
Middlesex University Research Repository

An open access repository of

Middlesex University research

❤tt♣✿✴✴❡♣r✐♥ts✳♠❞①✳❛❝✳✉❦

Bottone, Michele, Raimondi, Franco ORCID logoORCID:

https://orcid.org/0000-0002-9508-7713 and Primiero, Giuseppe (2018) Multi-agent based

simulations of block-free distributed ledgers. 2018 32nd International Conference on Advanced

Information Networking and Applications Workshops (WAINA). In: The 32nd IEEE International

Conference on Advanced Information Networking and Applications Workshops (WAINA), 16-18

May 2018, Krakow, Poland. ISBN 9781538653951. [Conference or Workshop Item]

(doi:10.1109/WAINA.2018.00149)

Final accepted version (with author’s formatting)

This version is available at: ❤tt♣s✿✴✴❡♣r✐♥ts✳♠❞①✳❛❝✳✉❦✴✷✸✺✼✽✴

Copyright:

Middlesex University Research Repository makes the University’s research available electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright owners

unless otherwise stated. The work is supplied on the understanding that any use for commercial gain

is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study

without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or

extensive quotations taken from them, or their content changed in any way, without first obtaining

permission in writing from the copyright holder(s). They may not be sold or exploited commercially in

any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the

author’s name, the title of the work, publication details where relevant (place, publisher, date), pag-

ination, and for theses or dissertations the awarding institution, the degree type awarded, and the

date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the

Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: ❤tt♣✿✴✴❡♣r✐♥ts✳♠❞①✳❛❝✳✉❦✴♣♦❧✐❝✐❡s✳❤t♠❧★❝♦♣②

http://eprints.mdx.ac.uk
https://eprints.mdx.ac.uk/23578/
mailto:eprints@mdx.ac.uk
http://eprints.mdx.ac.uk/policies.html#copy


Multi-agent Based Simulations of Block-free

Distributed Ledgers

Michele Bottone, Franco Raimondi, Giuseppe Primiero

Department of Computer Science

Middlesex University, London

e-mail: {m.bottone,f.raimondi,g.primiero}@mdx.ac.uk

Abstract—In the past ten years distributed ledgers such as
Bitcoin and smart contracts that can run code autonomously have
seen an exponential growth both in terms of research interest
and in terms of industrial and financial applications. These
find a natural application in the area of Sensor Networks and
Cyber-Physical Systems. However, the incentive architecture of
blockchains requires massive computational resources for mining,
delays in the confirmation of transactions and, more importantly,
continuously growing transaction fees, which are ill-suited to
systems in which services may be provided by resource-limited
devices and confirmation times and transaction costs should be
kept minimal, ideally absent. We focus on a new block-less, fee-
less paradigm for distributed ledgers suitable for the WSN, IoT
and CPS in which transactions are nodes of a directed acyclic
graph, that overcomes the limitations of blockchains for these
applications, and where e.g. sensors can be at the same time
issuers of transactions and validators of previous transactions.
In particular, we present and release open-source a simulation
environment that can be easily extended and analysed, and
confirms the available results on the performance of the network.

Keywords-transactions; blockchain; DAG; tangle; simulations

I. INTRODUCTION

The rise of billions of connected and relatively autonomous

systems in the past few years provides a useful backdrop

for distributed computation. Typically, these fall under the

umbrella terms of Wireless Sensor Networks (WSN), Internet

of Things (IoT), and Cyber-Physical Systems (CPS). Three

characteristics of these autonomous systems stand out: they

consist of many components, such as sensors, actuators,

controllers; they exchange information, often under resource

constraints; and they are dynamic in time or space. In these

systems, the interplay between information, decisions, actions,

and trust is a worthwhile subject of study under a multi-

agent perspective [1], [2]. A ubiquitous example is credit

money [3], which transfers trust between economic agents and

whose usefulness arises as a network externality that facilitates

transactions [4], [5]. Cryptocurrencies attempt to replicate this

memory function and other characteristics of real-world money

such as safety and consistency. Early attempts at cryptographic

cash relied on trusted authorities that maintained centralised

ledgers, such as banks and credit card companies. The main

technological advance of Bitcoin [6] was to introduce a dis-

tributed ledger secured by the majority rule without any central

authority, by means of a so-called blockchain and standard

cryptographic primitives like signatures and hash functions. It

also introduced the possibility of transaction scripting as a way

of enabling smart contracts and micro-transactions based on

distributed architectures which are suitable for CPS and the

IoT, and spurred academic and practical interest.

The blockchain used by Bitcoin and its descendants is

a time-linear data structure: transaction data is stored in

blocks which must each contain a reference to the block that

came before it. Blocks are created by specialised users called

miners that perform a cryptographic proof-of-work (PoW). It

is natural to consider the temporal succession of blocks as a

directed flow of transactions linked together by consensus. The

blockchain algorithm has proved resilient to attacks and double

spending, suffering only setbacks in coin exchanges. However,

as a cryptocurrency for lightweight systems in the IoT, Bitcoin

has two serious drawbacks which make it unsuitable for micro-

payments; firstly, because of the dependence on miners for pro-

cessing and verification, the transaction fees are relatively high

and rising, especially in low throughput; secondly, it scales

poorly since the blockchain network performance degrades in

the number of users. It has become apparent that the scale and

fee issues experienced by Bitcoin are intimately connected to

the mining system and its incentive structure, which under

consolidation of miners, reduce the degree of decentralisation

of the network. Mining pools now make up over 90 percent of

the hashpower in the Bitcoin network, and tend to be heavily

concentrated geographically. Verification delays for reaching

consensus are the norm: because of the fixed MB limit on the

blocks, Bitcoin currently processes 3/4 transaction per second

(txps) and is capped at 7 txps, while Visa and MasterCard are

capable of processing 60000 txps. Security of the protocol has

also been called into question when miners can collude or are

exposed to geopolitical risk.

A promising avenue of recent research and development

has involved blockchain-free currencies. In these approaches,

the blockchain and its consensus algorithm are replaced by

a directed graph of cross-verifying transactions based on the

mathematical properties of a Dyrected Acyclic Graph (DAG),

which serves as a truly distributed ledger and, generally

speaking, reaches consensus by accumulation of information

about the state of the network. The essential idea is that to

issue a transaction, users of the distributed ledger must work

to approve other transactions, thus checking for conflicts and

double spending, and when a transaction receives additional

approvals by the chain of ensuing transactions, it becomes

accepted by the system with a high degree of confidence. In



a DAG, each node represents a transaction and each edge a

reference, or approval, of some other transaction in a specific

direction. Such graphs are usually built up from an initial

parent root called the genesis transaction and evolve according

to precise rules, representing in this sense a lightweight

generalisation of Blockchain (for an alternative construction

where the direction of approval is reversed from parent to child

transactions, see [7]). Several DAG-based cryptocurrencies

have been recently independently proposed and implemented,

among them RaiBlocks [8], DagCoin, Byteball [9] and Iota

[10], which deviate from each other in the details of implemen-

tation and consensus protocols. RaiBlocks achieves consensus

by using a deterministic block-lattice structure where each

account has its own balance-weighted blockchain which re-

sembles the account’s transaction and balance history, and can

only be updated by its owner, similar to SPECTRE [11] with

restrictive permissions. Byteball reaches consensus by using a

main chain of honest, trusted witnesses that reference one or

more previous transactions via a MCMC selection procedure

for referrals. Iota’s consensus model is based on the cumulative

PoW of stacked transaction where two previous transactions

with low weight are selected. The latter implementation,

based on the mathematical construct called the Tangle [12], is

particularly simple to describe, yet flexible and robust to use,

and has several attractive features that make it well suited for

CPS and IoT.

In this paper we focus on the nature of distributed ledgers,

and in particular the Tangle DAG, as accumulated information

flow. In Section II we describe its mathematical structure, at-

tachment and consensus model and update rules and strategies;

in Section III we present an extensible, open-source multi-

agent simulation environment for DAGs built in NetLogo and

provide results in context; in Section IV we conclude.

II. PRELIMINARIES

We briefly describe the mathematical object underlying the

Tangle as in the whitepaper [12]. This can be thought of as

a dynamic process on the space of oriented, rooted DAGs,

which grows in time according to a Poisson clock for the

flow of arrivals where new nodes (i.e., new transactions) are

continually attached to the graph to locations which are chosen

according to specific rules, and no nodes or edges are ever

deleted.

A. The Tangle Process

Specifically, the Tangle is a graph T = (V,E), where as

customary V is the set of nodes and E the set of edges and for

each v ∈ V , the in-degrees and out-degrees are specified by

din(v) = ♯{e = (c1, c2) ∈ E : c2 = v} and dout(v) = ♯{e =
(c1, c2) ∈ E : c1 = v}, with ♯ denoting set cardinality. For

v1, v2 ∈ V , v1 approves v2 if (v1, v2) ∈ E, written v1 # v2.

Let A(u) = {v : (u, v) ∈ E} be the set of nodes approved

by u. If there exists a covering chain u = v0, v1, . . . , vk = v
such that vj ∈ A(vj−1) ∀j = 1, . . . , k forms a directed path

between them, we say that u indirectly approves v. The set

where {v : din(v) = 0} is special: we call such nodes tips.

The following additional rules apply: (a) within the set of all

possible DAGs, each graph T ∈ T is finite and with out-

degree edge multiplicity at most 2, i.e. ∀v ∈ V, dout(v) ≤ 2;

(b) there exists a genesis root ρ ∈ V such that dout(ρ) = 0
and dout(v) = 2∀v ∈ V \{ρ}; (c) any other node v ∈ V
references ρ, i.e. there is an oriented path of approvals from

this node to the genesis ρ; and (d) there are no cycles, i.e. paths

of the type v = v1, . . . , vk = v for any v and k. From these

assumptions, it necessarily follows at any time t the state of the

Tangle T (t) can be concisely described by a sparse adjacency

matrix, which is strictly lower triangular; thus the state of this

matrix over time is given by a first row of 0s, a number of

rows with 1s in the first column for each genesis transaction,

and rows of two 1s to the left of the diagonal thereafter. This

can be efficiently stored in adjacency lists, namely a collection

of nodes and nonzero edge positions [13]. More generally, the

Tangle is a continuous-time stochastic process on the space

T∞ = ∪n
1Ti∪Tn+1∪ . . . with initial state given by VT (0) = ρ,

ET (0) = ∅ and evolving according to the following rules:

• As a result of the flow of new transactions, the tangle

grows in time, i.e. for any two times 0 ≤ t1 < t2,

VT (t1) ⊂ VT (t2) and ET (t1) ⊂ ET (t2).
• For a fixed mean transactions per unit time λ > 0 the

Poisson process Λ(t) := Pois(λ) gives the incoming

transactions that then attach to T (t).
• Each transaction chooses two nodes v1, v2 and attaches

a new node v to T with oriented edges v1 → v and

v2 → v, so that each tip unites to the set of nodes and

edge points of T (two-edge-multiplicity rule).

This kind of DAG-based process can also be generalised to

unary or n-ary out-degree multiplicities.

B. Consensus by Cumulative Weight

The Tangle achieves consensus by attaching to every trans-

action a positive integer1, within some specified bounds and

time limits. The basic idea is that a transaction with a higher

weight is more important than a transaction with a lower

weight in deciding attachment. With this in mind, we can

define on T the partial order with respect to approvals:

Px
(t) = {y ∈ T (t) : y " x}, Fx

(t) = {z ∈ T (t) : z # x}
such that we successively refine (or zoom into) a past P(t)

and expand to a future F(t) with respect to node x at a time t
when they become attached. We now describe the consistency

and tip selection process in more detail. Define the cumulative

weight of node x as Hx
(t) = 1+ ♯{Fx

(t)}, which increases with

the number of nodes that directly or indirectly reference it. For

any t > 0 if y # x then one necessarily has Hx
(t) −Hy

(t) ≥ 1,

which implies that Hy

(t) = 1 if y is a tip. We say that

a transaction gets confirmed when it reaches a threshold θ
which is sufficiently high when relative to the network usage

and load. Ideally, we would like the graph to grow so that,

eventually, all issued transactions are confirmed.

1Currently, Iota uses 3n, but for simplicity one can assume that each node
has weight 1 to start with.



In real-world networks such as those used in the Iota

platform, each incoming node gets to decide which transaction

gets orphaned or approved, thus propagating the Tangle in

time; see tangle.glumb.de for a visualisation showing

the consensus model based on live transaction data. It is

evident that one can without loss of generality assume the

Markov property, as each successive state of the process will

depend only on the current state of the Tangle. In the Iota

whitepaper [12], it is suggested that the optimal growth is

obtained by evaluating some statistics about the transactions,

which basically amount to updating their cumulative weights.

C. Tip Selection Strategies

Let L(t) be the set of all vertices that are tips in the tangle

at time t, and let L(t) = ♯{x ∈ T (t) : Hx
(t) = 1} be its

cardinality. Note that in general, L(t) can be decomposed into

visible and hidden tips due to network delays.

Ideally, one would like the stochastic processes for both the

Tangle and L(t) to be well behaved in the limit of a large

number of transactions. In [12], theoretical considerations

are advanced for L(t) to be positive recurrent as t → ∞,

i.e. P[L(t) = k] > 0 for k ≥ 1, rather than transient or

escaping to infinity, which would leave many unapproved

transaction orphaned. In practice, little is assumed in the

implementation of the distributed ledger, apart from the strict

approval rule, i.e any new transaction must reference two other

transactions (tips) already in the Tangle. It is entirely possible

that two transactions, each posted by different users, or by the

same user in a short time frame, reference the same tips as

each other; and in fact this happens all the time because of

network latency2. A node can choose tips in any way it finds

convenient. A particularly lazy node might try to approve a

fixed pair of very old transactions, without penalty, thus not

contributing to the tip approval process and increasing the

likelihood that some of these might be orphaned. ”Anything

goes” effectively renders the Tangle a random graph.

Random Tip Selection. The simplest strategy is for each

new node to select two tips uniformly at random from the

list of available tips, and approve them. While conceptually

simple, this strategy has the disadvantage that it does not

sufficiently protect against lazy or malicious nodes. Under

this hypothesis, in the steady state L(t) should fluctuate

around L0 = 2λ∆t in any interval ∆t. The drawback of this

strategy is that, especially for low network load, it can lead

to opportunistic behaviour in that lazy nodes may decide to

repeatedly select the same transaction to attach new ones, thus

reducing the overall number of tips. This kind of structure can

often be seen in Tangle visualisers. It can also lead to malicious

behaviour, where users try to use their own algorithm to select

tips to spam the network – artificially inflating the number of

tips by issuing many transactions that approve a fixed pair of

transactions – and take it over, or attempt a double spend

of funds – growing for example a parasite chain with the

2One tip can be selected in good faith by two different nodes at the same
time until ”snapshotting”, i.e. persistent storage.

usual attachment rules, and then attaching to the Tangle a

“conflicting” transaction.

MCMC Selection Algorithm. A more sophisticated

strategy to encourage “optimal” growth of the Tangle is to

use a particle filter or Markov Chain Monte Carlo (MCMC)

algorithm to select two tips on the Tangle [12], [14]. This

still selects at random, but introduces a bias towards “honest

tips” by means of an exponentially tilted random walk on the

nodes of T (t), which become the sites of walkers that walk

the reverse-directed links from the genesis ρ (or any other

cutset with equal cumulative weight) to the tip. Note that

while the out-degree of a node is fixed, the in-degree has a

distribution, and each node may use its own pseudorandom

number generator to simulate the walks. Essentially, the

typical MCMC strategy will be:

(1) Choose a cutset, or suitable interval of nodes in chronolog-

ical order. Usually the particle walk starts at ρ or somewhere

else deep in the Tangle; if the walk does not start at the genesis,

we set q ≥ 0 as the backtracking parameter.

(2) Independently place N particles on that cutset.

(3) Let them perform a random walk, with a transition from

x to y only possible if y approves x. (Optionally, repeat the

walk, or select a high number of walkers N , if the two selected

tips are not distinct).

(4) The transition probabilities Pf
xy between two nodes sharing

a directed edge x " y are proportional to some monotone,

non-increasing function f of the difference in cumulative

weights Hx
(t−h) − Hy

(t−h)
3. The particle is stopped when it

hits a node v ∈ L(t − h)4. Usually, f(s) = exp(−αs) with

α ≥ 0 having the meaning of inverse temperature (or measure

of randomness). For any y and x one has the Boltzmann-Gibbs

distributions:

(1− q) exp
[

−α
(

Hx
(t−h) −Hy

(t−h)

)]

∑

z:x∈A(z) exp
[

−α
(

Hx
(t−h) −Hz

(t−h)

)] x ∈ A(y)

(1)

where A(·) is as defined previously.

Intuitively, such a strategy spreads the approval process

evenly along the most recent tips in the Tangle. If α approaches

0, this strategy is equivalent to the uniform random selection

strategy; for high α it will tend to pseudo-deterministically

assign high probabilities to fixed paths indexed by the highest

cumulative weight, and the number of tips will grow linearly

in each time step. A transaction is confirmed with a sufficiently

high confidence level ι0 ≈ 1 if in the low temperature regime,

the walk ends in a tip that references the transaction. The

rationale for choosing this type of selection strategy compared

to a simpler random tip choice is that in a well-behaved

Tangle, the hashing power of the network – measured by

large increases in cumulative weight – is higher than that

3In general, the node that issues the transaction might only know the state
of the tangle network with a delay, T (t− h).

4If h > 0, it might not even be a tip anymore.



of an attacker that tries to attach a long parasite chain of

transactions, whose cumulative weights would necessarily be

much smaller than the sites they reference, and thus parasite

sites would have a low transition probability from the main

sites of the Tangle. See Section 4.1 of [12] and [14] for a

game-theoretic justification.

Note that the Tangle T (t) as constructed induces a con-

tinuous time transient Markov Chain with large state space

even for a fixed time t. This effectively means that the

corresponding adjacency and transition matrices suffer from

combinatorial explosion, and expanding access times5.

D. Mean Tip Approval Times

By assumption, the Poisson clock leads to exponentially-

distributed inter-arrival times between consecutive transac-

tions: if we hypothesise λ to be the number of new arriving

transactions per unit time, the mean arrival time will be on

average 1
λ

and will have a waiting-time of 0 as its mode.

Thus6 the “wider” T (t) is (the larger it scales in terms of

the incoming transactions and number of users) the more

instantaneous we can expect the Tangle propagation to be.

Straightforward statistical analyses of the public data from [10]

confirm this to be the case.

III. SIMULATING THE TANGLE

It is clear that after the genesis transaction, the growth of

T is uniquely described by the attachment rules, i.e. the tip

selection mechanism. The behaviour of this process in the long

run is akin to a random graph in a random environment and,

like similar models such as diffusion-limited aggregation [15]

is simple to state but difficult to analyse mathematically. Its

structure however can be gleaned via simulations.

A. NetLogo

NetLogo [16] is a well-known, widely used, cross-platform

modelling and simulation environment for complex systems

of concurrently interacting agents written on top of the Java

Virtual Machine that inherits much of its advanced concur-

rency and library support [17], thus making it expressive and

powerful and customisable. Its main attractiveness comes from

its being based on a Logo dialect extended to support agents

and modern programming paradigms, well-suited for rapid

prototyping of complex scenarios, using “turtles” (agents),

“agentsets” as collections of agents that can be customised

on the fly, “patches” (the spatial coordinates on which agents

sit), “links” (relationships between turtles), and “extensions”

– libraries that enhance the core functionality of NetLogo.

Of the latter, we use the nw extension7 to analyse the

network structure of the Tangle; this simple yet powerful

5The sparse adjacency matrix for 10, 000 nodes, for example, requires
500MB, and 3GB for 25000, which is still manageable on a 2015 vintage
laptop but unwieldy for a large number of sequential writes.

6Disregarding for simplicity the proof-of-work nonces and network latency
issues, which can be nevertheless be modelled by a compound clock as the
average number of revealed tips will be λ · h for h the network delay in
seconds, which is a constant.

7Available in versions 5.3.1 and 6.0.2.

and flexible construction makes it straightforward to include

multiple strategies and define functions (procedures) and

statistics (reporters), and the built-in interface and tools,

in particular the 2D and 3D views, buttons, switchers, choosers

and plots provide an intuitive way to look for structure as the

mixture of agent strategies change. Our models of the growth

of the Tangle are implemented entirely in NetLogo8. We also

build a strategy selector menu which can be used to implement

different strategies in function of other node internal variables

in addition to the cumulative weight.

B. Random Uniform Growth

The simplest version of our NetLogo code, based on the

random growth of Subsubsection II-C with instantaneous

approvals, makes it easy to generate fast, efficient samples

of the Tangle. For example, one can easily scale and visualise

in real time up to tens of thousands of nodes being added and

confirmed; on a machine with 16GB of RAM and a 2.7GHz

multicore i5 processor running MacOS 10.13 or Ubuntu 17.10

this takes about 10 minutes. We define two initial global

parameters, genesis for the genesis transaction(s), and

lambda for the average number of incoming tips, which is

assumed to be drawn from a Poisson distribution via a reporter

function. We also assume that turtles (called nodes by the use

of a breed keyword) have an internal variable cw that records

their cumulative weight. Likewise, directed links (breeded as

edges) are used to construct the Tangle structure. Other internal

variables are possible and commented in the more complicated

models. The procedure setup-tangle initialises the Tangle

by creating a star network of edges directed from the initial tips

to the genesis, and sets their initial cw which, for simplicity, is

2 for the genesis and 1 for the tips. Thereafter, the procedure

grow-tangle does three things, implemented as further

procedure calls: a) it finds tips to attach – i.e. it approves

nodes created by the Poisson clock; b) it updates the internal

variable cw by incrementing it if a node has an incoming

edge; and c) it advances the simulation by one discrete tick.

Optionally, it can also update the spatial layout and any visual

feedback before the tick command is given, for example by

colouring nodes with similar cw. Both main procedures above,

and the ancillary approve-nodes, update-cw procedures

and incoming-tips reporter, take less than 20 lines of terse

code. The typical shape of a large random Tangle sample and

of its adjacency matrix is shown in Figures 1a and 1b; its depth

is described by the layering of cumulative weight, and its width

by the average incoming tips λ, which is user-modifiable.

C. Growth Using the MCMC Selection Algorithm

We replicated the Tangle growth strategy using the

MCMC-type algorithm, which we simplified for compu-

tational tractability by experimenting with the array and

network extension primitives nw:turtles-in-radius,

nw:path-to, nw:turtles-in-reverse-radius and

recursive ask one-of in-edge-neighbors calls until

8Code and examples are freely available at https://bitbucket.org/mdxmase/
iotasim/



(a) (b)

Fig. 1: The “typical” shape of a random Tangle at T1010, with 1039
nodes, ρ = 3, λ = 10, and its adjacency matrix A.

we found a satisfactory solution, and packaged it into a

rw-tips approval procedure that for each random list of new

tips created by the Poisson clock, initialises the chains based

on a num-walkers parameter and manually backpropagates

the Tangle edges to the two selected tips. This is less efficient

than random uniform choice of tips, but speeds the computa-

tions by a factor of 10 compared to an algorithm that searches

the state space at every tick via the transition matrix and a list

copy, which is computationally expensive for a large (≥ 100)

number of walkers.

D. Initial Findings and Comparisons

The interface setup is shown in Figure 2, which also

shows the Netlogo 3D View in action while the Tangle

is being simulated using a spring-loaded layout started at

the origin, and different colours for cutsets, and two graph

and node statistics, namely the number of tips not and the

cumulative weight cw. In our exploratory simulations, we

replicated the theoretical intuitions of the whitepaper [12] and

the simulations of [18] in that the incoming tip process bounds

the random fuctuations of the number of tips in T (t) in a

narrow band around a multiplicative constant of λ and λ t
for the uniform random (Figure 3c) and MCMC tip selection

strategies (Figure 3d), respectively; and that the cumulative

weight of nodes grows linearly in time after the initial burn-

in, as in Figure 3b, while the edge distribution shape (Figure

3a) remains mostly unchanged around an average of 4 as

the Tangle grows. We also found that the Tangle samples

have a pleasing visual structure. The viewing perspectives

of the NetLogo simulator also simplify inspection of nodes

when looking for further structure, enabling zooming in and

out of the current visualisation, and the nw and filename

extensions provide facilities for saving data as graphml and

text files for further processing or for using of the simulations

as graphical environments for more complex agent strategies.

E. Conjectures

The preliminary analysis of the Tangle T in NetLogo

has also revealed an interesting phenomenon, which is more

prominent for some values of α in the range 0.01− 0.7. The

Fig. 2: The NetLogo Interface View with a 3D rendering.

(a) (b)

(c) (d)

Fig. 3: Statistics from a random sample of 25256 nodes, stopped at
T1010, ρ = 10, λ = 25, α = 0.01. (a) Edge distribution: d(v) :=
2 + din(v). (b) cw of genesis node at T1010, ρ = 10, λ = 25,
α = 0.01. The other nodes have the same behaviour. (c) Number of
tips after T1010 ρ = 10, λ = 25, α = 0.01 stays on average around
λ. (d) Number of tips after T1010, 25256 nodes. ρ = 10, λ = 25,
α = 2 drifts linearly in the number of ticks.

DAG structure naturally induces a hierarchy of cutsets in terms

of the variable cw, which reveals how the parameter λ really

drives the width of the network, acting as a bottleneck when

the random clock creates a low number of new nodes.

In addition to what is currently known about the desirability

of exponentially biased tip selection strategies as studied in

[12], [14], we would like to find out if there is some optimality

principle to drive tip selection. We first observe that the archi-

tecture of the Tangle Markov Chain can be viewed as a special

case of a directed network that has become commonplace

in the Deep Learning literature, where each hidden layer is



one state of the chain, and the initial genesis transaction is

in a particular sense the higher-level representation of the

information stored in the distributed ledger T . Such networks

are often randomly initialised and updated. The Tangle of

course is not a collection of neurons, but it is very much

an artificial information-processing structure. The transition

probability in (1) provides a mean-field criterion for signal

propagation deep into the network, as recently discovered

for DNNs by [19]. An information-theoretical explanation

called the information bottleneck based on the Bellman op-

timality principle has been suggested by [20]. If we denote

with T a compressed variable, such an algorithm minimises

minp(t|x) I(X;T )− βI(T ;Y ) with I(X;T ) and I(T ;Y ) the

mutual information between X;T and T ;Y , respectively, and

β a Lagrange multiplier, which provides a growth bound for

action by independent agents and walkers on the structure [21].

Just as a DNN is designed to learn how to describe a feature

X to predict a function Y and eventually compress X to only

hold the information related to Y, in the same vein one might

arrive at an efficient, robust representation of information in

the distributed ledger that is expressive, relevant information-

rich and resistant to attack and propagates information in the

network efficiently and instantaneously [22].

F. Multiagent Analysis of Parasite Strategies

Currently, our simulated multi-agent system only imple-

ments a mixture of naive parasite strategies such as building

an offline linear network and incrementally attaching it to the

main Tangle at successive, evenly-spaced points, which tend

to have a negligible effect for sufficiently large λ. A further

step for the analysis presented here, which we reserve for

future work, is to study the evolution of the Tangle information

structure under sophisticated attack vectors, which is often

found in biological virus attacks. For example, in Section 4.2

of [12], a possible splitting attack scheme towards a Tangle

network implementing a MCMC algorithm based on dynamic

load-balancing of different branches containing conflicting

information is mentioned; these complex strategies could be

modelled in our framework by using NetLogo to simulate

the environment and implementing agents as malicious nodes

using a high-level planning framework based on the Belief-

Desire-Intention architecture, either in NetLogo directly or by

linking with the Jason development environment as recently

done in [23]. Additionally, we consider endowing the nodes of

T with further internal variables, such as smart contract items

γ that can be used to deal with trust and distrust, and study

contradictory information resolution alongside the approach

adopted in [24].

IV. CONCLUSIONS

In this paper, we presented the mathematical structure of a

block-less, fee-less, distributed ledger technology suitable for

the WSN, IoT and CPS which overcomes the limitations of

blockchains for these applications, reduces confirmation times

to a minimum, and no special computation requirements are

imposed, where transactions are nodes of a directed acyclic

graph. We also provided a NetLogo simulation environment

that makes it easy to simulate and extend analyses of such

distributed ledgers. Experimental results performed under this

environment confirm known intuitions and available results

on the performance of the network and show that DAG-based

distributed ledger paradigms hold promise for more complex

analyses and applications.

REFERENCES

[1] D. Gambetta, Ed., Trust: Making and Breaking Cooperative Relations.
Blackwell, 1990.

[2] M. A. Wooldridge, An Introduction to MultiAgent Systems. John Wiley
& Sons, 2003.

[3] G. Simmel, The Philosophy of Money. Routledge, 1907.
[4] N. R. Kocherlakota, “Money is memory,” Journal of Economic Theory,

vol. 81, no. 2, pp. 232–251, 1998.
[5] J. F. Nash Jr, “Ideal money,” Southern Economic Journal, vol. 69, no. 1,

pp. 4–11, July 2002.
[6] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” October

2008. [Online]. Available: https://bitcoin.org/en/bitcoin-paper
[7] X. Boyen, C. Carr, and T. Haines, “Blockchain-free cryptocur-

rencies: A framework for truly decentralised fast transactions,”
https://eprint.iacr.org/2016/871.pdf, 2017.

[8] C. LeMahieu, “RaiBlocks: A feeless distributed cryptocurrency
network,” December 2017. [Online]. Available: https://raiblocks.net/
media/RaiBlocks Whitepaper English.pdf

[9] A. Churyumov, “Byteball: A decentralized system for storage and
transfer of value,” 2015. [Online]. Available: https://byteball.org/
Byteball.pdf

[10] (2017) IOTA: A cryptocurrency for the Internet of Things. [Online].
Available: www.iota.org

[11] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “SPECTRE: Serialization
of Proof-of-Work Events - confirming transactions via recursive
elections,” 2017. [Online]. Available: https://eprint.iacr.org/2016/1159.
pdf

[12] S. Popov, “The Tangle,” (v 1.4), November 2017. [Online]. Available:
https://iota.org/IOTA Whitepaper.pdf

[13] Wikipedia. Adjacency List. [Online]. Available: https://en.wikipedia.
org/wiki/Adjacency list

[14] S. Popov, O. Saa, and E. Finardi. (2017, December) Equilibria in the
Tangle. ArXiV. [Online]. Available: https://arxiv.org/abs/1712.05385

[15] Wikipedia. Diffusion-Limited Aggregation. [Online]. Available: https:
//en.wikipedia.org/wiki/Diffusion-limited aggregation

[16] U. Wilensky, “NetLogo,” Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, Illinois, 1999.
[Online]. Available: http://ccl.northwestern.edu/netlogo/docs/

[17] S. Tisue and U. Wilensky, “NetLogo: A simple environment for model-
ing complexity,” Presented at the International Conference on Complex
Systems 2014, Boston, May 16–21, 2004.

[18] B. Kusmierz. (2017, November) The first glance at the simulation
of the Tangle: discrete model. [Online]. Available: https://iota.org/
simulation tangle-preview.pdf

[19] S. S. Shoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein,
“Deep information propagation,” April 2017. [Online]. Available:
https://arxiv.org/pdf/1611.01232.pdf

[20] R. Schwartz-Ziv and N. Tishby, “Opening the black box of deep
neural networks via information,” April 2017. [Online]. Available:
https://arxiv.org/pdf/1703.00810.pdf

[21] N. Tishby and D. Polani, “Information theory of decisions and actions,”
in Perception-Action Cycle, ser. Springer Series in Cognitive and Neural
Systems, V. Cutsuridis, A. Hussain, and J. Taylor, Eds. Springer, 2010.

[22] B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli.
(2016, June) Exponential expressivity in deep neural networks throught
transient chaos. [Online]. Available: https://arxiv.org/pdf/1606.05340.pdf

[23] W. A. L. Ramirez and M. Fasli, “Integrating NetLogo and Jason: a
disaster-rescue simulation,” in Proceedings of 9th Computer Science and

Electronic Engineering Conference (CEEC), 27-29 Sept. 2017. IEEE,
2017, pp. 213–218.

[24] G. Primiero, F. Raimondi, M. Bottone, and J. Tagliabue, “Trust and
distrust in contradictory information trasmission,” Applied Network

Science, vol. 2, no. 12, pp. 1–30, 2017.


