3,‘c’), are syntactically possible. Mutation creates all mutants that are
syntactically correct. So, the tool does standard compile-time type checking based on inheritance information
and Java type conversion rules. MSG changes the original statement to a metaprocedure f oan (a, 2, 3,
’c’);. Note that an additional argument, a, is added to pass the object reference as a parameter. The
implementation of f oan() is given as.

void f oan (A obj, int p1, int p2, char p3)
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{
switch (mutantID)

{
case 1: obj.f (p1, p3); break; // a.f (2, ’c’);
case 2: obj.f (p2, p3); break; // a.f (3, ’c’);
default: obj.f (p1, p2, p3); // original code

}

The object reference is needed to call the method, so the parameter obj of type A is included in the parameter
list of the metaprocedure f oan(). The metaprocedure f oan() generates two mutants: a.f (2, ’c’) and a.f (3,
’c’) according to the value of mutantID.

II. Polymorphism
Polymorphism allows an object reference to take on any type that is a descendant of the declared type. This
presents difficulties for mutation because the operators for polymorphism generate mutants of diverse types.

The PNC mutation operator causes the object reference to refer to different types from the declared
type. If class B inherits from class A and C inherits from B, for the statement below,

A a = new A();

a can reference an object of type B or C. The PNC operator generates two mutated statements (PNC is
only applied when the constructor signatures match):

A a = new B(); // mutated statement 1

A a = new C(); // mutated statement 2

A return type must be chosen to design the metaprocedure for this example. A metaprocedure should be
able to return instances of type A, B, and C.

Java allows automatic object reference conversion when the conversion is “up” the inheritance hierarchy.
Therefore, for the statement A a = new B();, the reference of type B is automatically converted to type A
and assigned to the reference variable a of type A. Note that the type of the variable a is not type B but
type A, although a is instantiated by the expression new B(). Therefore, a metaprocedure for this case can
be implemented with the return type of A, the declared type of the variable a. The implementation of the
metaprocedure for this example is shown below.

private A pnc()

{
switch (mutantID)

{
case 1 : return (new B()); // mutated statement 1

case 2 : return (new C()); // mutated statement 2

default : return (new A()); // original code

}
}

III. Instantiation Overhead
Executing a metamutated statement or function can incur overhead, because the statement or function must
perform some logic to decide which version of the statement or function is to be executed. On the other
hand, the original statement is executed most of the time and is much cheaper to run. The MSG method
uses a strategy called twinning to improve performance of metamutants. Each statement appears in two
forms: a metamutated form and the original form. The original form is used when no mutant is needed for
that statement, saving significant execution time on every execution of a mutant.
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This is implemented by assigning a unique ID to each method and to each statement of the program.
Each mutant is then associated with a MethodID and StatementID. Consider the example shown below. If a
method whose method ID is 3 is executed with a mutant whose method ID is 4, the original form of the 3rd
method is executed. However, if the mutant’s statement ID is 8, the metamutated form of that statement is
executed.

if (MethodID == 3)

{
if (StatementID == 8)

{ metamutated form of the 8th statement; }
else

{ original form of the 8th statement; }

... ...

}
else

{ original form of the 3rd method; }

IV. Statements with Few Mutants
In traditional non-OO mutation analysis, most statements have many mutants. With the OO operators,
however, many statements only have a few mutants. Using metaprocedures for statements that only have a
few mutants imposes unnecessary overhead from the method call. For example, the ISK mutation operator
produces only one mutant; the keyword super is deleted or inserted. For an ISK mutant, an if-else is more
efficient than calling a metaprocedure.

3.2 Generating and Running Structural Mutants

Structural mutants change aspects of the program’s structure such as variables and method declarations.
Non-OO mutation operators have no need to modify program structure. The MSG method is not appropriate
to change the program structure, because the case structure cannot change declarations of variable and
methods.

MuJava uses bytecode translation to change data structures. Changing the bytecode directly means
that additional compilation is not required. MuJava uses BCEL [15, 22] because it supports all structural
mutation operators, in contrast to limitations imposed by other bytecode translation toolkits. The following
subsections briefly describe BCEL and how it is used for mutation analysis.

3.2.1 Byte Code Engineering Library (BCEL)

The BCEL API helps developers make changes at a high level of abstraction through three components:

1. A package of classes that describe “static” constraints on class files. This reflects the class file format
and is not intended for bytecode modifications. This is useful for analyzing Java classes without
requiring the source files to be available. The top-level data structure is a JavaClass, which consists of
fields, methods, and symbolic references to the parent class and to interfaces that the class implements.

2. A package to dynamically generate or modify bytecode. It can be used to insert analysis code, to
strip unnecessary information from class files, and to implement the code generator back-end of a Java
compiler. For example, the ClassGen class offers an interface to add methods, fields, and attributes to
a class.

3. Various code examples and utilities such as a class file viewer, a tool to convert class files into HTML,
and a converter from class files to the Jasmin assembly language [46].
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MuJava uses the first and second components, but does not need the third. The first component is used
to analyze the original bytecode, then extract information about the location of the bytecode to be mutated
and which mutation operator to apply. The second component is used to generate mutants by modifying
the bytecode.

3.2.2 Generating Structural Mutants

The overall process of generating and running structural mutants is illustrated in Figure 3. Major components
from Figure 1 are elaborated inside the structural mutants generator and structural mutants executor boxes.

structural mutants executor

structural
mutants

generator

JVM

original
program

(byte code)

test
result

execute
mutanti

( object )instantiate
mutanti

( byte code )

bytecode
transformation

class loader i
Standard Java

reflection API [47]

original
program

(source code)
compile

Java compiler

loadgenerate
... ... ... ... ... ...

mutanti
( class )

Figure 3: Mutation Process for Structural Mutants

To apply bytecode translation, the original source code is compiled by a Java compiler. The program
structure is modified in the resulting bytecode by using the BCEL API to add and delete class members.
As an example, Figure 4 shows a sequence of statements that generates IOD structural mutants. The IOD
mutation operator deletes overriding methods.

class Parent

{
public void temp()

{
System.out.println ("This is a parent");

}
}

class Child extends Parent

{
public void temp()

{
System.out.println ("This is a child");

}
}

Figure 4: Parent and Child Classes

The example in Figure 4 has two classes, Parent and Child. Child has an overriding method temp().
The IOD operator generates a mutant by deleting temp() in Child. The statements to implement IOD are
shown in Figure 5. It first gets the bytecode of Child then determines if Child has any overriding methods.
If it does, a new copy of the bytecode for Child is produced without temp().

Other structural mutants are produced in a similar fashion. By modifying the bytecode, structural
mutant generation only requires one compilation.
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JavaClass childClassObj = Repository.lookupClass ("Child");

Method[] methods = childClassObj.getMethods();

for (int i=0; i<methods.length; i++)

{
if (isOverridingMethod (methods[i]))

{
ClassGen cgen = new ClassGen (childClassObj);

cgen.removeMethod (methods[i]);

File mutantF = new File (MUTANT DIR, childClassObj.getClassName()+".class");

cgen.getJavaClass().dump (new File ("mutant"));

}
}

Figure 5: Example Code for IOD Mutant Generation

Mutated versions of the bytecode have the same name as the original class file, and are saved in a
different directory. The JVM loads Java classes through class loaders. However, there is no support in Java
to redefine a class that has already been loaded. Therefore, in order to load mutant classes that have the
same name as the original class, different class loaders are assigned to each mutant. Loaded mutant classes
are then instantiated and executed against the tests using Java reflection [47].

3.3 The MuJava Tool

The Java class mutation operators in Table 1 have been implemented in a tool called MuJava (Mutation
System for Java). MuJava is the result of a collaboration between two universities, Korea Advanced Institute
of Science and Technology (KAIST) in South Korea and George Mason University in the USA. MuJava is
available for experimental and educational use and the MuJava Web site is mirrored at both universities;
http://salmosa.kaist.ac.kr/LAB/mujava/ at KAIST and http://www.ise.gmu.edu/∼ofut/mujava/ at
GMU. The Web sites have links to download the MuJava jar files, a description of the tool, and detailed
instructions as to how to install and use MuJava.

MuJava has three major functions: (1) generate mutants, (2) analyze mutants, and (3) run test cases
supplied by the tester. To compile mutants, MuJava uses the class com.sun.tools.javac.Main included in
JDK. Test cases are supplied by the tester in the form of methods that contain sequences of calls to methods
in the class. Each test method should have no parameters and return a string result that is used to compare
outputs of mutants with outputs of the original class. Each test method should start with the string “test”
and have public access. A small example test set for a Stack class is shown in Figure 9. MuJava provides
a graphical user interface for each function, which consists of three tabbed panels as shown in Figures 6, 7
and 8.

Figure 6 shows the interface for generating mutants with class mutation operators as well as traditional
mutation operators. Testers can select the files for which they want to create mutants and choose which
mutation operators to apply. Pressing the “Generate” button prompts the tool to generate mutants. After
generation, the information for each mutant is shown in the “Mutants Viewer” tabs.

Figure 7 shows the interface for analyzing mutants, which displays the portions of the original source
code that are changed by the mutant. It is subdivided into a part for viewing class mutants and another for
traditional mutants. The interface for the class mutants is further divided into two parts because MuJava
generates mutants in two different ways (MSG and bytecode translation).

The upper part shows behavioral mutants generated with MSG. All behavioral mutants are encoded
into one metamutant, and reading this code is very difficult. This graphical aid simplifies the viewing. By
selecting a mutant listed at the left, the tester can see the mutated code on the right side highlighted in red.
This helps testers both to design tests to kill mutants and to identify equivalent mutants.

The lower part of the screen in Figure 7 shows structural mutants generated with bytecode translation.
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Figure 6: GUI for Generating Mutants

Structural mutants are generated directly from the bytecode, thus the mutated part cannot be displayed
directly. Instead, brief descriptions of the mutated part are displayed by selecting a mutant name and
number on the left. Future work includes developing algorithms to show source code level representations of
structural mutants.

The interface in Figure 8 shows the interface for running tests. It executes mutants against the test set
and shows the test result in the form of a mutation score of the test set. Pressing the “Run” button causes
the mutants to be executed against the test set. The results of the mutation testing and information about
the live and dead mutants are shown on the lower right hand side.

4 Experimental Performance Evaluation

A major goal of this research is to empirically determine whether a mutation tool that uses a combination
of MSG and bytecode translation gives better performance than a mutation tool that uses compile-time
reflection. A secondary goal is to evaluate how many mutants are created by each operator. A third was to
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Figure 7: GUI for Analyzing Mutants

compare performance of the MSG method with bytecode translation. Performance is compared between the
MSG/bytecode translation mutation tool MuJava and the compile-time reflection tool described previously
[42]. Both tools are implemented in the same programming language and support the same language and
mutation operators, which reduces threats to internal validity of the results. The two tools are only different
in the design and implementation, allowing a direct performance comparison to be made.

The same programs were executed by both mutation tools and execution times for each system are
compared. This experiment only considers class mutation operators. One additional threat to internal
validity is that the JDK compiler is used. It has been suggested that the JDK compiler is slow, introducing
a bias against the compile-time technique; however, this is also expected to be the most common tool used by
testers, so the results reflect expected usage. The experimental subjects, procedure, and results are described
below.
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Figure 8: GUI for Generating and Executing Test Cases

4.1 Experimental Subjects and Numbers of Mutants

For comparison, a collection of open source classes were downloaded. The Byte Code Engineering Library
(BCEL) [22] system from Apache / Jakarta is an open source project created to analyze, create, and ma-
nipulate Java bytecode files. This subject system was chosen because it is widely used, and large enough
to give good results without being impractical to use. Not counting abstract and interface classes, BCEL
contains 264 Java classes. Inter-class mutation operators were applied to each of the 264 classes, resulting
in a total of 3,812 mutants. The mean number of mutants per class was 14.44, with a standard deviation of
47.05, and there were approximately 1.53 times more behavioral mutants than structural mutants.

The number of mutants per mutation operator is shown in Table 2. For those knowledgeable of mutation,
it is worth pointing out that the total number of class mutants is relatively small. Traditional mutation
operators usually result in hundreds of mutants for methods of 20 to 30 lines. For example, 951 mutants are
generated for the commonly studied 30-line triangle classification program TriTyp [49]. For the traditional
operators used in Mothra, the number of mutations has been quantified as O(V als×Refs) [48], where Vals
is the number of data objects and Refs is the number of data references. However, in BCEL, the average
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public class StackTest
{

public String test1 ()
{

String result;
Stack obj = new Stack();
obj.push (2);
obj.push (4);
result = “”+ obj.isFull()+obj.pop();
return result;

}
public String test2 ()
{

String result;
Stack obj = new Stack();
obj.push (5);
obj.push (3);
result = “”+ obj.pop()+obj.pop();
return result;

}
}

Figure 9: An Example Test Set for Class Stack

number of class mutants for 264 classes is only 14.44 and the average number of lines per class is 84.7.
Although the number of class mutants has not yet been quantified, it is clear from the subject programs
that far fewer mutants are created with class mutation operators. The actual number depends on the use of
OO language features and will be determined as this research further matures.

One point to note is that the distribution of the class mutants is not even. For example, no mutants
are generated by the IHD, PMD, PPD, and ISK operators, while 1,016 mutants are generated for the EAM
operator (almost one third of the total). Although the number of mutants created by each mutation operator
reflects the usage of OO language feature related with the operator, the small numbers for some operators
do not necessarily indicate the operators are useless. It is possible that they will cause tests to be created
that are very effective at detecting specific kinds of faults, as has been the case with statement mutation
operators. The availability of the MuJava tool will allow experimentation to be carried out to answer these
kinds of questions.

4.2 Experimental Procedure

It being impractical to generate tests for all 264 BCEL classes, a smaller set was used to carry out the
performance comparison. Seven classes were chosen according to two criteria. The first was to try to choose
classes that are as “representative” as possible. Of course this brings up a perpetual problem with empirical
software engineering research: there is no formal notion of how to choose a representative sample of programs.
This study attempted to choose representative classes by choosing classes with a variety of sizes. That is, the
sizes (in terms of lines, variables, methods and inheritance depth) of the classes are reasonably distributed
among the 264 BCEL classes. Of course, any selection introduces a threat to external validity whose effect
is difficult to analyze.

A second criterion for selection was based on the type of mutant. More than 60% of the class mutants
are behavioral, and many of the classes had few structural mutants. For the performance comparison, seven
BCEL classes of varying sizes were chosen, with the requirement that each had at least eight structural
mutants. These seven classes and the number of class mutants for each are summarized in Table 3.

Test sets were created to kill all class mutants for each class. A test set is comprised of test cases and
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Mutation Total # Mean #
operators of mutants of mutants

IHD 0 0.00
IHI 96 0.36
IOD 496 1.88
IOR 497 1.88

Structural IPC 173 0.66
operators PMD 0 0.00

PPD 0 0.00
OMD 10 0.04
JSC 11 0.04
JID 115 0.44
JDC 106 0.40

Sub-Total 1,504 5.70
IOP 44 0.17
ISK 0 0.00
PNC 243 0.92
PRV 289 1.09

Behavioral OMR 59 0.22
operators OAN 53 0.20

JTD 203 0.77
EOA 4 0.02
EOC 5 0.02
EAM 1,016 3.85
EMM 392 1.48

Sub-Total 2,308 8.74
Total 3,812 14.44

Table 2: Class Mutants for 264 BCEL Classes

each test case is a sequence of method calls. The “methods” column in Table 3 gives the number of methods
in each class (with the number of constructors in parentheses), and the “test size” column gives the average
(mean) number of method calls per test for each class. (Only calls to methods in the class under test were
counted, excluding the constructors.) Thus, each test case can cover many statements, branches, and kill
many mutants. The test sets also satisfied branch coverage for all methods. The tests were created by hand.
First, tests to execute every method at least once were generated. Then live mutants were examined and
tests to kill them were generated. This procedure was repeated until all mutants were killed. The number
of test cases needed for each class is shown under the “test cases” column in Table 3.

These seven Java classes were tested with both mutation systems. The same tests and the same set of
mutants were used for both systems. The total execution times of each class for all mutants and all tests
under each mutation system were calculated by the following formula:

Total Time = Mutants Generation Time + Mutants Execution Time

The mutants generation time is the time needed to generate all mutants. The mutants execution time
for each class is the execution time of all tests on all the mutants plus the time for producing the mutation
results (mutation score). The number of executions is calculated by multiplying the number of mutants
by the number of test cases. Class c7, for example, had 110 mutants and 51 test cases, resulting in 5,610
executions.
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Class Lines Vars Methods Inher. Test Test Mutants

(Const.) depth cases size Structural Behavioral Total

c1 80 0 5 ( 3 ) 2 5 5.6 8 3 11
c2 126 0 9 ( 4 ) 2 9 1.9 8 4 12
c3 80 2 9 ( 1 ) 1 11 2.2 13 5 18
c4 319 5 14 ( 2 ) 0 17 1.4 9 27 36
c5 205 2 33 ( 1 ) 1 35 2.0 64 1 65
c6 380 13 42 ( 3 ) 1 47 2.8 9 77 86
c7 533 13 37 ( 4 ) 0 51 2.3 14 96 110

Table 3: Summary of Seven Experimental Classes

4.3 Experimental Results

This section presents three analyses of the difference in execution time between the two approaches. First,
the combined MSG/bytecode translation method is compared with separate compilation, then the bytecode
translation method (structural mutants only) is compared with separate compilation. Finally, the MSG
method (behavioral mutants only) is compared with separate compilation.

4.3.1 MSG/Bytecode Translation vs. Separate Compilation

Data comparing all mutants generated and executed with the MSG/bytecode translation method and sep-
arate compilation method are shown in Table 4. For both mutation analysis techniques, the table shows
the generation time, the execution time, and the total time. Speedup is calculated by dividing the time for
separate compilation by the time for the MSG method.

MSG / Bytecode Separate Compilation Speedup
Class Mutants gen. exec. total gen. exec. total gen. exec. total

time time time time time time time time time
c1 11 842 829 1,671 4,768 1,084 5,852 5.66 1.31 3.50
c2 12 1,016 1,022 2,038 5,295 1,432 6,727 5.21 1.40 3.30
c3 18 808 2,414 3,222 6,402 3,232 9,634 7.92 1.34 2.99
c4 36 3,672 1,311 4,983 19,115 3,068 22,183 5.21 2.34 4.45
c5 65 1,224 7,252 8,476 24,290 7,308 31,598 19.84 1.01 3.73
c6 86 3,209 1,901 5,110 34,283 8,659 42,942 10.68 4.55 8.40
c7 110 5,020 2,676 7,696 52,717 11,362 64,079 10.5 4.25 8.33

total 338 15,791 17,405 33,196 146,869 36,145 183,014 9.30 2.08 5.51

Table 4: Execution Time Comparison for All Mutants
All times in milliseconds. Gen. time = mutants generation time, exec. time = mutants execution time.

The MSG/bytecode translation method is more efficient for both mutant generation and mutant execu-
tion. The total time to generate and execute mutants with the MSG/bytecode translation method was 5.51
times faster on the average than with separate compilation. The mutant generation time and the mutant
execution time were 9.30 times and 2.08 times faster on the average. In our opinion, these across the board
speedups make a pretty convincing case for using this method to implement mutation for Java programs.
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4.3.2 MSG vs. Separate Compilation

The times of generating behavioral mutants and executing them and the total time with the MSG method
and separate compilation are shown in Table 5. Speedup is again calculated by dividing the total time for
separate compilation by the total time for the MSG method.

Behavioral
MSG method Separate Compilation Speedup

Class mutants gen. exec. total gen. exec. total gen. exec. total
time time time time time time time time time

c1 3 774 41 815 1,440 216 1,656 1.86 5.27 2.03
c2 4 944 68 1,011 1,942 498 2,440 2.06 7.37 2.41
c3 5 663 80 743 1,911 598 2,509 2.88 7.51 3.38
c4 27 3,600 344 3,943 14,505 2,301 16,806 4.03 6.69 4.26
c5 1 701 56 757 702 92 794 1.00 1.64 1.05
c6 77 3,116 995 4,111 30,766 7,753 38,519 9.87 7.99 9.37
c7 96 4,797 1,243 6,040 45,710 9,827 55,537 9.53 7.79 9.37

total 213 14,595 2,286 17,421 96,977 21,284 118,261 6.64 7.53 6.79

Table 5: Execution Time Comparison for Behavioral Mutants
All times in milliseconds. Gen. time = mutants generation time, exec. time = mutants execution time

The MSG method was found to be more efficient for both mutant generation and test execution on the
average. The average total time is 6.79 times faster than separate compilation. Both the generation time
and execution time were faster, and faster by similar amounts (6.64 and 7.53 on the average). Generally
speaking, the difference was greater with more mutants.

The speedup in execution time may be more surprising than the speedup in generation time, because
of the overhead incurred with the MSG method. However, there is also an overhead with the separate
compilation method. Specifically, each mutant requires a different class file to be loaded. Java classes are
loaded through “class loaders.” However, the JVM does not support redefinition of a class that is already
loaded. Thus, to load a new mutated class, a new class loader is needed. Also, to avoid side effects caused
by using classes that are related to the mutated class, all related classes are also reloaded through the new
class loader. The MSG method only needs one class loader, because all mutants are integrated into one class
file. This reduces the overhead for loading mutants with MSG.

4.3.3 Bytecode Translation vs. Separate Compilation

The times of generating structural mutants and executing them and the total time with the bytecode trans-
lation method and separate compilation are shown in Table 6.

As it turned out, the average total time of the bytecode translation method was 4.26 times faster than
separate compilation. However, the speedup in generation time with bytecode translation was noticeably
high, 44 times on the average, whereas the speed of execution was the same for both techniques.

The fact that there was a greater difference in the generation time should not be surprising. Generating
mutants with bytecode translation involves working with efficient structures (the bytecode objects), and is
done mostly in memory. Generating mutants with compile-time reflection involves parsing program source,
which is more time consuming and requires more disk accesses. As an example, to find the type of a variable
at the source code level, the program must make a number of inferences from the program context, but this
information is directly available in the bytecode.
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Structural
Bytecode Translation Separate Compilation Speedup

Class mutants gen. exec. total gen. exec. total gen. exec. total
time time time time time time time time time

c1 8 68 788 858 3,520 788 4,308 51.76 1.00 5.03
c2 8 72 955 1,027 3,619 955 4,573 50.26 1.00 4.45
c3 13 145 2,334 2,479 4,675 2,334 7,009 50.26 1.00 2.83
c4 9 72 967 1,039 5,284 967 6,251 32.24 1.00 6.02
c5 64 523 7,196 7,719 23,922 7,196 31,117 73.39 1.00 4.03
c6 9 93 906 999 4,197 906 5,103 45.74 1.00 5.11
c7 14 223 1,433 1,9656 7,409 1,433 8,842 33.23 1.00 5.34

total 125 1,196 15,775 15,775 52,624 14,579 67,203 44.00 1.00 4.26

Table 6: Execution Time Comparison for Structural Mutants
All times in milliseconds. Gen. time = mutants generation time, exec. time = mutants execution time.

4.3.4 Discussion

Table 5 showed that the MSG method achieved an average speedup of 6.79 times in generating and executing
behavioral mutants over separate compilation and Table 6 showed that the bytecode translation method
achieved an average speedup of 4.26 times in generating and executing structural mutants over separate
compilation. While both the MSG method and the bytecode translation were found to be faster than
separate compilation, it is interesting to note that they were faster for different reasons. The MSG method
improves on both mutant generation and execution. The mutants generation time is reduced by conducting
only one compilation. The mutants execution time is reduced by loading only one class, metaclass, whereas
bytecode translation only improves on mutant generation but by a much bigger factor. This factor can be
obtained because lots of information which must be inferred when source code is used is directly available
in the bytecode.

In fact, the bytecode translation method can be used for both structural mutants and behavioral mutants
in contrast to the MSG method, which can be applied only to behavioral mutants. However, we used the MSG
method in our approach because, in one of our experiments conducted with some behavioral mutants, the
bytecode translation method achieved a speedup comparable to the case with structural mutants. Although
a direct comparison is not possible with the small experiment, the MSG method appears to be more efficient
than the bytecode translation method. However, it is not correct to interpret that the MSG method should be
used exclusively over bytecode translation because the MSG method cannot be used for structural mutants.

Another interesting point to note, particularly to researchers familiar with traditional mutation, is
that execution times are reasonably comparable with generation times. With traditional statement-level
mutation, many more tests are usually required and the generation time winds up being insignificant when
compared with the execution time. This is not the case with class level mutation, primarily because there
are few mutants, and the nature of the tests (sequences of method calls) means that fewer tests are needed.

4.3.5 Limitations and Threats to Validity

A strength of this comparison is that it was possible to use two mutation tools that were written in the same
language and implemented the same collection of mutation operators. This is a rare luxury in empirical
software engineering and eliminates internal validity threats due to environmental factors.

Some concerns were mentioned previously. The tools used the JDK compiler, which is considered to be
fairly slow and thus introduces a bias against the separate compilation approach. The fact that the JDK
compiler is used so widely, however, means that it is likely to be the typical way that mutation tools would
be used.

21



As is usual in software engineering experiments, there is also the question of how representative the
subjects are. This study tried hard to reduce the threat to external validity by this factor. It is encouraging,
although not definitive, that the results are reasonably consistent across the subjects.

5 Related Work in Performance of Mutation

There have been a number of attempts to overcome the performance problem of mutation testing. As
described in Section 1.1, they usually follow one of three strategies: do fewer, do smarter, or do faster.

The do fewer approaches try to run fewer mutant programs without incurring unacceptable information
loss. Mutant sampling [1, 5, 62] uses a random sample of the mutants and is the simplest do fewer approach.
Although this approach lowers execution cost, it also weakens the mutation adequacy criterion. Wong and
Mathur suggested the idea of selective mutation to be applying mutation only to the most critical mutation
operators being used [63, 64]. This idea was later developed by Offutt et al. [48, 52] who identified a set
of selective operators for Fortran-77 with Mothra. Results showed that selective mutation provide almost
the same test coverage as non-selective mutation. It might be worthwhile to identify selective OO mutation
operators as well.

The use of non-standard computer architecture has been explored as a do smarter approach. This ap-
proach distributes the computational expense over several machines. Work has been done to adapt mutation
analysis system to vector processors [45], SIMD machines [38], Hypercube (MIMD) machines [13, 50], and
Network (MIMD) computers [65]. Weak mutation [30] is another do smarter approach. It is an approxi-
mation technique that compares the internal states of the mutant and original program immediately after
execution of the mutated portion of the program. Experimentation has shown that weak mutation can
generate tests that are almost as effective as tests generated with strong mutation, and that at least 50%
and usually more of the execution time is saved [49].

The do faster approaches try to generate and run mutants as quickly as possible. A particular goal
of the do faster approach is to avoid the interpretative execution, the primary reason that older mutation
analysis systems were slow. In the separate compilation approach, each mutant is individually created,
compiled, linked and run. However, unless mutant run time greatly exceeds individual compilation/link
times, a system based on such a strategy will experience a compilation bottleneck [13]. Compiler-integrated
program mutation [18] seeks to avoid excessive compilation overhead and yet retain the benefit of compiled
speed execution by directly modifying linked object code. However, crafting the special compiler needed
turns out to be very expensive and difficult. Another do faster approach is the Mutant Schema Generation
(MSG) [60] method that was used in this research.

6 Conclusions and Future Work

This paper presented three results. First was an approach and collection of mutation operators for intra-
class testing of object-oriented software based on mutation. These ideas initially appeared in a conference
paper [43]. Second was an application of an existing mutation do faster approach, the mutant schemata
generation (MSG) method, to the testing of object-oriented software. MSG was used previously for C with
statement-level operators and had to be adapted to be used with class-level operators. Third was a tool for
applying mutation at the object-oriented level and results from using that tool. These results indicate that
a combination of MSG and bytecode translation can reduce the execution time over a separately compiled
approach.

Traditional mutation testing only changes the behavior of a program. To apply mutation testing to
OO software, it is necessary to generate mutants that change the structure of the program. Therefore, class
mutants were classified into two types, behavioral mutants and structural mutants, and a do faster approach
was devised for each type. An existing method, MSG, was adapted for behavioral mutants. Bytecode
translation is used for structural mutants.
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A key advantage of this solution is that it requires only two compilations: compilation of the original
source code and compilation of the MSG metamutant. This greatly reduces the time needed for mutant
generation.

The mutation system MuJava was built and used to obtain empirical results. These results indicate that
the MSG/bytecode translation method is more efficient than separate compilation, being about five times
faster. When considering MSG and bytecode translation separately, MSG was faster both for generating
and executing behavioral mutants, whereas bytecode translation was much faster for generating structural
mutants but not for execution. Although a direct comparison between the MSG and the bytecode translation
methods is not possible because the current tool uses the two methods to create different type of mutants,
they could be compared with just the behavioral mutants by creating them with the bytecode translation
technique. Preliminary data indicated that the MSG method may be more efficient, but the MSG is inherently
limited by the fact that it cannot change the program structure, so cannot be used for structural mutants.

One difficulty with the MSG method is handling of persistent parts of the state. All mutants generated
by the MSG method run within the same process. This makes it difficult to ensure that each execution starts
with all objects in the same state, because some objects may have parts of their state (that is, variables)
that have values left over from previous mutants. This is not an issue with bytecode translation mutation
systems.

Another advantage of the MSG/bytecode translation is portability. Because the bytecode translation
system that MuJava uses works with any standard Java compiler and JVM, it can easily be moved between
machines and compilers.

This is an ongoing research project. Although the MSG/bytecode translation approach is significantly
faster than separate compilation, its speed can still be improved. In particular, the bytecode translation was
faster when generating mutants, but exactly the same as compile-time mutation when executing mutants. A
major portion of the execution time with bytecode translation is from the loading of different class loaders.
This could be solved by using a run-time reflection system. At this time, however, the only run-time reflection
systems that are available use non-standard JVMs, which are not practical for this project.

The current version of MuJava has some usability issues. MuJava currently does not display mutants
in a very convenient way. The problem of showing mutants in the context of the complete class is harder
than for traditional mutation systems, but it should be possible to show mutants as being embedded in the
original source code.

Finally, now that MuJava is complete, several experiments are planned. An obvious experiment is to
carry out an experimental evaluation of the efficacy of using mutation to test classes, using actual faults. A
refinement of this study would be to determine what kinds of faults can be found by tests that satisfy OO
mutation, and whether tests based on OO mutants find different faults than tests based on statement-level
mutants. The OO mutants were derived from definitions of faults for subtype inheritance and polymorphism
[53], so it is reasonable to expect tests from these mutants to find those kind of faults. An interesting
comparison could be made with the state-modifying mutation operators of Alexander et al. [3]. It is also
possible that the mutant operators could be reduced by using a selective approach. As a first step toward
selective class-level mutation, the number of mutants that are generated must be quantified.
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A Number of Class Mutants for all 264 Classes

This appendix gives data on all 264 classes in BCEL. For each class, the number of lines, variables, methods
and inheritance depth is given, the number of mutants for each type is given, and the total number of
mutants for that class. The last page of the appendix gives a total for all 264 classes. The seven classes that
were used in the experiment are highlighted in bold (class numbers 22, 30, 53, 58, 61, 216 and 252).
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