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Abstract: This research was carried out in order to demonstrate that mulching the ground helps to
conserve water, because agricultural sustainability in dryland contexts is threatened by drought, heat
stress, and the injudicious use of scarce water during the cropping season by minimizing surface
evaporation. Improving soil moisture conservation is an ongoing priority in crop outputs where
water resources are restricted and controlled. One of the reasons for the desire to use less water
in agriculture is the rising demand brought on by the world’s growing population. In this study,
the use of organic or biodegradable mulches was dominated by organic materials, while inorganic
mulches are mostly comprised of plastic-based components. Plastic film, crop straw, gravel, volcanic
ash, rock pieces, sand, concrete, paper pellets, and livestock manures are among the materials put
on the soil surface. Mulching has several essential applications, including reducing soil water loss
and soil erosion, enriching soil fauna, and improving soil properties and nutrient cycling in the
soil. It also reduces the pH of the soil, which improves nutrient availability. Mulching reduces soil
deterioration by limiting runoff and soil loss, and it increases soil water availability by reducing
evaporation, managing soil temperature, or reducing crop irrigation requirements. This review paper
extensively discusses the benefits of organic or synthetic mulches for crop production, as well as
the uses of mulching in soil and water conservation. As a result, it is very important for farmers to
choose mulching rather than synthetic applications.

Keywords: biodegradable mulches; crop production; nutrient availability; organic; soil properties

1. Introduction

Agriculture is the world’s largest water user, accounting for 70% of total consumption.
According to Chen et al. [1], rainfed agriculture accounts for 80% of global cultivated land
and provides 60–70% of the globe’s food. Rainfed agriculture is becoming more popu-
lar in the world for helping in food production as a consequence of increasing drought
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conditions. Water scarcity is caused by climate change or changing rainfall patterns that
reduce agricultural production in arid or semi-arid regions [2]. As a result, water manage-
ment and conservation in the agriculture sector are now a challenge. In addition, rainfed
agriculture in dry land farming is under strain, necessitating more efficient use of water-
saving devices [3]. The main factors limiting agricultural output in dry and semi-arid areas
are restricted water accessibility, availability, and limited precipitation [4,5]. This issue is
becoming more serious as global climate change has a significant impact on agricultural
systems [6]. In dryland regions, inefficient use of precious water, along with drought or
heat stress throughout cropping seasons, poses a danger to agricultural sustainability [7].
Climate change causes severe soil drought and the water in the soil becomes insufficient
for crop growth [8–11]. Figure 1 depicts a schematic representation of how conservation
agriculture interferes with climatic changes and crops.

Figure 1. Schematic representation of how conservation agriculture interferes with climatic changes
and crops.

Drought is a serious problem that is limiting crop production and decreasing agri-
cultural development around the world for a variety of reasons, including rare annual
precipitation and uneven temporal distribution, high evaporation, and water scarcity [12];
these issues are becoming more serious as a result of the significant impacts of global
climate change [13–15] as shown in Figure 2. The main reason for using less water in agri-
culture is the rising demand caused by the world’s growing population. Water availability
for agricultural producers is steadily declining because urban populations’ water needs are
essentially increasing. Farmers are looking for novel approaches to enhance soil moisture
to resolve both of these problems [16–18]. Mulching is one traditional practice that can aid
in the solution to this issue.
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Figure 2. General diagram of different types of drought.

Mulching is a common practice that involves applying materials to the field before,
during, or soon after sowing in order to support and spread over the soil surface, such as
plastic material, crop residues, livestock manure, sands, rocks, and cement [19]. The main
goals of mulching are to limit evaporation or water erosion [20], boost soil temperature,
improve the soil water supply capacity [21,22], and suppress weeds [23]. Mulching causes
improvement in crop production, fosters plant growth, and reduces water usage [24,25] as
shown in Figure 3.
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Figure 3. Comparative approach to the mulched and un-mulched soil/crops.

This review compiled information about mulching, different types of mulching ma-
terials, water conservation through mulching, and the effects of diverse mulching soil
environments on crop growth and development.

2. Types of Mulching Materials

Organic, inorganic, and special materials are the three types of mulching materials.
Agricultural wastes, wood industrial wastes, processed leftovers, and animal manures
are used to make organic mulching materials (Figure 4). Polyethylene plastic films and
synthetic polymers are examples of inorganic mulching materials [26]. Several innovative
biodegradable and photodegradable plastic films, as well as surface coating and biodegrad-
able polymer films for ease of implementation and flexibility, were also introduced as
ecologically friendly materials [27].

2.1. Organic Mulches

Organic mulches are made from plant or animal matter. To get the most out of organic
mulch, it is best used as soon as the crop germinates or when the vegetable seedlings are
transplanted at 5 t ha−1. Organic mulches are effective at minimizing nitrate leaching,
boosting soil physical qualities, enhancing biological activity, balancing the nitrogen cycle,
providing organic matter, controlling temperature and water retention, and reducing
erosion. Natural ingredients are difficult to apply to growing crops and necessitate a lot
of human effort. Organic mulch’s application in horticultural crop production has been
limited due to cost and logistical issues, with only a small amount of large-scale commercial
utilization [28].

2.1.1. Straw

After harvesting, straw or crop remains are readily available. Straw mulch is a
lightweight material that is simple to apply and use. Paddy straw is now commonly
utilized as field mulch, as it improves crop cultivation conditions. When straw is utilized as
mulch, it might cause several issues. Straw mulches need to be replaced every year because
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they are extremely flammable and include grain seeds that could germinate and deplete
soil nitrogen levels as they decompose [29].

Figure 4. Different types of mulching techniques.

2.1.2. Bark Mulches

These are effective mulches as they hold more moisture for an extended time and
prolong the availability of water to the crop. It is often used for landscaping and vegetation.
However, because it is acidic, it should not be used in vegetable fields. On the other hand,
this mulch is ideal for covering the walkways between the beds [30].

2.1.3. Wood Chips

Reprocessed wood and a variety of tree species are used to make wood chips. Because
wood chip mulches have a high C:N ratio, they may restrict the availability of soil nitrogen
available for plant absorption while they decompose [31].

2.1.4. Sawdust

Sawdust is a popular mulch in locations where it is readily available. It is found during
wood finishing procedures. It is lower in nutritional value than straw, with only half the
nutrients. The breakdown is very slow due to the high C:N ratio. Its decomposition will
result in N2 deficiency in the soil, necessitating the use of fertilizer regularly. Because of its
acidic nature, it should not be utilized in low pH soil. It does, however, retain moisture for
an extended period of time [32].

2.1.5. Compost

Compost is an excellent mulch and soil conditioner that may be easily made at home
using a variety of waste items such as leaves, straw, grass, and plant wastes, among
others. Compost availability and utilization in agriculture is a long-standing tradition. It
boosts the properties of the soil, as well as the carbon content, which improves the soil’s
capacity to retain water and improves soil health. Due to its higher N content, compost
is not recommended for use in vegetable fields because of the greater chances of weed
growth [33].
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2.1.6. Newspaper

Newspaper mulching is a cost-effective way to reduce weeds by reducing the chances
of germination of weed seeds fallen from the previous season. The newspaper layers
biodegrade quickly into the soil. Newspaper is preferable to plastic since it decomposes
over time. It is less expensive and less time consuming [34].

2.2. Inorganic Mulches

Plastic mulch is an example of inorganic mulch; it comprises the majority of mulch
used in commercial crop cultivation. Polyvinyl chloride or polyethylene films are the
plastic materials used as mulch. It may raise the temperature around the plants at night
in winter due to its higher permeability to long-wave radiation. As a result, polyethylene
film mulch is recommended as a mulching material for horticultural crop cultivation [35].
Throughout the 1960s, a variety of plastic films based on various types of polymers were
examined for mulching purposes. The technical distinctions between flexible polyvinyl
chloride (PVC), high-density polyethylene (HDPE), and low-density polyethylene (LDPE)
were minimal [36]. Because it is more cost effective to use, LLDPE makes up the over-
whelming majority of plastic mulch today. Black plastic mulch film application is growing
in popularity and it has produced excellent results, especially in arid and semi-arid regions.
Black polyethylene mulch achieved a greater crop yield and quality which increased the
economic value for farmers. It also decreased soil evaporation, modified the microbial
community, and increased soil moisture levels [37].

Fresh vegetables are progressively being produced through a practice known as
“plastic culture”, which involves using plastic as mulch in farming [38]. Over one million
tons of plastic film mulch is used each year in all parts of the world [25]. For instance,
plastic film mulching was used in more than 60,000 ha of greenhouses in Spain in 2012, an
increase of 5.7% (Transparency Market Research, 2016). According to estimates, China uses
0.7 million tons of plastic mulch annually, or 40% of the global total [39]. China, Japan, and
South Korea are currently the three countries that use plastic film mulch the most globally
(80%) [40]. Plastic mulching has increased the production of wheat by about 33.2% and
maize by about 33.7% in China [41].

2.3. Photodegradable or Biodegradable Mulches

A kind of mulch that is simple to use and versatile is photodegradable and biodegrad-
able [42]. Sand, gravel, and concrete are specific sorts of mulch that are rarely utilized,
leading to the absence of nutrients and being very expensive to integrate. Biodegradable
plastic mulch is a more environmentally friendly alternative to polythene mulch. It was
created to prevent the accumulation of LDPE and the pollution caused by plastic waste
in the environment [43]. Biodegradable plastic mulches are now composed of a variety
of polymers or additives that are readily available in the global markets or are similar to
LDPE mulches in terms of crop yield productivity [44]. In organic farming, this form of
mulch also minimizes the need for agrochemicals [45]. According to Wang et al. [46], every
kind of mulch has unique qualities. However, the potency and cost, the local climate, and
the feasibility of planting the crop all play a role in the selection of mulch material that
is incorporated into the soil. Regular application of mulch may have negative effects on
soil efficiency, crop productivity, contamination, and ecosystem services such as food and
water processing, disease control, N2 cycling, and O2 formation, as well as cultural and
aesthetic values [47]. Complete and incomplete degradation are two different levels of
degradation; photodegradation, water degradation, thermal oxidative degradation, and
biological degradation are four different types of degradation mechanisms [48].

Starch, cellulose, polyhydroxyalkanoates (PHA), and polylactic acid (PLA) are typ-
ical biobased polymers used in BDMs. Poly (butylene succinate) (PBS), poly (butylene
succinate-co-adipate) (PBSA), and poly (butylene-adipate-co-terephthalate) (PBAT) are
examples of polyesters derived from fossil sources and used in BDMs [49]. Ester bonds or
polysaccharides, which are amenable to microbial hydrolysis, are found in the polymers
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used in BDMs [50]. Theoretically, soil microorganisms should completely catabolize BDMs,
converting them to microbial biomass, CO2, and water [51]. In addition to the primary
polymers, plastic mulches also contain trace amounts of organic (additives, plasticizers, etc.)
and inorganic (Cu, Ni, etc.) elements, the effects of which are largely unknown. Traditional
plant toxicity tests have not been modified to detect the effects of substances released by
BDMs. First, as compounds degrade, they release various compounds at various times.
Second, by concentrating only on germination, commonly used tests miss out on accounting
for the shifting needs and responses throughout plant development [51].

Previous research has shown that biodegradable film mulch has similar moisture and
heat preservation properties to regular polyethylene mulch and can also improve the water
and temperature conditions of the soil’s plough horizon on farmland. For the cultivation of
potatoes, cotton, peanuts, and beets, biodegradable mulches can take the place of common
polyethylene mulches [52–56]. The soil’s total nitrogen, available phosphorus, and available
potassium contents all increased under the biodegradable film mulch treatment. Plastic
films are commonly used to control soil temperature and preserve soil moisture [39,40].
Mulching has an impact on soil nutrients as well, because raising soil temperature or
moisture levels can improve soil nutrient mineralization [41]. According to studies [28],
biodegradable mulches are abundant in organic carbon. They can increase the amount of
organic carbon in the soil and have a positive impact on how well the soil stores carbon
once they are introduced [42]. According to Zumstein et al. [43], soil microorganisms use
the PBAT’s carbon to produce energy and increase the soil’s carbon stock.

The effects of soil mulching treatments on soil microorganisms and enzymatic activity
were also observed. According to a few studies, biodegradable mulches do have an
effect on microbial activity and the enzymatic activity of the soil; they increase microbial
abundance, respiration, and activity [37,51–54] when compared with using polyethylene
film mulch as a mulch. Exogenous organic materials in agricultural soil have been shown
to have an impact on the microbial networks’ metabolic processes and complexity [55].
For the biodegradable plastic film, microorganisms are supposed to use the released
monomers during degradation to grow, thereby increasing microbial biomass [38]. The
microclimate of the soil can also be enhanced by biodegradable film mulch. Favorable
water and temperature conditions under the mulch have an impact on the root system of
the plant, generally promoting root development and increasing root secretion [55]; these
modifications all control microbial and enzymatic activity.

3. Advantages of Mulching

Mulching improves soil properties, soil moisture availability, and soil productivity [26].
These effects are summarized in Figure 5. Mulching in crop fields has numerous benefits,
including reduced soil water loss, weed germination, soil erosion, and water droplet
kinetic energy [48,49]. Mulch can help improve soil structure and increase earthworm
movement [50]. It also lowers the pH of the soil, increasing the availability of nutrients
(Table 1). After breaking down, organic mulch gives nutrients to the soil and boosts the
availability of nutrients in the soil for a longer period of time [25]. Plastic mulches can
significantly improve soil health and pest management [23]. As a result, it helps to prevent
fertilizer from leaching and keeps nutrients close to the plants’ roots so they can be used
effectively. The mulched landscape has a more appealing uniformity of appearance [1].
Additionally, the appropriateness of soil moisture and temperature can change over the
course of a crop’s growth cycle. When organic mulch decomposes in the soil, the soil’s
organic content improves quickly, which improves the soil’s ability to hold water [57].
Because mulches decrease evaporation, more moisture is accessible near the plant roots,
extending the time for plants to absorb water. As a result, mulched areas require less
water [58]. Both organic and biodegradable plastic mulches eventually collapse or boost
nutrients to the soil’s surface, enhance moisture retention, or increase the humus layer.
Mulches control the temperature variation in the plants’ root zones, causing soil to become
colder in summer or warmer in winter [59].
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Figure 5. The effects between mulching and non-mulching.

Mulch reduces the germination of seeds by preventing sunlight from reaching the
top surface of the soil. After forming a protective surface on the soil, plastic films or
landscape fabrics also stop weeds from germinating [60]. Underneath the plant leaves,
sand and clay soil reflect heat and light. Due to their multidimensional faces, organic
mulches exhibit less light reflection. Therefore, organic mulch slows the rate of evaporation.
However, inorganic mulches, particularly rocks, increase reflectivity and are suitable for
some plants but harmful to more delicate ones [61]. Mulch prevents runoff or provides soil
more time to absorb rainwater by lowering the kinetic energy of rain or by slowing the
movement of rainwater. The additional moisture promotes plant root expansion, which
further stabilizes the soil by encouraging root growth. Furthermore, mulch protects soil
from wind erosion [62–64].

Table 1. Beneficial aspects of various mulch types.

Type of Mulch Benefits References

Straw mulch

Water usage is decreased and water productivity is increased. [65]
In potatoes, a probable decline in the insect pest invasion caused by the

Colorado potato beetle. [66]

Rice yield, grain quality, or recovery are all enhanced. [67]
Decreased erosion or runoff, and soil water management or temperature

control is improved. [68]

Soil water is boosted. [67,69]

Aluminum/black and silver/black mulch
Plant growth as well as soil temperature improved in Cucumis sativus. [70]

Boosted plant length. [71]
Growth and yield of lettuce improved with silver polyethene mulch. [72]

Paddy straw Boosted leaf area. [73]

Plastic and straw integrated Reduction in evaporation and boosted soil moisture. [74]

Black-colored plastic

More fruits, roots, tubers, and bulbs were found. [75]
In aerobic rice production, gross income and net returns have improved. [76]

Growth and yield of rice improved. [67]
Soil moisture and temperature increased. [77]

An enhancement in the yield of Triticum aestivum. [78]

Degradable film Early in the growing season, the soil was warmer and had more water,
and maize productivity and water use efficiency had increased by 30%. [79]
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Table 1. Cont.

Type of Mulch Benefits References

Degradable mulch made of polycaprolactone,
starch of maize, adjuvants, or grease (60:30:5:5)

Brassica napus L. has a 10% reduction in evapotranspiration and boosts in
water usage efficiency and seed productivity by 54% and

38%, respectively.
[80]

Jatropha and Sesbania remains An enhancement in yield. [65]

Almond shell mulch Upregulation of dehydrogenase, phosphomonoesterase, and protease, as
well as a rise in soil enzyme activities and organic carbon. [81]

Bark chips and manure mulches Toxicity of hazardous chemicals (polycyclic aromatic hydrocarbons) in the
soil is decreased. [82]

Plastic mulch

Maize yields have increased as a result of increased moisture supply and
maintained temperature. [83]

Higher water productivity and soil moisture content. [67,69]
Boosted soil moisture. [79]

Boosted soil water content in maize. [84]

Gravel mulch Enhanced soil moisture. [85]

Ryegrass (Lolium multiflorum L.) Rice increased the activity of alkaline phosphatase, glucosidase,
arylsulfatase, and arylamidase. [86]

Transparent plastic mulch Radish growth improved significantly. [87]

4. Disadvantages of Mulching

Mulching has some drawbacks as well, such as increased labor needs, higher trans-
portation costs, and difficult removal and disposal. The soil is contaminated due to the
plastic mulch producing fragments that are in direct contact with it [88]. Weed growth and
acid leakage are also major issues with some organic mulching materials such as straw and
grass [89]. Mulched soil has better aeration and temperature that tends to support increased
microbial activity in the soil, resulting in more thorough nitrification in mulched soil [90].
Farmers use onsite burning or landfilling to dispose of or bury plastic film wreckages in
cultivable soil sheets, which severely contaminates the soil and impairs the development
and growth of crops [91].

Because mulching causes the soil to retain more moisture, it restricts the oxygen
supply close to the roots because the soil has poor drainage. If mulching is done close to
the stem, the surrounding moisture in the plant’s stem can serve as a haven for a variety
of microorganisms, pests, and diseases. Mulches containing seeds, such as hay, straw,
and grass clippings, can promote the growth of weeds [92]. Inorganic mulches do not
add any nutrients to the soil because they do not disintegrate, except for biodegradable
plastic mulches. In some circumstances, inorganic mulch will be destroyed by the sun and
will begin to deteriorate over time. If it is spread out over a vast region, it can raise the
temperature of the soil. Rubber is an organic mulch that can damage plants because it is
toxic and hazardous to the environment [92].

5. Methods of Application of Mulching Materials

In agricultural fields, a variety of mulching materials are used in a variety of ways and
patterns as shown schematically in Figure 6.

5.1. Flat Mulching

A traditional type of mulching is called flat mulching, which involves covering the
soil’s top layer with organic, inorganic, or mixed mulching materials [93]. In the case
of organic mulching materials, flat mulching can keep the layer thickness based on the
intended function. A type of flat mulch, where part of the topsoil is coated, is plastic
mulching with holes. Compared with conventional flat mulching, this mulching improves
soil aeration and rainfall infiltration [94].
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Figure 6. An illustration of the various mulching techniques.

5.2. Ridge Shape Mulching

In this type, the ridge is coated with a plastic film, which directs rainwater into furrows
or lowers surface runoff [95], enhancing water use efficiency (WUE) [96]. Crops such as
corn are typically grown on the ridge area of the field, which is mulched, but crops are also
grown in the furrow, which can be mulched or not [97].

6. Mulching Material Selection

In general, the selection of a proper mulching material depends on the material type,
the type of crop, environmental locations, and the availability of mulch, as well as their cost
effectiveness [98]. Table 2 illustrates a comparison between organic and plastic mulching.

Table 2. Explained comparison of different organic and inorganic mulches.

Subject Organic Mulching Plastic Mulching

Material type Bio-based cellulose, chips, leaf, paper Acetate, polyethylene, polymeric material

Durability Temporary or decays over time Long lasting, two–three crop seasons

Thickness 3–5 cm, controlled by application rates 15–20 µm; 15 µm is most effective

Colors Natural Black, silver, white, red, blue, yellow, etc.

Weed control Effective, but grass material grows weeds High weed competition except transparent color

Pest management Reduces thrips or fungal disease Reduces thrips, spider mites, or whiteflies

Fragments Degradable to soil Problematic or contaminated after one–two seasons

Priority mulch Straw (rice and wheat) Black plastic

Priority mulch Straw (rice and wheat) Black plastic

7. Role of Mulching on Soil Conservation
7.1. Mulching Effects on Soil Moisture

Frequently, mulching is believed to be beneficial to stressed environments (heat,
drought, and salinity) as it changes the rate of evaporation and transpiration [99,100].
The effect of mulching depends on the climatic conditions and the amount of rainfall. It
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influences the moisture content of soil by reducing the evaporation of water from the surface
of the soil. Mulches improve soil moisture retention and structure while inhibiting weed
growth [101]. However, under various mulching materials, the soil moisture difference
depends on the various soil types or climatic circumstances that affect the efficacy of
various mulching materials to conserve moisture. When compared with bare soil, mulching
treatments generally hold more soil moisture [97]. The changes in soil moisture in top
surface layers (0–10 cm) are caused by water vapor fluxes throughout the soil surface
and layers. Mulching, on the other hand, reduces the variability of soil moisture or
temperature [102].

Other mulches and bare treatments displayed bigger fluctuations, but plastic mulching
(without holes) treatments consistently conserved soil moisture during soybean growing
phases [94]. The other mulch-covered treatments hindered direct infiltration, but the bare
treatment allowed rain to directly penetrate the soil surface. Because paper is porous and
hygroscopic by nature and extends and contracts in response to moisture levels, paper
mulching treatments showed maximum soil moisture levels [34]. When organic mulch
is applied to the topsoil, it hinders weeds from growing, increases rainwater infiltration,
and reduces evaporation [103]. Additionally, the addition of organic mulch puts plants in
competition for moisture, resulting in a decrease in soil moisture. However, organic mulch
or paper mulch on sesame and other crops showed a higher moisture content in comparison
with the soil without mulching [104]. Stagnari et al. [105] indicated similar outcomes by
incorporating straw mulch at a depth of 5–15 cm. Gravel mulch slows evaporation and
retains moisture in the soil [12,106]. Most visible, UV, and infrared sunlight is absorbed
by black polyethylene mulch, which then re-radiates the radiation. The color of mulch
determines its energy-radiating behavior or impact on a plant’s microclimate [107]. In
comparison with black polyethylene mulch, full film mulching systems have markedly
increased moisture content up to deeper soil depths [108]; it depends on a particular
material’s thermal characteristics, such as its reflectivity, absorptivity, or conductivity, in
relation to incoming solar radiation. Black polyethylene mulch absorbs solar radiation,
which is then lost to the atmosphere due to radiation or forced convection. By optimizing
conditions for transferring heat from the mulch to the soil, the efficiency with which
black mulch raises soil temperature can be increased. Because soil has a higher thermal
conductivity compared with air, much of the energy absorbed by black plastic can be
transferred to the soil via conduction if contact between the plastic mulch and the soil
surface is good. When compared with bare soil, soil temperatures under black plastic
mulch are generally 5◦ F higher at a 2-inch depth and 3◦ F higher at a 4-inch depth during
the day [109]. It has been discovered that using dark colored mulch is the safest solution,
because the soil does not warm to a harmful degree even in the presence of high air
temperatures and solar radiation [110]. Mulch significantly improved total soil water
holding capacity, soil moisture retention, soil porosity, and, thus, water-use efficiency [111].

On the other hand, Jenni et al. [112] discovered that plastic film was more effective
than paper mulches at conserving soil moisture during lettuce crop cultivation during dry
periods. According to McMillen [113], mulching with grass clippings, wheat, or leaf debris
at a depth of 5–10 cm enhanced soil moisture by 10% over bare soil. In contrast to organic
mulch treatments, which retain more moisture than bare soil, plastic mulch treatments hold
the most soil moisture [114]. Surface runoff is reduced, infiltration is improved, and soil loss
is reduced with compost mulching [115]. On the other hand, Ashrafuzzaman et al. [116]
found non-significant variations in soil moisture content between various mulch treatments,
but they reported higher moisture levels with mulches over bare soil. The results revealed
that, after 90 days, soil under transparent plastic mulch had a higher moisture content
(21.1%), followed by black (20.4%) or blue plastic mulch (19.2%), respectively, whereas
minimum soil moisture was observed at the control (14.6%).
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7.2. Reduce Infiltration Rate

Water infiltration is an important process in which rainwater, irrigation water, surface
water, soil water, and groundwater all interact with one another. Irrigation amounts, pre-
cipitation characteristics, canopy interception capacities, and soil hydraulic characteristics
all influence water infiltration [117]. In general, because of the low initial soil water content
(SWC), a large amount of rainwater infiltrates the soil and is converted into soil water when
it rains. If the rainfall amount is large, soil water gradually becomes saturated as infiltra-
tion progresses, the infiltration rate gradually becomes lower than the rainfall intensity,
rainwater gathers on the soil surface to form surface water and runoff, and is eventually
lost. Furthermore, surface runoff degrades soil and reduces sustainable production through
soil erosion and nutrient loss [117].

Mulch has a direct impact on rainwater infiltration and evaporation by blocking solar
radiation from reaching the soil and thus increasing total water intake due to the creation
of a loose soil surface. Crops can use water absorbed into the soil, resulting in higher
agricultural yields. In semi-arid agriculture, infiltration or evaporation are two of the
most important processes that determine soil water availability to crops. According to
Abu-Awwad [118], coating the soil surface lowered the amount of irrigation water used by
a pepper crop by 14–29% and an onion crop by 70%.

7.3. Mulch Effects on Soil Temperature

Mulched soil dries out more quickly than bare soil in the late stage. Overall soil
moisture is determined by the porosity, texture, and structure of the soil [119,120] and
organic mulching can assist them in development. With increasing machining rates, the
soil wetting depth also increases. Raised mulch rates enhance the depth of soil wetness.
Straw mulching, according to these studies, can store more soil water from tiny amounts of
precipitation [121–124]. Mulching lowers the temperature of the soil in summer, raises it in
winter, or avoids high temperatures. Sarolia and Bhardwaj [125] recorded a temperature
increase of 2–30 ◦C after treatment with wheat straw mulched soil. When compared with
bare soil, the temperature of the ground beneath clear mulch might be up to 7 ◦C higher.
Park et al. [126] found that at a depth of 15 cm, black film raised the soil temperature by
0.8 ◦C, while transparent film raised the soil temperature by 2.4 ◦C. Condensation on the
mulch’s underside absorbs long-wave radiation in the evening, delaying the cooling of the
soil [127].

The role of mulching in affecting the temperature that will lead to an increase or
decrease in crop production depends on the material type of mulching as illustrated in
Table 3. The ability of mulches to influence soil temperature also depends on the ability of
mulches to transmit or absorb solar radiation [127]. In the summer, mulch cools the soil,
while in the winter, it warms it. Mulches change the thermal regime of soil by changing
its temperature [128,129]. Although polyethylene film mulches have a higher temperature
than biodegradable mulches [130], the former may be detrimental in hot climates, resulting
in early decomposition, or favorable in cool weather due to the ability to maintain a warm
temperature at night, which allows for faster seed germination. The daily soil temperature
fluctuates due to various mulching materials in the surface (5 cm) soil layer. However, in
the deeper layers, the soil’s temperature is essentially constant.

When contrasted with black plastic mulching or bare soil, paper mulching minimizes
soil temperature [94] and gives the minimum soil temperature [34]. Higher soil temperatures
accelerated crop establishment and boosted growth in black polyethylene mulch by absorbing
a higher amount of solar radiation [37,131]. By storing incoming solar energy, organic mulches
limit heat transfer to the surface soil [36]. These mulches reduce the higher temperatures and
vice versa [132], while lowering soil temperatures considerably [133]. At 10 cm of soil depth,
a 4 ◦C decrease in soil temperature during the warmer phase or a 2 ◦C increase during the
cooler time were also detected. Soil temperature variations are also caused by the timing of
soil temperature observations or the thickness of mulching [134]. Xiukang et al. [77] observed
a rise in soil moisture or temperature under plastic mulch, which enhanced crop growth or
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yield. On the other hand, the effects of soil temperature on crop growth are dependent on the
climate where the crop plants are grown. Chakraborty et al. [135] discovered that an elevated
soil temperature under mulch did not boost wheat production in India. Farmers in some
areas must reduce soil temperature to increase yield, while farmers in others must increase
soil temperature to increase production [34].

The temperature of the soil is significantly influenced by the color of plastic mulch.
Photo-selective mulch films raised the soil temperature more than bare soil [136]. Their
findings revealed that blue plastic mulch has a higher temperature than red. In addi-
tion, Farias-Larios and Orozco-Santos [137] found that transparent plastic mulch had the
maximum temperature, while black plastic mulch or bare soil had the same temperature.
Similarly, Gordon et al. [138] discovered that colored plastic mulches and row cover cause
variations in soil temperature. Black plastic mulch with a row cover recorded the greatest
temperature, while bare soil recorded the lowest. The most significant way that mulch
use affects crop yield is generally thought to be through the effects of the mulch films on
the soil temperature. Mulch films modify the energy flow in the soil by allowing various
wavelengths of incident solar radiation to pass through the film and reach the soil (de-
pending on the type of film used), preventing the loss of lower energy infrared radiation.
The most frequently reported effect (for black and clear films) is an improvement in the
average temperature relative to the bare soil temperature, allowing for earlier germination
and longer growing seasons. Some reports on the effects on soil temperature suggest that
the use of white and reflective films can lower the maximum temperature experienced by
the soil [139,140].

Table 3. Impact of various mulch types on the soil temperature in different crops.

Type of Mulch Impact on Soil Temperature Crop Reference

Coupled plastic or straw mulch Reduce soil temperature Maize and wheat [74]

Straw mulch
Reduce soil temperature fluctuations Alfalfa [85]

Decrease soil temperature Maize [79]
Decrease soil temperature Wheat–maize [141]

Black plastic mulch

Boost soil temperature Cucumber [70]
Boost soil temperature Maize [77]

Increase soil temperature Maize [79]
The soil temperature increased more in black

polyethylene mulched plots than white-on-black
polyethylene or bare ground plots

Lettuce [142]

Transparent plastic mulch

The soil temperature boosted in plastic film
mulching Maize [143]

Decrease soil temperature Maize [143]
Boost soil temperature Potato [144]
Boost soil temperature Maize [145]

Degradable film as mulch
Increase soil temperature Maize [79]
Decrease soil temperature Tomatoes [146]
Increase soil temperature Different crops [147]

Compost mulch Increase soil temperature - [148]

Silver/black plastic mulch Increase soil temperature Cucumber [70]

7.4. Mulch Effects on Soil Properties

The composition of soil moisture and temperature has an impact on soil and crop
interactions [149]. Mulch application rates can change soil attributes such as organic matter,
moisture content, salinity, texture, porosity, or subsurface characteristics, all of which have
a significant impact on crop productivity [64,150]. According to Huang et al. [151], the
application of organic mulches to soil improved soil health or consequently gave a higher
yield. In addition, soil chemical properties such as cation exchange capacity (CEC) and
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electrical conductivity (EC) were also improved [147]. In hardwoods, mulching practices
increased soil organic matter (SOM) over the control [148]. Likewise, in an arid climate,
Zhang et al. [152] found significantly greater SOM in straw mulch at the soil surface layer
(0–15 cm); however, Tian et al. [153] showed a significant increase in dissolved organic
carbon beneath black polyethylene mulch in a humid environment. Compared with
polyethylene film mulch (PM), Zhang et al. [154] discovered that biodegradable mulches
(BM) increased the soil’s microbial, urease, or catalase activities. Although BM can reduce
soil bulk density, it has no lasting negative effects on the nutrient or the microbial activity
of the soil. Instead, it may improve the soil’s quality. The use of mulch modifies the bulk
density according to the climatic factors, the characteristics of the soil, and the mulch
used [155]. Mulching increases the water holding capacity, while no mulching has no effect
on the water capacity. The use of various kinds of mulch decreased electrical conductivity
when compared with bare soil. [156]. Black polyethylene mulch improves soil fertility by
reducing nitrogen or organic carbon exhaustion in soil, as described by Liu et al. [157].
Figure 7 illustrates the effect of mulch on productivity, growth, or nutrients of crops.

Figure 7. Effect of mulch types on growth, productivity, or nutrients of crops.

7.5. Mulch Effects on Soil Thermal Regimes

Mulches appear to be effective at changing water or heat balances on the soil’s surface
or improving the growing environment for plants. By delaying evaporation, mulches
preserve soil moisture, although their capacity to affect soil temperature varies according to
the composition and optical characteristics of the mulch. In general, organic mulches reduce
maximum soil temperatures but boost minimum soil temperatures, whereas polyethylene
mulches enhance maximum or minimum soil temperatures compared with un-mulched
soil [158,159].

Because solar energy directly heats air or soil beneath mulch through penetration,
mulch is known to increase soil temperature. The heat is then holed up by the greenhouse
effect. Crop growth throughout the growing season is determined by the genetic or envi-
ronmental factors that regulate the duration or speed of plant development. Temperature
is considered the most crucial environmental factor. Soil temperature is a measure of the
intensity of heat in the soil. Heat flows in soil, or the generation or usage of heat in soil, both
have an impact on the temperature of the soil [160]. The microclimate, which affects seed
germination, seedling emergence, and root growth, is greatly affected by the thermal prop-
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erties of soils [161,162]. Crops are exposed to sub-or supra-optimal temperatures at various
points in their growth cycles. Summer crops are subjected to higher temperatures than
those cultivated in the winter. Crop production can be improved by altering hydrothermal
regimes through the use of mulches or appropriate management practices.

In terms of crop growth, the soil temperature is more important than the aerial tem-
perature in agriculture [20]. One of the most critical elements affecting soil heat storage,
soil heat flow, soil water flux, seed germination, nutrient cycling, or plant growth is soil
temperature. Plant root functional activity can be influenced by either minimum or maxi-
mum soil temperatures. The response of plants changes when the temperature changes,
having lower and upper threshold values as well as a conspicuous optimum. The ideal
temperature for the optimum utilization of N-fixing bacteria is between 20 and 25 ◦C. The
ideal soil temperature for wheat is 15–27 ◦C, and 25–30 ◦C for sorghum, rice, or corn [163].

7.6. Mulch Effects on Microbial Count

Microorganisms in the soil have a significant role in the agriculture system, nutrients,
and soil quality. Soil organisms feed on soil organic substrates positively affecting plant
growth [164–167]. Mulching increases the number of microbes in the soil, which leads to
better aerobic conditions, adequate soil moisture, or temperature, which in turn causes mi-
crobial decomposition to occur quickly, which improves soil fertility due to the abundance
of nutrients that affect plant growth and productivity [168–170]. The microbial population
and activity are affected differently by different types of mulch [171–174].

Excessive application of synthetic fertilizers overall in the agricultural sector has led
to contiguous health issues and ecological damage worldwide [175]. Mulches enhance
soil biota by ensuring the availability of nutrients and play a significant part in nutrient
cycling activities, allowing the crop to harvest a healthy product for long time [147,176].
Proteobacteria and actinobacteria populations rose when plastic film mulch was applied
relative to control [172], but soil invertebrate populations decreased [177]. Mycotoxigenic
fungus was increased by the use of plastic mulch [178]. In addition, under mulching
circumstances, Chen et al. [147] discovered an increment in the microbial community.
Microbial activity varies with the type of temperature present during the mulching process.
As a result, microbial activity is increased when the soil temperature is below the microbial
optimal range. Conversely, when the soil temperature is above the microbial optimal
range, the mulch may raise the temperature, which would decrease the number of microbes
present [119]. Using biodegradable mulch has been shown to boost bacterial and fungal
populations [179].

When contrasted with black polyethylene mulch, biodegradable mulch boosted micro-
bial populations, enzyme activity, and respiration [179]. According to Yan et al. [180], black
polyethylene mulch reduces porosity, which changes air exchange and hence microbial
population, resulting in reduced soil fertility. Black polyethylene mulch raised the tempera-
ture of the soil, which accelerated the decomposition of organic matter or encouraged the
activity of soil microbes [88]. The decomposition process, nutrient mineralization, or soil
carbon sequestration are all significantly influenced by the physicochemical characteristics
of the soil. The high microbial biomass and activity frequently lead to the highest nutrient
availability to crops [88].

7.7. Mulch Effects on Weed

One of the most difficult aspects of farming is weed control [181]. Weeds compete
with crops for light, food, water, nutrients, or space in agricultural fields, and they also
discharge allelopathic chemicals into the soil, reducing crop productivity and quality [169].
According to agronomic research, light can only reach the soil for a few cm, so mulching at a
depth of 5 cm is the most often advised method for reducing weed development [182]. The
microclimatic conditions of the soil surface are changed by the use of any form of mulch,
which in turn influences the weed spectrum. Mulch prevents the growth of undesired
weeds by reducing the amount of solar radiation available [183]. Weeds are suppressed
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by black polyethylene and straw mulch [184]. Table 4 illustrates the impact of different
mulches on weed control.

Table 4. The impact of different mulches on weed control.

Types of Mulches Effects References

PE (polyethylene) mulch PE mulch increased saffron growth and productivity while successfully
reducing weed populations. [185]

Barley straw mulch (BSM) and mulch from spent
mushroom compost (SMCM) BSM and SMCM decreased weed populations. [186]

Wheat straw, pine needle, or black plastic mulch Mulch decreased the weed biomass and weed density. [187]

Both organic and inorganic mulches
Treatment of tomato lines with black polythene mulch boosted fruit yield
and decreased weed density. Transparent polythene could not inhibit the

weed population.
[188]

Three mulch treatments, i.e., plastic mulch (PLM),
sorghum mulch (SM), or paper mulch (PM)

The PLM and PM decreased weed flora and increased morphological
criteria of maize. [189]

Cereal rye mulch biomass Mulch decreased weed community that related with soybean. [190]

Black– black, Black–silver, Black–white, organic
mulches such as paddy straw, paddy husk, ground

nut shells

Black–black polythene mulch exhibited maximum weed control efficiency
while the minimum was registered with paddy straw mulch. [191]

Peanut straw mulch Peanut straw mulch decreased weed biomass. [192]

Mulches are more effective than pesticides or manual weed control methods [193].
Hjelm et al. [194] reported that weed control could be effective when mulching is used and
it could be a cost-effective and sustainable alternative. According to Abouziena et al. [195],
broad-leaved weeds are more sensitive to mulching coatings than grassy weeds. The
inhibiting effect of weeds under organic mulch was observed by Oliveira et al. [196], and
may be related to decreased solar radiation, temperature, or allelopathic effects produced
by straw mulch, which may have lowered emergence. Eucalyptus grandis, Pinus patula,
and Acacia mearnsii are examples of organic mulches that contain hydroxylated aromatic
compounds and produce allelopathic compounds with hydrophobic nature that rapidly
decrease the supply of water, influencing weed species such as Trifolium spp., Lactuca sativa,
or Echinochloa utilis [172,197].

The influence of black or clear plastic mulches on weed infestation has been reported
to be positive. This effect is due to their ability to warm the soil or raise the root zone
temperature. However, black plastic mulch has a greater impact on suppressing weed
competition than clear plastic mulch because it spreads across the soil or around the crop,
lowering the amount of light reaching the soil. It reduces the efficacy of weed germination
or suffocates growing weeds [38].

8. Role of Mulching on Water Conservation

Because water-usage efficiency is a modern technique of farming, it focuses on increas-
ing production while using a scarce amount of water. It is vital to save water and increase
crop output in arid or semi-arid locations. Crop output is proportional to the amount of
accessible water and the efficiency with which it is used throughout the production pe-
riod [198]. Land that is not mulched loses more water than land that is covered with plastic.
This is due to increased exposure to water-losing factors such as solar radiation, wind, or
heat [199]. Plastic mulching has a better effect on plant production or water-use efficiency
(WUE) than traditional tillage patterns. Black and white plastic mulching improves WUE
in potato plants by 31% compared with the un-mulched ground [200]. Table 5 summarizes
the role of various mulches on soil water content.
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Table 5. Effect of various mulches on soil water content.

Mulch Type Effect on Soil Water References

Plastic mulch
Boosted soil water contents [79]

Boosted soil water contents and availability [67,69]
Boosted moisture contents and maize productivity [201]

Degradable film mulch Raised soil water contents [79]

Straw mulch

Increased soil water contents [79]
Enhanced soil water storage [202]

Boosted soil moisture contents [67,70]
Reduced water needs and enhanced water productivity [65]

Gravel mulch Boosted soil water content [202]

Compost made from municipal waste Increase (85%) in water percolation [203]

Oat straw and olive twigs as mulches Reduced water loss from rainfall [204]

Transparent plastic mulch Boosted soil water content and canopy air humidity [139]

Black plastic mulch (BM) Boosted soil moisture, temperature, and morphological criteria of maize [205]

Straw strip mulching Straw strip mulching and plastic film mulching boosted water use efficiency
of grain yield (WUEr) or biomass yield (WUEb). [206]

Transparent film (W), black film (B), or straw
mulching (S) W, B, and S mulch boosted soil water content [207]

Mulch involves maintaining soil moisture by covering the soil’s surface. This method
can be utilized to prolong crop production in regions with insufficient water supplies. To
conserve soil and water, ridge-furrow farming has been integrated with plastic mulching
in some regions of the world. For instance, compared with a flat-sown crop with no
soil protective coating, the technique (covering ridge furrows with plastic mulch) could
improve soil water supplies, root density, energy and water conservation, plant dry weight,
and maize productivity [208]. In comparison with a control, the water-use efficiency, yield
attributes, and yield and quality improved by about 50% when ridge furrows and a plastic
covering were used to conserve water in the wheat crop in China (flat planting) [209].

The use of black plastic mulch has been reported to improve water efficiency. Because
of its impact on reducing evaporation and transpiration, such efficiency is achieved. This
emphasizes the importance of black plastic mulch in preventing moisture loss, improving
protected agriculture, or lowering plants’ need for more water [210]. However, a study
of black or white plastic mulches revealed that black plastic mulch (202–442.6 mm) has a
higher maximum rate of evaporation and transpiration than white plastic mulch [211].

The ability of bare soil to absorb irrigation or rainfall decreases when it is subjected
to high temperatures, wind, and compaction. Mulch helps the soil retain more water,
evaporate less, and suppress weed growth. The application of straw mulch reduced
evaporation by about 35%, according to Goodman [29]. Permeable mulching materials
come in a wide range of options. Organic mulches are more effective at conserving water
and do not obstruct soil water infiltration and retention. The suitable mulch can decrease
the frequency of irrigation and, in some cases, completely remove it. Mulch can also assist
in shielding trees and plants from drought and winter damage. In semi-arid regions of
the world, mulching is a water-saving technique that maintains soil moisture, manages
temperature, and lowers soil evaporation [48]. In a rainfed agricultural system, surface
mulching is frequently employed as a water-saving technique [212–215].

Water is the scarcest natural resource for the farming system out of all the natural
resources. However, it is well known that different plant species have different water
needs [216]. Water use efficiency (WUE) in a cropping system is the total biomass or
yield produced per unit of water used by the plant or the soil surface [169]. As a result,
understanding how to improve WUE in both irrigated and rainfed areas to improve
crop quality and yield is essential. Zhou et al. [216] found that mulching improves yield
and WUE by reducing evaporation and increasing soil transpiration [217]. Plastic mulch
increases WUE by 20–60% and decreases the evaporation rate [201], which improves soil
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water retention and infiltration or creates a favorable environment for root proliferation or
seed germination [218].

In rainfed dryland areas, black plastic mulch could improve soil moisture and WUE,
consequently boosting apple yield [219]. Under the Chinese drip irrigation technique,
black or transparent plastic could enhance WUE and productivity of potatoes [220]. The
black plastic mulch outperformed the other two mulches (white and rice straw) in terms of
boosting tomato leaf area index, fruit production, or water productivity while lowering
evapotranspiration [221]. The latter was more successful than the degradable film and
plastic mulches in reducing evapotranspiration and enhancing the yield or WUE of winter
oilseed rape [80]. In rice farming, mulch treatment has been shown to improve water
retention and grain yield. According to a study of 36 rice farming sites, covering rice fields
with mulch enhanced yields by 18%. Black plastic mulch could boost water productivity,
rice yield, and quality while also conserving soil moisture [67,69].

The efficiency of mulch depends on soil properties as well as the climatic conditions
of the site. The Egyptian clover mulch was successful in retaining soil water content and
promoting crop growth during the summer season, however it did not outperform the black
plastic mulch [67,69]. On the other hand, rice husk produced better soil water retention,
water utilization, and production benefits for wheat, which is considered a winter crop, by
plastic mulch [133]. In water-saving rice mechanisms, the Egyptian clover mulch reduced
the number of ineffective tillers or excessive water productivity [67,69].

Various types of straw mulches were all similarly successful in decreasing the rate of
water loss from the soil surface, with a 5 cm depth of these mulches minimizing evaporation
by 40% [113]. An enhancement in mulch depth to 10 cm increased soil moisture by 10%, while
a further boost (to 15 cm) provided no additional benefit [113]. Wheat straw (2–16 t/ha) could
improve soil moisture [155]. Black plastic and wheat straw mulches could help cucumber
plants recover from drought stress by reducing evaporation [222]. The mulches not only
enhanced the cucumber leaf area and the biomass yield but also improved its water usage
efficiency. Furthermore, mulching has been shown to improve fruit production and plant
nutrient availability [222].

Because of their beneficial effects on photosynthesis and crop yield [223], fruit phyto-
chemical quality [224], and indirect pest protection, photo-selective (PS) mulching films
have recently been proposed for use in agriculture [224]. In addition to these beneficial
effects, PS mulching films may be able to keep the soil cooler than conventional black
mulch due to their high level of reflectivity [225]. In light of this, PS mulching films have
the ability to lower crop water needs through two complementary mechanisms: decreasing
direct soil evaporation and boosting root efficiency by fostering a favorable microclimate in
the root zone [224].

9. Role of Mulching on Crop Production

Most research has focused on the impact of mulches on crop production or yield
(Table 6). For example, López-Tolentino et al. [226], in cucumber, and Zhang et al. [227], in
maize, found that utilizing black plastic mulch can improve early crop yield. According
to Berglund et al. [228], strawberry establishment is more rapid and successful when
degradable plastic mulches are used. In crops, it appears that layer mulches have received
more research than other forms of mulches. Furthermore, pine bark produced higher
output than live sedum mulch in a study on the effects of mulch types on vegetable
production in a green roof system [229]. Thermal transmission efficiency might have
resulted in better heat conservation under black mulch during the night, a reason for
greater morning temperatures compared with midday temperatures under black polythene
mulch. Black polythene mulch was also discovered to be better compared with other
mulches for vegetables such as lettuce [230], okra, and squash [231] by either raising soil
temperature or preserving soil moisture.
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Table 6. The impact of mulching on yield and crop production.

Crop
Economic Yield Tons ha−1

% Increase in Yield References
Un-Mulched Mulch

Pickling cucumber 2.45 4.50 83.7 [70]
Maize 4.18 7.18 71.77 [77]

Brassica napus 3.97 5.90 48.4 [80]
Sesamum indicum 0.21 0.73 16.55 [104]

Apple trees 27.9 34.7 24.4 [117]
Watermelon 22.8 48.3 111.8 [138]

Potato 3.20 5.81 81.5 [144]
Beetroot 2.62 6.42 145 [186]
Tomato 6.02 8.27 27.20 [232]

Chickpea 5.91 7.32 19.26 [233]
Cotton 1.67 2.22 24.77 [234]

Mustard 0.41 0.61 32.78 [235]
Rice 5.39 6.83 21.08 [236]

French beans 12.73 14.10 9.71 [237]
Lentil 0.80 0.89 10.11 [238]
Wheat 5.261 5.863 89.7 [239]
Maize 2.49 4.76 47.68 [240]

Mung beans 1.02 1.36 25.00 [241]
Soybean 1.32 1.57 15.92 [242]

Temperatures in the soil between 16 and 20 ◦C are necessary for potato tubers to
develop properly [243]. The formation of tubers is negatively impacted by dry conditions
and temperatures that are higher than ideal. These unfavorable vegetation conditions can
lead to malformation of tubers or chain-like growth of new small tubers. A change in
tuber quality, particularly a change in the amount of storage substances such as starch, is
the next unfavorable consequence of high temperatures [244]. Mulching is one method to
address these issues. All over the world, people use organic materials such as compost,
straw, and other agricultural waste as mulch. A readily available and useful mulch material
is cereal straw. A simple application, a drop in soil temperature, a reduction in daytime
temperature fluctuations, and an increase in soil moisture are the primary advantages of
straw mulch treatment [245–247]. The effects of various mulches on a variety of plants,
including eggplant [248] and tomato [249], have been studied. Abdrabbo et al. [24] stated
that the plant response to the plastic mulch depends on the plant cultivar, the materials
used, and the environmental conditions. Mulch application improved the water status of
sweet cherry crops, according to Yin et al. [249]. Mulches also create the ideal environment
for root growth, which promotes plant growth and productivity [103].

10. Strategies for Optimum Water Usage in Urban Green Spaces and Landscaping

Trees, flowers, turfgrass, and other plants cover urban green spaces, which are open
spaces in the city with natural or manufactured arenas covered by turfgrass, flowers, trees,
or other plants [250]. The value of green spaces to minimize air pollution, improve human
health, reduce violence in society, moderate urban heat islands, minimize urban runoff
by minimizing hard surfaces, and regulate soil erosion in urban areas has been widely
addressed [251]. The global standard for green spaces per capita is between 5 and 50 m2. In
Iran, this threshold is set at 30 m2. However, none of Iran’s major cities have the resources to
create green spaces that meet international standards. One of the biggest limiting issues in
building green areas in Iran is a lack of water resources [252]. Turfgrasses are an important
part of creating urban green zones. Turfgrass has covered more than 20 million hectares of
public spaces around the world (sports fields and parks, for example) [253]. Water makes
up roughly 80% of turfgrass weight; obviously, this varies depending on the type or species
of lawn, the density or placement of lawn plantings, and the climate. Most of the water is
found in turfgrass species’ stems, leaves, and roots, in that order. Reduced watering causes
wilting and eventually death of turfgrass plants in various areas. When describing the
function of water in turfgrass physiology, Ansari and Azimi [253] added that energy, carbon
dioxide, and water are required for photosynthetic processes in lawns. Living cells use
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water as a solvent or a catalyst in their metabolic processes. Temperature variations in the
protoplasm can be managed with the help of the specific heat capacity of the water in plant
cells. This characteristic in turn helps to protect the grass from unexpected temperature
changes. Water is crucial for cell inflammation and keeping the stomata open, which
allows for gas exchange. The resistance of grasses to footing can also be increased by
cellular inflammation.

The conservation of greenbelts is the most everlastingly fruitful and basic need today
to preserve the ecological landscape, open green space, green gardens, and to save green
land on the urban fringes [254]. In urban landscaping, they are now planning to shift toward
low-management landscapes such as low-water-using landscapes [255], either by altering
the method or the system of landscaping [256,257] or xeriscaping [258], which includes
mulching as one of its principles [241]. Despite their high upkeep requirements, decorative
flower beds add beauty and color to urban landscapes, making it difficult to persuade
people to remove them in favor of low-maintenance landscaping [259,260]. A strategy to
combine mulch with bedding flowers to achieve lower inputs, including maintenance and
water resources, should be discussed in light of the significance of bedding plants in urban
landscapes, as shown in Figure 8. There has not been a lot of research done in this field,
despite the fact that the work of Pakdel [261] can be explored. Pakdel [261] examined the
growth of Tagetes patula, Platanus orientalis, and Rosa masquerade using four different types
of mulch: gravel, sawdust, wood chips, and municipal compost.

Figure 8. Schematic diagram of strategic water consumption methods.

Many bedding plants have different growing conditions. Those with a tolerance to
cool weather can include Lobularia maritima, Antirrhinum sp., and Calendula sp., while
others, such as Catharanthus roseus and Celosia sp., tolerate and flourish in warmer weather
conditions [259]. It has been demonstrated that mulches have the ability to mitigate adverse
weather conditions, which in turn could extend the survival and performance of a large
variety of bedding plants. Likewise, mulches improve water retention capacity in the
soil and weed control, which reduces the maintenance requirements of bedding plants in
ornamental landscapes. However, despite these assumptions, evidence on the performance
of bedding plants in the presence of mulch continues to be limited, and this research
was conducted to fill in this important research gap. Zinnia elegans is recognized as a
commonly utilized drought-tolerant bedding plant in ornamental landscaping in many
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places around the world. However, the performance of this plant species in conjunction
with mulches as a soil cover has been less investigated. Therefore, in this study, the
effect and evaluation of four mulch types on the growth or morpho-physiological traits of
Zinnia elegans were evaluated.

Mulches can help with root establishment and plant performance because their higher
water retention stimulates roots to expand or establish beyond the trunk compared with
bare soil roots. As a result, plants with stronger root systems establish themselves more
quickly. Organic mulches promote root development more than bare soil [262–265].

11. Conclusions

The hydrothermal regime of the soil is affected by various mulching materials that
change soil moisture and temperature. These changes in the soil environment have an
impact on soil microbiology, which is critical for creating a suitable environment for plant
growth. Mulching materials have a substantial impact on water conservation in agriculture
by altering the microclimate and lowering the soil evaporation. However, each form of
mulch has its own set of advantages and disadvantages, making it appropriate for some
conditions but not for others. The availability, durability, or pricing of materials are all
key factors to consider when choosing mulching materials. However, minimizing the
detrimental effects of mulching should be the main priority. The soil surface is physically
covered with mulches such as crop straw, plastic film, sand, and gravel that insulate
the soil surface from the atmosphere. Recently, there has been an increase in the use of
these methods. One of the many benefits of mulching the soil surface is that it reduces
soil evaporation or erosion brought on by wind or water. Straw mulch moderates soil
temperatures in the hot summer by preventing topsoil temperatures from reaching levels
that inhibit plant growth. In the early spring, when soil temperatures are low, plastic mulch
encourages plant growth by increasing the topsoil temperature. As a result, farmers will
employ this unique technology in the future to help them preserve moisture, eliminate
weeds, and greatly increase soil health while producing more. This will also contribute
significantly to the world’s long-term food security.
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