
Received February 6, 2019, accepted March 12, 2019, date of publication April 2, 2019, date of current version April 19, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2907865

MulNet: A Flexible CNN Processor With Higher
Resource Utilization Efficiency for
Constrained Devices

MULUKEN TADESSE HAILESELLASIE AND SYED RAFAY HASAN
Department of Electrical and Computer Engineering, Tennessee Tech University, Cookeville, TN 38505-0001, USA

Corresponding author: Muluken Tadesse Hailesellasie (mthailesel42@students.tntech.edu)

ABSTRACT Leveraging deep convolutional neural networks (DCNNs) for various application areas has

become a recent inclination of many machine learning practitioners due to their impressive performance.

Research trends show that the state-of-the-art networks are getting deeper and deeper and such networks

have shown significant performance increase. Deeper and larger neural networks imply the increase

in computational intensity and memory footprint. This is particularly a problem for inference-based

applications on resource constrained computing platforms. On the other hand, field-programmable gate

arrays (FPGAs) are becoming a promising choice in giving hardware solutions for most deep learning

implementations due to their high-performance and low-power features. With the rapid formation of various

state-of-the-art CNN architectures, a flexible CNN hardware processor that can handle different CNN

architectures and yet customize itself to achieve higher resource efficiency and optimum performance

is critically important. In this paper, a novel and highly flexible DCNN processor, MulNet, is proposed.

MulNet can be used to process most regular state-of-the-art CNN variants aiming at maximizing resource

utilization of a target device. A processing core with multiplier and without multiplier is employed to achieve

that. We formulated optimum fixed-point quantization format for MulNet by analyzing layer-by-layer

quantization error. We also created a power-of-2 quantization for multiplier-free (MF) processing core of

MulNet. Both quantizations significantly reduced the memory space needed and the logic consumption

in the target device. We utilized Xilinx Zynq SoCs to leverage the one die hybrid (CPU and FPGA)

architecture. We devised a scheme that utilizes Zynq processing system (PS) for memory intensive layers

and the Zynq programmable logic (PL) for computationally intensive layers. We implemented modified

LeNet, CIFAR-10 full, ConvNet processor (CNP), MPCNN, and AlexNet to evaluate MulNet. Our

architecture with MF processing cores shows the promising result, by saving 36%–72% on-chip memory

and 10%–44% DSP48 IPs, compared to the architecture with cores implemented using the multiplier.

Comparison with the state of the art showed a very promising 25–40× DSP48 and 25–29× on-chip memory

reduction with up to 136.9-GOP/s performance and 88.49-GOP/s/W power efficiency. Hence, our results

demonstrate that the proposed architecture can be very expedient for resource constrained devices.

INDEX TERMS DCNN, MulNet, constrained devices, hybrid embedded system.

I. INTRODUCTION

Leveraging deep convolutional neural networks (DCNN)

for various application areas has become a recent inclina-

tion of many machine learning practitioners due to their

impressive performance [1]. These include applications rang-

ing from (but certainly not limited to) image processing,

The associate editor coordinating the review of this manuscript and
approving it for publication was Junaid Shuja.

computer vision, automotive applications to computational

biology, computational finance and natural language pro-

cessing. Research trends show that the state-of-the-art net-

works proposed in past few years are getting deeper and

deeper and such networks have shown significant perfor-

mance increase [2], [3]. However, as the networks get

deeper it also implies more training time, increase in com-

putational intensity and memory-footprint. This is particu-

larly a problem for inference-based applications on resource

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

47509

https://orcid.org/0000-0002-6740-9893

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

constrained computing platforms.With the rapid formation of

various state-of-the-art convolutional neural network (CNN)

architectures a flexible CNN hardware processor that can

handle different CNN architectures and yet customize itself

to achieve higher resource efficiency and optimum perfor-

mance is critically needed. In terms of hardware platform,

Field Programmable Gate Arrays (FPGAs) are becoming the

dominating choice for high performance and low-power deep

learning processor design [4]–[7]. FPGA technology is also

in a trend of rapid advancement in the past few years due to

increment in its capacity and ease of usage for the designers.

FPGAs are suitable for computationally intensive algorithms

resulting in a faster computational speed and higher energy

efficiency compared to other hardware rivals [7]–[9]. In the

past three years, a number of FPGA-based CNN proces-

sor architectures have been proposed [12]–[25]. A few of

the highlights of these approaches include, parameter reduc-

tion [11], [26], binary weight quantization [20], [21], [24],

optimization for power [12], memory bandwidth optimiza-

tion [15], [16], [23], pipelining, parallelism and batch-based

processing [10], [13], [25], computation load reduction [14],

and dataflow optimization [19], [22]. Among the various

tools available for implementation of CNN architecture on

various FPGAs, Vivado HLS and OpenCL are the most com-

monly used in literature for the sake of productivity at the cost

of hardware efficiency and performance [5], [8], [9]. Most of

the FPGA-based architectures proposed in these literatures

are tailored or optimized to a particular CNN architecture.

This approach, however, is not quite effective as it requires

designing a tailored CNN hardware processor for every new

network. This problem is more intensified by the different

number of parameters each network has (different kernel

sizes, input dimensions, feature dimensions, number of layers

and the number of kernels in each layer), that the hardware

processor has to acclimate. Hence, a highly flexible architec-

ture that can mold itself into the given CNN and yet achieve a

higher resource utilization efficiency is critically important.

In this work we are proposing a highly flexible architec-

ture, MulNet, that can process most regular CNN variants.

Additionally, as stated earlier, convolution operation is the

most computationally intensive task in almost every state-of-

the-art CNN. The existing literature address this problem by

optimizing the processing core multiplier unit for convolu-

tion.We are also exploring to relieve this problem by utilizing

binary logic relation and judicious quantization to replace

the actual unit entirely with inexpensive shift register units.

To the best of our knowledge none of the aforementioned

references have proposed a highly flexible architecture uti-

lizing multiplier-free (MF) processing cores by formulating

their own quantization format to achieve higher resource

utilization on the target devices.

In this paper, a novel and highly flexible DCNN pro-

cessor architecture, MulNet, is proposed. MulNet can be

used to process most regular CNN variants aiming to max-

imize resource utilization of a target device by creating a

novel architecture with configurable number of multiply and

accumulate, and pooling (MAP) cores. MAP cores with

multiplier and without multiplier is employed to achieve

higher resource efficiency. We formulated quantization for

trained weights and feature maps by analyzing the layer-

by-layer quantization error between quantized network and

original 32-bit float network. We also created a power-of-2

quantization for a MF processing cores of MulNet. Both

quantization significantly reduced the memory space and the

logic needed in the target device. We stored weights, input

image and feature maps on external DDR. Weights and input

features of the layer under execution are loaded on-chip for

current computation with one-time transfer of each feature

pixel and maximum data reuse across all weights. We uti-

lized Xilinx Zynq SoCs to leverage the one die hybrid (CPU

and FPGA) architecture. We devised a scheme that utilizes

the processing system (PS) for memory-centric layers and

the programmable logic (PL) for computation-centric layers.

We implemented Modified LeNet, CIFAR-10 Full, ConvNet

Processor (CNP), MPCNN, and AlexNet to evaluate MulNet.

Our architecture with MF processing cores shows promising

results, by saving 36%-72% on-chip memory and 10%-44%

DSP48 IPs, compared to the architecture with cores imple-

mented using multiplier. Comparison with the state-of-the-art

showed a very promising 25-40x DSP48 and 25-29x on-chip

memory reduction with up to 136.9 GOP/sec performance

and 88.49 GOP/sec/watt power efficiency. Hence, our results

demonstrate that the proposed architecture can be very expe-

dient for resource constrained devices. The following are the

main contributions of this work:

• A novel and highly flexible CNN processor architec-

ture, MulNet, is proposed that can be used to process

any regular CNN variant aiming to maximize resource

utilization of a target device

• Implemented hardware optimized MulNet on hybrid

embedded architecture by devising hardware-friendly

data loading, on-chip memory addressing and task

scheduling

• Formulated and evaluated different fixed point and

power-of-2 quantization formats by analyzing a

layer-by-layer quantization error across different bit

widths

• Demonstrated the functionality of proposed MulNet

on CNP, MPCNN, Modified LeNet, CIFAR-10 and

AlexNet CNNs

The rest of this paper is organized as follows: Section II

presents some introductory concepts on CNN and the dif-

ferent layers. Section III discusses the framework we devel-

oped for design and evaluation of MulNet. Section IV

addresses MulNet architecture and its data flow in detail.

Section V presents evaluation of MulNet and a comparison

with the state-of-the-art. Section VII discusses the strategies

we devised to implement AlexNet leveraging our proposed

architecture, MulNet. In Section VIII we reported MulNet’s

accuracy performance on different CNN benchmarks and

across different datawidth. Section IX concludes the

paper.

47510 VOLUME 7, 2019

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

II. PRIMER ON CONVOLUTIONAL NEURAL

NETWORK (CNN)

History of learning systems goes back to the time when Arti-

ficial Neural Networks (ANN) were developed to emulate

human brain. Our brain is composed of millions of neurons

interconnected to each other allowing us to make complex

decisions in a very short time. Similar to that, ANN is com-

posed of simple connected units called perceptron, where

each perceptron is activated by real-valued inputs, computing

the equation below to output 1 when the linear operation of

the inputs is greater than zero, and 0 otherwise [27].

σ (x1, x2, ...) =

{

1, when w0x0 + w1x1 + ... + wnxn > 0

0, otherwise

where x1, x2...xn are inputs and w1, w2...wn are real-valued

constants called weights which relate the input with the out-

put, shown in Figure 1.

FIGURE 1. Perceptron and Artificial Neural Network Structure [27].

Basic perceptron, however, has limitation as it is not

able to represent complex functions. This limitation lead to

an idea of creating multi-perceptron structure called Multi-

Layer Perceptron (MLP), shown in Figure 1. In MLP we

have network of perceptrons divided into layers; input layer,

hidden layer and output layer. Depending on the network,

more than one hidden layer can be used to build the network.

MLPs are able to learn very complex functions and have

been used for various tasks. Training MLPs is done using

back-propagation, an algorithm using gradient descent search

in the network’s weight space reducing the error between

the network output and the expected output iteratively [27].

Researchers have shown that such small sized neural network

performed well in different applications [27]. In recent years,

researchers have extended this concept of conventional NN

(called shallow-NN) by adding more layers and complex

functions in order to learn more abstract features from the

data (deep-NN or DNN). Such deep networks become pop-

ular in the past decade by out-performing the conventional

shallow networks [1]. Convolutional neural network (CNN)

is one of such deep neural network architectures designed

to have a sequence of convolution and pooling operations

(both of these operations are explained later on in this section)

applied on an input data followed by fully connected layers

FIGURE 2. Convolutional Neural Network Structure.

resulting in the classification probabilities of the input data.

CNN is also one of the most widely used DNN algorithm

in numerous computer vision applications. Fig. 2 shows the

basic convolutional neural network structure with all the

above mentioned operations.

A. CONVOLUTIONAL LAYER

Convolutional layer is the main layer in CNN (it is appear-

ing twice in Figure 2), this layer performs convolution over

the input image using kernels and produces an output fea-

tures (distinct and useful observation grasped from the input

image). Kernels also called filters or weight vectors are small

sized real-valued matrix that are applied on the image to

transform the information encoded in the data. Convolution

operation is needed to extract the relevant information by

suppressing the distracting information inside the input data.

Convolutional layer is usually used in the early stages of

the network. The basic operation of a convolutional layer

in a feed-forward phase is shown in Figure 3. Each kernel

function (weight matrix), whose dimension is represented by

K, is convolved with K × K window of the input image

and then added to produce one pixel of the feature map for

the next layer. Each kernel function slides over the input

image by stride size (the number of steps the window of the

input images slides for the next convolution). This stride, dot

product of K × K window of the input with K × K kernel

matrix, and summation operation is repeated until the kernel

function covers the whole input image. Therefore, if N × N

image is convolved with K × K kernel function it results in

features with dimension (N−K+1)× (N−K+1), for stride

size of one.

B. POOLING LAYER

Convolutional layers are normally followed by pooling lay-

ers in most CNNs. Pooling layers perform down-sampling

of input features. Similar to convolutional layer, the sliding

window in pooling layer is also shifted by n number of

rows/columns. This results in combining features by ignoring

small distortions/shifts. In other words, by combining fea-

tures into one, pooling layer enforces spatial invariance. Pool-

ing layers also help in reducing the input feature dimension

and resulting in less computational overhead for the following

layers. The most common pooling operation is max-pooling

which transforms an input feature by taking the maximum of

the values in a slidingwindow over the input feature. In Fig. 3,

aMaxPooling operation on a 1 × 6 × 6 feature resulting in a

reduced feature size 1×4×4 is shown. The 3×3 green area of

MaxPooling within the input feature in Fig. 2 is representing

the sliding window.

VOLUME 7, 2019 47511

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

FIGURE 3. Convolutional Layer Operation for Input (7×7) with Three Kernels (3×3) Resulting in Three Features (5×5) [25] and MaxPooling Operation on a
(1×6×6) Feature Resulting in a (1×4×4) Feature.

FIGURE 4. Our Methodology for Design and Evaluation.

C. FULLY CONNECTED(FC) LAYER

Fully connected or inner product layers are used in the last

stage of CNN for classification operations. Fully connected

layer performs linear transformation over the input features

by applying matrix multiplication with the weight vectors.

III. FRAMEWORK OF MULNET

This work proposes a highly flexible CNN processor

architecture with higher resource utilization efficiency. The

methodology we developed for both design and evaluation

of our proposed CNN processor is shown in Figure 4. This

step includes creating a new network or utilizing existing

CNN networks. Creating or collecting a dataset is for training

the network is the next process. This involves collecting a

large data, cleaning the data and generating the right training

and validation data format. For training the network we used

Caffe from Berkeley Vision and Learning Center [28] which

we built on Tesla K80 GPU. Caffe is one of the early deep

learning frameworks used for training deep learning net-

works. Since it uses a simple text-based file format to define

the network and the training optimization hyper-parameters

it eases the training complexity. After training Caffe returns

the trained model in a file called caffemodel. This file con-

tains the individual weight values that the network learned

during training which are represented in 32-bit float. The last

process in this stage is Network Analysis and Quantization.

We developed two quantization formats. For the first one,

we converted the 32-bit weight vectors into fixed point Q(I.F)

format for arbitrary I and F size where I is the integer part bit

width and F is the fractional part bit width. This conversion

however is made based on the network analysis which per-

forms the layer-by-layer quantization error. For the second

one, we quantized the 32-bit weight vectors into power-of-2

exponent format for MF MAC operations. Both techniques

are discussed in detail in Section V. All the aforementioned

tasks are purely software based accomplished using Python

and Caffe IDE.

The next stage of our framework is designing the hard-

ware processor for the CNN network defined in the previous

stage. The first task in this stage is register transfer level

(RTL) design and simulation using Vivado HLS develop-

ment environment. Vivado HLS is a tool from Xilinx that

transforms a C specification in C, C++, SystemC into an

RTL implementation that can synthesize into a Xilinx field

47512 VOLUME 7, 2019

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

programmable gate array (FPGA). Using this tool, we devel-

oped MulNet, a highly flexible CNN processor architecture

both in terms of mapping various regular CNN architectures

into one hardware and its capability to compute on various

weight and feature quantization. A more detailed discussion

on MulNet is presented in Section IV. The main challenge

in creating MulNet is to make it generic enough and yet be

able to tailor it to a specific network with optimum hardware

consumption and faster computation time. This is particularly

a challenge as different networks have different kernel sizes,

input dimensions, feature dimensions, number of layers and

the number of kernels in each layer. We created customizable

functions that are common and can be used in most CNN

variants, for instance data loading functions from DDR to on-

chip memory, on-chip memory addressing functions, a MAC

computing functions, data offloading function from on-chip

to DDR and interfacing functions. We utilize these functions

and develop a new scheduling for that particular network

depending on its work load and network structure. Regarding

the actual implementation, this process requires the network

definition, the target hardware and a timing constraint as an

input, as shown in Figure 4. The network definition, as stated

above, is used to create task scheduling of a CNN network in

the hardware. The target device and the timing constraint are

used by Vivado HLS Synthesizer to estimate if the hardware

created fits in that target device and if the hardware created

meets the clock frequency specified in the timing constraint

file, respectively. This is followed by verifying the func-

tionality of the designed hardware through simulation and

Co-Simulation. Vivado perform C/RTL Co-Simulation by

generating RTL testbench from the C testbench for simulating

the RTL and verifying if the C code produce the same result

as the synthesized RTL. A successful run through these tasks

lead to generating an IP core with the right interfaces for inte-

gration. The FPGAs we targeted are Zynq SoC based FPGAs.

This FPGA family is based on the Xilinx All Programmable

system-on-chip (AP SoC) architecture. This hybrid architec-

ture integrates a dual-core ARM Cortex-A9 MPCore-based

processing system (PS) and Xilinx programmable logic (PL)

in a single device. ARM Cortex-A9 MPCore CPUs are the

central hub of the PS which includes on-chip memory, exter-

nal memory interfaces, and a set of I/O peripherals [35].

We leveraged this architecture by using the PS as a central

coordinator for the whole computation, and memory centric

tasks while using the PL for computationally intensive tasks.

TheVivadoHLS generated IP is then required to be integrated

with the CPU cores through the processing systemwrapper in

Vivado Design Suite, DDR external memory and the system

reset unit. This integration is done in Vivado IP Integrator.

After the integration one top-level HDL wrapper is generated

which needs to be synthesized and implemented using the

timing and target device as constraints. This generates a

bitstream that is used to configure the Zynq device.

The last stage of our methodology is application devel-

opment to coordinate the whole computation using Soft-

ware Development Kit (SDK) on the actual hardware, shown

in Figure 4. In general, SDK provides a variety of Xilinx

software packages, including drivers, libraries, BSP (board

support packages), and complete operating systems for devel-

oping a software platform. When the SDK is launched, after

the bitstream is generated, it starts with an auto generated BSP

files for a target device, and functions to access peripherals.

These functions expose the IP level function, port level inter-

faces and interrupt functions. In our framework we utilize

these functions as follows: all the interface ports defined in

our CNN processor IP are exposed using their corresponding

get/set functions to write and read data from the IP in that

port. Using these functions that run on the CPU cores we

then write a C/C++ based application to coordinate the CNN

computation which includes functions to reading and loading

weight vectors and input data to DDR, to initialize the IP,

to start the IP and to read the computed output from the IP.

FIGURE 5. Block diagram showing PL, PS, and DDR inside Zynq SoC
System. MulNet is fully implemented in PL interfaced via AXI with the
other subsystems.

IV. MULNET

The framework and the MulNet architecture we presented in

this work target a Zynq SoC based platform. This is depicted

in Figure 5. MulNet is fully implemented using Zynq pro-

grammable logic (PL). It is interfaced with PS and external

DDR through AXI4. The PS runs a C++ application that

controls the start and end of MulNet computation. MulNet

is designed to process CNN networks by computing the com-

putation centric part of the network inside PL and memory

centric part using PS. This is mainly because convolution

operations take more than 90% of the total computation, and

weight and feature maps in convolutional layers are reusable

unlike fully connected layers where all weights are unique

for every single multiplication. Moreover, in Zynq SoC plat-

forms the external memory, DDR, is physically connected

to PS hence memory intensive tasks could take benefit of

this design by reducing memory traffic. Therefore, all con-

volutional, pooling and activation layers are computed in PL

and all fully connected layers are computed in PS. The high-

level MulNet architecture is shown in Figure 6. The core

units in MulNet architecture are on-chip memory, processing

cores and interfacing modules. The on-chip memory is clus-

tered into Input Block RAM (IBRAMs), Weight Block RAM

(WBRAM), Output or Feature Block RAM (OBRAM) and

Bias Block RAM (BBRAM)). The processing core we called

VOLUME 7, 2019 47513

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

FIGURE 6. MulNet RTL and Conceptual Architecture.

them MAP Cores (Multiply and Accumulate, and Pooling)

which compute MAC operations or max pooling operations

based on the control signal asserted. Our architecture also

utilizes external memory, DDR, for its computation by ini-

tially storing the quantized weight vectors and input image.

As the computation continues, each layer generates interme-

diate feature maps, which we stored these values in DDR

as well.

A. ON-CHIP MEMORY UNITS

The IBRAM is an on-chip block ram that is used to store the

input image or input features.MulNet’s IBRAMconsumption

vary in number depending on the size of the input features

that needs to be loaded on-chip. A single Xilinx’s block

RAM consists of a 36Kb storage area two independent access

ports [34]. The total number of on-chip memory required for

IBRAM, hence can be estimated as follows:

#IBRAM = I .Quant.bitwidth ∗Words/36K (1)

Words = MAX (∀layers(feature_size)) (2)

where Words imply the maximum layer feature size in the

network and I.Quant.bitwidth is feature map bitwidth. Hence,

we allocated the on-chip memory for the size of the largest

layer in-terms of feature size where by all other layer’s fea-

tures can be accommodated.

The WBRAM is a cluster of block RAMs that is used to

store quantized weights of the network. Similarly, number

of WBRAM consumption depends on the number of weight

vectors a layer has. For MulNet most of the available block

rams on the target device are consumed for weight storing.

This is partly because our scheme of storing all weights of a

layer on-chip and the memory partitioning applied for con-

current reading of weights for parallel convolution operation.

The total number of on-chip memory required for WBRAM,

hence can be estimated as follows:

WBRAM = W .Quant.bitwidth ∗Words/36K (3)

Words = MAX (∀layers(weight_size)) (4)

where Words imply the maximum number of weights of a

single layer in a network andW.Quant.bitwidth is feature map

bitwidth. Hence, we allocated the weight on-chip memory to

the size of the layer with maximum number of weight where

by all other layer’s weights can be accommodated.

Similarly, OBRAM and BBRAM are on-chip block RAMs

used in our architecture to store output feature maps and bias

values of a particular layer, respectively.

B. PROCESSING CORES - MAP CORES

A single MAP unit, shown in Figure 6, functions as a MAC

(Multiply and Accumulate) operator or as a Pooling operator

depending on the mode bit asserted. It is worth mention-

ing here that Figure 6 shows two types of implementation

of MAP unit, cores implemented using multiplier and MF

implementation. Each MAP unit can be implemented with

anyone of these two ways. As a MAC module it computes

the basic multiply and accumulate operation of a K × K

convolution and as a pooling operator it computes a max pool

operation of a K × K receptive area of the input features.

A single MAP unit, as a MAC operator, can take up to K

parallel inputs and K weight vectors to produce a single

output using the dot product. For a MAP cores implemented

with multipliers, the dot product is computed by performing a

multiplication operation between each ith weight from K ×K

weight arrays and each ith pixel from the K × K feature map

arrays. However, withMFMAP cores, we are shifting each ith

pixel by the magnitude of the power-of-2 exponent fed to the

cores as weight vectors. The sign of the weight is identified

based on the sign of the power-of-2 exponent which are

appended artificially. The later approach results in a higher

resource utilization efficiency, discussed in Section VI, and

brings substantial memory space savings. The dimensions

of the input vectors for the MAC can be adjusted to any

K × K convolution. The networks we chose to demonstrate

the functionality of our architecture on has a 7 × 7, 6 × 6

and 5 × 5 kernel dimensions. For the sake of simplicity,

Figure 6 illustrates a 3 × 3 convolving MAP cores only.

On the other hand, as a Pool operatorMAP cores can compute

MaxPool by comparing and selecting the maximum value

from up to K parallel input vectors, given the mode bit is set

to Pool. As shown in Figure 6, the number of MAP cores, N,

is configurable. This helps to increase the number of MAP

cores computing in parallel which is only limited by the

resources of the target device. This is also one of the features

47514 VOLUME 7, 2019

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

that makes MulNet highly flexible to fit in a small or large

target device.

C. INTERFACING WITH SUBSYSTEMS

Our processor is interfaced with subsystems inside the Zynq

system based on efficient industry standard Advanced eXten-

sible Interface (AXI) connections. This has been made handy

in Vivado HLS as the arguments of the top-level function

are synthesized into the IP’s external interfaces. Among the

three-port level AXI4 interfaces supported by Vivado HLS

(AXI4-Stream (axis), AXI4-Lite (s_axilite), and AXI4 mas-

ter (m_axi) interfaces) we utilized AXI master as a main

data transfer interface between external DDR and on-chip

memory, and AXI4-Lite is used for transferring configuration

data from the PS to MulNet IP.

D. SCHEDULING TECHNIQUE

Before MulNet starts computing, quantized and pre-arranged

weight vectors and input images are stored in DDR. The

initial memory size in bytes can be obtained if the input image

dimension, N, is known using Equation 5. Similarly, total

weight vector bytes can be calculated using Equation 6 by

multiplying the total number of individual weights, #weight,

with the bitwidth.

Input_memory_req : N 2 ∗
bitwidth

8
(5)

Weight_mem_req : #weights ∗
bitwidth

8
(6)

This calculation is used for offset calculation for the right

indexing of data from DDR. On the other hand, binary format

of each weight vector and input image are generated and

re-arranged in channel-major fashion before being loaded to

DDR. Channel-major arranges weights or feature maps in all

channels first and all rows second manner, this provides an

opportunity to computemultiple convolutions at a time and/or

without pulling new weight vectors from external memory.

All these data loading functions to DDR are executed from

the PS.

Figure 7 shows the task scheduling of MulNet once it

gets started from the processing system. MulNet has two

interfaces, AXI4 interface for data loading from DDR to

on-chip and vice versa, and AXI4-Lite interface for con-

figuring MulNet from PS. As shown in Figure 7, the first

task is configuring MulNet modules which includes Weight

Module, Feature Module, Input Module and MAP Module

represented as W, F, I and M, respectively. The configuration

information contains all the layer specific data which includes

input dimension, number of input channels, number of output

channels, kernel dimension, stride size, number of padding,

layer type and memory addressing offsets. All these data are

packed using DATA_PACK directive feature of Vivado HLS.

It packs all the configuration elements into one wide vector

and allows simultaneous read and write on all elements. For

instance configuration data for the first convolutional layer

of CIFAR10 network looks like (32, 1, 20, 5, 1, 0, 0, 520,

FIGURE 7. MulNet Task Schedule for Convolution and Pooling Layers.
W, F, I, M, and LT represents Weight Module, Feature Module, Input
Module and MAP Module and Layer Type, Respectively.

15680, 1024, 0, 2264), which corresponds to input dimen-

sion, number of input channels, number of output channels,

kernel dimension, stride size, number of padding, layer type,

number of weights, weight memory offset address, feature

memory offset address, and output memory offset address,

respectively.

Once the modules are configured to the currently executing

layer parameters, the next step is loading the input data and

weights fromDDR to on-chip memory via the AXI4 interface

of the MulNet. The scheme we created transfers all input

feature maps and weight vectors of a specific layer to on-

chip memory before starting computation of that layer. This

approachworks for small tomedium sized networks but when

the network gets larger and the number of weights and input

features of a layer cannot fully fit over on-chip memory.

For that we devised another scheme where we load L lines

(rows+ channels) of the input features at a time. The number

of lines to be loaded at a time, L, is configurable per layer

basis. Following a layer-specific start and stop index is cal-

culated as shown in Algorithm 1. These indexes are memory

addresses in IBRAM corresponding to the first and the last

K × K convolution features in that layer. Algorithm 1 shows

how both start and stop indexes are calculated.

An alternative way of reading the current K × K feature

map is by calculating (x * y * ci) to read pixel value at

(x, y, ci) and iterating throughK 2 pixels by calculating (x+i *

y+j * ci+p) where i and j are between [0, K − 1], and

p ranging from the first to last channel of the feature map.

VOLUME 7, 2019 47515

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

Algorithm 1 IBRAM Indexing for 5 × 5 Convolution

kernel size = kernelDim

feature size = inputDim = N

number of input channels = chIn

chInTimesN = chIn * N

if noPadding then
startIndex = ceil(kernelDim/2) - 1

stopIndex = (inputDim - 1) - startIndex
end

else if withPadding then
startIndex = ceil(kernelDim/2) - pad - 1

stopIndex = (inputDim - 1) - startIndex
end

// In Figure 8 : (left) (X , Y) = (2, 2) and

right (1, 1)

centerPixelAdd = X*chInTimesN + (chIn*Y) + chIn

for 0:2 do
x ′ = X + i− 1;

for 0:2 do
y′ = Y + j− 1;

//Calculated using adders and shifters only

addIBRAM=(x ′*chInTimesN) + (chIn*y′) +

chIn

if noPadding then
pixelValue = IBRAM(addIBRAM)

end

else if withPadding then

if x ′ < 0|x ′ > N |y′ < 0|y′ > N then
pixelValue = 0

end

else
pixelValue = IBRAM(addIBRAM)

end

end

end

end

FIGURE 8. Input Feature Indexing with and without Padding from IBRAM
for Less Hardware Consumption.

However, executing this calculation for every pixel in parallel

consumes a lot of multiplier and is not hardware friendly. For

instance, for a 5 × 5 kernel, 2*25 multipliers are required to

read all 25 pixel values. Hence, we created the scheme shown

in Figure 8. In our scheme we only calculate the central pixel

(for instance in a 5× 5 convolution, (2,2) is the central pixel)

once, which is derived from the start and stop index, and use

adders and shifters to calculate all the neighboring pixels as

shown in Figure 8 by black arrows. The pseduo code for this

address calculation is shown in Algorithm 1. To complete

the whole convolution, this indexing iterates over the whole

feature map as shown in the green line in Figure 8. The

indexing variation when the layer’s input features is zero

padded is also shown both in Algorithm 1 and Figure 8.

The next step in the task scheduler of Figure 7 is to compute

convolution or pooling based on the layer type. For convolu-

tional layers, a K × K feature is pulled from IBRAM and

get convolved with chOUT number of K × K weight vectors

repeated across each input channel. The main advantage of

this approach is it maximizes computational efficiency, as all

the chOUT convolutions can be computed concurrently with

no data dependency between each other. Moreover, each

K × K feature is accessed just once for all convolution

operations involving it. This saves a number of clock cycles

both from the memory access and convolution computation

concurrency. The MAC result for each output channel then is

stored in OBRAM. This process continues across each input

channel where each chOUT sum is accumulated on the pre-

vious one and written back to OBRAM after the summation.

The RTL for this computation is shown in Figure 6, Main

Architecture. Depending on the current computing layer

architecture, pixel wise activation is applied. MulNet has the

two most common activation functions, Sigmoid and ReLU,

implemented. Sigmoid is implemented using piecewise linear

approximation with the whole function taking a few hundred

LUTs and flops based on the technique presented in [29].

ReLU is implemented using simple comparators. Once all the

convolution for each chOUT number weight vectors across

each input channel, chIN, is computed, the data in BRAM

is offloaded back to DDR to the right offset address through

AXI4 interface of MulNet. This data flow continues until all

the convolution operations of the layer are completed, i.e.

across chIN, X, Y as shown in Figure 7 where X, Y are the

dimensions of each feature map and chIN is the number of

individual feature maps. In our proposed technique the next

layer starts execution taking the output of the previous feature

map as an input. Pooling is computed in a similar fashion as

shown in Figure 7.

V. QUANTIZATION

In this work, we explored two quantization formats. The first

one is Q(I.F) fixed-point format where I is the integer part bit

width and F is the fractional part bit width, and the second

one is power-of-2 quantization format. For the former one,

as depicted in Figure 4, we quantized the trained weights into

8, 16 and 32 bits as follows:

decimal_value = float_value ∗ 2−F (7)

rounded_dec = round(decimal_value) (8)

binary_value = dec2bin(rounded_dec) (9)

where F is the number of fractional digits in QI.F fixed-point

format, float_value is the actual weight value, dec2bin is a

decimal to binary converter function and binary_value is the

47516 VOLUME 7, 2019

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

final quantized weight value that we stored in memory for

computation.

For power-of-2 quantization we converted the trained

weight values into the nearest power-of-2 values, and then

calculated the power-of-2 exponent that we stored in mem-

ory. This exponent is later used in our MAP cores to know

how many times a feature value needs to be shifted. For all

the cases a signed 8-bit is enough to store the exponents.

This quantization allows such convolution computation using

MF processing cores in hardware. The resource utilization

efficiency of the two quantization techniques is compared

in Figure 9. We calculated Power-of-2 quantization error

based on 32-bit weight distribution and the quantized weight

distribution percentage difference for each layer as follows:

w_perc_diff =

∑ (∀(origW−quantizedW))
∀origW

num.of .weights
(10)

std_dev =

√

∑

(quantizedW − w_perc_diff)2

num.of .weights
(11)

where origW is originally trained 32-bit float weight values,

quantizedW is the corresponding quantized weight values and

num.of.weights is number of weights in that layer.

We plotted our quantization error and averaged out the

percentage value. Our technique provides an average of 3.5%

error with a 3 σ of 11. The reason we are only using a power-

of-2 bit width (8, 16 and 32) is that AXI4 only supports 32, 64,

128, 256, 512, or 1024 data bits and AXI4-Lite only supports

32 bits and 64 bits. Hence the bit width should always be a

power of two with a support of data width conversion that

doesn’t match the internal crossbar between our AXI master

MulNet IP to any memory-mapped slave.

TABLE 1. Workload of CNP, modified LeNet, MPCNN, and
CIFAR10 convolutional neural networks.

VI. EVALUATION AND STATE-OF-THE-ART COMPARISON

In order to evaluate our proposed architecture we imple-

mented five well known CNNs, ConvNet processor

(CNP) [30], Modified LeNet [26], CIFAR-10 [31] and

MPCNN [32]. Table 1 contains these workloads with their

layers, feature dimension, kernel size, number of MAP

operations, number of individual weights and total model

size of the layers. All of them are implemented using both

techniques, MAP cores implemented using multipliers and

MF MAP cores, of our proposed architecture, MulNet,

targeting Zynq XC7Z020 device running at 100MHz. The

Zynq XC7Z020 devices has 106400 Flops, 53200 LUTs,

140 BRAMs and 220 DSP slices. The CNP is a network that

is designed for face detection [30]. It has three convolutional

layers and two pooling layers. Modified LeNet is another

network created for hand written digit recognition, built from

two convolutional layers and two pooling layers. CIFAR-

10 is a 6-layer CNN that can classify 32 × 32 images into

10 different classes. MPCNN is a CNN developed for visual-

based hand gesture recognition on a 32 × 32 gray scale

images. The following sections discuss theMulNet’s resource

utilization efficiency, on-chip power estimate and state-of-

the-art comparison.

A. RESOURCE UTILIZATION

The resource utilization for the four benchmark CNN archi-

tectures is shown in Figure 9. Our architecture with MF

processing cores show a promising result by saving 36%-72%

on-chip memory and 10%-44% DSP48 IPs compared to

the architecture with cores implemented using multiplier.

We also observed that for lower bit precisions the differ-

ence between the two versions of our architecture is very

small while as the computation bit width of the architecture

increases, we see significant resource difference between

with multiplier and MF architecture. It can also be seen from

our result that, for power-of-2 quantization the on-chip mem-

ory requirement stays constant across bit width variation,

the reason for this is that we only stored the power-of-2 expo-

nent, not the actual value for which an 8-bit is always enough.

This brings considerable on-chip memory saving and cer-

tainly comes in very handy for resource constrained devices.

From all the four benchmarks, the maximum on-chip BRAM

saving is 72% (comparing with multiplier and MF architec-

tures) for CIFAR-10, the maximum DSP48 saving is 44%

for Modified LeNet and maximum saving for FF and LUT is

39% and 27%, respectively, on CIFAR-10 architecture. Based

on our experiment, it can be concluded that the technique

presented here can be more beneficial for deeper networks

(more number of layers) with a higher feature precisions

(i.e. our MF technique is better for 32-bit feature compared to

8-bit). Although the BRAM and DSP48 consumption always

have an improved trend for MF architecture, but in few cases

FF and LUT requirements remained in similar range for both

the techniques.

Comparison with the state-of-the-art is made with

[36] and [37]. Both reported 16-bit fixed point quantized

computation on the same target device as our work. Table 2

shows the improvement MulNet obtained over [36] and [37].

MulNet achieves 4.8-7.8x better on-chip memory utilization,

25-29x less DSP48 and significant Flops and LUTs saving

in both cores compared to [36] on CNP workload. For

LeNet, MulNet shows a 1.7-2.7x and 12.7-20x better on-chip

memory utilization compared to [36] and [37], respectively.

VOLUME 7, 2019 47517

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

FIGURE 9. Resource Utilization for Modified LeNet (MLeNet), CNP, CIFAR-10, and MPCNN for 8-bit, 16-bit, and 32-bit Computation with
Multiplier (WM) and Multiplier-Free (MF) MAP Cores: FFs and LUTs are in x100 magnitude.

47518 VOLUME 7, 2019

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

TABLE 2. Resource Utilization Comparison with the State-of-the-Art for 16-bit computation.

FIGURE 10. Performance in GOP/sec of MulNet for MPCNN, CNP,
CIFAR-10, and MLeNet.

Likewise, 1.3-1.6x and 22.6-27.2x less DSP48 compared

to [36] and [37], respectively. For CIFAR-10, MulNet gains

an improvement of about 2.7-5.1x on-chip memory and

13.6-15x DSP48 resource saving compared to [37]. MulNet

obtains an improvement of about 2.2-3.4x on-chip memory,

1.7-2x DSP48, 29.8x Flops and 21.3x LUT resources reduc-

tion compared to [32] on MPCNN workload. These results

evidently show a significant improvement both in on-chip

memory and PL resources.

B. PERFORMANCE

In order to measure the performance, we calculated GOP/sec

of MulNet for all the four benchmarks presented in this

work. Figure 10 shows the results we obtained. In [36]

Venieris et al. reported 0.48 GOP/sec for LeNet,

0.74 GOP/sec for MPCNN and 3.53 GOP/sec for CNP. Com-

parison of MulNet with [36] shows a 3.5x better performance

onMPCNNwhile Venieris et al’s work shows a better perfor-

mance on CNP. However, if the reduction in resource utiliza-

tion is considered for CNP, in parallel with the performance

trade off, we find out that the performance-resource joint met-

ric (a variant of Area-Delay Product) is still favorable to our

technique. Just to give a numerical perspective, least amount

of DSP reduction, which is 25 times reduction for CNP,

is better than 23.5 times (3.53/0.15) increment in the latency

of the same architecture. Moreover, in Table 2 it can be seen

that MulNet offers even further reduction (about 40 times)

in logic elements (LUT and Flops). Hence, we claim that

our overall performance-resource metric (i.e. Area-Delay

Product) is better than the architecture in [36].

FIGURE 11. On-chip Power Estimate of MulNet on CIFAR-10, MLeNet,
CNP, and MPCNN across different bit-widths.

FIGURE 12. On-chip Power Estimate of MulNet on CIFAR-10, MLeNet,
CNP, and MPCNN across different bit-widths.

C. ON-CHIP POWER ESTIMATE

This section presents the On-Chip dynamic power of the

target devices estimated using Vivado power analyzer. The

results we obtained are plotted in Figure 12. The power

VOLUME 7, 2019 47519

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

estimate is generated by extracting the power consumption

of MulNet IP only, from the whole Zynq SoC subsystem.

We observed the power consumption increases as the number

of computation bits increase. The power estimation is mainly

contributed by clock, signal, logic, BRAM and DSP of the

target device. To further investigate, we analyzed the esti-

mated power from the power analyzer for each component

separately. We observed a distinct trend in power consump-

tion due to signal transitions, which is denoted as signals’

power in the log file. As an example, we found out that signal

power for CNP network doubled as we increased number

of bits from 8 to 16. While at the same time the signal

power for MLeNet increased only 1.5 times. Although the

power consumption for rest of the components, e.g. number

of DSPs, and BRAMs, are within the similar range, but the

higher increment in signal transition power resulted in a trend

showing higher power consumption for wider bit widths for

CNP network compared to MLenet. We attribute this fact due

to higher dimension of weight matrix size in CNP network,

which consequently require more frequent memory access,

hence more power consumption. Our results also show that

MulNet with MF processing cores achieved 2-10% dynamic

power reduction for CIFAR-10 and 3.3-4.4% for CNP com-

pared to MulNet with cores implemented using multipliers.

TABLE 3. MulNet Power Efficiency (GOP/sec per watt) for MLeNet,
CIFAR-10, CNP, and MPCNN across 8, 16, and 32 bitwidth for Cores
implemented using multiplier and MF Cores .

By leveraging the performance results discussed in

Section VI-B and the power estimate metric presented in this

section, we calculated the power efficiency for our proposed

MulNet. The power efficiency figures are reported in Table 3

in GOP/sec per watt. This metric signifies the amount of

energy MulNet dissipates to perform each of the four bench-

marks across different bitwidth. We observed that the power

efficiency of MulNet increases with increase in computation

bitwidth for all the four benchmarks. On the other hand,

MulNet with MF core tends to show slightly better power

efficiency compared to cores implemented using multipliers.

VII. ALEXNET ON MULNET

All workloads discussed above and implemented to evaluate

MulNet are relatively smaller networks compared toAlexNet.

This section describes our strategy of utilizing MulNet to

compute AlexNet on XC7Z045 Zynq FPGA, and any deeper

networks in general. Since the main challenge of deploying

deeper networks in target FPGAs is the model size, therefore

we investigated the number of parameters for each layer

TABLE 4. Layer Tasks for AlexNet Convolutional Neural Networks on
MulNet.

in AlexNet architecture to devise an efficient deployment.

In MulNet scheduling, as discussed in Figure 7, computation

of each layer is completed before moving to the next layer.

Hence, the requirement in fitting a trained model is to fit

the layer with the higher number of weights in the network.

To accomplish that, we calculated the number of parameters

in each layer of AlexNet to see if the layer with the max-

imum number of weights can fit inside the on-chip memory

available in our targeted device. In AlexNet architecture there

are 34848, 614400, 884736, 1327104 and 884736 number

of weights in Conv1 to Conv5 layers, respectively. The total

available on-chip memory in our targeted FPGA device is

545 block RAMs with 36K bits per block. Hence, from

our analysis we found out that the number of parameters in

layer Conv4 can’t fit in the 545 blocks of on-chip memory.

As a result, we devised a technique of splitting this con-

volutional layer (Conv4) into two (Conv4_1 and Conv4_2)

separate tasks, so we can fit each layer’s (task’s) weights on-

chip. Table 4 shows this task division. It also shows each

layer’s input feature dimension, kernel size, number of MAC

operations, number of weights, and total model size of the

architecture with 32-bit representation. After splitting Conv4

layer, the maximum number of weights in a single layer is

884736 (inConv3 and inConv5) whichwe stored in 512 block

RAMs with 16-bit quantization. The lowest bit quantization

for AlexNet is chosen as 16 bits. This is because of a sig-

nificant drop in accuracy for 8-bit fixed point quantization

(38.6%) and below. For the sake of optimized hardware

computation, we split the weight tensor in the 4th dimension

i.e. from K × N × H × W into two K/2 × N × H × W

dimension tensors, where K is the number of filters with

H × W spatial dimension (height and width) and N is the

number of inputs. The splitting in the K th dimension is

selected in order to avoid extra accumulation (addition) oper-

ations in the 3D convolution that occurs if other dimensions

are chosen. The K th dimension splitting of weight tensor

results in two divided output features (1 × N/2 × H × W)

in the N th dimension. Due to implementation details, such

approach is also efficient in memory reading of the parame-

ters and memory writing of the feature maps.

As discussed in section IV-D, when full parameters and

features of the currently executing layer are larger in size

compared to the available on-chip memory we utilize a

scheme where we load L lines (rows + channels) of the

input features at a time. We followed the same approach

for implementing AlexNet using our proposed architecture,

47520 VOLUME 7, 2019

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

FIGURE 13. Input buffer reading sequence example with channel major
fashion (shown in different colors). A line represents one full row with all
its channels. In the first iteration (L1) three lines (3 × 8 × 7 = 168 pixels)
and in each of the following data reading iterations (L2

− L6) one line
(8 × 7 = 56 pixels) is loaded to On-chip memory.

Algorithm 2 Efficient Input Buffer Reading Algorithm with

ONE Memory Read Traffic for Each Pixel in Feature Maps.

Example Feature Map 7× 8× 8 which is shown in Figure 13

is used.

1 feature size = inputDim = N

2 Line = L = 3

3 linePerIter = 1

4 loadLinesToIBRAM(DRAM, L);

//Other configuration

5 if X < N then

6 if totalReadLines < N then

7 totalReadLines+ =linePerIter;

8 loadLinesToIBRAM(DRAM, linePerIter);

end

9 if Y < N then
//Other configuration

10 if ch < chIN then

11 processFullChannel(X, Y, ch);

end

end

end

MulNet. Figure 13 and Algorithm 2 illustrates this approach

of reading a certain portion of the input features from DDR to

on-chip memory. The main advantage of this input buffering

technique is that a pixel in a feature map (stored in DDR)

is read only once (and stored on-chip) for its computation

in the PL which significantly reduces the memory traffic

between the off-chip and on-chip memory. Figure 13 shows

a demonstrative example of our algorithm on 7 × 8 × 8

features. As shown in Figure 13, in the first iteration of

input buffering three lines of pixels are read, and in all the

subsequent iterations require to read a single line of pixels.

The input buffering iterations stops when the last line of pixel

is read. The number of lines read at a time are configurable

for each layer with the help of Algorithm 2 (line number 2 to

3 of Algorithm 2). The other constraints for selecting the

number of lines are as follows: 1) how many more block

RAMs are available after storing the layers weights; 2) the

kernel size of the layer and 3) the stride size. In the first

iteration at least a line greater than the kernel size has to

be read in order to compute the convolution over that filter

without reading features more than once. Similarly, the num-

ber of lines per iteration (the linePerIter in line number 3 of

Algorithm 2) should be greater or equal to the stride size of

the currently executing layer for the same reason. Lastly if

in the current buffering iteration, the available input block

RAMs (IBRAMs) are all occupied by the previously read

pixels, memory space of pixels whose computation has com-

pleted is overwritten by the currently read pixels. This itera-

tion continues until all pixels of the input features map are

read. Any other line variation is possible if it meets these

constraints. In our AlexNet implementation, we set L1 =

16 and linePerIter of 4 for Conv1, L1 = 4 and linePerIter of 2

for Pool1, L1 = 8 and linePerIter of 4 for Conv2, L1 = 8 and

linePerIter of 2 for Pool2 and L1 = 13 and linePerIter of 0

for Conv3 to Pool3 layers. Because of implementation details

(i.e. efficient in hardware) we select power of two numbers

except in the case of loading full feature maps on-chip (for

instance, 13 in our design).

The resource utilization of our AlexNet architecture

is shown in Figure 14. We acquire 545 BRAMs and

40 DSP48 blocks usage in 16-bit fixed point quantized

AlexNet implementation. Our MF implementation, as shown

in the last column of Table 5, uses 8-bit power-of-2 quan-

tization. This implementation consumes 274 BRAMs and

20 DSP48 blocks. The 8-bit quantized AlexNet is imple-

mented only using power-of-2 quantization as the accuracy

drop in that case is very minimal i.e. 1.16% compared

to the original trained 32-bit model. The performance of

16-bit fixed point quantized and 8-bit power-of-2 quan-

tized AlexNet using MulNet architecture in GOP/sec and in

GOP/sec/watt are comparable to the state-of-the-art methods

shown in Table 5. As shown in Table 5, our implementation

obtains 2.8x lesser on-chip memory requirement compared

to [18]. In our MF implementation (with power-of-2 quan-

tization) our architecture consumes 2x lesser on-chip mem-

ory in comparison to any best-case method available in the

literature, to the best of our knowledge. Comparison based

on DSP blocks shows that our architecture consumes 11.8x

lesser blocks compared to both [10] and [17], and 6.7x

lesser blocks compared to [18]. The power efficiency of

our implementation is calculated to be 86.15 GOP/sec/watt

and 88.49 GOP/sec/watt for WM and MF mode of MulNet

architecture, respectively. This power performance estima-

tion is calculated with the total power consumption of PL and

PS together. Moreover, MulNet achieves comparable perfor-

mance to other state-of-the-art implementation. Our results

show 1.26x, 1.02x and 0.844x better performance (GOP/sec)

compared to [17], [18] and [10], respectively. Therefore, our

VOLUME 7, 2019 47521

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

FIGURE 14. Resource Utilization of MulNet on AlexNet for 8-bit (power-of-2 quantization) and 16-bit (Fixed
point quantization) Computation with Multiplier-Free (MF) MAP Cores: FFs and LUTs are in x100 magnitude
and BRAMs are in x10 magnitude.

TABLE 5. Resource Utilization, Performance, and Power Efficiency Comparison of MulNet on AlexNet with Previous Works.

TABLE 6. Accuracy versus Bitwidth for MLeNet, CIFAR-10, and AlexNet for Originally Trained and Quantized Models with Fixed Point and
Power-of-2 Quantization Mode.

results objectively testify our claim of significant reduction

in utilizing resources, while maintaining at par performance

level.

VIII. ACCURACY EVALUATION

The accuracy of the proposed processor for different

bitwidth and quantization formats on MLeNet, CIFAR-10

and AlexNet workloads are shown in Table 6. The MLeNet

CNN is trained on MNIST dataset which is a dataset of hand-

written digits composed of 60,000 training 28×28 gray scale

images and 10,000 similar test images. As shown in Table 6,

the accuracy of the 16-bit and 32-bit fixed point quantized

model has very negligible drop of 0.08%. On the other hand,

the power-of-2 quantization results in 0.26% accuracy drop.

CIFAR-10 is trained on tiny images of CIFAR-10 dataset

which consists of 60,000 images of size 32×32 in 10 classes,

with 6,000 images per class. The dataset is divided into

50,000 training images and 10,000 test images. Similarly,

we trained CIFAR-10 network and computed 8-bit, 16-bit

and 32-bit fixed point, and 8-bit power-of-2 quantization.

The change in accuracy with respect to bitwidth changes

are also summarized in Table 6. As shown in the table, for

16-bit and 32-bit fixed point quantization, the accuracy drop

for the quantized model is very minimal with 0.7% and no

drop, respectively. In the same way, we trained AlexNet on

Cats and Dogs dataset from Kaggle [38]. The training dataset

47522 VOLUME 7, 2019

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

contains 25,000 images of dogs and cats with image size

of 227 × 227. The total computation workload and the num-

ber of weight parameters for AlexNet trained on this dataset

is analyzed in Table 4. We quantized the trained model using

8-bit, 16-bit and 32-bit fixed point, and 8-bit power-of-2.

As shown in Table 6, for 8-bit fixed point quantization the

AlexNet network does not perform well, with accuracy drop

of 38.6% compared to the 32-bit Caffe trained model. The

original Caffe trained model has an accuracy of 90.16%. Our

quantization has resulted in a negligible drop in accuracy for

32-bit fixed point quantization, 16-bit fixed point quantiza-

tion and power-of-2 quantization. Their respective accuracy

drops are 0.84%, 0.0% and 1.16%. Comparatively, MLeNet

is more resilient for lower bit quantization in both fixed point

and power-of-2 quantizationmodes compared to AlexNet and

CIFAR-10. On the other hand, AlexNet has smaller accuracy

drop compared to CIFAR-10 for power-of-2 quantization.

In summary, the accuracy drops from our proposed processor,

MulNet, is comparable or even better than other state-of-

the-art designs. At the same time MulNet gives the higher

resource utilization efficiency and offers flexibility across

different CNN architectures.

IX. CONCLUSION

A novel and highly flexible CNN processor architecture

that can compute most regular CNN variants with MF pro-

cessing cores aiming for attaining higher resource utiliza-

tion efficiency is presented. We formulated fixed-point and

power-of-2 quantization techniques to achieve a MF opera-

tion. We also devised a scheme that utilizes the processing

system (PS) formemory-centric layers and the programmable

logic (PL) for computation-centric layers. We implemented

Modified LeNet, CIFAR-10 Full, ConvNet Processor (CNP),

MPCNN, and AlexNet to evaluate our architecture. Our

results show promising performance of our proposed, Mul-

Net, with MF processing cores. It saves 36%-72% on-chip

memory and 10%-44% DSP48 IPs compared to MulNet with

cores implemented using multiplier. Comparison with the

state-of-the-art showed a very promising 25-40x DSP48 and

25-29x on-chip memory reduction with up to 136.9 GOP/sec

performance and 88.49 GOP/sec/watt power efficiency.

Hence, our results demonstrate that the proposed architecture

can be very expedient for resource constrained devices. One

limitation of our architecture is that for each CNN model

it requires customization of the design parameters to fit the

characteristics of MulNet. We plan to alleviate this limitation

by developing an automated framework (utilizing MulNet as

a template), that can generate a synthesized hardware IP using

an optimization algorithm over the network architecture and

the target FPGAwithout the need for designer customization,

and with an aim of achieving higher resource utilization

efficiency.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,

pp. 436–444, May 2015.

[2] C. Szegedy et al., ‘‘Going deeper with convolutions,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1–9.

[3] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for

image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,

Jun. 2016, pp. 770–778.

[4] A. Ling and J. Anderson, ‘‘The role of FPGAs in deep learning,’’ in Proc.

ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2017, p. 3.

[5] S. I. Venieris, A. Kouris, and C.-S. Bouganis, ‘‘Toolflows for mapping

convolutional neural networks on FPGAs: A survey and future directions,’’

ACM Comput. Surv., vol. 51, no. 3, 2018, Art. no. 56.

[6] S. I. Venieris and C.-S. Bouganis, ‘‘fpgaConvNet: Mapping regular and

irregular convolutional neural networks on FPGAs,’’ IEEE Trans. Neural

Netw. Learn. Syst., vol. 30, no. 2, pp. 326–342, Feb. 2019.

[7] E. Wang et al. (2019). ‘‘Deep neural network approximation for custom

hardware: Where we’ve been, where we’re going.’’ [Online]. Available:

https://arxiv.org/abs/1901.06955

[8] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang. (2017). ‘‘A sur-

vey of FPGA-based neural network accelerator.’’ [Online]. Available:

https://arxiv.org/abs/1712.08934

[9] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry. (2018). ‘‘Accel-

erating CNN inference on FPGAs: A survey.’’ [Online]. Available:

https://arxiv.org/abs/1806.01683

[10] S. I. Venieris and C.-S. Bouganis, ‘‘Latency-driven design for FPGA-

based convolutional neural networks,’’ in Proc. IEEE 27th Int. Conf. Field

Program. Logic Appl. (FPL), Sep. 2017, pp. 1–8.

[11] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,

and K. Keutzer (2016). ‘‘SqueezeNet: AlexNet-level accuracy with

50x fewer parameters and <0.5 MB model size.’’ [Online]. Available:

https://arxiv.org/abs/1602.07360

[12] C. Shea, A. Page, and T. Mohsenin, ‘‘SCALENet: A scalable low power

accelerator for real-time embedded deep neural networks,’’ in Proc. ACM

Great Lakes Symp. VLSI. , 2018, pp. 129–134.

[13] H. Li, X. Fan, L. Jiao,W. Cao, X. Zhou, and L.Wang, ‘‘A high performance

FPGA-based accelerator for large-scale convolutional neural networks,’’

in Proc. 26th Int. Conf. EPFL Field Program. Logic Appl. (FPL), 2016,

pp. 1–9.

[14] J. Cong and B. Xiao, ‘‘Minimizing computation in convolutional neural

networks,’’ in Proc. Int. Conf. Artif. Neural Netw. Cham, Switzerland:

Springer, 2014, pp. 281–290.

[15] J. Qiu et al., ‘‘Going deeper with embedded FPGA platform for convolu-

tional neural network,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program.

Gate Arrays, 2016, pp. 26–35.

[16] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, ‘‘Optimizing

FPGA-based accelerator design for deep convolutional neural networks,’’

in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2015,

pp. 161–170.

[17] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, ‘‘DeepBurning: Automatic

generation of FPGA-based learning accelerators for the neural network

family,’’ in Proc. ACM 53rd Annu. Design Automat. Conf., 2016, p. 110.

[18] Y. Ma, N. Suda, Y. Cao, J.-S. Seo, and S. Vrudhula, ‘‘Scalable and

modularized RTL compilation of convolutional neural networks onto

FPGA,’’ in Proc. IEEE 26th Int. Conf. Field Program. Logic Appl. (FPL),

Aug./Sep. 2016, pp. 1–8.

[19] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu. (2017).

‘‘AnOpenCL(TM) deep learning accelerator on Arria 10.’’ [Online]. Avail-

able: https://arxiv.org/abs/1701.03534

[20] Y. Umuroglu et al., ‘‘FINN: A framework for fast, scalable binarized neural

network inference,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate

Arrays, 2017, pp. 65–74.

[21] H. Yonekawa and H. Nakahara, ‘‘On-chip memory based binarized convo-

lutional deep neural network applying batch normalization free technique

on an FPGA,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. Work-

shops (IPDPSW), May/Jun. 2017, pp. 98–105.

[22] Y. Ma, Y. Cao, S. Vrudhula, and J. S. Seo, ‘‘Optimizing loop operation and

dataflow in FPGA acceleration of deep convolutional neural networks,’’

in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2017,

pp. 45–54.

[23] J. Zhang and J. Li, ‘‘Improving the performance of OpenCL-based FPGA

accelerator for convolutional neural network,’’ in Proc. FPGA, 2017,

pp. 25–34.

[24] R. Zhao et al., ‘‘Accelerating binarized convolutional neural networks with

software-programmable FPGAs,’’ in Proc. FPGA, 2017, pp. 15–24.

VOLUME 7, 2019 47523

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

[25] M. Hailesellasie and S. R. Hasan, ‘‘A fast FPGA-based deep convolutional

neural network using pseudo parallel memories,’’ in Proc. IEEE Int. Symp.

Circuits Syst. (ISCAS), May 2017, pp. 1–4.

[26] M. Hailesellasie, S. R. Hasan, F. Khalid, M. Shafique, and F. A. Wad,

‘‘FPGA-based convolutional neural network architecture with reduced

parameter requirements,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),

May 2018, pp. 1–5.

[27] T. Mitchell,Machine Learning. New York, NY, USA: McGraw-Hill, 1997,

p. 997.

[28] Berkeley Vision and Learning Center. Accessed: Mar. 17, 2017. [Online].

Available: http://caffe.berkeleyvision.org/

[29] H. Amin, K. M. Curtis, and B. R. Hayes-Gill, ‘‘Piecewise linear approx-

imation applied to nonlinear function of a neural network,’’ IEE Proc.-

Circuits, Devices Syst., vol. 144, no. 6, pp. 313–317, 1997.

[30] C. Farabet, C. Poulet, and Y. LeCun, ‘‘An FPGA-based stream pro-

cessor for embedded real-time vision with convolutional networks,’’ in

Proc. IEEE 12th Int. Conf. Comput. Vis. Workshops (ICCV Workshops),

Sep./Oct. 2009, pp. 878–885.

[31] CIFAR-10. [Online]. Available: https://github.com/BVLC/caffe/tree/

master/examples/cifar10

[32] J. Nagi et al., ‘‘Max-pooling convolutional neural networks for vision-

based hand gesture recognition,’’ in Proc. IEEE Int. Conf. Signal Image

Process. Appl. (ICSIPA), Nov. 2011, pp. 342–347.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-

cess. Syst., 2012, pp. 1097–1105.

[34] Xilinx 7 Series FPGAs Block RAM, UG473 7Series Memory Resources.

Accessed: Oct. 2018. [Online]. Available: https://www.xilinx.

com/support/documentation/

[35] Zynq-7000 SoC Product. Accessed: Oct. 2018. [Online]. Available:

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

[36] S. I. Venieris and C.-S. Bouganis, ‘‘fpgaConvNet: A framework for map-

ping convolutional neural networks on FPGAs,’’ in Proc. IEEE 24th Annu.

Int. Symp. Field-Program. Custom Comput. Mach. (FCCM), May 2016,

pp. 40–47.

[37] H. Sharma et al., ‘‘From high-level deep neural models to FPGAs,’’

in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture, 2016,

Art. no. 17.

[38] Dogs vs. Cats Dataset. Accessed: Jan. 2018. [Online]. Available:

https://www.kaggle.com/c/dogs-vs-cats/data

MULUKEN TADESSE HAILESELLASIE received

the B.S. degree in electrical and computer engi-

neering from Addis Ababa University, Addis

Ababa, Ethiopia, in 2009, and the M.S. degree

in communications engineering from Ulm Uni-

versity, Ulm, Germany, in 2015. He is currently

pursuing the Ph.D. degree in electrical engineering

with Tennessee Tech University, TN, USA. From

2012 to 2015, he was a Research Assistant with the

Institute of Electron Devices and Circuits, Ulm

University. He joined Intel as an SoC Design Engineer, in 2018, as an Elec-

trical Validation Engineer, in 2017, and as a Product Development Engineer,

in 2016. Since 2015, he has been a Research Assistant with the Electrical

and Computer Engineering Department, Tennessee Tech. He has reviewed

peer-reviewed conference papers and journals for DAC, the IEEE ACCESS,

and the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. His research interests

include applied AI, deep learning, architecture design for computationally

intensive workloads, low-power hardware design, field programmable gate

array (FPGA) design, and digital signal processing.

SYED RAFAY HASAN received the B.Eng. degree

in electrical engineering from the NED Univer-

sity of Engineering and Technology, Pakistan, and

the M.Eng. and Ph.D. degrees in electrical engi-

neering fromConcordia University, Montreal, QC,

Canada. From 2006 to 2009, he was an Adjunct

Faculty Member with Concordia University. From

2009 to 2011, he was a Research Associate with

the Ecole Polytechnique de Montreal. Since 2011,

he has been with the Electrical and Computer

Engineering Department, Tennessee Tech University, Cookeville, TN, USA,

where he is currently an Associate Professor. He has published more than

67 peer-reviewed journal and conference papers. His current research inter-

ests include hardware design security in the Internet of Things (IoT), hard-

ware implementation of deep learning, deployment of convolution neural

networks in the IoT edge devices, and hardware security issues due to

adversarial learning. He is a Full Member of Sigma Xi and a Life Member of

the Pakistan Engineering Council. He received the Postdoctoral Fellowship

Award from the Scholarship Regroupment Stratgique en Microsystmes du

Québec, in 2011, the Faculty Research Award from Tennessee Tech Univer-

sity, from 2013 to 2014 and from 2015 to 2016, the Kinslow Outstanding

Research Paper Award from the College of Engineering, Tennessee Tech

University, in 2015, and the Summer Faculty Fellowship Award from the Air

force Research Lab (AFRL). He was a recipient of the Sigma Xi Outstanding

Research Award, in 2012. He has received research and teaching funding

from NSF, ICT-funds UAE, AFRL, and Intel Inc. He has been part of

the funded research projects, as a PI or a Co-PI, that worth more than

$1.1 million. He is the Session Chair and a Technical Program Committee

Member of several IEEE conferences including ISCAS, ICCD, MWSCAS,

and NEWCAS, and a Regular Reviewer for several IEEE TRANSACTIONS

and other journals including TCAS-II, IEEE ACCESS, Integration, the VLSI

Journal, IET Circuit Devices and Systems, and IEEE EMBEDDED SYSTEMS

LETTERS.

47524 VOLUME 7, 2019

	INTRODUCTION
	PRIMER ON CONVOLUTIONAL NEURAL NETWORK (CNN)
	CONVOLUTIONAL LAYER
	POOLING LAYER
	FULLY CONNECTED(FC) LAYER

	FRAMEWORK OF MULNET
	MULNET
	ON-CHIP MEMORY UNITS
	PROCESSING CORES - MAP CORES
	INTERFACING WITH SUBSYSTEMS
	SCHEDULING TECHNIQUE

	QUANTIZATION
	EVALUATION AND STATE-OF-THE-ART COMPARISON
	RESOURCE UTILIZATION
	PERFORMANCE
	ON-CHIP POWER ESTIMATE

	ALEXNET ON MULNET
	ACCURACY EVALUATION
	CONCLUSION
	REFERENCES
	Biographies
	MULUKEN TADESSE HAILESELLASIE
	University. He
	SYED RAFAY HASAN

