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Abstract: With the rapid development of wireless communication technology and the emergence of
intelligent applications, higher requirements have been put forward for data communication and
computing capacity. Multi-access edge computing (MEC) can handle highly demanding applications
by users by sinking the services and computing capabilities of the cloud to the edge of the cell.
Meanwhile, the multiple input multiple output (MIMO) technology based on large-scale antenna
arrays can achieve an order-of-magnitude improvement in system capacity. The introduction of
MIMO into MEC takes full advantage of the energy and spectral efficiency of MIMO technology,
providing a new computing paradigm for time-sensitive applications. In parallel, it can accommodate
more users and cope with the inevitable trend of continuous data traffic explosion. In this paper, the
state-of-the-art research status in this field is investigated, summarized and analyzed. Specifically, we
first summarize a multi-base station cooperative mMIMO-MEC model that can easily be expanded to
adapt to different MIMO-MEC application scenarios. Subsequently, we comprehensively analyze the
current works, compare them to each other and summarize them, mainly from four aspects: research
scenarios, application scenarios, evaluation indicators and research issues, and research algorithms.
Finally, some open research challenges are identified and discussed, and these indicate the direction
for future research on MIMO-MEC.

Keywords: multiple input multiple output; multi-access edge computing

1. Introduction

In recent years, with the arrival of the 5G era, the Internet of Everything has gradually
become a reality, and some smart mobile applications have emerged, such as augmented
reality (AR) and virtual reality (VR). Some future concepts such as metaverse and digital
twin have also been proposed. All of these novel applications suggest that data traffic will
continue to explode. According to Ericsson, global mobile data traffic will increase fivefold
by 2025 compared with 2019. As a result, these applications with intensive computing re-
quirements demand higher transmission rates, which will put more stringent requirements
on mobile communication [1,2].

The emerging mobile applications are usually computationally intensive and delay-
sensitive, and put a heavy burden on traditional cloud computing, thus mobile edge
computing (MEC) has attracted a lot of attention as a new computing paradigm. The
concept of MEC was first proposed by the European Telecommunication Standards Institute
(ETSI) in 2014 [3]. While in 2016, ETSI extended the access method from cellular network
to other access methods such as WLAN, that is, the concept of mobile edge computing
was extended to multi-access edge computing. Unlike cloud computing, MEC aims to
provide a distributed service environment by deploying servers closer to mobile users,
which can enable low latency and high speed access, alleviating the heavy data burden of
cloud computing backhaul [2,4]. In the Internet of Everything era, mobile devices’ access
volume and data traffic are at the stage of explosive growth. Thus, MEC has attracted the
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attention of researchers due to its great superiority in reducing system delay, saving energy
consumption, improving service quality, enhancing physical security and increasing cache
efficiency. Many researchers have proved that MEC can effectively alleviate the situation of
the insufficient computing capacity and limited power of mobile devices in the fields of
Internet of Things (IoT) [5], and it is considered as one of the most promising technologies
for 5G and beyond networks [6].

On the other hand, the explosive growth of data volume puts forward higher re-
quirements for the capacity of communication systems; thus, another research hotspot in
the field of communication is multiple input multiple output (MIMO). Since the earliest
experimental system of MIMO was proposed by researchers in the Bell laboratory in the
19th century, it has received widespread attention from researchers all over the world.
In addition, in terms of its ability to accommodate plenty of users at the same time, the
advantages of effectively improving the spectral efficiency (SE) and the capacity of the
system have been proven [7], while with the explosive growth of global traffic data [8],
researchers are no longer satisfied with the performance improvement brought by MIMO,
and have instead focused on large-scale MIMO systems [9], which require more antennas to
be deployed at the base station (BS). Massive MIMO (mMIMO) technology can effectively
utilize space resources to cope with the current severe situation of spectrum resource short-
age. In addition, mMIMO can provide diversity gain and effectively suppress interference,
which has a significant effect on improving the stability and reliability of the system, and
its advantage also lies in the improvement of energy efficiency (EE) [10]. When the number
of antennas is sufficient, the interference between users is significantly reduced, and the
channel can be regarded as orthogonal. Moreover, the mMIMO takes full advantage of the
number of antennas to achieve an increase in communication freedom degree [11,12].

At the beginning, MEC mainly focused on the related research about single-antenna
systems, but researchers noticed that the huge gain brought by MIMO technology in terms
of SE effectively promoted offloading in MEC. Moreover, the MIMO system has evolved
from a concept to a practical application step by step and has already been integrated
into advanced wireless network standards, making it possible for it to be applied to MEC
networks [13]. Therefore, some researchers have tried to conduct research in the scenario
of deploying multiple antennas at the BS. As far as we know, ref. [14] took the lead in
introducing MIMO technology into the MEC system, and then more and more researchers
became involved.

By deploying abundant antennas at the BS, MIMO-MEC can accommodate more users,
and multiple users can offload data simultaneously, which can effectively reduce queuing
delay. It can also significantly reduce the delay caused by wireless transmission of data,
further reducing the overall delay of the entire MEC system [15]. In addition, when the
number of antennas equipped at the BS is large enough, the channels of each user are
approximately orthogonal, i.e., a single BS can provide basically interference-free signals to
the user terminals within its coverage area [11]. Similarly, when a large number of antennas
are deployed on the BS in the mMIMO system, the dimension of the channel matrix tends
to be infinite. In this case, the randomness of the relevant parameters in the channel matrix
is reduced to deterministic expression and concentrated on the diagonal elements of the
channel matrix, which is called “channel hardening” [16,17]. This weakens the impact of
the slow change in channel characteristics, improves the robustness of communication and
has a great advantage over traditional MEC networks, such as the systems based on Time
Division Multiple Access (TDMA) and Frequency Division Multiple Access (FDMA), etc.

Researchers focused on MEC and made a breakthrough, and there are many review
papers to summarize these results, which are mainly about the architecture, computing
offloading, resource management, resource provisioning, service migration and advan-
tages [6,18–21]. Ming Zeng et al. introduced mMIMO-assisted MEC in [22], but only a brief
analysis of the relevant work prior to 2020 was conducted. The authors of [22] focused on
demonstrating the advantages of MIMO-MEC through experimentally based numerical
analysis. However, considering that the MIMO-MEC network is a promising technology
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for the next generation communication and studies on the mMIMO-assisted MEC network
have kept appearing in the past two years, a comprehensive review and analysis of MIMO-
MEC is essential. The lack of attention given to MIMO-MEC in existing reviews has driven
us to investigate systematically. We categorize studies from the perspective of research
scenarios, techniques, indicators, research issues and optimization methods to provide
researchers with a comprehensive and up-to-date view.

In this review, we adopt the three-layer MEC architecture that is popular and widely
accepted by many works. It contains the thing layer, edge layer and cloud layer. Offloading
strategy and resource allocation in MEC can be operated among users, the edge and cloud
to make full use of existing computing resources.

Compared with the single BS scenario, multiple BSs can cooperate with each other
and realize the maximum utilization of resources through joint management, which has a
broader application prospect. Thus, the multi-BS cooperative mMIMO-MEC models are
introduced in Section 2, in which communication between BSs is considered to achieve
mutual cooperation. The common system indicators are also summarized. These models
and indicators are the foundation for further investigation in the MIMO-MEC field.

Additionally, we present a state-of-the-art review concerning the field of mMIMO-
MEC. There are four main areas of interest, including research scenarios, application
scenarios, evaluation indicators and research issues, and research algorithms, which are
covered in detail in Section 3. Finally, we discuss the prospects for possible future research
directions and open research challenges in the field of mMIMO-MEC in Section 4.

In order to facilitate the readers’ understanding, the most commonly used acronyms
in this paper are listed in Acronym and Notation.

2. Basic Models

In this section, we introduce the basic models in mMIMO-MEC networks. After
analyzing several studies from the literature, the multi-BS cooperative mMIMO-MEC
models are summarized, including the task model, communication model and computing
model. The BSs are managed by Software Defined Networking (SDN) technology and they
can communicate with each other to support collaboration and service migration. However,
users can only communicate with one BS. These models are not only a summary of existing
research, but can also be well adapted to future research because more and more researchers
are focusing on the advantages of cell collaboration, which is of guiding significance.

At present, the most widely popular and used MEC network is three-layer architecture,
including the thing layer, edge layer and cloud layer. The thing layer is the layer where
intelligent terminal devices reside, which usually generate a large amount of complex data.
The edge layer is the core of the three-layer structure, equipped with the edge servers,
which can not only process data but also manage resources. The cloud is undoubtedly the
most powerful data processing and storage center, connected to the edge layer through the
core network but at a distance from the users. Subsequent studies were carried out on the
basis of this three-layer structure.

As shown in Figure 1, the mMIMO-MEC network model includes a cloud server, L BSs
connected to L MEC servers, and K single antenna users exist in the service scope of each
MEC server. Each BS is equipped with M antennas as access points (APs), and the MEC
servers have communication, computing, storage and other service functions. This section
considers the typical mMIMO system where M� K. In the subsequent parts of this survey,
the BS, AP and MEC server are referred to as the same thing and may be used alternately.
All the user terminals have a single computationally intensive task requirement, and the
computing task can be calculated locally, by the MEC server or by the cloud server under
the premise of considering the local computing capacity, energy consumption limitation
and latency limitation. The indexes of the MEC servers and mobile users are represented
as l ∈ L , {1, . . . , L} and k ∈ K , {1, . . . , K}, respectively. Data offloading is carried
out over wireless channels between the user terminal and BS, while the BSs are wired to
the cloud.
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Figure 1. Basic MIMO-MEC system model.

The main parameters used in this paper are summarized in Acronym and Notation
for readability.

2.1. Task Model

This paper considers a frequently used task model as follows. The computing task of
each user is defined as a 4-tuple set Tlk = {λlk, xlk, τlk, αlk}. λlk is the size of the input data
(bits) for a computing task Tlk. xlk denotes the number of central processing unit (CPU)
cycles required to process per input data bit (cycles/bit). τlk represents the maximum
tolerable delay for completing each task (s), and we assume that the delay budget does not
exceed one time slot, i.e.,τlk ≤ τ. αlk stands for the ratio of the output data size to the input
data size. Thus, the number of CPU instruction cycles required for calculating task Tlk is
λlkxlk, and the size of the calculation result that needs to be transmitted is λlkαlk. Note
that λlk, xlk, τlk, αlk are assumed to be known because they are easily obtained by a task
profiler [23].

2.2. Computing Models

This subsection introduces a computing model for cloud–edge–things collaboration,
including delay and energy consumption under different conditions.

To make the model more general, it is assumed that the user’s computing task can be
jointly completed by the user and the cloud server, or the user and the MEC. Accordingly,
the task of the user terminal can be divided into two parts. The offloading ratio is recorded
as ϑ, indicating that data of size ϑλlk is offloaded to the cloud server or MEC servers, and
the rest (1− ϑ)λlk is performed locally.

2.2.1. Local Computing

The local computing capability of users can complete part of the computing task. Let
flk denote the computing capacity of the user terminal, i.e., the number of CPU cycles,
and thus, the local processing delay is calculated by tloc = (1 − ϑ) λlkxlk/ flk. In this
process, the energy consumed by the user itself is Eloc = κloc f 2

lk(1− ϑ)λlkxlk, where κloc is
an effective switching capacitance constant that depends on the power coefficient of the
chip architecture.

2.2.2. Computation Offloading

The offloading part can be performed by the MEC server or the cloud according to
the actual situation. When the computing task is offloaded to BS, a binary decision ak→l is
introduced for indication, and ak→l = 1 means that the BS l will complete the calculation of
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the offloading part. The computing delay is tlk,m = ϑλlkxlk/ f l
k, where f l

k denotes the CPU
cycle frequency (cycles/s) allocated by the MEC server l to the user k, which is constrained
by the total computing capacity of the MEC servers:

K

∑
k=1

ak→l f l
k ≤ f M, ∀l ∈ L (1)

The corresponding energy consumption is Elk,m = κs f l 2
k ϑλlkxlk, where κs stands for

the hardware dependence constant of the MEC server.
Introduce a new binary variable acoo and acoo = 1 indicates that the BS collaboration

mechanism is enabled. The handover data λcoo ≤ ϑλlk, which can be controlled by SDN.
When acoo = 1, the computing delay includes two parts: tcoo1 = (ϑλlk − λcoo)xlk/ f l

k and
tcoo2 = λcooxlk/ fcoo, where fcoo is allocated by SDN and satisfies the computing capac-
ity constraint. The corresponding energy consumption is Ecoo = κs f l 2

k (ϑλlk − λcoo)xlk +
κs f 2

cooλcooxlk.
Introduce another new binary variable ak→c. If it is calculated by the cloud server,

ak→c = 1, and the calculation delay is tlk,c = ϑλlkxlk/ fc. The computing rate of the cloud
is much higher than that of the MEC server, so its computing rate fc is considered as a
constant for any computing task. In most cases, the energy consumption of the cloud
server due to computing is ignored; however, ref. [24] considers the computing cost that is
proportional to the size of task data. Thus, it is expressed as Elk,c = κcϑλlk, where κc is the
cost factor in J/bit.

In some studies, it is assumed that the users’ computing tasks are not separable, i.e.,
binary offloading decision. In this case, only one of the user terminals, the MEC server and
the cloud server can be selected to carry out the task calculation, and the above models can
match the binary decision by adjusting the offloading ratio ϑ to 0 or 1.

2.3. Communication Model

The whole process of computing offloading includes uplink data transmission, com-
putation and downlink result transmission. The communication model of the MIMO-MEC
network is based on multi-user MIMO, whose uplink channel is the multiple access chan-
nel and downlink channel is the broadcast channel. The work about mMIMO technol-
ogy in the communication model section benefits from the derivation and summary of
Marzetta et al. [25].

It is assumed that the channel fading remains unchanged over a time slot τ, and
the channel matrix from the user to the MEC server is defined as Gl

s ∈ CM×K. The

channel gain is expressed as glm
sk = hlm

sk

√
βl

sk, where hlm
sk represents the small-scale fading

coefficient between the user k in MEC server s and the mth antenna in MEC server l, and
βl

sk denotes the large-scale fading coefficient between the user k in MEC server s and the BS
l. Moreover, the data transmission rate is independent of small-scale fading due to channel
hardening [11,25]. The channel models considered in different studies are different, and
the detailed analysis is shown in Table 1.

2.3.1. Channel Estimation

Generally, since the channel conditions are unknown or variant during the information
transmission, pilot estimation is required. At each BS, every mobile user sends a pilot
sequence with the length of τp at first, then the BS uses the Minimum Mean Square Error
(MMSE) method to estimate the channel. The target cell l is called the home cell. All the
cells that use the same pilot sequence as the home cell are recorded as Pl , which causes
pilot contamination because of the reuse of the pilot [26]. The MMSE estimate is:

ĝlm
sk =

√
τP pP

sk
βl

sk

σ2 + τP ∑
l′∈Pl

pP
l′k

βl
l′k
[
√

τP pP
sk ∑

s∈Pl

Gl
s + WPl ]mk, s ∈ Pl (2)
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where pp
sk is the transmitting power when the user sends the pilot, and Wpl ∼ CN

(
0, Iσ2)

denotes the additive noise at the BS.
The mean square channel estimate obtained by the BS is given by:

γl
sk = E

{∣∣∣ĝlm
sk

∣∣∣2} =
τP pP

sk

(
βl

sk

)2

σ2 + τP ∑
l′∈Pl

pP
l′k

βl
l′k

(3)

The channel transmission performance largely depends on channel estimation quality,
and an effective channel estimation method can significantly reduce the bit error rate [27].

Table 1. Comparison of channel models in MIMO-MEC.

Paper Channel Model Large-Scale Fading Small-Scale Fading

[8] Quasi-static block fading
Pathloss model (LoS):

Lm,n(dB) = 20log
(

4π fc Dn,m
c

)a
+ ξLoS

b -

[15] - Pathloss model:
PL (dB) = 30.6 + 36.7log10(d)

Rayleigh fading

[28] Flat fading model Pathloss and shadow -

[29] - 3GPP pathloss model:
PL (dB) = 148.1 + 37.6log10(d)

Rayleigh fading

[30]
Gaussian–Markov

block fading autoregressive
model

- Rayleigh fading

[31] - Log-normal shadowing model Fading coefficient

[32] Block fading model
3GPP Urban Microcell model:

βlk(dB) =

−30.5− 36.7log10

(
dlk
1 m

)
+ SFlk

c
-

[33] Saleh–Valenzuela model - -

[34] Block fading
Pathloss and shadow:

βlk = L−α
mk

d·10
Zmk

e

10
Rayleigh fading

a Dn,m represents Euclidean distance, c stands for speed of light and fc represents carrier frequency. b ξLoS stands
for average additional loss of free space propagation loss. c SFlk represents log-normal shadow fading. d Lmk
means distance between the kth UE and mth AP (in km), α stands for path loss exponent. e Zmk stands for
shadow fading.

2.3.2. Uplink Multiple Access Channel

After channel estimation, the user terminal offloads the data to the BS. It is assumed
that the signals sent by the terminals meet the requirements that the mean value is zero,
the power is 1 and they are not related to each other.

Generally, the receiver adopts Maximum Ratio Combining (MRC) technology [28,35]
or Zero Forcing (ZF) technology [15,30] for signal detection. Different signal detection
methods can obtain different decoding rates. The uplink achievable transmission rate for
the user k in BS l is given as

ru,lk = blklog2

(
1 + SINRul

lk

)
(4)

where blk is the bandwidth of the user k in BS l. If the MRC detection is used,

SINRul
lk =

Mγl
lk plk

σ2 + ∑
s∈Pl

K
∑

u=1
βl

su psu + ∑
s/∈Pl

K
∑

u=1
βl

su psu + M ∑
s∈Pl\{l}

γl
sk psk

(5)
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where plk is the transmitting power of the user k in BS l. The items in the denominator
represent the noise interference at the receiver, the non-coherent interference from the pilot
contaminating cells, the non-coherent interference from the non-contaminating cells and
the coherent interference from the contaminating cells, and if ZF technology is used, then

SINRul
lk =

(M− K)γl
lk plk

σ2 + ∑
s∈Pl

K
∑

u=1
(βl

su − γl
su)psu + σ2

r

(6)

σ2
r = ∑

s/∈Pl

K

∑
u=1

βl
su psu + (M− K) ∑

s∈Pl\{l}
γl

sk psk (7)

Therefore, the uplink transmission delay of the user k in BS l is tlk,utr =
ϑλlk
ru,lk

, and the
energy consumption is Elk,utr = plktlk,utr. If the power control is considered, the users’
transmitting power should be multiplied by a corresponding power factor.

2.3.3. Downlink Broadcast Channel

For downlink transmission, in the current studies, Time Division Duplex (TDD)
operation is mostly used [36–38], thus the channel matrix of the downlink broadcast
channel can be defined by wireless channel reciprocity as H = GT , without downlink
channel estimation.

The BS l first preprocesses the signals of K users with an M × K precoding matrix Al in
the downlink. The precoding matrix Al only depends on the channel estimation within the
corresponding BS and is normalized. The form of the downlink achievable transmission
rate for the user k in BS l is rd,lk = blklog2

(
1 + SINRdl

lk

)
, which is similar to (4). For MRC

and ZF technology, the signal-to-noise ratios are shown in (8) and (9), (10), respectively:

SINRdl
lk =

Mγl
lk plηlk

σ2
lk + ∑

s∈Pl

K
∑

u=1
βs

lk psηsu + ∑
s/∈Pl

K
∑

u=1
βs

lk psηsu + M ∑
s∈Pl\{l}

γs
lk psηsk

(8)

SINRdl
lk =

(M− K)γl
lk plηlk

σlk
2 + ∑

s∈Pl

K
∑

u=1
(βs

lk − γs
lk)psηsu + σ2

s

(9)

σ2
s = ∑

s/∈Pl

K

∑
u=1

βs
lk psηsu + (M− K) ∑

s∈Pl\{l}
γs

lk psηsk (10)

where ps denotes the total transmission power of BS s, σlk denotes the noise power at the
user and ηlk denotes the power allocation coefficient assigned to the user k in BS l, satisfying
the following condition:

K

∑
k=1

ηlk ≤ 1, ∀l ∈ L (11)

Thus, the downlink transmission delay of the user k in BS l is tlk,dtr =
ϑαlkλlk

rd,lk
, and the

corresponding energy consumption is Elk,dtr = Plηlktdtr.

2.3.4. Communication between BS and Cloud

There is a wired connection between BS and the cloud server, and the transmission
rate can be regarded as a constant. The delay and energy consumption of data transmission
from BS to the cloud server are tlk,umc = ϑλlk

rmc
and Elk,umc = tlk,umc pl . The delay and

energy consumption of the downlink from the cloud to the BS are tlk,dmc = ϑαlkλlk
rmc

and
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Elk,dmc=tlk,dmc pc, respectively, where rmc represents the transmission rate between the MEC
server and the cloud, and pc denotes the transmitting power of the cloud server.

2.3.5. Communication between BSs

BSs are interconnected by capacity-limited wireless links, and the transmission rate
between BSs can be regarded as constant [39], which is represented by rmm. The de-
lay and energy consumption of data transmission between BSs are tlk,umm = λcoo

rmm
and

Elk,umm = tlk,umm pl , respectively. The delay and energy consumption of the downlink are
tlk,dmm = αlkλcoo

rmm
and Elk,dmm=tlk,dmm pl , respectively.

2.4. Summary of Optimization Indicators
2.4.1. Delay and Energy Consumption

The total delay and total energy consumption of the whole system are summarized as
follows.

If there is coordination between the BSs, the total delay for the cooperative calculation
part is determined by the maximum delay of the two processes: tlk,coo = max(tcoo1, tcoo2+
tlk,umm + tlk,dmm).

Thus, if the offloading part of the calculation task is completed by the BS, the offloading
delay and energy consumption of the user k in BS l are:

tlk,o f f = tlk,utr + tlk,dtr + (1− acoo)tlk,m + acootlk,coo + tpro, (12)

Elk,o f f = Elk,utr + Elk,dtr + acooElk,m + acoo(Elk,umm + Elk,coo + Elk,dmm) (13)

where tpro represents the processing delay, which includes the extraction of effective infor-
mation, error correction and other processes required by the BS after receiving the data,
as well as the acquisition of required auxiliary information from the cloud server [40].
However, the processing delay is often closely related to the performance and cache content
of the edge server, and it has usually been neglected in most existing studies.

Otherwise, the offloading part will be completed by the cloud server. Then the delay
and energy consumption of the user k in BS l are:

tlk,o f f = tlk,utr + tlk,umc + tlk,c + tlk,dmc + tlk,dtr, (14)

Elk,o f f = Elk,utr + Elk,umc + Elk,c + Elk,dmc + Elk,dtr. (15)

Thus, the total delay and energy consumption of the system are shown in (16) and
(17), respectively.

t =
L

∑
l=1

K

∑
k=1

max
{

tlk,loc, tlk,o f f

}
(16)

E =
L

∑
l=1

K

∑
k=1

(
Elk,loc + Elk,o f f

)
(17)

2.4.2. Spectral Efficiency and Energy Efficiency

In addition to the most commonly used indicators above, the SE and EE can be used
as key optimization indicators for MIMO-MEC networks. SE is defined as the system
throughput per unit of bandwidth [41]; the SEs of the uplink and downlink are expressed
in (18), where the total bandwidth is calculated under ideal conditions. However, the actual
bandwidth may be lower since multiple cells may use the same frequency and there will be
interference between the cells. If the system bandwidth is fixed, the SE can also be directly
expressed as the sum access rate. EE is defined as the ratio between the sum reachable
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rate and the aggregation of the emitted power [42], and the uplink and downlink EEs are
shown in (19).

ηSE,ul =

L
∑

l=1

K
∑

k=1
ru,lk

L
∑

l=1

K
∑

k=1
blk

, ηSE,dl =

L
∑

l=1

K
∑

k=1
rd,lk

L
∑

l=1

K
∑

k=1
blk

(18)

ηEE,ul =

L
∑

l=1

K
∑

u=1
ru,lk

L
∑

l=1

K
∑

u=1
plk

, ηEE,dl =

L
∑

l=1

K
∑

u=1
rd,lk

L
∑

l=1
p′l

(19)

where the transmitting power plk can be adjusted by dynamic voltage and frequency
scaling, and p′l represents the actual power used by the BS. Usually, the two indicators need
to be considered jointly, and a compromise optimization is carried out to save spectrum
resources and transmission energy to the greatest extent.

3. Research Status

In this part, as many studies as possible on MIMO-MEC are collected. Furthermore,
we summarize the research content and analyze the current research status from four main
aspects, i.e., research scenarios, application scenarios, evaluation indicators and research
issues, and research algorithms.

3.1. Research Scenario

The research of MIMO-MEC is usually carried out in different cell setting scenar-
ios, and the combination with different technologies is explored to meet various needs.
Moreover, security is a major concern for researchers, thus, the studies in the literature are
classified using the above three aspects, and the classification of the research scenario is
summarized in Figure 2.
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3.1.1. Cell Division
Single Cell

Because MIMO technology can give full play to its advantages in the case of multiple
users, researchers usually assume a scenario with a large amount of users who request
access simultaneously, which is regarded as the research background. In fact, the number
of BSs also has an impact on the offloading effect in edge computing, and when mMIMO
technology is applied to MEC, the pilot contamination and signal interference between
BSs cannot be ignored. Some studies start with simple scenarios and are carried out in the
single BS scenario with less interference, which is shown in Figure 3a.
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In [15], it is assumed that all the computing tasks must be offloaded to the BS for
calculation, and ZF technology is applied to suppress the interference between users at
the BS under perfect and imperfect channel conditions, respectively. The scenario set
in [28,35] is almost the same as that in [15], but it is only studied under the condition of
an imperfect channel state. In [43], the Full Duplex (FD) BS is used for K downlink users’
data transmission and J downlink mobile devices’ task offloading. It is attempted to reduce
downlink transmission power by using Multi-User Interference (MUI) of the downlink
instead of suppression. Compared with the studies mentioned above, refs. [29,44] also take
into account the users’ local computing capacity, and adaptively choose to calculate locally
or completely offload the tasks to the BS. Different from binary offloading, partial offloading
is another offload strategy, i.e., the computing task can be arbitrarily split into two parts
and completed by the local and BS at the same time, which is more flexible. It is assumed
in [30] that the task arrives randomly and the channel condition is time-varying, and the
offloading ratio is used to indicate how much data need to be offloaded. Reference [45]
also assumes that tasks arrive randomly but queue according to the order they arrive, with
each mobile device maintaining a queue. However, the above studies all assume that the
calculation results of the tasks are very few and directly ignore the downlink transmission.
In contrast, Nguyen et al. in [46] consider the transmission of calculation results. Their
studies were carried out under perfect and imperfect channel conditions, respectively, and
subsequently, the research was extended by taking the downlink channel into consideration,
which is more realistic, although it leads to a more complex optimization problem.

Multiple Cells

Some researchers go a step further and consider a more complex multi-cell scenario,
which is illustrated in Figure 3b. Although the multiple cell scenario brings an improvement
in the offloading efficiency, it also causes some problems such as intensified interference.
In the actual scene, there is inter-cell interference caused by pilot contamination, and the
interference grows along with the number of antennas [47].

In [3], Sardellitti et al. set up a multi-cell static scene, and the user terminals were also
deployed with multiple antennas. The computing task can be completed jointly by the local
and the cloud server, while the BSs in this paper have no computing capacity and only act
as a transmission relay. According to the collected information such as user status, channel
status and other information, the cloud server divides users into two subsets in advance.
Some user terminals need to offload for calculating, while others only need communication
resources. Furthermore, a more realistic scenario is considered by R. Malik and M. Vu [31].
Without knowing the complete Channel State Information (CSI), the MRC detection and
precoding are used to complete the uplink and downlink transmission, and the calculation
task is partially offloaded to the BS, while in [48], it is assumed that each BS serves the
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same number of users. The users and the BSs are equipped with multiple antennas, and the
users occupy the same frequency in different cells, which may cause mutual interference.

We notice that the multi-cell scenario not only expands the coverage of a BS but also
improves the QoS of users with the help of BS cooperation. Reference [31] studies the task
offloading of edge users in collaborative MEC scenarios. The system contains two BSs with
overlapping areas, and in this cooperative transmission area, BSs fully collaborate and
share both CSI and transmission data, enabling the cell–edge devices to communicate with
two BSs simultaneously, which can give full play to the role of collaborative BSs.

Heterogeneous Networks

Theoretically, Heterogeneous Networks (HetNets) are based on multi-cell scenarios,
but compared with the traditional network, mMIMO HetNets are further improved and
more suitable for practical scenarios. Usually, it is studied in a scenario where there exists a
multi-antenna macro station and multiple single-antenna small BSs simultaneously to serve
multiple users. According to this model, ref. [49] provides a spectrum and energy efficiency
evaluation framework for the network. MIMO-MEC is further combined with HetNets to
conduct research under the same scene setting, and the offloading decision is assumed to
be known [50]. In [51], a framework of MEC HetNets is proposed to reduce the interference
and improve system capacity. The network uses mMIMO technology and densely deploys
low-power small cells for transmission, including a macro BS connected to the central
server. C. Wang et al. demonstrate that mMIMO can improve the data transmission rate,
and MEC can facilitate mMIMO transmission in return, complementing each other, and
then, storage and fast content retrieval are performed locally. In their proposed framework,
it is proved that CSI can be aggregated on the centralized MEC server, i.e., the macro BS.
Additionally, the intra-cell and inter-cell interference could be reduced by the cooperative
precoding among small cells. By comprehensively utilizing the computing resources and
cache resources in the edge computing network, an intelligent cache scheme is proposed to
reduce the delay and signaling overhead caused by repeated retrieval of the same content.
It is worth mentioning that [51] is one of the very few studies that takes into account cache
resource in MIMO-MEC.

Cell-Free

As the deployment of BSs becomes more and more intensive, traditional cell divisions
lead to frequent cell switching. To ensure that the cells can provide continuous services for
all users, the cells are no longer specifically divided. This is the concept of the cell-free (CF)
mMIMO proposed by the Bell laboratory [52], and the scenario is shown in Figure 3c. It
is a trend to use high-frequency signals to transmit information; nevertheless, the higher
the frequency used in a BS for communication, the smaller its coverage range will be. The
CF mMIMO networks can better adapt to the development trend of future communication
as well as the mobility of users. Through Coordinated Multi-Point Joint Transmission
(COMP-JT), the huge power gain is maintained and the problem of the poor signal of edge
users is alleviated [53]. It is also proved that the system performance is greatly improved,
especially in terms of system throughput and communication quality [54–56]. Studies have
focused on the CF mMIMO-MEC system, in which all users within the coverage range of
the BS can establish connections with it.

Various task types of users with different average delay requirements are considered
and the users can choose whether to use the MEC server or the central server (cloud) to
complete the calculation [32,57,58]. After analyzing the Signal Interference Ratio (SIR)
of the uplink and downlink transmission in the interference-restricted channel by using
random geometry and queuing theory, the probability of successful communication and
successful calculation are derived, and then, the Successful Edge Calculation Probability
(SECP) under the target computation delay is given. The influence of the BS coverage rate
and the central server offloading probability on SECP, and the influence of SECP on total
system energy consumption are further analyzed [57].
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The authors also evaluate the performance of the same system mainly from the per-
spective of mathematical derivation, but assume that if the task is completed by MEC, the
MEC server with the lowest calculation delay is assigned to perform the calculation [58].
Based on the M/M/1 queuing system, the closed expression of communication interruption
probability is derived, and the expression of Successful Computation Probability (SCP)
under target computation delay is also derived. It announces that for the fixed expected
SCP, the EE of the system increases with the decrease in computation delay. Based on
the assumption that the access point has hardware damage, the authors of [34] derive the
closed expression of SE and EE in the CF mMIMO-MEC network. Finally, the analysis
proves that the CF mMIMO system has certain resilience to hardware damage, indicating
that the hardware cost of CF mMIMO can be effectively reduced, which lays a theoretical
foundation for its application in practice.

Some research scenes in the literature are summarized in Table 2, which is convenient
for intuitive comparison and analysis.

Table 2. Comparison of papers about research scenarios in MIMO-MEC.

BS Setup Paper Collaboration
Manner

Offloading
Granularity CSI Explanation

Single

[15,43] Edge only Binary Perfect/imperfect Must offload to the BS

[28,35] Edge only Binary Imperfect Must offload to the BS

[29,44] Things–edge Binary Perfect -

[46] Things–edge Binary Perfect/imperfect -

[30] Things–edge Partial Perfect -

[45] Things–edge Partial Perfect Mobile devices maintain their
own queues

Multiple

[14] Things–cloud Binary Perfect BSs transmit only

[11] Things–edge Partial Imperfect -

[11] Things–cloud Binary Perfect/imperfect -

[11] Things–edge Partial Imperfect -

[48] Cloud only Binary Perfect Same number of users in each
BS, and BSs transmit only

HetNets
[49] Edge only Binary Perfect Single multi-antenna micro BS,

multiple single-antenna small
BSs[50] Things–edge Partial Perfect

CF
[32] Edge–cloud Partial Imperfect -

[57,58] Edge–cloud Binary Perfect Probabilistic offloading decision

3.1.2. Combined with Other Technologies

MIMO-MEC is easy to expand and can also be combined with other technologies to
promote each other, so as to further improve system performance. The researchers in [59]
have taken Energy Harvesting (EH) into account in the MIMO-MEC system, and study
the MIMO-MEC system that can collect energy from the external environment instead of
traditional energy supply. However, this paper only studies the very simple scenario of a
single BS and single user.

NOMA is also a promising technology for 6G. In [60], the power domain multiplexing
technology of NOMA is used to superimpose and encode user information, thus further
improving the transmission rate. Hybrid NOMA is a combination of the advantages
of NOMA and OMA to balance complexity and performance. Reference [61] combines
hybrid NOMA with MIMO-MEC and finds that it can achieve better delay performance
than NOMA under energy constraints. It provides a new way to combine NOMA with
MIMO-MEC.
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Blockchain technology can be regarded as a distributed public ledger, which is used to
directly record the transaction information between any nodes in a point-to-point network
without the need of a third party. Due to its traceability, and decentralization character-
istics, it has become a key research target for researchers. MIMO-MEC can be applied to
blockchain networks to significantly increase system throughput and allow more mobile
devices to gain access. A MIMO-MEC-assisted blockchain network where devices can
offload intensive mining tasks to BSs and store block data in the cloud server is investigated
in [62].

Millimeter Wave (mmWave) technology is one of the alternative technologies for
next generation communication. Although propagation losses are severe at mmWave
frequencies, shorter wavelengths make it possible to compress more antenna units into
the same physical space, and the narrowband and high-gain beam provided by a large
antenna array is used to make up for the deficiency of the propagation channel [42,63].
Combining mmWave with MIMO and then introducing the combination to a MEC network
can make full use of space resources, provide larger channel capacity and further improve
SE. In [33], MIMO technology is applied to the downlink in multi-BS and multi-user
scenarios, and studied in the millimeter band, while a Media Access Control (MAC) protocol
called LSMWN-MAC for the downlink mmWave MIMO-MEC system is proposed in [64],
which is expected to become the communication paradigm of the MIMO-MEC network.
The protocol uses SDMA/FDMA for interaction and data transmission between the AP
and users to adapt to the characteristics of mmWave and mMIMO, and accommodate
more mobile terminals at the same time. Then, aiming at the situation that the global
optimization cannot be achieved due to the change in channel state, an improved protocol
(MLSMWN-MAC protocol) is proposed. The application scope of the two protocols is
analyzed and compared with 802.11ad. The results show that the proposed protocols
significantly improve saturation throughput, which lays the groundwork for the subsequent
implementation of a MIMO-assisted MEC network.

Reconfigurable Intelligent Surface (RIS) or Intelligent Reflecting Surface (IRS) is consid-
ered to be an innovative technology for 6G, which consists of an array of passive or active
reflecting elements. It can create a controlled radio environment by intelligently adjusting
the phase-shifts of reflecting elements to achieve the reconstruction and enhancement of
wireless propagation. Reference [65] uses EH to charge mobile users, and IRS technology
is used to assist the MEC network to improve EH efficiency and the data transmission
rate between users and BSs, while IRS and UAV are combined in [66], and a 3D wireless
channel model based on controllable MIMO-UAV/IRS is established, which can bypass the
blockage of Line of Sight (LoS) and avoid service starvation for users at the edge of the cell.

3.1.3. Security Issue

The security of the MIMO-MEC system is also a hot research direction. Due to the
broadcast characteristics of a wireless channel, there is a risk of eavesdropping during the
offloading process. Although a multi-antenna system has certain advantages in preventing
eavesdropping, the security problem cannot be ignored.

Zhao et al., in [67], focus on improving the security performance of the MIMO-MEC
system, and study how to allocate resources to reduce information leakage and ensure
the security of communication under the dual threat of eavesdropping and interference
attacked by a malicious user. In the scenario of a single BS and multiple users, there
is a malicious eavesdropper who sends strong interference signals. The users’ tasks are
offloaded to the MEC server for calculation, and the downlink transmission delay is ignored.
In the literature, the uplink security rate is derived, and under the delay constraint, the
expression of the actual energy consumption is also derived combining with the security
rate of the physical layer. On the basis of the familiar research on resource allocation, the
authors add an extra secure offloading constraint, i.e., the offloading rate of each user
cannot exceed the secret rate. They jointly optimize the offloading data bits, transmission
power and offloading rate on this premise. When solving the problem, the original problem
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is decomposed. Firstly, the transmission rate is fixed to obtain a convex subproblem, and
the closed expressions of offloading data bits and offloading time of uplink are derived by
the Lagrange multiplier method. Then, based on the derived formula, the iterative method
is used to optimize the transmission power and the maximum offloading rate.

MIMO-MEC, combined with Cognitive Radio (CR) technology, can alleviate the in-
creasing demand for spectrum and computing resources. Reference [68] establishes a
CR-based MIMO-MEC environment research scenario against intelligent attacks, including
multiple BSs, a primary user, a secondary user and an intelligent attacker, all equipped with
multiple antennas, and conduct research without CSI. In the CR scenario, the secondary
user’s spectrum resources are restricted by the primary user’s license. The user’s task can
be performed jointly by local and idle MEC. An intelligent attacker could choose one from
four methods, silence, spoofing, jamming and eavesdropping, to carry out a communication
attack. By optimizing the offloading decision, and distributing the transmitting power and
the offloading rate, energy consumption, delay and data security transmission are kept in
balance. Two resource allocation strategies based on DRL are proposed, which are the Edge
Server Selection strategy based on Dyna architecture and Prioritized sweeping (DPESS),
and the Edge Server Selection strategy based on Deep Q-network (DESS). The convolutional
neural network is trained by using an empirical replay technique and Stochastic Gradient
Descent (SGD).

In a smart grid system, security is also considered [69]. There are multiple smart
meters in a single cell, as well as a multi-antenna malicious eavesdropper, which can steal
the offloading data of some users’ smart meter, or even log into their own servers to perform
calculations. The task of the smart electricity meter is completely offloaded to MEC for
calculation, and the physical layer security technology is used to prevent eavesdropping
and realize the secure communication of the smart grid. It is assumed that the BS and
the malicious user know all the CSI between the user and the BS. The user’s achievable
safe transmission rate is derived, and then the optimal computational frequency can be
obtained. The offloading rate and transmission power are jointly optimized to minimize
energy consumption, and the sequential iterative optimization algorithm is used to solve
the problem. The results show that if the scheme can be applied to a practical smart grid,
i.e., when serving more users, it can save a considerable amount of energy.

Reference [70] studies the collaborative MEC network combined with NOMA. With
the help of the helpers at the cell center, the edge user who cannot establish a direct
transmission link with the BS can offload the task to the MEC server. The helpers help
compute part of the computing task by partial offloading. In order to avoid information
leakage to the eavesdropper, PLS technology is used to ensure that the channel gain of the
helper is greater than that of the eavesdropper, so as to realize the safe transmission of the
cooperative MEC network.

3.2. Application Scenarios

Thanks to the rapid development of IoT technology, tremendous opportunities have
been created in many fields, and innovative applications have made it possible to improve
the quality of life. Among them, MIMO-MEC also plays an irreplaceable role and is
applied in many scenes [71,72]; some scenarios, including smart health and smart home,
are illustrated in Figure 4.
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3.2.1. Internet of Vehicles

The Internet of Vehicles (IoV) is an important component of the IoT, and MIMO-
MEC can also be applied to the IoV to realize the application with strict requirements on
calculation, delay and throughput under the condition of limited energy, which is of great
significance for the development of electric vehicles. Saving energy consumption can enable
electric vehicles to travel more kilometers, which is of primary importance. It is usually
recommended to offload all or part of the intensive computing tasks to the MEC server.
However, the vehicle network is highly dynamic, so the randomness is greatly enhanced,
which has a great impact on the offloading performance. Aiming at 5G technology, in [73], a
platform is designed to evaluate the communication performance level of mobile terminals,
a BS and other nodes in the central intelligent transportation system. Throughput, delay,
network capacity, transmission rate and reliability are taken as the evaluation indexes so
that the network performance of mobile terminals (vehicles) in the system can be evaluated.

Unmanned Aerial Vehicle (UAV) technology is often used in IoV networks, and
is especially suitable for dealing with emergencies. However, UAV technology is very
sensitive to energy consumption and expects a higher transmission rate with lower power.
The application of UAV technology in MEC can further shorten transmission distance and
increase channel gain [74,75]. In some studies, multiple UAVs are deployed within the
range of a single BS, but they only assist users to offload tasks to the ground BS or the cloud
for computing as the aerial transmission relay [8,76]. The authors of [77] take the lead in
studying the LoS-mMIMO-UAV-assisted MEC network, applying it to the IoV network,
and updating the network architecture. A three-dimensional dual MEC network model
is proposed, in which one MEC is a Road Side Unit (RSU) with a parallel MEC server
deployed on the ground, and the other is an aerial RSU, i.e., UAV. The aerial RSU not only
has a MEC server, but it can also be used as an air relay between vehicles and the ground
RSU to decode and forward part of the offloading tasks so as to solve the problem that the
vehicles cannot communicate directly with the ground RSU due to congestion. In addition,
the multi-stage MEC calculation offloading protocol and download protocol are proposed
in this architecture. This paper also proposes the concept of three-sided LoS mMIMO and
it is assumed that vehicles, the aerial RSU and the ground RSU all adopt two-dimensional
(2-D) Uniform Rectangular Planar Arrays (URPA) with a large number of antenna units.
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3.2.2. Wireless Charging

The MIMO-MEC network can not only complete the offloading calculation of users’
computing tasks but also realize wireless charging without physical connection via the
wireless power transmission technology. The mMIMO technology can achieve the con-
centration of energy in a particular direction through beamforming and charge multiple
users simultaneously with multiple antennas, which will provide MIMO-MEC with greater
application prospects. It may be an effective solution for mobile devices that continuously
process the applications requiring heavy computing resources but with limited battery
power. Wang et al. in [36] mainly study the Wireless Sensor Network (WSN) assisted by
MEC with wireless transmission function. The BSs are equipped with multiple antennas
and computing tasks of mobile devices can be calculated locally or offloaded to the cloud
through uplink channels, while through the downlink channel, the mobile devices obtain
energy and receive information alternately. In each time slot, the user first obtains energy
and then only uses this part of energy to complete the task calculation, without consuming
the power of the device itself. Reference [37] also studies the scenario where multiple BSs
can provide computing offloading and on-demand wireless charging services for multiple
users through the downlink. However, the offloading and charging processes cannot be
carried out simultaneously. The single BS, multi-user and FD system is studied in [78], and
the task is completed jointly by the user and the BS. The energy obtained from the BS is
used to complete the local calculation.

The above studies verified the possibility of the co-existence of offloading and wireless
charging in MIMO-MEC networks, opening up a new idea for research into the MIMO-
MEC network.

3.2.3. Space Communication

Fu et al. in [79] also apply MIMO-MEC to the satellite IoT system, and use the
satellite link to provide communication services for AP. In recent years, Low Earth Orbit
(LEO) satellites have also been used in the IoT, which makes the coverage wider and the
infrastructure cost lower [80,81]. Its advantage is that even if the ground infrastructure is
damaged, satellites can still provide communication services [82]. Although the optical
fiber link is replaced by a satellite-AP link to meet the real-world requirements, the scenario
settings of [78,79] are basically the same.

3.2.4. Smart Grid

A smart grid can realize information collection and real-time monitoring by deploying
a large number of sensors and advanced metering infrastructure but also generates a large
amount of data. The introduction of MIMO-MEC can effectively manage resources and
save costs. Based on the MIMO-NOMA-MEC system model, the distribution network
faults are detected, and part of the information collected by intelligent devices is offloaded
to the MEC server for comprehensive analysis and quick troubleshooting so that the system
can achieve stable operation [60]. Reference [83] notes the huge energy consumption of the
BS, and proposes to equip the BS with renewable energy devices. Combining MIMO-MEC
with a smart grid, and utilizing renewable energy generated by the grid assists the BS
through two-way energy interaction to maximize the benefits.

3.3. Optimization Indicator and Research Issue
3.3.1. Optimization Indicator

The optimization objectives of most studies are about time delay and energy consump-
tion, but there are differences according to the emphasis of research content.

Some studies only concentrate on delay, for example, Li et al. in [60] aim at minimizing
the total latency of all users. Zeng et al. in [15] also consider delay only but minimize
the delay of the user who has the largest delay among all users to ensure the commu-
nication quality of all users. Huang et al. in [26] and Feng et al. in [35] set the same
objective function as [15] under energy consumption and computing resource constraints
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to ensure the fairness among users, while other studies only consider energy consumption,
including [14,48,50,67,78]. The five papers mentioned above only regard minimizing the
total energy consumption of users as the goal.

Even though some of the studies are motivated from the energy consumption perspec-
tive, the optimization metrics are not identical. Nguyen et al. in [46] aim to minimize the
maximum weighted energy consumption of mobile users and achieve fairness among them
as much as possible. There are also some researchers who only consider energy consump-
tion, but from the perspective of the whole system. R. Malik and M. Vu aim to minimize the
weighted sum of energy consumed by the user and the MEC server under the maximum
delay constraint [11,31]. Although MIMO-MEC is applied to IoV, its optimization objective
is still to minimize the total weighted energy consumption of mobile users and BSs [77].
However, the mobile users here are vehicles, the UAV is equivalent to the BS and the goal is
to reduce power consumption as much as possible so that the service life can be extended.

In fact, both energy consumption and time delay are extremely important for MEC,
so researchers usually jointly optimize the two aspects, and the most common objective
function is to minimize the weighted sum of system energy consumption and time delay,
to balance the QoE and power consumption [8,29,30,43,44,76].

SE and EE are also common criteria for system evaluation. Under the constraints of
power budget and delay, the total uplink energy consumption is minimized, while the
minimum SE is maximized [32]. In order to ensure fairness among all users, ref. [84]
establishes the optimization problem with the goal of maximizing the minimum SE. If the
system bandwidth is constant, the offloading rate is equal to SE, which is also a crucial
aspect that needs to be considered. The goal of [79] is to maximize the uplink reachable rate,
and the weighted sum rate of all users under QoS constraints is maximized in [33]. In [85],
maximizing the total computed bits per total energy consumption in the MEC system is
regarded as the optimization objective, which is defined as “EE”. In [49], SE and EE are
comprehensively considered to maximize their weighted sum while ensuring the minimum
QoS requirements of each user.

In general, the optimization of delay and energy consumption is from the perspective
of users, giving priority to the user experience, but [83] studies this from the perspective of
operators, with the goal of minimizing the transmission power and the required real-time
power at the BS.

In fact, in different research scenarios, the objective functions of optimization are
not the same due to the combination of different technologies. When EH technology is
considered, the battery energy queue needs to be stabilized on the basis of minimizing
the time average function of the weighted sum of energy consumption and delay [59]. If
MIMO-MEC is to be studied to realize wireless charging, the total energy consumption of
the user and BS offloading should be minimized under the restriction of round-trip delay,
and the user can obtain the maximum power from charging [37]. Taking wireless charging
into consideration as well, ref. [36] sets the goal as the maximization of WSN’s Quality of
Service (QoS) so as to improve the system’s data processing capacity per unit period.

3.3.2. Research Issues

The outline of the common research issues in MIMO-MEC networks presented up to
now is shown in Figure 5 and described in detail below.
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Research issues in MEC

Some researches focus more on the MEC network and explore the optimization of
the offloading process. References [15,32] jointly optimize the allocation of the uplink
transmission power and computing resources. In [30], the local computing power and
uplink power allocation for users are optimized.

The offloading strategy and resource allocation are often coupled. Reference [46] also
takes the offloading decision into account and jointly optimizes the offloading decision, and
computing and radio resource allocation. When partial offloading is used, the offloading
decision becomes the offloading ratio. In [31], power control is considered to improve
the probability of successful communication. In addition, the offloading ratio, computing
resource allocation between user terminal and MEC server, and the duration of different
phases are jointly optimized to achieve different optimization objectives so as to improve
the system performance. Malik and Vu in [11] optimize the transmission time allocation
of the uplink and downlink, computing resource allocation and offloading ratio. The
CPU frequency, uplink transmitting power and offloading task size (offloading ratio) are
optimized in [50,78,79]. However, ref. [78] gives extra consideration to the uplink rate.
The duration of the uplink transmission is considered in [50], while in [79], the ratio of the
calculation result to the size of the offloading task is included.

Research Issues in MIMO-MEC

On the basis of MEC optimization, beamforming, pilot estimation and other issues
are taken into account to optimize MIMO performance so as to further achieve overall
performance improvement. The offloading decision and beamforming are considered
in [44]. The uplink transmission power allocation and downlink beamforming vector are
optimized in [43], and [49] also takes backhaul bandwidth allocation into account based
on [43]. Sardellitti et al. in [14] consider the covariance matrix of MIMO transmitters and
the allocation of computational resources, while in [59], it is assumed that the task can be
partially offloaded; thus, the optimization of the offloading proportion is considered on
the basis of [14]. Moreover, the practical harvested energy and whether to give up the task
also need to be optimized in [59]. Reference [29] minimizes the weighted sum of energy
consumption and delay by jointly optimizing the offloading decision, multi-user MIMO
precoding and computing resource allocation. Reference [33] considers user association,
precoding and power allocation. Reference [48] jointly optimizes the communication
and computing resources, including precoding, the transmission rate allocation in the
uplink and downlink, and the computing resource allocation. References [28,35] emphasize
pilot transmission so that pilot transmission delay is added to the total system delay.
Under the constraints of energy consumption and computing resources, pilot transmission
power, data transmission power and computing resource allocation are jointly optimized to
minimize the maximum computational offloading delay among all users. The MIMO-MEC
network can give full play to the advantages of MIMO technology, and beamforming is an
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essential part that needs to be considered in optimization, and has a great influence on the
performance of the system [86,87].

Research Issues in Other Techniques

However, when considering the combination with different technologies, the focus
of the research issues will be different. If wireless charging technology is used, there are
additional factors that need to be considered because charging and data transmission in
the downlink cannot be carried out at the same time. Malik and Vu in [37] consider the
offloading ratio, time allocation for transmission and charging, and beamforming. Similar
to those considered in [37], the offloading decision, downlink energy beamforming vector,
receiving beamforming vector and dynamic TDD (D-TDD) factor are jointly optimized
in [36].

If the scene switches to UAV-assisted MIMO-MEC systems, the location of the UAV is
quite critical to the transmission rate and power consumption of the system, and usually,
the optimization of the three-dimensional position is also taken into account. In a multi-
UAV scenario, the offloading decision, UAV position and power allocation are jointly
optimized [8,76].

If NOMA is considered, then power control must be taken into account [62,88]. If com-
bined with the IRS technique, optimization of the phase-shift matrix is also essential [65,66].
The research objects and issues in the papers that are combined with other technologies are
listed in Table 3 for easy comparison.

Table 3. Comparison of Research Objects and Issues Combined with Different Techniques.

Combined Technology Paper Objective Research Issue

EH [59]

Minimize the time average of the
weighted sum of energy

consumption and delay while
stabilizing the battery energy

queue.

(a) Whether to complete the task;
(b) transmission covariance matrix;
(c) computing capacity allocation;

(d) offloading ratio; (e) energy harvesting.

NOMA
[60] Minimize delay.

(a) Transmission power allocation;
(b) offloading ratio; (c) computing

capacity allocation.

[88] Minimize delay (a) Power allocation; (b) offloading ratio;

Hybrid NOMA [61] Minimize delay (a) Power allocation in NOMA and OMA,
respectively

mmWave [33] Maximize the weighted sum rate
of all users.

(a) Offloading association decision;
(b) precoding design; (c) transmission

power allocation.

Wireless charging

[36] Maximize the total number of
computed bits.

(a) Offloading decision; (b) D-TDD factor;
(c) downlink energy beamforming vector;

(d) receiving beamforming vector.

[37]
Minimize offloading energy
consumption and maximize

wireless charging energy.

(a) Offloading ratio; (b) time allocation
for offloading and charging; (c) energy

beamforming vector.

SWIPT

[78] Minimize energy consumption.

(a) Computing capacity allocation;
(b) transmission power allocation;
(c) offloading data size; (d) uplink

transmission rate.

[79] Maximize the uplink reachable
rate.

(a) CPU frequency allocation; (b) ratio of
the calculated result to the size of the
input data; (c) terminal transmitting

power allocation; (d) offloading ratio.
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Table 3. Cont.

Combined Technology Paper Objective Research Issue

UAV

[8,76] Minimize the weighted sum of
delay and energy consumption.

(a) Association decision; (b) transmission
power allocation; (c) UAV position.

[77]
Minimize the total weighted

energy consumption of
computation and communication.

(a) Transmission power allocation;
(b) offloading ratio; (c) time slot

scheduling.

RIS-EH [65] Minimize total delay.

(a) EH time; (b) data transmission time;
(c) offloading ratio; (d) computation
resource allocation; (e) MU detection
coefficients; (f) phase-shift matrices.

RIS-UAV [66] Maximize ε-effective EE

(a) Transmit power vector; (b) UAV
trajectory; (c) active transmit

beamforming vector; (d) passive
reflecting coefficient matrix.

3.4. Optimization Algorithm

Optimization problems in the field of MEC are usually non-convex or NP-hard [18],
and optimization models are usually proved to be mixed integer non-linear programming
problems [2,44], which are complex and very difficult to solve. The problems in MIMO-MEC
are basically the same as those in MEC. In fact, researchers usually carry out combinational
optimization on several parts of the offloading decision, computing resource allocation,
communication resource allocation, beamforming and pilot estimation, etc. Thus, obtaining
the global optimal solution directly is often accompanied with great difficulty and high
complexity. As an alternative, suboptimal algorithms with low complexity are proposed.

3.4.1. Convex Optimization

Convex optimization is one of the most widely used methods, and is favored by
researchers because of its mature computing system and the ease of obtaining suboptimal
results. If the optimization problem can be proved to be convex, the convex optimization
method can be used directly, which greatly reduces the difficulty of problem solving.
Michailidis et al. in [77] derive the closed solution of transmitting power allocation, time
slot scheduling and computing resource allocation through the Lagrange duality method.
Then, according to the above results, an optimization algorithm based on the sub-gradient
is proposed to solve the problem.

However, in general, the optimization models developed based on MIMO-MEC are
usually non-convex. If the optimization model involves multiple optimization objectives,
decomposition technology is usually applied to decouple the complex optimization prob-
lems into multiple subproblems, such as the offloading decision subproblem, resource
allocation subproblem or beamforming subproblem, etc., and then break through one by
one. In [20], optimization is carried out under perfect CSI and imperfect CSI conditions,
respectively, and the problem is decomposed into three subproblems of beamforming,
offloading decision and D-TDD factor optimization, which are solved respectively. In [60],
the problem is divided into a task allocation coefficient optimization subproblem and
resource allocation subproblem, and a multi-objective iterative algorithm is designed.

The original problem is decoupled into two subproblems in [50,78,79]. The closed
solution of the computing resource allocation subproblem is obtained first, and the second
subproblem is obtained after substituting this solution, and then, the subproblem is further
decoupled. As for the second subproblem, ref. [78] continues to decouple it into three con-
vex subproblems, which are solved by the interior point method. Reference [79] decouples
it into two quadratic problems and solves them by an active-set method, while in [50], it
is decomposed into a convex subproblem and a non-convex subproblem. The difference
of convex functions (DC) method is used to deal with the non-convex structure, and the
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interior point method is used to solve the problem. The remaining variables are optimized
alternately in all three papers.

In fact, after investigating the articles, it is more generally found that the subproblems
decoupled from the original problem remain as non-convex or NP-hard. A significant
portion of the researches choose to transform them into convex or near-convex problems
and then adopt feasible convex optimization methods. After that, the subproblems are
solved iteratively until convergence. Reference [46] decouples the original problem into an
offloading optimization subproblem and power allocation (PA) subproblem, and under
the imperfect CSI condition, a DC method is used to deal with the non-convex structure
of the PA subproblem. The distributed local search algorithm is used to solve the user
association problem, and then the residual optimization problem is transformed into a rank-
constrained D.C. problem, which is solved iteratively [33]. In [44], Quadratic Constrained
Quadratic Programming (QCQP) is used to reconstruct the optimization problem, and the
semi-definite relaxation (SDR) algorithm is used to solve the offloading decision problem.
Based on the optimal offloading decision, the MU-MIMO beamforming design problem
is transformed into a convex problem by using the fractional programming method, and
then solved by an iterative algorithm. Reference [43] proposes the weighted multi-objective
optimization problem in the case of using MUI and suppressing MUI, respectively. Under
a perfect CSI condition, it is suggested to solve the beamforming subproblem and PA
subproblem by SDR and the Lagrange method, respectively, and the solving process is
iterated until the stopping criterion is met. For the imperfect CSI case, convex relaxation and
transformation are applied, and the non-convexity of the formula is treated by s-procedure.
Considering the lower and upper bounds of the offloading delay in the original problem,
ref. [29] uses SDR and the rounding method to obtain the offloading decision. Next, with
the offloading decision, fractional programming based on quadratic transformation and
the weighted MMSE method is used to realize the MU-MIMO precoding design under two
offloading delay conditions.

Successive Convex Approximation (SCA) is one of the most commonly used methods
in convex optimization to transform non-convex problems into convex problems [48]. By
using the SCA technique, the non-convex problem is transformed into a convex problem
and solved by an iterative method under the condition of imperfect CSI [15]. In [14], to
begin with, in the case of a single user and single BS, the closed expression of the optimal
solution is derived based on the water injection algorithm, and then in the multi-cell
scenario, the energy consumption weight is allocated according to the user priority to
optimize the weighted sum of all users’ energy consumption. Finally, based on SCA, a
centralized algorithm and distributed algorithm are proposed. Reference [49] decouples the
original problem and proposes an alternate optimization algorithm combining Lagrange
duality and SCA. Using queuing theory and random geometry, an iterative algorithm based
on sequential convex programming is used to solve the problem [32]. In each iteration,
SCA is used to optimize the correlation convex approximation of the original problem.
Lyapunov is a random optimization method that enables online decision making and
suboptimal performance [18]. A dynamic computing offloading (DCO) algorithm based on
SCA is proposed under the framework of Lyapunov optimization [59].

A double-layer nested algorithm is proposed in [31] to solve the original problem. The
outer layer increases monotonously with the offloading proportion, and is solved based
on the iterative algorithm. Then the prime-dual algorithm is applied to solve the inner
convex problem under the given offloading ratio, in which the dual variables are updated
according to the sub-gradient. The closed expressions of the optimal CPU frequency at
the user terminal and MEC server derived in this paper are also applied to the prime-
dual algorithm to solve the resource allocation subproblem. In another paper [11], the
authors of [31] further optimize the algorithm, which still adopts the double-layer nested
algorithm, but it is composed of the internal prime-dual algorithm and external delay
awareness descent algorithm. The delay awareness descent algorithm adds the modifiable
stop criteria to the standard descent method, which can better satisfy the delay constraint.
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R. Malik and M. Vu continue the idea of a nested algorithm into paper [37]. It determines
the solution order according to the importance of subproblems. The offloading problem is
solved first, and then turns to the received energy maximization problem. When solving
the offloading problem, the nested structure is adopted, and it uses the prime-dual method
based on the sub-gradient algorithm internally, and the external algorithm adopts the delay
awareness descent algorithm based on the standard Newton method with a modifiable
stop criteria, which is similar to [11]. Finally, the optimal offloading proportion and time
allocation for offloading are obtained. Based on the result of the time allocation, the two-
layer nested algorithm is still adopted to solve the second subproblem. In each iteration,
the optimal dual variables of the beamforming direction solution are found through the
sub-gradient method externally. Subsequently, the internal algorithm using the standard
convex solver is used to solve the linear programming problem and obtain the optimal
beamforming power allocation.

3.4.2. Heuristic Algorithm

At present, the heuristic algorithm is one of the most popular methods to solve NP-
hard problems. Inspired by nature, the behaviors of animals and other natural creatures
are abstracted into algorithms to deal with optimization problems. For instance, a heuristic
algorithm based on a genetic algorithm is used to obtain the global optimal solution in [8,76].
In [84], three heuristic algorithms including simulated annealing, differential evolution and
particle swarm optimization are used, respectively, to solve the max-min fairness power
allocation problem so as to show the superiority of the heuristic algorithm. However, the
heuristic algorithm may fall into a local optimal solution, and the algorithm performance is
uncertain and easily affected by complex parameters.

3.4.3. Machine Learning

With the development of machine learning technology, advanced artificial intelligence
technology has been applied to various fields, and thus, technologies such as deep learning
and reinforcement learning have developed rapidly. Moreover, traditional methods usually
obtain static solutions of complex optimization problems and cannot make the best decision
according to the dynamic environment [18]. In order to overcome the above shortcomings,
ref. [30] uses the Deep Reinforcement Learning (DRL) method based on continuous ac-
tion space, which is summed up as the Depth Deterministic Policy Gradient (DDPG), to
learn the decentralized computing offload strategy of all users, and adaptively allocate
local computing resources and transmission power according to the local observation of
each user.

A temporal attentional deterministic policy gradient based on DDPG is proposed
in [45]. They design a temporal feature extraction network including a 1-dimensional
convolution residual block and an attentional long short-term memory network to ensure
high-quality state representation and function approximation. Moreover, to accelerate
the convergence of model training and keep it stable, a rank-based prioritized experience
replay method is developed.

3.4.4. Game Theory

Considering the optimization problem as a three-stage Stackelberg game, an iterative
algorithm based on backward induction is proposed to realize the Nash equilibrium of
the Stackelberg game [62]. The subgame optimization in each stage is analyzed. In the
first stage, the optimization of resource service pricing maximizes the profit of cloud
service providers. In the second stage, computing capacity and the unit price of the
computing service charged by the equipment are optimized to maximize the income of BSs,
and the third phase maximizes the profit for a single user by optimizing the computing
requirements and block storage policies. The upper bound of traversal throughput and
the maximum number of devices connected to the network are also derived. The game
theory approach works in a collaborative or non-collaborative way to reach a solution that
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satisfies all players. The method is flexible and easy to operate. However, it is worth noting
that the satisfactory solution may not be the global optimal one.

4. Challenges and Future Research Directions

Although the MIMO-MEC network has attracted more and more attention, there
are still some constraints in the implementation of mMIMO, such as excessive energy
consumption and the high complexity of hardware design. On the one hand, it is difficult
to form the full digital beamforming, while the performance of analog beamforming
is poor. On the other hand, the unknown CSI makes the implementation of mMIMO
more difficult. Despite there being great challenges in research, mMIMO-MEC still has
great research prospects, and its future research direction is bound to integrate with other
new technologies, adapt to different real scenarios, realize the simultaneous access of
many users and continuously improve user communication quality. It will also focus on
comprehensive communication integrating ground wireless communication and space
satellite communication, with a view to providing high QoS services and finally realizing
the interconnection of everything [79,89].

4.1. Considering User Mobility

Almost all current studies on MIMO-MEC assume that the users are still or moving
slowly, which are static scenarios. However, in the practical application field, the mobility
of the user terminal should be taken into consideration.

User movement produces a Doppler shift related to the speed and carrier frequency,
resulting in a decrease in the coherence time. Once the symbol period is greater than the
coherence time, fast fading appears. Such a rapidly changing channel greatly reduces the
system transmission efficiency and the accuracy of channel estimation. Without using a
pilot, ref. [90] designs a blind channel prediction algorithm in a mmWave-MEC scenario to
adapt to the fast-changing channel, which provides a good solution.

In addition, considering the mobile users in the multi-BS scenario, it is necessary
to consider the selection and handover of the MEC server, and service migration. It can
also generate dynamic resource allocation or online resource allocation problems. These
problems are particularly important and have become research hotspots in the IoV [91,92].
However, mobility is still an urgent challenge for the MIMO-MEC field in the future.

4.2. Channel Estimation and Channel Modeling

In practical applications, the channel conditions are usually unknown. Before offload-
ing the calculation task, the pilot transmission is required for channel estimation, and the
quality of channel estimation will directly determine the transmission quality. Therefore,
channel estimation is also a very important research issue in MIMO-MEC.

Since the whole system is delay-sensitive and energy consumption is limited, the
energy consumption and delay of the transmitting pilot should also be weighed and
optimized. If too much time and energy are allocated to pilot transmission, it will affect the
completion of the offloading task. Conversely, the quality of channel estimation will not be
guaranteed. Coupled with the real-time change in the channel, it will greatly aggravate the
difficulty of research. Estimating the channel in dynamic scenarios by using deep learning
may be an appropriate strategy [90].

Channel modeling is the cornerstone for studying MIMO technology, so it is also
crucial for MIMO-MEC. The Rayleigh fading model and 3GPP standardization model are
most commonly used in current studies, but these models cannot portray the complete
characteristics of massive MIMO channels, including the near-field effect [93] and the
non-stationarity of channels that dynamically change in time and space dimensions [94].
Therefore, more refined channel modeling is necessary.
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4.3. Combined with Machine Learning

Deep learning and reinforcement learning have been applied to the resource allocation
of MEC [95,96]. There is no need to know the prior knowledge of the system, and it can
dynamically allocate resources, and its advantages are particularly prominent when the
parameters in the research scene change dynamically [97,98]. Federal Learning (FL) is a
distributed computing paradigm and a kind of ML; it achieves accuracy at the expense
of multiple rounds of communication, uses local data to train the global model and ag-
gregates local updates to the cloud or MEC server, which has been used in OFDM-based
MEC [99]. However, in our investigation, heuristic algorithms and convex optimization
methods are used most frequently in the research of MIMO-MEC networks, and few people
utilize FL, reinforcement learning or other machine learning solutions to optimize the
objective function.

Developing a resource allocation optimization algorithm based on deep learning, or
proposing a low delay and ultra-reliable deep learning architecture for a MIMO-MEC
system can provide a good direction for exploring the effective solution of these kinds of
complex problems. However, it usually requires additional online or offline training, and
the complexity is very high [76]. The difficulty lies in how to obtain a data source, and how
to better train the deep learning algorithm and reduce the computational complexity of the
algorithm as much as possible.

4.4. Combined with Other New Technologies

There are already some studies combining MIMO-MEC with promising technologies
such as NOMA or mmWave communication, but there are still many technologies that
need to be explored. Visible light communication is also a candidate technology for 6G, as
it offers a new possibility to transmit more data without being limited by scarce spectrum
resources. It can also complement radio frequency technologies in ultra-dense networks,
providing reliable communications [100]. RIS technology is another research hotspot [101],
and the combination of RIS and MIMO-MEC is also a newly emerging research hotspot,
which is worth further exploration. However, introducing new technology into MIMO-
MEC needs to consider various influencing factors comprehensively, and how to ensure all
of the different technologies give full play to their advantages is the difficulty.

4.5. Integration of Communication, Sensing and Computation

The 6G wireless communication network will further realize ubiquitous connection.
Moreover, mobile terminals need to carry out precise and complex computing tasks in
highly dynamic environments. Therefore, the responsibility of edge computing is not only
to complete the computing task but also to realize the intelligent terminal’s perception of
the environment.

The research directions focused on the integration of communication, sensing and
computation include: constructing the integration framework of communication, sensing
and computation resource allocation for balancing the perception accuracy, the communi-
cation and computing capability [102,103]; and realizing the fusion of communication and
sensing signals through the design of joint transmitting of and receiving waveforms [104].

5. Conclusions

In this survey, we comprehensively review the research status of MIMO-MEC net-
works. Firstly, multi-BS cooperative mMIMO-MEC models are summarized and cell
collaboration is taken into account, which are very easy to expand and suitable for most
research backgrounds. These models lay the foundation for a better understanding of rele-
vant research. Secondly, an in-depth overview of the research on MIMO-MEC is presented,
from the aspects of research scenarios, application scenarios, evaluation indicators and
research issues, and research algorithms, and this is the prominent contribution of this
paper. Regarding the research issues, we provide a comprehensive summary of the key
issues from the technical point of view. Finally, we clarify the shortcomings of the current
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research, and highlight some promising research directions and challenges in the field of
MIMO-MEC, hoping to promote the further development of MEC.
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Acronym and Notation

Acronym Definition Acronym Definition

AP Access point MEC
Multi-access edge computing or mobile edge
computing

BS Base station mMIMO Massive multiple input multiple output
CF Cell free MMSE Minimum Mean Square Error
COMP-JT Coordinated Multi-point Joint Transmission MRC Maximum Ratio Combining
CPU Central processing unit mmWave Millimeter Wave
CR Cognitive Radio NOMA Non-orthogonal Multiple Access
CSI Channel State Information PA Power allocation
DC Difference of convex functions QCQP Quadratic Constrained Quadratic Programming
DCO Dynamic computing offloading QoS Quality of Service
DDPG Depth Deterministic Policy Gradient RIS Reconfigurable Intelligent Surface
DRL Deep Reinforcement Learning SCA Successive Convex Approximation
EE energy efficiency SDN Software Defined Networking
EH Energy harvesting SDR Semi-definite relaxation
FD Full Duplex SE Spectral efficiency
FDMA Frequency Division Multiple Access SECP Success Edge Calculation Probability
HetNets Heterogeneous Networks TDD Time Division Duplex
IoT Internet of Things TDMA Time Division Multiple Access
IoV Internet of Vehicles UAV Unmanned Aerial Vehicle
LoS Line of Sight WSN Wireless Sensor Network
MAC Media Access Control ZF Zero Forcing
Notation Description Notation Description
L Number of BSs κloc Effective switching capacitance constant
K Number of users in each BS κs, κc Cost factor for BS, cloud

M Number of antennas ak→l , ak→c, acoo
Indicates whether to offload to BS, cloud and
cooperative BS

λlk Input data size glm
sk , hlm

sk , βl
sk

Channel gain, small-scale fading and large-scale
fading coefficient

xlk
Number of CPU cycles required to process

γl
sk Mean square channel estimate

per input data bit
τlk Maximum tolerable delay σ, σlk The noise power of the BS and the user
αlk Ratio of the output data size to the input data size blk Bandwidth of the user k in BS l
ϑ Offloading ratio plk, pl , pc Transmitted power of user, BS and cloud

flk, f M, fc
Computing capacity of the user terminal,

ηlk Power allocation coefficient in downlink
BS and cloud

f l
k User k’s computing capacity allocated by BS l rmc, rmm Rate between BS and cloud, and between BSs
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