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Abstract

Several recent works considered multi-a(ge)nt robotics in static environments. In this work we examine ways of operating

in dynamic environments, where changes take place independently of the agents’ activity. The work focuses on a dynamic

variant of the cooperative cleaners problem, a problem that requires several simple agents to clean a connected region

of “dirty” pixels in Z2. A number of simple agents move in this dirty region, each having the ability to “clean” the

place it is located in. Their goal is to jointly clean the given dirty region. The dynamic variant of the problem involves a

deterministic expansion of dirt in the environment, simulating spreading of contamination or fire. Theoretical lower bounds

for the problem are presented, as well as various impossibility results. A cleaning protocol for the problem is presented,

and a wealth of experimental results testing its performance in comparison to the lower bounds. Several analytic upper

bounds for the proposed protocol are also presented, accompanied with appropriate experimental results.
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1. Introduction

1.1. Motivation

In nature, ants, bees or birds often cooperate to achieve

common goals and exhibit amazing feats of swarming

behavior and collaborative problem solving. It seems that

these animals are “programmed” to interact locally in such

a way that the desired global behavior will emerge even

if some individuals of the colony die or fail to carry

out their task for some other reasons. It is suggested to

consider a similar approach to coordinate a group of robots

without a central supervisor, by using only local interactions

between the robots. When this decentralized approach is

used much of the communication overhead (characteristic

to centralized systems) is saved, the hardware of the robots

can be fairly simple and better modularity is achieved.

A properly designed system should be readily scalable,

achieving reliability and robustness through redundancy.

1.2. Multi-agent Robotics and Swarm

Robotics

Significant research effort has been invested during the last

few years in design and simulation of multi-agent robotics

and intelligent swarm systems (see e.g. Mastellone et al.

(2008) and Wagner and Bruckstein (2001), and earlier

works like Brooks (1990) and Sen et al. (1994)).

Such designs are often inspired by biology (see Klos

and van Ahee (2008) for evolutionary algorithms, Arkin

and Balch (1997) for behavior-based control models, Su

et al. (2009) for flocking and dispersing models and

Weitzenfeld (2008) for predator–prey approaches), by

physics (Hagelbäck and Johansson 2008), by sociology

(Trajkovski and Collins 2009) or by economics applications

(Michael et al. 2008).

Swarm-based robotic systems can generally be defined

as highly decentralized agent collectives, i.e. groups of

extremely simple agents, with limited communication,

computation and sensing abilities, designed to be deployed

together in order to accomplish various tasks.

Tasks that have been of particular interest to researchers

in recent years include synergetic mission planning (Visser

et al. 2008), patrolling (Agmon et al. 2008), fault-tolerant

cooperation (Work et al. 2008), network security (Rehak

et al. 2008), swarm control (Connaughton et al. 2008),
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design of mission plans (Manisterski et al. 2008), role

assignment (Zheng and Koenig 2008), multi-robot path

planning (Sawhney et al. 2008), traffic control (Agogino

and Tumer 2008), formation generation (Bhatt et al. 2009),

formation keeping (Bendjilali et al. 2009), exploration and

mapping (Dudek et al. 1991), target tracking (Harmatia

and Skrzypczykb 2009) and distributed search, intruder

detection and surveillance (Hollinger et al. 2009).

1.3. Analysis of Multi-agent Robotics Systems

Unfortunately, the mathematical/geometrical theory of such

multi-agent systems is far from being satisfactory, as

pointed out for example in Efraim and D.Peleg (2007)

and Bonabeau et al. (1999). A short discussion regarding

the conceptual framework of intelligent swarms (or swarm

intelligence systems) and the motivation behind their use

appears in Section 2.

An interesting approach for the analysis and implementa-

tion of decentralized multi-agent systems is the population

problem, discussed for example in Angluin et al. (2008),

in which a consensus among a decentralized group of n

agents is produced in O( n log n) time (even in the presence

of O(
√

n) Byzantine adversary agents).

Our interest is focused on developing mathematical tools

necessary for the design and analysis of such systems. The

tools we can employ vary and it is only rarely that existing

mathematical results can be readily deployed.

For example, in Wagner and Bruckstein (1994), it was

shown that a number of agents can arrange themselves

equidistantly in a row via a sequence of “local” linear

adjustments, the convergence of the configuration to the

desired one being exponentially fast. A different way of

cooperation between agents, inspired by the behavior of ant

colonies, was described in Bruckstein (1993). There it was

proved that a sequence of ants engaged in a deterministic

chain pursuit will find the shortest (i.e. straight) path from

the ant hill to the food source, using only local interactions.

In Bruckstein et al. (1997), the behavior of a group of

agents on Z2 was investigated, where each ant-like agent

is pursuing his predecessor, according to a discrete biased-

random-walk model of pursuit on the integer grid. The

average paths of such a sequence of a(ge)nts engaged in a

chain of probabilistic pursuit was shown to converge to the

“straight line” between the origin and the destination, and

this too happens exponentially fast.

1.4. Multi-agent Robotics in Dynamic

Environments

The vast majority of the works mentioned above discuss

challenges involving multi agents operating in static

domains. Such models, however, are often too limited

to capture “real-world” problems, which, in many cases,

involve elements external to the agents’ system, which may

influence their environment activities and goals. Designing

robotic agents that can operate in such environments

presents a variety of different mathematical challenges.

The main difference between algorithms designed for

static environments and algorithms designed to work

in dynamic environments is the fact that the agents’

knowledge base (either central or decentralized) becomes

partially unreliable, due to the changes that take place in

the environment. Task allocation, cellular decomposition,

domain learning and other approaches often used by multi-

agent systems all become impractical, at least to some

extent. Instead, the algorithms must include strong domain-

independent components, which should ensure that the

agents generate a desired effect, regardless of the changing

environment.

One example is the use of multi agents for distributed

search. While many works discuss search after “idle

targets”, recent works considered dynamic targets, meaning

targets which after being detected by the searching robots

respond by performing various evasive maneuvers intended

to prevent their interception. This dynamic robotics

problem, dating back to World War II operations research

(see e.g. Thorndike (1946) and Morse and Kimball (1951)),

requires the agents to cope with changes in the environment

they are operating in. The first documented example for

search in dynamic domains discussed a planar search

problem, considering the patrol of a corridor between

parallel borders. This problem was solved in Koopman

(1980) in order to determine optimal patrol strategies for

aircraft searching for moving ships in a channel.

A similar problem was presented in Vincent and Rubin

(2004), where a system consisting of a swarm of UAVs

(unmanned air vehicles) was designed to search for one

or more “smart targets” (representing for example enemy

units, or alternatively a lost friendly unit which should

be found and rescued). In this problem the objective

of the UAVs is to find the targets in the shortest time

possible. While the swarm comprises relatively simple

UAVs, lacking prior knowledge of the initial positions of

the targets, the targets are equipped with strong sensors,

capable of telling the locations of the UAVs from very

long distances. The search strategy suggested in Vincent

and Rubin (2004) defines flying patterns for the UAVs to

follow, designed for scanning the (rectangular) area in such

a way that the targets cannot re-enter areas which were

already scanned by the swarm, without being detected.

This problem was further discussed in Altshuler et al.

(2008), where an improved decentralized search strategy

was discussed, demonstrating a nearly optimal completion

time, compared to the theoretical optimum, achievable by

any search algorithm.

1.5. Dynamic Cooperative Cleaners

Here we shall examine a problem in which the agents

must work in a dynamic environment—where changes take

place, that are independent and certainly not caused by
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the agents’ activity. The work is a continuation of the

research presented in Wagner et al. (2008), discussing

the cooperative cleaners problem—a problem assuming a

regular grid of connected rooms (pixels), parts of which are

“dirty”, the “dirty” pixels forming a connected region of

the grid. On this dirty grid region several agents move, each

having the ability to “clean” the place (the “room”, “tile”,

“pixel” or “square”) it is located in. We analyze the dynamic

variant of this problem (described in Section 3), in which

a deterministic evolution of the environment in assumed,

simulating a spreading contamination (or spreading fire).

Once again, the goal of the agents is to clean the spreading

contamination in as little time as possible. In the spirit

of Braitenberg (1984), we consider simple robots with only

a bounded amount of memory (i.e. finite-state machines).

Similar works concerning multi-agent systems may be

found in Polycarpou et al. (2001), Rekleitis et al. (2004),

Batalin and Sukhatme (2002) and Butler et al. (2001).

1.6. Contribution

This work is one of the first in which the performance of

a multi-agent group in dynamic environments is studied

analytically. The main contribution of this work is the

analysis of the problem, leading to lower bounds for

the resources (time and number of agents) required for

guaranteeing a successful cleaning of a given expanding

region, using any cleaning protocol (presented as Theorems

1 and 2). The lower bounds are agnostic to the

capabilities of the agents or the algorithm they employ.

Furthermore, an impossibility result for the problem—

namely, a constructive way of producing instances of the

problem which are impossible to cope with—is presented

in Theorem 3.

In addition, this work discusses the design of a

local behavior rule for a decentralized group of myopic

and memoryless agents that leads to their successful

collaboration in completing their global task. A cleaning

protocol defining the local behavior of the agents, based

on the static variant of the problem that was analyzed

in Wagner et al. (2008), is presented. The differences

between the two cleaning algorithms are very minor, and

are certainly not the motivation of this work, as the essence

of the work stands in the fact that it can cope with

dynamic domains and in the performance analysis of the

decentralized swarm system for such domains. As can be

seen in our analytic bounds, a dynamic environment has a

dramatic influence on the performance of the agents.

The performance of the protocol in expanding domains is

studied and analytic upper bounds for the time needed for a

collaborative group of robotic agents in order to guarantee

a completion of the task are derived (Theorems 4, 5 and 6).

1.7. Paper’s Organization

This paper is organized as follows: a discussion concerning

swarm intelligence models and motivation is presented in

Section 2. In Section 3, the formal problem is defined

along with the aims and assumptions involved. Section 4

discusses lower bounds for the problem (namely, for the

cleaning time with respect to any cleaning protocol),

followed by an impossibility result. The cleaning protocol

is presented in Section 5. The protocol’s performance on

dynamic environments is analyzed, resulting in several

upper bounds over its cleaning time, presented in Section 6.

A comparison of the proposed protocol to existing state of

the art results in the literature appears in Section 7. Various

experiments are presented in Section 8. We conclude this

paper with a short discussion, in Section 9. Appendix 9.8

provides a complete proof of one of the theorems required

for the lower bounds.

2. Swarm Intelligence—Framework and

Motivation

2.1. Motivation

There is a growing demand for robotic solutions to

increasingly complex and varied challenges. In the course

of time it was realized that often a single robot is

not the best solution in some application domains.

Instead, teams of robots are called upon to work in an

intelligently coordinated fashion, often achieving efficiency

and reliability via redundancy.

In Dias and Stentz (2001), a detailed description of multi-

robot application domains is presented, demonstrating how

multi-robot systems can be more effective than a single

robot in many areas. However, when designing such

systems it should be noticed that simply increasing the

number of robots assigned to a task does not necessarily

improve the system’s performance—multiple robots must

intelligently cooperate and avoid disturbing each other’s

activity to achieve efficiency.

There are several key advantages to the reliance on

intelligent swarm robotics. First, such systems inherently

enjoy the benefit of parallelism. In task-decomposable

application domains, robot teams can accomplish a given

task more quickly than a single robot, by dividing the task

into sub-tasks and executing them concurrently. In certain

cases, a single robot may simply be unable to accomplish

the task on its own (e.g. to carry a large and heavy object).

Second, decentralized systems tend to be, by their

very nature, much more robust than centralized systems

composed of a single but very complex unit. Generally

speaking, a team of robots may provide a more robust

solution by introducing redundancy, and by eliminating any

single point of failure. While considering the alternative

of using a single sophisticated robot, we should note that

even the most complex and reliable robot may suffer

an unexpected malfunction, which will prevent it from

completing its task. When using a multi-agent system, on

the other hand, even if a large number of the agents stop

working for some reason, the entire group will often still be

able to complete its task, although perhaps in a longer time
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period. For example, for exploring a hazardous unmapped

region (such as a minefield or the surface of Mars), the

benefit of redundancy and robustness offered by a multi-

agent system is quite obvious, and it is in this context that

Rodney Brooks wrote his well-known “Fast, cheap and out

of control” report (Brooks and Flynn 1989).

Another advantage of the decentralized swarm approach

is the ability of dynamically reallocating sub-tasks between

the swarm’s units, thus adapting to unexpected changes

in the environment. Furthermore, since the system is

decentralized, it can respond relatively quickly to such

changes, due to the benefit of locality, meaning the ability

to swiftly respond to changes without the need of notifying

a hierarchical “chain of command”. Note that as the

swarm becomes larger, this advantage becomes increasingly

important.

In addition to the ability of quick response to changes,

the decentralized nature of such systems also improves their

scalability. The scalability of multi-agent systems is derived

from relying on the “emergence” of task completion by

inherently low communication and computation protocols

implemented by the agents. As the tasks assigned to multi-

agent-based systems become increasingly complex, so does

the importance of the high scalability of the systems.

Finally, by using heterogeneous swarms, even more

efficient systems could be designed, relying on the

utilization of different types of agents whose physical

properties enable them to perform much more efficiently

certain special tasks.

2.2. Simplicity of the Agents

A key principle in the notion of swarms, or multi-agent

robotics, is the simplicity of the agents. The notion

of “simplicity” here means that the agents should be

significantly simpler than a “single sophisticated robotic

system”, which may be necessary for the same purpose.

Hence, the capabilities and the resources of the agents are

assumed to be limited in the following ways:

• Memory resources—basic agents are assumed to

contain only O( 1) memory (i.e. the size of an agent’s

memory is independent of the size of the problem).

This usually imposes many interesting limitations on

the agents. For example, an agent can remember only

a limited part of its history of its activities so far. Thus,

protocols designed for agents with such limited memory

resources are usually very simple and attempt to solve

problems by relying on some (necessarily local) basic

patterns arising in the environment.

• Sensing capabilities—the agents are considered capable

of seeing or probing a limited portion of their

environment. For example, for agents moving on a

100 × 100 grid, a reasonable sensing radius may be 3

or 4, but certainly not 40.

• Computational resources—although agents are

assumed to employ only limited computational

resources, a formal definition of this constraint is hard

to provide. In general, most of the time polynomial

algorithms may be used.

• Communication capabilities are very limited as well:

the issue of communication in multi-agent systems has

been extensively studied in recent years. Distinctions

between implicit and explicit communication are

usually made, in which implicit communication occurs

as a side effect of other actions, or inference on the

world (see, e.g., Pagello et al. (1999)), whereas explicit

communication is a specific act intended solely to

convey information to other robots of the team. Explicit

communication can be performed in several ways, such

as a short-range point to point communication, or global

broadcast or by using some sort of distributed shared

memory. Such memory is often treated as a pheromone,

used to convey small amounts of information between

the agents by leaving traces in the environment

(Yanovski et al. 2001; Felner et al. 2006). This approach

is inspired from the coordination and communication

methods used by many social insects. In fact, studies

of ants (e.g. Adler and Gordon (1992)) show that the

pheromone-based search strategies used by them in

foraging for food in unknown terrains tend to be very

efficient. In the spirit of designing a system which

uses as simple agents as possible, we should aspire to

endow it with as little communication capabilities as

possible. With respect to the taxonomy of multi agents

discussed in Dudek et al. (1996), we would be interested

in using agents of type COM-NONE or if necessary of

type COM-NEAR with respect to their communication

distances, and of types BAND-MOTION, BAND-LOW

or even BAND-NONE (if possible) with respect to their

communication bandwidth. Although a certain amount

of implicit communication can hardly be avoided (due

to the simple fact that by changing the environment,

the agents are constantly generating some kind of

implicit information), explicit communication should

be strongly limited or avoided altogether, in order to fit

our paradigm (note that in many works in this field, this

is not the case, and communication, as well as memory,

resources, are often assumed to be abundant, in order to

create complex cooperative systems).

In summary, we assume that the agents we design to

be myopic, mute, senile and rather stupid, and we aim to

program them with a protocol of local behavioral response

to patterns in their immediate neighborhood.

3. The Dynamic Cooperative Cleaners

Problem

The definition of the dynamic cooperative cleaners problem

is very similar to its static variant (that can be found in

Wagner et al. (2008)), albeit with several extensions. For the

sake of readability, we list below a complete self-contained

definition of the problem.
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We assume that the time is discrete.

Definition 1. Let the undirected planar graph G( V , E) have

for V a two-dimensional integer grid Z2, whose vertices

(or “tiles”) have a binary property called “contamination”.

Let contt( v) denote the contamination state of the tile

v at time t, taking the value either “on” or 1 (for

“dirty” or “contaminated”) or “off ” or 0 (for “clean” or

“uncontaminated”).

For two vertices v, u ∈ V , the edge ( v, u) may belong to

E at time t only if both of the following hold:

• v and u are 4Neighbors in Z2.

• contt( v) = contt( u) = on.

This however is a necessary but not a sufficient condition.

The edges of G, E represent the connectivity of the

contaminated region. At t = 0 all the contaminated tiles

are connected, namely

( v, u) ∈ E0

�
( v, u are 4Neighbors in Z2) ∧( cont0( v) = cont0( u) = on) .

Edges may be added to E only as a result of a

contamination spread and can be removed only while

contaminated tiles are cleaned by the agents (see below).

Definition 2. Let Ft = ( VFt , Et) be the contaminated

sub-graph of G at time t, i.e.

VFt =
{
v ∈ Z2 | contt( v) = on

}
.

We assume that F0 is a single simply connected

component, and the actions of the agents will be so designed

that this property will be preserved.

Let a group of k agents that can move on the grid Ft

(moving from a tile to its neighbor in one time step) be

placed at time t0 on F0, at point p0 ∈ VFt .

Each agent is equipped with a sensor capable of telling

the contamination status of all tiles in the digital sphere

of diameter 7, which surrounds the agent. An agent is also

aware of other agents which are located in these tiles, and

all the agents agree on a common correlation system. Each

tile may contain any number of agents simultaneously. This

information will later be required by the agents’ cleaning

protocol. Each agent is equipped with a memory of size

O( 1) bits with respect to the size of the region1.

The agents are indistinguishable. Namely, they can be

counted, but they do not contain any unique ID.

When an agent moves to a tile v, it has the possibility

of cleaning this tile (i.e. causing cont( v) to become off.

Once an agent cleaned a tile v, all the edges touching v are

removed, namely

Et+1 = Et \ {( v, u) | ( v, u) ∈ Et ∧ cont( v) = off } .

The agents do not have any prior knowledge of the shape

or size of the sub-graph F0 except that it is a single and

simply connected component.

3.1. Spreading Contamination

Unlike the static variant of the problem, which was studied

among others in Wagner et al. (2008), in this paper we are

concerned with a dynamic contamination that spreads over

time and, specifically, every d time steps. This is formally

defined as follows.

Definition 3. Let d denote the number of time steps

between contamination spreads. That is, if t = nd for some

positive integer n, then

∀v ∈ Ft, ∀u ∈ 4Neighbors( v) , contt+1( u) = on.

The evolution of the edges of E that represent

connections between contaminated tiles can be defined in

various ways. The simplest of which is merely stating that

every couple of adjacent contaminated tiles is connected,

namely we have the following definition.

Definition 4. At any given time step t,

∀v ∈ Vt, ∀u ∈ Vt, ( u �= v) → (( u, v) ∈ Et) .

An alternative definition of the evolution of Et

is discussed in Section 5.4, simulating an elastic

“barrier” which preserves the simple connectivity of

the contaminated region. This is later used in order to

allow myopic and memoryless decentralized agents to

collaboratively clean the spreading contaminated region,

based on local interactions and information.

3.2. Agents’ Goal

As is the case of the static variant of the cooperative

cleaners problem, it is the agents’ goal to clean F by

eliminating the contamination entirely, meaning that the

agents must ensure that

∃tsuccess s.t. Ftsuccess = ∅.

In addition, it is desired that the time tsuccess will be minimal.

In this work we impose the restriction of no central

control and full “decentralization”, i.e. all agents are

identical and no explicit communication between the agents

is allowed. An important advantage of this approach, in

addition to the simplicity of the agents, is fault tolerance—

even if almost all the agents cease to work before

completion, the remaining ones will eventually carry on the

mission, and complete it, if possible.

4. A Protocol-independent Lower Bound for

Cleaning Time

4.1. Overview of the Results

Due to the dynamic nature of the problem, the shape of

the contaminated region can change dramatically during the

cleaning process. Therefore, since we know no easy way to
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decide whether k agents can successfully clean an instance

of the dynamic cooperative cleaners problem, producing

bounds for the efficiency of any proposed cleaning protocol

is important for estimating its efficiency.

Several analytic results are presented in this section.

Given a contaminated shape F0 with an initial area S0, and k

agents employing any cleaning protocol, two lower bounds

for St (the area of F at time t) are derived and summarized

in Theorems 1 and 2. Using the above, impossibility results

are presented, as we can provide an algorithm to generate

contaminated regions which are impossible to clean, given

any pair of k and d.

4.2. Analysis

Definition 5. Let St denote the size of the contaminated

region F at time t, namely the number of grid points (or

tiles) in Ft. Actually, F defines a dichotomy of Z2 into F

and F = Z2 \ F.

Let us now discuss a general lower bound for the problem

of dynamic cleaning. It is applicable for any cleaning

protocol which might be used by the agents. This is

achieved by showing that at a specific time t, St > 0,

namely, the mission could not be completed until that time

(regardless of the cleaning protocol used). Note that the

completion of the cleaning mission at time t means that

St = 0.

Theorem 1. Using any cleaning protocol, the area of the

contaminated region at time t can be recursively lower

bounded, as follows:

St+d ≥ St − d · k +
⌊

2
√

2 · ( St − d · k) −1
⌋

.

Proof. Note that a lower bound for the cleaning time can

be obtained by assuming that the agents are working with

maximal efficiency, meaning that each at time step every

agent cleans exactly one tile. After d −1 time steps k agents

will therefore have cleaned k·( d−1) tiles, and thus we know

that

Sd−1 ≥ S0−( d − 1) · k.

In the dth time step, the agents clean another portion of

k tiles, but the remaining contaminated tiles spread their

contamination to their 4Neighbors and cause new tiles to

become contaminated. We are interested in the minimal

number of tiles which can become contaminated at this

stage. The minimal number of 4Neighbors of any number

of tiles is achieved when the tiles are organized in the shape

of a “digital sphere” (see a complete proof in Altshuler

et al. (2006b) or Appendix 9.8, and a full discussion of

isoperimetric inequalities for discrete grids and optimally

packed shapes in Vainsencher and Bruckstein (2008)), as

demonstrated in Figure 1. Therefore, for a region of any

given area S the minimal number of its 4Neighbors is at

least 2
√

2 · St − 1. As the number of tiles must be an integer

value, we use
⌊

2
√

2 · St − 1
⌋

to remain on the safe side.

Fig. 1. The left-hand chart shows an example of a “sphere” in the

grid. Notice that this sphere has only 16 tiles in its 4Neighbors

while the right-hand chart, containing a shape of the same area,

has 20 tiles in its 4Neighbors.

After the dth time step we thus have the following:

Sd ≥ S0 − d · k +
⌊

2
√

2 · ( S0 − d · k) −1
⌋

and the conclusion follows.

A graphical illustration of Theorem 1 is presented is

Figure 2.

Fig. 2. Theorem 1 illustrated. The graph depicts a lower bound

over the size of the contaminated region as a function of t, given

various numbers of cleaning agents (while the initial area of

the contaminated region is S0 = 2000 and the contamination

spreading latency is d = 5). The lower bound over the cleaning

time can be interpreted as stating that the time for completion of

the cleaning job will be higher than the point at which the graph

of St hits 0. For example, observe how a complete cleaning is

shown to be impossible for any swarm with 24 agents or less.

Naturally, as Theorem 1 only takes into account the initial size

of the contaminated region, different regions’ size evolutions are

expected to be seen for regions of various shapes of the same initial

size—see such examples in Section 8. Note that as this bound is

generic, and hence independent of the cleaning protocol used by

the agents, the actual cleaning protocol used will have a significant

effect on the actual cleaning efficiency.

4.3. Explicit Expression for the Lower Bound.

The following result is a direct lower bound for the size of

the contaminated region, based on the recursive bound of

Theorem 1.

Theorem 2. Using any cleaning protocol, a lower bound

for the area of the contaminated region at time t = i · d for

some i ∈ N is the minimal positive St which is a solution of
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the following equation:

St − S0 + ln

(
St − dk

2

S0 − dk
2

) dk
2

= 2i,

where

St �
√

2( St − dk) −1, S0 �
√

2( S0 − dk) −1.

Proof. Observe that by denoting yi � Sid , the recursion of

Theorem 1 can be written as

yi+1 − yi ≥
⌊

2
√

2 · ( yi − d · k) −1
⌋

− d · k.

Searching for the minimal area, we can look at the

equation

yi+1 − yi =
⌊

2
√

2 · ( yi − d · k) −1
⌋

− d · k.

By dividing both sides by �i = 1, we obtain

yi+1 − yi � y′ =
⌊√

8y − 8

(
d · k + 1

2

)⌋
− d · k. (1)

Note that the values of y′ might be positive (stating an

increase in the area), negative (stating a decrease in the area)

or complex numbers (stating that the area is smaller than

d · k, and will therefore be cleaned before the next spread).

Let us denote x2 � 8y − 8
(
d · k + 1

2

)
. After calculating

the derivative of both sides of this expression, we see that

2x · x′ = 8y′

and, after using the definition of y′ of Equation (1), we see

that

2x · dx

di
= 2x · x′ = 8

⌊√
8y − 8

(
d · k + 1

2

)⌋
− 8d · k

and, subsequently,

2x · dx

di
≤ 8 (x − d · k) . (2)

From Equation (2), a definition of di can be extracted:

di ≥ 1

8
· 2x

x − d · k
dx ≥ 1

8
· 2x − 2d · k + 2d · k

x − d · k
dx

≥ 1

4

(
1 + d · k

x − d · k

)
dx.

The value of x can be achieved by integrating the

previous expression as follows (note that we are interested

in the equality of the two expressions):

∫ i

i0

di =
∫ x

x0

1

4

(
1 + d · k

x − d · k

)
dx.

Fig. 3. Theorem 2: these graphs depict lower bounds for the

cleaning time of several contaminated regions (the Y axis), as a

function of the number of agents (the X axis, starting from the

lowest number of agents which produces a successful cleaning).

A comparison to the naive f ( k) = S0
k

function, which holds for

static environments, is also included (the lower curve, marked in

red). Notice again that this bound is generic, and therefore will

hold for any cleaning protocol used.

After the integration, we can see that

i

∣∣∣∣
i

i0

= 1

4
(x + d · k ln (x − d · k))

∣∣∣∣
x

x0

and, after assigning i0 = 0,

4i = x − x0 + d · k ln
x − d · k

x0 − d · k
.

Rewriting this in terms of y, we get

2i =
√

2( y − d · k) −1 −
√

2( y0 − d · k) −1

+ ln

( √
2( y − d · k) −1 − d·k

2√
2( y0 − d · k) −1 − d·k

2

) d·k
2

and, returning to the original size variable St, we see that

2i =
√

2( Sid − dk) −1 −
√

2( S0 − dk) −1

+ ln

(√
2( Sid − dk) −1 − dk

2√
2( S0 − dk) −1 − dk

2

) dk
2

and the rest follows.

Theorem 2 provides an easy way of calculating the

minimal possible time it will take a given number of agents

to clean some portion of any given contaminated region

(and, specifically, to clean it entirely). A lower bound for the

cleaning time of k agents for various contaminated regions

based on this theorem appears in Figures 3, 4 and 5. A

lower bound for the minimal number of agents required to

guarantee a successful cleaning of a contaminated region, as

a function of the contamination spreading speeds, is shown

in Figure 6, for several values of the initial contaminated
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Fig. 4. Theorem 2: these graphs depict lower bounds for the

cleaning time of several contaminated regions (the Y axis), as a

function of the number of agents (the X axis), for various values

of d. Notice again that this bound is generic, and therefore will

hold for any cleaning protocol used.

Fig. 5. Theorem 2: these graphs depict lower bounds for the

cleaning time of several contaminated regions (the Y axis), as a

function of the number of agents (the X axis), for various values

of the initial area S0.

area. The influence of the initial contaminated area over the

minimal number of agents required to guarantee a complete

cleaning is demonstrated in Figure 7, in which the ratio
Kmin(S0,d)

Kmin( 1
10

S0,d)
(as a function of d) is presented (suggesting

that when Kmin( n, d) denotes the minimal number of agents

required to enable a cleaning of a contaminated region

of an initial contaminated region of n tiles, for some

contamination spreading d, then Kmin( α · n, d) ≈ √
α ·

Kmin( n, d)).

Another interesting illustration of Theorem 2 is presented

in Figure 8, where the ratio RS0
( α) �

Tmin(α·S0,D)

Tmin(S0,D)
(where

Tmin( n, D) denotes the average lower bound for the cleaning

time of Kmin( n, d) agents, where d = [2, 3, 4, . . . , D]) is

calculated for various values of S0 (and for D = 20). Based

on these examples, it can be conjectured that RS0
( α) ≈ 2

√
α

regardless of S0 and D.

4.4. Impossibility Result

While designing a system intended to use cleaning agents

in order to guarantee a successful completion of the

cooperative cleaners problem, various cleaning methods

can be used. This, combined with the dramatic changes

the initial geometric properties of the contaminated region

can undergo, yields a great uncertainty as to the cleaning

time of a group of agents using any protocol (and, for that

matter, as to the possibility of guaranteeing a successful

job completion, to begin with). While the theoretical lower

bound shown above as well as the upper bounds which are

presented in the next section can assist in decreasing this

uncertainty, one might alternatively be concerned with the

opposite question, namely, how can we guarantee that a

group of k agents will not be able to clean a contaminated

region entirely (regardless of the cleaning protocol being

used, or the agents’ sensors or communication capabilities).

A solution to this problem is the following theorem.

Theorem 3. Using any cleaning protocol, k agents

cleaning a contaminated region of initial size S0, which

spreads every d time steps, will not be able to clean it if

S0 >

⌈
1

8
d2k2 + dk + 1

2

⌉
.

Proof. We require that the size of the region increases

between each two spreads (thus generating an ever

expanding region, impossible to clean) or, in other words,

we require that

Sd − S0 > 0.

Using Theorem 1, we know that regardless of the specific

protocol used,

Sd ≥ S0 − d · k + 2
√

2 · ( S0 − d · k) −1

and therefore

2
√

2 · ( S0 − d · k) −1 > d · k.

Some algebra then yields

S0 >

⌈
1

8
d2k2 + dk + 1

2

⌉
.

Theorem 3 is illustrated in Figure 9.
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Fig. 6. Theorem 2: this graph represents lower bounds for the

minimal number of agents required to guarantee a successful

cleaning of several contaminated regions, as a function of the

contamination spreading speed d. The lower curve depicts the

minimal number of agents for an initial region of S0 = 1000, for

spreading speeds between 2 and 50. Similarly, the other curves

represent a similar function for S0 = 2000, 5000 and 10000,

respectively.

5. The Cleaning Protocol

5.1. Overview of the Protocol

In order to solve the dynamic cooperative cleaners problem

we shall argue that CLEAN—a cleaning protocol that was

suggested in Wagner et al. (2008)—can be used for the

dynamic variant of the problem as well.

Generalizing an idea from computer graphics (presented

in Henrich (1994)), this protocol preserves the connectivity

of the contaminated region by preventing the agents

from cleaning critical points—points which when cleaned

disconnect the contaminated region. This ensures that

the agents stop only upon completing their mission. At

each time step, each agent cleans its current location

(assuming that it is not a critical point), and moves

according to a local movement rule, creating the effect of

a clockwise “sweeping” traversal along the boundary of the

contaminated region. As a result, the agents “peel” layers

from the region, while preserving its connectivity, until the

region is cleaned entirely. An illustration of two agents

working according to the protocol can be seen in Figure 10.

There are several implications to the fact that the

contamination is now assumed to be expanding over time.

First, the analysis of the protocol’s performance becomes

increasingly more complicated (moreover, the protocol’s

correctness itself must be redemonstrated). Second, unlike

in the static case, a group of k agents can no longer

be assumed to eventually clean a contaminated region

given enough time (as shown for example in Theorem 3).

Rather, the group of agents must be large enough, in

order to guarantee a successful completion of the task (see

more details in Section 6). The agents acting according

to the CLEAN protocol face a problem which did not

appear when the contaminated region was assumed to be

Fig. 7. An example of Theorem 2. These graphs demonstrate the

influence of the change in the area of the initial contaminated

region over the change in the lower bound for the minimal number

of agents required to guarantee a successful cleaning of the region,

namely, the ratio
k(S0,d)

k( 1
10 S0,d)

(as a function of d), when k( S, d)

represents the lower bound over the minimal number of agents,

for a region of area S and a spreading speed d. The values of S0 of

the four upper graphs are 10000, 100000, 1000000 and 10000000,

while the values of d are between 2 and 100. A continuation of

the last graph (i.e. in which S0 = 10000000) appears in the lower

graph, in which 2 ≤ d ≤ 1000. Observing these graphs it can

be seen that, as expected, an increase in d results in a general

decrease in the agents’ ratio (disregarding the oscillatory nature of

the function). The reason is that when d is increased, the problem

becomes “easier”, and therefore the number of agents required to

complete the cleaning is smaller (regardless of the cleaning time

itself). As to the effect of the initial area of the region, the ratio

between the agents required for cleaning an area of S0 tiles and

the agents required for cleaning an area of 1
10

S0 tiles is generally

constant for smaller values of d (and surrounds
√

10), regardless

of the ratio between S0 and 1
10

.

Fig. 8. An example of Theorem 2, illustrating the influence of

the change in the contaminated region’s initial size over the lower

bound of the cleaning time of the smallest group of agents that is

capable of cleaning it. Namely, the graphs demonstrate RS0
( α) �

Tmin(α·S0,D)
Tmin(S0,D)

as a function of α. Notice that the value of RS0
( α) is

agnostic to the selection of the initial S0 or of D.

 at MASSACHUSETTS INST OF TECH on February 20, 2012ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


1046 The International Journal of Robotics Research 30(8)

Fig. 9. An example of Theorem 3, presenting several examples for

initial regions, spreading latencies and number of agents, which

are guaranteed to be impossible for cleaning.

static, namely, the spread of the contamination, and, upon

contamination spread, agents might find themselves located

in tiles which are no longer boundary tiles. Once this

happens, an agent will have to move towards the boundary

tile which will enable the continuation of his planned

traversal along the region.

For the sake of readability, we show here the complete

description of the cleaning protocol which appears in

Wagner et al. (2008). In the dynamic case, this cleaning

protocol is sometimes called the SWEEP cleaning protocol

and we shall use this name from now on.

5.2. Agents’ Limitations and the Use of Local

Rules

To the basic description of the protocol given above, there

are several exceptions. As the agents are equipped with very

limited sensing and storage capabilities, the basic structure

of the protocol must be enhanced with a set of local rules,

designed to induce a pseudo-synchronization between the

agents. Those rules generate resting and waiting commands

for the agents, capable of delaying their actions, either

within the time step (until certain agents complete their

cleaning process for this time step), or causing them to

pause for a single time step, resuming their operation at the

next time step only. A detailed description concerning the

need for these additions appears in Sections 5.9 and 5.10.

Note however that the rules in charge of the resting and

waiting still obey the basic paradigm of this work, namely,

they are local, use no prior knowledge of the problem,

do not require explicit communication between the agents

and can be implemented using a constant amount of

memory resources. A schematic flow chart of the protocol

is presented in Figure 19.

��������❅❅❅❅❅❅❅❅
�� ��❅❅ ❅❅

�

✻

✻

Fig. 10. An example of two agents using the SWEEP protocol,

at time step 40 (with contamination spreading speed d > 40).

All the tiles presented were contaminated at time 0. The black dot

denotes the starting point of the agents. The X’s mark the critical

points which are not cleaned. The black tiles are the tiles cleaned

by the first agent. The second layer of marked tiles represent the

tiles cleaned by the second agent.

5.3. Cleaning Protocol: Definitions and

Requirements

Definition 6. Let τ ( t) =
(
τ1( t) , τ2( t) , . . . , τk( t)

)
denote

the locations of the k agents at time t.

Definition 7. For a tile v, let Neighborhood( v) denote the

contamination states of v and its 8Neighbors.

Let Mi denote some finite amount of memory contained

in agent i, storing information needed for the protocol (e.g.

the last moves of agent i). The requested cleaning protocol

is therefore a rule f such that for every agent i

τi( t + 1) = f (τi( t) , Neighborhood( τi( t) ) ,Mi( t) ) ,

where the Manhattan distance between τi( t + 1) and τi( t) is

at most 1.

Definition 8. Let ∂F denote the boundary of F. A tile is on

the boundary if and only if at least one of its 8Neighbors is

not in F, meaning

∂F = {v | v ∈ F ∧ 8Neighbors( v) ∩ ( G \ F) �= ∅}.

The requested rule f should meet the following goals:

• Successful Termination: ∃tsuccess s.t. Ftsuccess = ∅ (for

as many initial instances of the problem as possible).

• Agreement on Completion: within a finite time after

completing the mission, all the agents must halt.

• Efficiency: the cleaning process should be efficient in

time and in agents’ memory resources.

• Fault Tolerance: if one or several agents stop working

(“die”), the rest of the agents will continue the cleaning

process as efficiently as their number allows them.

5.4. Simple Connectivity Preserving Spreading

In Section 3 the spreading of the contamination was

mentioned to optionally be defined in a variety of ways,
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�

�

Fig. 11. A creation of a new hole around an agent. Notice how

upon a contamination spread, the agents (denoted by black dots)

may be trapped inside the “hole” that will be created. In this case,

the agents will continue to clean the interior area of the hole

endlessly. This problem is avoided by the elastic barrier.

controlled by the evolution of the edges E that form links

between some (or all) of the pairs of adjacent contaminated

tiles. In Definition 4 the edges of E were defined to connect

each pair of contaminated tiles. This model, however, holds

some perils which may interfere with the proper function

of our local-information-dependent agents, implementing

the SWEEP protocol—as, for such agents, preserving the

simple connectivity of the contaminated region is crucial.

For example, the generation of holes in the region may

prevent the agents from being able to accomplish the

cleaning mission (see an example in Figure 11) or delay

it significantly (see Figure 12 for a demonstration of the

delaying ring phenomenon). Alternatively, cleaning critical

points and transforming the region into several smaller sub-

regions may generate a sub-region with no agents located in

it—resulting in the termination of the cleaning mission by

the agents, while some of the tiles are still contaminated.

We resolve this issue by altering the definition of the con-

tamination spread, in a way which simulates an imaginary

“elastic barrier” surrounding the contaminated region. This

revised model, defined formally in Definition 9, is shown to

prevent the creation of holes as a result of contamination

spreading. This is complementary by the definitions of

the cleaning protocol, which makes sure that no holes are

generated by the agents’ cleaning activities (as those are

cleaning only boundary tiles, while also refraining from

cleaning critical points).

The following is a detailed and formal definition of the

revised model. The contaminated region Ft is assumed to

be surrounded at its boundary by a “rubber-like” elastic

barrier, dynamically reshaping itself to fit the evolution of

the contaminated region over time (the barrier is derived

from the edges of Et, as demonstrated in Figure 13). This

process can be thought of as a water-filed rubber balloon—

while the shape of the water contained in it may change, as

well as its volume, the balloon keeps bounding it tightly.

When an agent cleans a contaminated tile, the barrier is

withdrawn, in order to free the tile. This is demonstrated in

Figure 14.

While the contamination spreads (every d time steps),

the elastic barrier stretches accordingly. First, all the

clean tiles located to the right of a contaminated tile

are becoming contaminated. Then, the clean tiles located

Fig. 12. An example of a delaying ring—a hole, which delays

the cleaning operation of the agents. The left-hand region at

the top represents the original contaminated region. The rest

of the regions describe the spreading and cleaning processes. This

phenomenon occurs while a region of clean tiles is surrounded by

contaminated tiles due to a contamination spread. Left unattended,

the clean region will eventually become contaminated, after

additional contamination spreads take place (the exact number of

the spreads needed depends on the width of this region). Notice

though that should an agent reach this region after the first spread

but before the clean region had become entirely contaminated, it

will not be able to clean it, regardless of the number of “layers”

pilled (as once a “ring” composed of the contaminated tiles

surrounding the clean region is left, it is entirely composed of

critical points, and therefore cannot be cleaned). The contaminated

region surrounding the hole could therefore be cleaned only

once the contamination process of the internal clean region is

completed. This phenomenon is avoided by the elastic barrier.

Fig. 13. A demonstration of the barrier surrounding the

contaminated region, derived from the edges of Et. Notice that

when an edge connecting two contaminated tiles is not in Et,

those tiles are “on the other side” of the barrier. For example,

observe the vertices v1 and v2, which are 4Neighbors in Ft

(namely, the Manhattan distance between them in G equals 1);

however, as ¬ (( v1, v2) ∈ Et), the geodesic distance between them

is significantly greater.

below contaminated tiles, followed by clean tiles located

to the left of such tiles. Finally, clean tiles located above a

contaminated tile are affected. The barrier itself it implicitly

derived from the edges connecting the tiles. Namely, it is

the boundary which surrounds the connected contaminated
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Fig. 14. A demonstration of the evolution of the elastic barrier as

a result of the movement and cleaning of an agent according to the

SWEEP protocol, as described in Figures 20 and 21.

tiles. This process is illustrated in Figures 15 and 16, and is

formalized below.

Definition 9. Elastic barrier’s expansion as a result of a

contamination spread:

• Let V̂t = ∅ be a set of vertices and let Êt = ∅ be a set

of edges.

• For the vertex u located at ( xu, yu), let:

• Neighborright( u) denote the vertex located at

( xu + 1, yu);

• Neighborleft( u) denote the vertex located at

( xu − 1, yu);

• Neighborup( u) denote the vertex located at

( xu, yu + 1);

• Neighbordown( u) denote the vertex located at

( xu + 1, yu − 1).

• Let dG( v, u) denote the number of edges between v and

u in the graph G.

• Add new vertices to the right.

• Vtemp = {v|¬( v ∈ VFt ∪ V̂t) ∧( ∃u ∈ VFt , v =
Neighborright( u) ) }.

• Êt ← Êt∪{( v, u)|( v ∈ Vtemp) ∧( v = Neighborright( u) ) }.
• Êt ← Êt∪{

( v, u)

∣∣∣∣
( v ∈ V̂t) ∧( v = Neighborright( u) ) ∧

( u ∈ VFt ) ∧( dG(VFt ∪V̂t ,Et∪Êt)( v, u) ≤ 3)

}
.

• V̂t ← V̂t ∪ Vtemp.

• Add new vertices to the bottom (repeat line 5.4 using

Neighbordown).

• Add new vertices to the left (repeat line 5.4 using

Neighborleft).

• Add new vertices to the top (repeat line 5.4 using

Neighborup).

• VFt ← VFt ∪ V̂t.

• Et ← Et ∪ Êt.

• Et ← Et ∪
{

( v, u)

∣∣∣∣
( v, u ∈ VFt ) ∧( v = 4Neighbors( u) ) ∧

( dFt ( v, u) ≤ 3)

}
.

Fig. 15. A demonstration of the barrier expansion process as a

result of a contamination spread.

Fig. 16. A demonstration of the barrier expansion process as a

result of a contamination spread.

For the agents who travel along the tiles of F, the

barrier “signals” the boundary of the contaminated region.

When an agent detects a contaminated tile which is “on

the other side” of the barrier, it treats it as though it

was a clean tile (this aspect is important to remember

when reviewing the agents’ behavior while following the

cleaning algorithm). For example, examining the region

which appears in Figure 17 and assuming an agent located

in the “X” marked tile, then, while looking “upwards”,

this agent acts as though the tile above it is clean (as the

contaminated tiles are located behind the barrier and are

thus masked as clean ones). Specifically, this is required for

the proper execution of the “rightmost” function, discussed

in Definition 11.

5.5. The SWEEP Cleaning Protocol

The SWEEP protocol is implemented by each agent

ai, located at time t at τi( t) =( x, y). We define below

several terms we use while discussing the protocol. We
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Fig. 17. Observe how the stretching of the barrier is generating

“double fronts” after a contamination spread. Note that had the

contaminated parts been allowed to merge, the simple connectivity

of the region would have not been kept. In addition, observe how

an agent located in the tile marked by an “X” is still kept on the

boundary of the contaminated region, due to this mechanism.

stress the fact that this is indeed a myopic protocol,

relying on neighborhood information, a senile protocol (the

memory needed is constant) and it relies on implicit local

communication only.

Definition 10. Let τ̃i( t) denote the “previous location” of

agent i. Namely, the last tile that agent i had been at, which

is different from τi( t). This is formally defined as

τ̃i( t) � τi( x) s.t. x = max{j ∈ N | j < t and τi( j) �= τi( t) }.

Definition 11. The term “rightmost” is defined as

follows:

• If t = 0, then select the tile as instructed in Figure 18.

• If τ̃i( t) ∈ ∂Ft, then, starting from τ̃i( t) (namely, the

previous boundary tile that the agent had been in), scan

the four neighbors of τi( t) in a clockwise order until a

boundary tile (excluding τ̃i( t)) is found.

• If τ̃i( t) /∈ ∂Ft, then, starting from τ̃i( t), scan the four

neighbors of τi( t) in a clockwise order until the second

boundary tile is found.

The additional information needed for the protocol and

its sub-routines is contained in Mi and Neighborhood( x, y).

A schematic flow chart of the protocol, describing

its major components and procedures, is presented in

Figure 19. The complete pseudo-code of the protocol

and its sub-routines appears in Figures 20 and 21. Upon

initialization of the system, the System Initialization

procedure is called (defined in Figure 20). This procedure

sets various initial values of the agents, and calls the

protocol’s main procedure—SWEEP (defined in Figure 21).

This procedure, in turn, uses various sub-routines and

functions, all defined in Figure 20. The SWEEP procedure

comprises a loop which is executed continuously, until

detecting one of two possible break conditions. The
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Fig. 18. When t = 0 the first movement of an agent located in

( x, y) should be decided according to the initial contamination

status of the neighbors of ( x, y), as appears in these charts—the

agent’s initial location is marked with a filled circle while the

destination is marked with an empty one. All configurations which

do not appear in these charts can be obtained by using rotations.

This definition is needed in order to initialize the traversal behavior

of the agents in the correct direction.

first, implemented in the Check Completion of Mission

procedure, is in charge of detecting cases where all

the contaminated tiles have been cleaned. The second

condition, implemented in the Check Near Completion

of Mission procedure, is in charge of detecting scenarios

in which every contaminated tile contains at least a

single agent. In this case, the next operation would be a

simultaneous cleaning of the entire contaminated tiles. goes

through the following sequence of commands. First, each

agent calculates its desired destination at the current turn.

Then, each agent calculates whether it should give a priority

to another agent located at the same tile, and wishes to

move to the same destination. When two or more agents

are located at the same tile, and wish to move in the same

direction, the agent who had entered the tile first gets to

leave the tile, while the other agents wait. In the case where

several agents had entered the tile at the same time, the

priority is determined using the Priority function. Before

actually moving, each agent who had obtained a permission

to move must now locally synchronize its movement with

its neighbors, in order to avoid simultaneous movements

which may damage the connectivity of the region. This is

done using the waiting dependences mechanism, which is

implemented by each agent via an internal positioning of

itself in a local ordering of its neighboring agents. When

an agent is not delayed by any other agent, it executes its

desired movement. It is important to notice that at any given

time, waiting or resting agents may become active again, if

the conditions which made them become inactive in the first

place had changed.

5.6. Pivot Point

As in the CLEAN protocol, the initial location of the agents

(the pivot point, denoted as p0) is artificially set to be critical

during the execution; hence, it is also guaranteed to be the

last point cleaned. Completion of the mission can therefore

be concluded from the fact that all (working) agents are

back at p0 with no contaminated neighbors to go to, thereby
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Fig. 19. A schematic flow chart of the SWEEP protocol. The

smooth lines represent the basic flow of the protocol while the

dashed lines represent cases in which the flow is interrupted. Such

interruptions occur when an agent calculates that it must not move

until other agents do so (as a result of either waiting or resting

dependences—see lines 6 and 14 of SWEEP for more details).

reporting on completion of their individual missions. Note

that this artificial preservation of the criticalness of the pivot

point is not necessary for the algorithm to work. However,

it makes life easier for the user, as one can now know where

to find the agents after the cleaning has been completed. If

we do not start with all agents at the pivot and force p0 to

be critical, the location of the agents upon completion will

generally not be predictable in advance.

5.7. Signaling

Since by assumption an agent’s sensors can detect the

status of all tiles which are contained within a digital

sphere of radius 4 placed around the current location of

the agent, each agent can artificially calculate the desired

destination of all the agents which are located in one of

its 4Neighbors tiles (see Figure 22). Thus, the signaling

action of each agent can be simulated by the other agents

near him, and hence explicit signaling by the agents is not

actually required. However, the signaling action is kept in

the description and flow chart of the protocol (in line 5

of the main procedure of the protocol) for the sake of

simplicity and understandability.

5.8. Connectivity Preservation

The connectivity of the region yet to be cleaned, F, is

preserved by allowing the agents to clean only non-critical

points. This guarantees both successful termination and

agreement of completion (since having no contaminated

neighbors implies that F = ∅). Also, should several agents

malfunction and halt, as long as there are still functioning

agents, the mission will still be carried out, albeit at a

1: System Initialization

2: Arbitrarily choose a pivot point p0 in ∂F0, and mark it as a critical point

3: Place all the agents on p0
4: For (i = 1; i ≤ k; i + +) do

5: Call Agent Reset for agent i

6: Call SWEEP for agent i

7: Wait two time steps

8: End for

9: End procedure

10: Agent Reset

11: resting ← false

12: dest ← null /* destination */

13: near completion ← false

14: saturated perimeter ← false

15: waiting ← ∅
16: End procedure

17: Priority

18: /* Assuming the agent moved from ( x0, y0) to ( x1, y1) */

19: priority ← 2( x1 − x0) +( y1 − y0)

20: End procedure

21: Check Completion of Mission

22: If (( x, y) = p0) and ( x, y) has no contaminated neighbors, then

23: If ( x, y) is contaminated, then

24: Clean ( x, y)

25: STOP

26: End procedure

27: Check “Near Completion” of Mission

28: /* Cases where every tile in Ft contains at least a single agent */

29: near completion ← false

30: If each of the contaminated neighbors of ( x, y) contains at least one agent,

then

31: near completion ← true

32: If each of the contaminated neighbors of ( x, y) satisfies near completion,

then

33: Clean (x, y) and STOP

34: /* Cases where every non-critical tile in ∂Ft contains at least two agents */

35: saturated perimeter ← false

36: If ((x, y) ∈ ∂Ft) and both (x, y) and all of its non-critical neighbors

in ∂Ft contain at least two agents, then

37: saturated perimeter ← true

38: If ((x, y) ∈ ∂Ft) and both (x, y) and all of its neighbors in ∂Ft have

saturated perimeter = true, then

39: Ignore resting commands for this time step

40: End procedure

Fig. 20. The first part of the SWEEP cleaning protocol. The term

∂F is defined in Section 5.3.

slower pace (as long as the number of active agents is high

enough).

Apart from the cleaning performed by the agents, tiles

may become contaminated due to contamination spread.

However, when two parts of the contamination region

spread towards one another, the region’s simple connectivity

is still preserved, due to the basic assumption of the elastic

barrier bounding the shape.

Note that when several agents are located in the same

tile, only the last one who exits cleans it (see line 28 of

the main procedure of the SWEEP protocol), in order to

prevent agents from being “thrown” out of the contaminated

region. An alternative method for ensuring that the agents

are always capable of executing the cleaning protocol would

have been the implementation of a “contamination-seeking

mechanism” (i.e. by applying methods such as suggested in

Baeza-Yates and Schott (1995)). Such a mechanism would

have allowed an agent to clean its current location, even

if other agents had also been present there. That solution,
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1: SWEEP Protocol /* Controls agent i after Agent Reset */

2: Check Completion of Mission

3: Check “Near Completion” of Mission

4: dest ← rightmost neighbor of ( x, y) /* Calculate destination */

5: destination signal bits ← dest /* Signaling the desired destination */

6: /* Calculate resting dependences (solves agents’ clustering problem) */

7: From all agents in ( x, y) except agent i we define the following groups:

8: K1: agents signaling towards dest which entered ( x, y) before agent i

9: K2: agents signaling towards dest which entered ( x, y) with agent i

and with higher priority than that of agent i

10: resting ← false

11: If (K1 �= ∅) or (K2 �= ∅), then

12: resting ← true

13: If current time step T did not end yet, then jump to 4 Else jump to 30

14: waiting ← ∅ /* Waiting dependences (agents’ synchronization) */

15: Let active agent denote a non-resting agent which did not move in T yet

16: If ( x − 1, y) ∈ Ft contains an active agent, then waiting ← waiting ∪ {left}

17: If ( x, y − 1) ∈ Ft contains an active agent, then waiting ← waiting ∪ {down}

18: If ( x − 1, y − 1) ∈ Ft contains an active agent, then waiting ← waiting ∪
{l-d}

19: If ( x + 1, y − 1) ∈ Ft contains an active agent, then waiting ← waiting ∪
{r-d}

20: If dest = right and ( x + 1, y) contains an active agent j, and destj �= left, and

there are no other agents delayed by agent i (i.e. ( x − 1, y) does not contain

active agent l with destl = right and no active agents in ( x, y+1) , ( x+1, y+1),

( x − 1, y + 1), and ( x + 1, y) does not contain active agent n with destn = left),

then (waiting ← waiting ∪ {right}) and
(

waitingj ← waitingj \ {left}
)

21: If dest = up and ( x, y + 1) contains an active agent j, and destj �= down, and

there are no other agents delayed by agent i (i.e. ( x, y − 1) does not contain

active agent l with destl = up and no active agents in ( x + 1, y) , ( x + 1, y + 1),

(x − 1, y + 1), and ( x, y + 1) does not contain active agent n with dest

n = down),

then (waiting ← waiting ∪ {up}) and
(

waitingj ← waitingj \ {down}
)

22: If (waiting �= ∅), then

23: If T has not ended yet, then jump to 4 Else jump to 30

24: /* Decide whether or not ( x, y) should be cleaned */

25: If ¬ (( x, y) ∈ ∂Ft) or ( ( x, y) ≡ p0) or ( x, y) has two contaminated tiles in its

4Neighbors which are not connected via a path of contaminated tiles from its

8Neighbors, then

26: ( x, y) is an internal point or a critical point and should not be cleaned

27: Else

28: Clean ( x, y) if and only if it still does not contain other agents

29: Move to dest

30: Wait until T ends

31: Return to 2.

Fig. 21. The SWEEP cleaning protocol. The term rightmost

neighbor is defined in Section 5.5. l-d and r-d are left-down and

right-down, respectively.

X

Fig. 22. Digital sphere of diameter 7, placed around the agent.

however, would have been even less elegant and would have

added additional difficulties to the analysis process.

5.9. Agents’ Synchronization

Note that agents operating in the described environment

must have some means of synchronization, which is

necessary in order to prevent agents from operating at the

same time—risking cutting the contamination region into

several connected components, as shown in Figure 23.

✛ ✛
✲ ✲

⇒

Fig. 23. When the agents do not possess a synchronization

mechanism, they may, among others, damage the region’s

connectivity. In this example, two agents clean their current

locations, and move according to the SWEEP protocol. Since they

are not synchronized, the tiles which they are located in are not

treated as critical at the times of cleaning. However, the region’s

connectivity is not preserved. Should one of the agents had waited

for its neighbor to complete executing the protocol’s steps before

resuming its actions, while deciding whether to clean its current

location, it would have treated this tile as critical, and therefore

avoid cleaning it. In this case, the connectivity of the region would

have been maintained.

To ensure that such scenarios will not occur, a local order

between the operating agents must be implemented. Note

that—throughout the next paragraphs—agents which are

signaling a resting status (see Section 5.10 for more details)

are being disregarded while calculating the dependences of

the agents’ movements. Note also that the calculation of

resting status of each agent can be calculated several times

during each time step, as movements of agents may cause

this property to change. The creation of the following order

is implemented in lines 14 through 21 of SWEEP:

Definition 12. For agent i, let

Pi ⊆ {up, down, left, right, right-down, left-down}

be a set of directions of tiles, in which there are currently

agents, which agent i is delayed by (meaning that agent i

will not start moving until the agents in these tiles move).

Unless stated otherwise, Pi = ∅.

For agent i which is located in tile ( x, y), if ( x − 1, y) is

a tile in F, which contains an agent, then Pi ← Pi ∪ {left}.
If ( x, y − 1) is a tile in F, which contains an agent, then

Pi ← Pi ∪ {down}, and similarly for ( x + 1, y − 1) and

right-down and for ( x − 1, y − 1) and left-down.

Definition 13. Let desti ∈ {up, down, left, right} be the

destination agent i might be interested in moving to, after

leaving its current location.

We assume that agents can sense the desired destinations

of adjacent agents. For example, each tile can be treated

as a physical tile, in which the agents can move. Thus, by

approaching the side of the tile it is planning to move to,

an agent can “communicate” this two-bit information to

surrounding agents. Alternatively, this can be implemented

using any other hardware or software capabilities that may

be available to the agents.

Let each time step be divided into two phases. In phase

1, every agent “signals” the destination it intends to move

towards, either by moving to the appropriate side of the tile,

or by using the destination flag.
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Since we defined an artificial rule which states the

superiority of left and down over right and up (and,

internally, of down over left), there are several specific

scenarios in which this asymmetry should be reversed in

order to ensure a proper operation of the agents. This

“dependences switching” rule is defined as follows.

For an agent i located in ( x, y) and intending to move

to the right (namely, desti = right), and where all the

following hold:

• Tile ( x + 1, y) contains an agent j, where destj �= left.

• There are no other agents which are delayed by agent i.

Namely:

− Tile ( x − 1, y) does not contain an agent l, where

destl = right.

− Tiles ( x, y + 1) , ( x + 1, y + 1) , ( x − 1, y + 1) do not

contain any agent.

− Tile ( x + 1, y) does not contain an agent n, where

destn = left),

then

Pi ← Pi ∪ {right}, Pj ← Pj \ {left}.
Similarly, for an agent i located in ( x, y) and going up

(desti = up), and where all the following hold:

• Tile ( x, y + 1) contains an agent k, and destk �= down.

• There are no other agents which are delayed by agent i.

Namely:

− Tile ( x, y − 1) does not contain an agent m, where

destm = up.

− Tiles ( x + 1, y) , ( x + 1, y + 1) , ( x − 1, y + 1) do not

contain any agent.

− Tile ( x, y + 1) does not contain an agent q, where

destq = down,

then

Pi ← Pi ∪ {up}, Pk ← Pk \ {down}.

At phase 2 of each time step, the agents start to operate

in turns, according to the order implied by Pi. This

guarantees that the connectivity of the region is kept, since

the simultaneous movement of two neighboring agents is

prevented.

Notice that deadlocks are impossible—since the basic

rule is that every agent is delayed by the agents in its left and

down neighbor tiles. Therefore, at any given time, and for

every possible group of agents, there exists an agent with

the minimal x and y coordinates (which, by definition, is

not delayed by any other agent of this group). After this

agent moves, all the agents which are delayed by it can

now move, and so on. As to the “dependences switching

rule”—let agent i located in tile ( x, y) have the minimal x

and y values among the agents who had not moved yet, let

desti = up and let tile ( x, y + 1) contain an agent j such that

destj �= down. Then, although agent i is located below agent

j, it will be delayed by it (i.e. ( up ∈ Pi) and �=( down ∈ Pj))

as long as agent i is not delaying any other agent (as this

is the requirement of the “dependences switching rule”). In

this case, we should show that there cannot be a cycle of

dependences, which starts at agent j, ends at agent i and is

closed by the dependency of agent i on agent j. Such a cycle

cannot exist since for it to end in agent i, it means that agent

i is delaying another agent k. However, this is impossible

since agent i is known not to delay any agent (specifically,

agent k). Hence, circular dependences are prevented and no

deadlocks are possible.

Note again that while phase 2 is in process, Ft may

change due to cleaning by the agents. As a result,

the desired destinations of the agents as well as their

dependency graphs must also be dynamic. This is achieved

through the repeated recalculation of these values, by every

waiting agent. For example, assume agent i to be located

in ( x, y), and desti = down without loss of generality, and

let agent j located in tile ( x, y − 1) move out of this tile

and clean it. Then, desti naturally changes (as the tile ( x, y)

does no longer belong to Ft, and thus is not a legitimate

destination for agent i), and, thus, Pi may also change. In

this case, agent i should change its “destination signal” and

act according to its new desti and Pi. This is implemented

in SWEEP by calculating the waiting agents’ destinations

and dependences lists repeatedly, until either all agents have

moved or until the time step has ended (meaning that some

agents had to change their status to resting, and pause until

the next time step—see Section 5.10 for more details). Note

that every waiting agent is guaranteed either to complete its

movement in the current time step, or to be forced to wait

for the next time step, by switching its status to resting.

Note that the goal of the inherent dominance of up

over down and of left over right is to act as a kind of

“semaphore”, preventing scenarios in which adjacent tiles

are cleaned at the same time, destroying the connectivity

of the region (as demonstrated in Figure 23). The goal

of the “dependences switching rule” on the other hand is

simply to avoid the phenomenon demonstrated in Figure 24,

which may decrease the cleaning efficiency of the agents.

Therefore, note that the “dependences switching rule” is in

fact not required in order to ensure a proper completion of

the mission, but rather to improve the agents’ performance.

5.10. Clustering Problem

Since we are interested in preventing the agents from

moving together and functioning as a single agent (which

leads to an obvious decrease in the system’s performance),

we would like to impose a “resting policy” which will

ensure that the agents do not group into clusters which move

together. This is done by artificially delaying agents in their

current locations, should several agents placed in the same

tile wish to move to the same destination. However, we

would like the resting time of the agents to be minimal, for

performance and analysis reasons.

The following resting policy is implemented by lines 6

through 13 of the SWEEP protocol. Using its sensors, an
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Fig. 24. The upper charts demonstrate a performance bug which

may be caused due to local dependences. The agents are advancing

according to the SWEEP protocol, but their cleaning performance

is decreased. The lower charts demonstrate the cleaning operation

after adding the dependences switching mechanism.

agent intending to move into tile v is aware of other agents

which intend to move into v as well. Thus, when an agent

enters a tile which already contains other agents, it can

determine whether these agents entered this tile at the same

time step that it did, or whether they had occupied this tile

before the current time step had started (note that this can

be implemented without assigning any IDs to the agents,

but rather by observing only the movements of other agents

in the agent’s vicinity).

Note that in phase 1 of each time step all the agents

are signaling their desired destinations. Thus, an agent can

identify which ones of the agents which are located in its

current tile intend to move to the same destination as its

own. Only those agents may cause this agent to delay its

actions and rest.

From the agents which intend to move in the same

direction as agent i, the agent can distinguish between

three groups of agents—the agents which entered this tile

before the time step agent i did (group A2), those which

entered the tile in the same time step as i (group A4)

and those who entered it after agent i did (group A3).

Again, this is implemented without assigning unique IDs

to the agents but, rather, by observing their movements and

merely counting the number of agents at each group. If

A2

�
= ∅, agent i waits, changes its status to resting agent,

signals this status to the other agents in its vicinity and does

not move. As this rule is kept by every other agent, agent i

is guaranteed that the agents of group A3 in their turn will

wait for agent i to move before being free to do so as well.

As to the agents of A4, note that at any given time, two

agents cannot leave the same tile in the same direction at the

same time step. For small values of t (i.e. at the beginning

of SWEEP) as the agents are periodically released by

the initialization procedure of SWEEP, no two agents are

released at the same time step. Later, since we are assured

that all the agents of group A4 arrived to v from different

tiles (which are also different from the tile agent i had

entered v from), and since all the agents in group A4

know the previous locations of each other, a consensus

over a local ordering of A4 can be established (note that no

explicit communication is needed to form this ordering). An

example for such an order is the Priority function of the

SWEEP protocol. As a result, the agents are able to exit

the tile they are currently located in, in an orderly fashion,

according to a well-defined order. Hence, the following

invariant holds: “at any given time t, for any two tiles v,

u, there can only be a single agent which moves from v to u

at time step t”. Therefore, the clustering problem is solved.

Notice that there is a single exception to this mechanism,

in which the resting commands are overruled. This happens

when all non-critical perimeter tiles contain at least two

agents. In this scenario, following the resting commands

would have created a situation in which no tile can be

cleaned, as for every agent which leaves a certain tile

there are still “resting” agents located in the same tile.

Therefore, when this scenario is detected by the Check Near

Completion of Mission procedure of SWEEP, the agents

ignore their resting commands momentarily, in order to

be able to clean the non-critical perimeter tiles. The order

and internal prioritization of the agents are maintained, for

calculating the new resting commands in the following time

step.

5.11. Mission Termination

The termination of the protocol is done in one of two

cases—either an agent finds itself in the pivot point, while

all of its neighbors are clean (which means that this is the

last contaminated tile and therefore should be cleaned), or

when each contaminated tile contains at least one agent

(which is a generalization of the previous scenario). The

second case is implemented by allowing the agents to signal

to their four neighbors whether all of their contaminated

neighbors contain at least one agent.

6. Upper Bounds over the Cleaning Time of

the SWEEP Protocol

6.1. Overview of the Results

As already stated previously, since we have no easy way to

decide whether k agents can successfully clean an instance

of the dynamic cooperative cleaners problem, producing

bounds for the proposed cleaning protocol is important for

estimating its efficiency. In this section, we discuss the

efficiency of the SWEEP cleaning protocol, by analyzing

its time complexity and producing upper bounds on the

cleaning time of a group of k agents. Analyzing the

performance of the above-defined protocol is quite difficult.

Due to the preservation of the critical points, such points

can be visited many times by the agents before being

cleaned. Furthermore, due to the dynamic nature of the

problem, the shape of the contaminated region can change

dramatically during the cleaning process. This section is

organized as follows: a recursive upper bound over the

cleaning time of a group of agents appears in Theorem

4, while various direct approximations for this bound are

discussed in Theorems 5 and 6. An upper bound for the

minimal number of agents required in order to guarantee a
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Fig. 25. The line in the left upper chart goes through the tiles of

Ct where the three arrows denote tiles that are included twice. The

circles in the right upper chart denote the tiles of ∂Ft. Note that

while ∂Ft contains 11 tiles, Ct contains 14. In the lower chart, there

are no critical points in ∂Ft and therefore ct = |∂Ft| = |Ct| = 36.

successful cleaning of a given contaminated region is then

derived and presented in Theorem 7.

6.2. Definitions

Recalling Definitions 5 and 8, St denotes the size of the

contaminated region F at time t while the boundary of the

contaminated region F is denoted as ∂F. Let d denote the

number of time steps between two contamination spreads.

Definition 14. A path in F is defined to be a sequence

( v0, v1, . . . , vn) of tiles in F such that every two consecutive

tiles are 4 connected (the Manhattan distance between them

is 1). The length of a path is defined to be the number of tiles

in it.

Definition 15. Let tile v be called a critical point if there

exist v1, v2 ∈ 4Neighbors( v) for which all paths connecting

v1 and v2, included in 8Neighbors( v), necessarily pass

through v (where v, v1, v2 and all said paths are in F).

Definition 16. We shall denote by ct the circumference

of F at time t, defined as follows: let v0 and vn be two 4

connected tiles in ∂Ft, and let Ct =( v0, v1, . . . , vn) be a

shortest path connecting v0 and vn, which contains all the

tiles of ∂Ft and only such tiles.

Notice that Ct may contain several instances of the same

tile, if this tile is a critical point(meaning that Ct is an

ordering of the tiles of ∂Ft, in which multiple instances of

tiles that are critical points are allowed). ct will be defined

as the length of Ct. An example appears in Figure 25.

Note that the cardinality of Ct equals |∂Ft|, in which

every tile can count at most once.

Definition 17. For some v ∈ Ft, let Stringst( v) denote the

set of all paths in Ft that begin in v and end at any non-

critical point in ∂Ft, and let w( Ft, v) denote the depth of

v—the length of the shortest path in Stringst( v) (unless v

is a critical point, in which case its depth is defined to be

zero).

�

�

�
�

Fig. 26. The chart contains three regions. The black circles denote

the deepest tiles within the regions. Notice that while in the left-

hand region there are two tiles whose depth is maximal, in the

other regions there is only one tile of maximal depth. The widths

of the regions equal the depth of the deepest tiles, and are (from

left to right) 2, 3 and 4.

Definition 18. Let W ( Ft) denote the width of Ft, defined

as the maximal depth of all the tiles in Ft, i.e.

W (Ft) = max{w( Ft, v) | v ∈ Ft}.

An example appears in Figure 26.

Definition 19. Let F′
t denote the region one would obtain,

having one agent traverse Ft once, using the SWEEP

protocol (i.e. when k = 1, F′
t = Ft+ct ). For the sake of

simplicity, F′′
t will be used instead of ( F′

t )
′, and so on.

Definition 20. The longest in-region distance between p0

and any other point in Ft will be referred to as l( Ft), the

length of Ft:

l(Ft) = max
v∈Ft

{
dFt ( p0, v)

}
,

where dFt ( x, y) is the distance (shortest path within Ft)

between x and y.

6.3. Recursive Upper Bound

The complete proofs of the following lemmas can be found

in Wagner et al. (2008). The lemmas are reiterated here for

the sake of completeness.

Lemma 1. The cardinality of the region’s circumference

always decreases after being traversed by an agent applying

the SWEEP protocol (assuming no spread occurs), namely

|∂F′| ≤ max{1, |∂F| − 8}.

Proof. For a proof that applies for any region F such that

the number of tiles in F′ is at least two, see Lemma 3 in

Wagner et al. (2008). This proof, though, does not always

hold for regions that, after being traversed once, produce

either ∅ or a single tile. The reason is that the proof of

the lemma that appears in Wagner et al. (2008) relies on

the fact that for each “turn” in F, there is a corresponding

“turn” in F′. However, the concept of “turn” requires the
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existence of a possible movement of an agent from one tile

to another tile. This obviously cannot be done for F′ = ∅ or

for F′ = {v}. For such regions it can easily be seen that the

lemma holds, as |∂∅| = 0 and as |∂{v}| = 1.

Lemma 2. Every time a region is traversed by an agent

using the SWEEP protocol, its width decreases by at least

1, if no spread occurs, namely

W (F′
t ) ≤ W ( Ft) −1.

Proof. See Lemma 4 in Wagner et al. (2008).

Lemma 3. The time it takes an agent which uses the

SWEEP protocol to move along a path of length ct

(including delays caused by other agents located in the

same tiles) is at most 4 · ct.

Proof. See Lemma 5 in Wagner et al. (2008).

Lemma 4. ct, the length of the circumference of Ft, never

exceeds twice its cardinality, namely

ct ≤ 2 · |∂Ft| − 2.

Proof. See Lemma 6 in Wagner et al. (2008).

An important feature of a region Ft is its size—a bound

of the contaminated region’s size will later be used for

producing an upper bound for the cleaning time of the

agents. The following lemma presents an upper bound for

the size of the contaminated region at time t.

Lemma 5. At any given time, the size of the contaminated

region (i.e. St = |Ft|) can be bounded as follows:

St ≤ S0 + η · c0 + 2( η2 + η) , where η �

⌊
t

d

⌋
.

Proof. The only time clean tiles can become contaminated

is when the contamination spreads. When producing

an upper bound for St, we can therefore disregard the

cleaning done by the agents, as it can never result in

the contamination of clean tiles. The maximal number

of new contaminated tiles is achieved when the already

contaminated tiles have the maximal boundary area

possible. It is easy to see that this happens when the tiles are

arranged in the form of a straight line. Since Ft is connected,

it has at least St − 1 edges, meaning that the sum of the

degrees of the tiles is at least 2( St − 1). Thus, the maximal

boundary area is at most 4St − 2( St − 1) (four possible

neighbors per contaminated tile minus the edges already

connecting the contaminated tiles). In a straight line, all

tiles but two have two clean neighbors while two tiles have

three clean neighbors. This sums up to 2( St − 2) +6, which

is exactly the maximal boundary area possible.

In such a case, when the contamination spreads for the

ith time, the area of the region is increased by c0 + 4i. Let

Ssi
denote the area of Ft after the ith spread. Then, for any

region Ft, this is bounded as follows:

Ssi
≤ S0 + i · c0 + 4( 1 + 3 + 5 + . . . + i) .

The last inequality can be simplified to

Ssi
≤ S0 + i · c0 + 2( i2 + i) . (3)

Since a spread occurs every d time steps, t can be written

in the form of: t = η · d + α, where η is the number of

spreads and α the remainder. Since we are only interested

in the number of spreads, we can use

η =
⌊

t

d

⌋
.

By applying this to Equation (3), we get the requested

result.

It is obvious that the number of tiles in the boundary of

Ft is equal to or smaller than its total size, namely

∂Ft ≤ St.

After combining this with Lemmas 4 and 5 and with the

“intra-spreads |∂Ft| preservation” property of Lemma 1, we

produce the following bound for ct.

Lemma 6. At any given time, the circumference of the

contaminated region Ft is bounded as follows:

ct+1 ≤ 2
[
�t + η · c0 + 2( η2 + η) −1

]
,

where

η �

⌊
t

d

⌋
and �t =

{
|∂F0|, t ≤ d,

S0, t > d.

Proof. According to Lemma 4, between two spreads, ct

is bounded by twice its original value (from just after

the last spread). After a spread occurs, the value of ct is

being reset, according to the bound for the total size of Ft

(Lemma 5).

It is also easy to see that the width of F at any

time is bounded by its initial width plus the number of

contamination spreads. This notion is expressed in the

following lemma.

Lemma 7.

W ( Ft+1) ≤ W ( Ft) +1 for t mod d = 0,

W ( Ft+1) ≤ W ( F0) +η, where η �

⌊
t

d

⌋
.

With WREMOVED( t) denoting the decrease in F’s width

due to the agents’ cleaning activity until time t, we can now

show the following lemma.
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Lemma 8.

If

⌊
t∑

i=1

k

4 · ci

⌋
≥ W ( Ft+1) ,

then WREMOVED( t) ≥ W ( Ft+1) ,

where W ( Ft+1) denotes the width of F0 at time t + 1,

assuming that no cleaning took place by the agents thus far

(namely, the width predicted by Lemma7).

Proof. WREMOVED( t) can be defined as the number of

completed traversals around the contaminated region,

multiplied by the number of the agents k. Note that at

time step t, each agent by definition completes 1
ct

of the

circumference. Since we know the value of ct for every t,

and since we know that the time it takes an agent to move

along a path is at most four times the length of this path

(see Lemma 3), then the decrease in the original width of

the region caused by the cleaning process of the agents is

bounded as described above.

Note that as the expression which appears in the lemma

does not distinguish between a multitude of agents working

for a short while, and a single agent working for a long

period of time, it may not hold for smaller values of

t (in which the accumulated partial peelings is smaller

than W ( Ft+1)). Therefore, while writing WREMOVED( t) ≥⌊∑t
i=1

k
4·ci

⌋
might not always hold, the expression as

appears above does.

Note that this holds also when taking into account the

effect the spreading contamination has on the region’s

width. Let p =( v1, v2, . . . , vn) denote a “tour”, traversing

a contaminated region F, and let us assume that a spread

occurs at time t = ts. Let p = p1 · p2, and let p1 denote the

part of the “tour” which took place before the contamination

spread.

The width of the region F is defined as the depth of the

deepest tile in F. Let us assume without loss of generality

that there is only one tile of maximal depth, u (if there are

more than a single deepest tile, the same observation can be

applied to all deepest tiles, separately). Therefore, W ( Ft) is

the length of the shortest path (or paths) from u to a non-

critical tile in ∂Ft. Let us assume without loss of generality

that there is only one such shortest path, from u to a non-

critical boundary tile uEND (if there are more than a single

shortest path, the same observation can be applied to all,

separately). uEND is a boundary tile, and therefore must be

included at least once in p (either in p1 or in p2, or in both).

If ( uEND ∈ p1) ∧ ( uEND ∈ p2), then uEND would be a

critical point, and we already know this is not the case.

If ( uEND ∈ p1), then it was already cleaned prior to

ts, decreasing the width of the region by 1. After the

contamination spread, uEND might become contaminated

once again, restoring the region’s width to its original value.

If ¬( uEND ∈ p1), it therefore means that ( uEND ∈
p2). As uEND is a boundary tile of F, it has at least one

8Neighbour which is clean prior to ts. In order for the

Fig. 27. An example of an “interrupting spread”—a spread that

occurs in a middle of a “tour”. The first chart on the left is the

original contaminated region, whose width is 3 (the black circle is

the relevant agent and the arrow marks its next movement). The

second chart is the region just before the spread (the dots are the

cleaned tiles). The third chart is the region just after the spread

(notice that the width is now 4 and that the “tour” was changed).

The fourth chart is the region after the agent completes its (new)

“tour”. Notice that the width is 3 again.

contamination spread to increase the width of F, it means

that all the 8Neighbors of uEND which were clean have

become contaminated after the spread. However, as those

neighbors are perimeter tiles, they will be visited by the

relevant agent. As at least one of them can be cleaned (since

there cannot exist a tile whose 8Neighbors are all critical

points), uEND will become a perimeter tile again, restoring

the original value of the width of F.

Spreads can naturally occur more than once in the

middle of a “tour”. In this case, the same principle can

be recursively applied. An example of the above-described

situation appears in Figure 27.

A rough upper bound over the cleaning time of a

contaminated region F0 can now be derived, as follows.

Theorem 4. Assume that k agents start cleaning a simply

connected region F0 at some boundary point p0 and work

according to the SWEEP protocol, and denote by tsuccess( k)

the time needed for this group to clean F0. Then we have:

1. If ( t = 8(|∂F0|−1)·(W (F0)+k)

k
+2k) is smaller than or equal

to d, then tSUCCESS = ⌈t⌉. This also holds for static

environments, since in such cases d → ∞.

2. Otherwise (t > d): tSUCCESS is the minimal (integer) t

for which

t∑

i=d+1

1

S0 − 1 + 2⌊ i
d
⌋2+( c0 + 2) ⌊ i

d
⌋

≥ γ + 8

k
·
⌊ t

d

⌋
,

where

γ �
8( k + W ( F0) )

k
− d − 2k

|∂F0| − 1
.

Proof. In order for F0 to be cleaned, there should exist a

time tSUCCESS in which the width of the region will be 0.

Remembering that W ( Ft) is monotonically increasing and

disregards the cleaning performed by the agents, and that

WREMOVED( t) denotes the decrease in the width of F0 due to

the cleaning of the agents, we would like the upper bound

over the width of the region to be smaller than the width’s
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decrease. Namely, we are interested in

W ( FtSUCCESS
) +k ≤ WREMOVED( tSUCCESS) .

The purpose of the “+k” is to guarantee the cleaning of

the “skeleton” that remains when the width of the region

decreases to zero. In such a time, the agents function

as a single agent (and therefore we add the “k”, which

symbolizes a group of k agents acting as one), and we must

guarantee that an additional traversal will be performed. We

now apply Lemmas 7 and 8.

Note that either tSUCCESS ≤ d or tSUCCESS > d. We first

examine the case of tSUCCESS ≤ d. Regarding W ( Ft), ct and

WREMOVED( t), this means that

∀i ≤ t, W ( Fi) ≤ W ( F0) ,

∀i ≤ t, ci+1 ≤ 2( |∂F0| − 1) ,

WREMOVED( t) ≥
⌊ t∑

i=1

k

4 · ci

⌋
≥
⌊

k · t

8|∂F0| − 8

⌋
.

Thus, we are interested in

⌊
k · tSUCCESS

8( |∂F0| − 1)

⌋
≥ W ( F0) +k.

Since releasing the agents requires an additional 2k time

steps, the final bound for this case is

tSUCCESS ≥ 8( |∂F0| − 1) · ( W ( F0) +k)

k
+ 2k.

If the tSUCCESS obtained is greater than d, we continue

to the next step. Lemma 6 provides us with ct. As for

WREMOVED( tSUCCESS), remembering that the actual cleaning

begins at t = 2 · k (the time it takes to release the agents),

we get

WREMOVED( tSUCCESS)

≥
⌊tSUCCESS∑

i=2k

k

4 · ci

⌋
≥
⌊ d∑

i=2k

k

4 · ci

⌋
+
⌊tSUCCESS∑

i=d+1

k

4 · ci

⌋

≥

⌊
(d−2k)·k

8(|∂F0|−1)

⌋

+⌊∑tSUCCESS
i=d+1

k

8·(S0+⌊ i
d
⌋·c0+2(⌊ i

d
⌋2+⌊ i

d
⌋)−1)

⌋
.

As we already know that W ( Fi+1) ≤ W ( F0) +⌊ i
d
⌋, using

the previous expression for WREMOVED yields

⌊ d∑

i=2k

k

4 · ci

⌋
+
⌊ t∑

i=d+1

k

4 · ci

⌋
≥ W ( F0) +k +

⌊ t

d

⌋

=⇒
⌊ t∑

i=d+1

k

4 · ci

⌋
≥ W ( F0) +k+

⌊ t

d

⌋
− ( d − 2k) ·k

8( |∂F0| − 1)

=⇒
t∑

i=d+1

1

S0 − 1 + 2⌊ i
d
⌋2+( c0 + 2) ⌊ i

d
⌋

≥
(

8( k + W ( F0) )

k
− d − 2k

|∂F0| − 1

)
+ 8

k
·
⌊ t

d

⌋
.

In order to find a time t which satisfies this expression,

one should add elements to the sum one by one,

recalculating the value of the right-hand expression. The

minimal t for which the above inequality holds is tSUCCESS.

Performing the above takes O( tSUCCESS) time (since every

iteration requires a single comparison).

Let tNoSpread( k) denote the time a region can be cleaned

in using the SWEEP protocol, fast enough such that no

spreads can take place. Notice that the expression

tNoSpread( k) �
8( |∂F0| − 1) · ( W ( F0) +k)

k
+ 2k

is not monotonic. Moreover, we can see that

lim
k→∞

tNoSpread( k) = ∞.

Note that given k agents, using merely a portion of them

is naturally a valid strategy, if better results result due to

this. Therefore, we can state that the following corollary.

Corollary 1. Given a contaminated region F0 and k

cleaning agents using the SWEEP protocol, let us define

k̂ �
√

4 · W ( F0) · ( |∂F0| − 1)

and let t̂NoSpread be defined as

min

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

8(|∂F0|−1) · (W (F0)+
⌈

k̂
⌉

)
⌈

k̂
⌉ + 2

⌈
k̂
⌉

,

8(|∂F0|−1)·(W (F0)+
⌊

k̂
⌋

)
⌊

k̂
⌋ + 2

⌊
k̂
⌋

.

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

If k̂ < k and t̂NoSpread ≤ d, then the completion of

the cleaning mission before a contamination spread is

guaranteed, and tsuccess =
⌈

t̂NoSpread

⌉
.

Proof. We are interested in the “effective” number of

agents k̂, which minimizes the value of tNoSpread. Namely, a

value k̂ for which
dtNoSpread

dk
( k̂) = 0, provided that k̂ ≤ k.

The bounds of Theorem 4 are illustrated in Figures 28

and 29.

6.4. Direct Upper Bounds

The bound in Theorem 4 contains a recursive expression

and requires an iterative process in order to calculate the

minimal time tSUCCESS in which it is guaranteed that the

agents will complete the cleaning mission. The following

theorem presents an upper bound for the cleaning time

given in a more readily compatible expression, whose

solution is the requested value for tSUCCESS.
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Fig. 28. Theorem 4 illustrated. Upper bound over the cleaning

time is shown as a function of the number of cleaning agents using

the SWEEP protocol. All four contaminated regions shown are of

the same initial size.

Fig. 29. Theorem 4 illustrated. Upper bound over the cleaning

time is shown as a function of the number of cleaning agents using

the SWEEP protocol, for d = 10000 and size of initial region

varying between S0 = 10000 and S0 = 90000 (all other geometric

properties remaining the same).

Theorem 5. If ( t = 8(|∂F0|−1)·(W (F0)+k)

k
+ 2k) is not greater

than d, then tSUCCESS = ⌈t⌉. This also holds for static

environments, since in such cases we simply have d → ∞.

Otherwise (t > d): find the minimal µ for which

ψ
(
µ + γ3−

)
−ψ
(
µ + γ3+

)
+ γ1 − γ2 · γ

d
− 8 · γ2

d · k
·µ ≥ 0,

where

γ1 � ψ
(
1 + γ3+

)
− ψ
(
1 + γ3−

)
,

γ3− �
c0 + 2 − γ2

4
, γ3+ �

c0 + 2 + γ2

4
,

γ2 �
√

( c0 + 2)2 −8 · ( S0 − 1)

and

γ �
8( k + W ( F0) )

k
− d − 2k

|∂F0| − 1
,

where ψ( ) is the digamma function (defined in Abramowitz

and Stegun (1964))—the logarithmic derivative of the

gamma function, defined as

ψ( x) = d

dx
ln Ŵ( x) = Ŵ′( x)

Ŵ( x)

or as

ψ( x) =
∫ ∞

0

(
e−t

t
− e−xt

1 − e−t

)
dt.

Then tSUCCESS = ⌈µ · d⌉.

Proof. The first part of the theorem is equivalent to the first

part of Theorem 4.

For the second part, recall that in the second part of

Theorem 4 we were interested in finding the minimal t for

which the following inequality holds:

t∑

i=d+1

1

S0 − 1 + 2⌊ i
d
⌋2+( c0 + 2) ⌊ i

d
⌋

≥ γ + 8

k
·
⌊

t

d

⌋
,

where

γ �
8( k + W ( F0) )

k
− d − 2k

|∂F0| − 1
.

Let us denote by µ � ⌊ t
d
⌋ the number of spreads that had

taken place. Therefore, we can now search for the minimal

µ for which

µ∑

i=1

d

S0 − 1 + 2 · i2+( c0 + 2) ·i ≥ γ + 8

k
· µ.

Hence,

d ·
µ∑

i=1

1

S0 − 1 + 2 · i2+( c0 + 2) ·i ≥ γ + 8

k
· µ.

The left-hand side of the inequality is in the form of

d ·
µ∑

i=1

1

A + B · i + C · i2
, (4)

where A = S0 − 1, B = c0 + 2, C = 2.
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Fig. 30. An example of Theorem 5. The lower curve represents a

bound over the cleaning time, as produced by Theorem 4, for the

cross region which appears on the right (for which S0 = 2960,

c0 = 326, d = 1600). The higher curve is produced by using

Theorem 5.

This expression can be integrated into the form of

d ·
ψ(

2·C·x+B−
√

B2−4·C·A
2·C ) −ψ(

2·C·x+B+
√

B2−4·C·A
2·C )

√
B2 − 4 · C · A

∣∣∣∣∣

µ

1

. (5)

After assigning the proper values of A, B and C, we

obtain the following formula, where the minimal µ which

satisfies it will be µSUCCESS:

d

γ2

·
(

ψ( µ + γ3− ) −ψ( µ + γ3+ )

)
+ d

γ2

· γ1 ≥ γ + 8

k
· µ.

Here we have

γ1 � ψ
(
1 + γ3+

)
− ψ
(
1 + γ3−

)
,

γ2 �
√

( c0 + 2)2 −8 · ( S0 − 1),

γ3− �
c0 + 2 − γ2

4
, γ3+ �

c0 + 2 + γ2

4

and

γ �

(8( k + W ( F0) )

k
− d − 2k

|∂F0| − 1

)
.

By rewriting the above inequality, we get

ψ( µ + γ3− ) −ψ( µ + γ3+ ) +γ1 − γ2 · γ

d
− 8 · γ2

d · k
· µ ≥ 0.

Since µ = ⌊ t
d
⌋, µ > t

d
+ 1 and therefore

tSUCCESS <( µSUCCESS − 1) ·d.

Figure 30 shows an example of applying Theorem 5 to

the case of a cross-shaped region.

6.5. Simplifying Theorem 5

Although Theorem 5 presents a more direct way of

calculating an upper bound over the cleaning time of k

agents using the SWEEP protocol, this expression is still

implicit. Theorem 6 presents an explicit approximation of

the result of Theorem 5.

Theorem 6. Let F0 be a contaminated region for

which Theorem 5 predicts that the contamination will

spread before being cleaned. Then let µSUCCESS �

min {x ∈ {µ1, µ2}|x > 0}, where µ1 and µ2 equal

A4 − A1A3 ±
√

( A1A3 − A4)2 −4A3( A2 − A1 − A1A4)

2A3

,

where

A1 = c0 + 2 − γ2

4
, A2 = c0 + 2 + γ2

4
,

A3 = 8 · γ2

d · k
, A4 = γ1 − γ2 · γ

d

and where

γ1 � ψ

(
1 + A2

)
− ψ

(
1 + A1

)
,

γ2 �
√

( c0 + 2)2 −8 · ( S0 − 1)

and

γ �
8( k + W ( F0) )

k
− d − 2k

|∂F0| − 1
.

If such a µSUCCESS exists, then

tSUCCESS =( µSUCCESS − 1) · d.

Proof. From Theorem 5, we know that if µSUCCESS is the

minimal µ for which the following expression is greater or

equal to zero:

ψ

(
µ + c0 + 2 − γ2

4

)
− ψ

(
µ + c0 + 2 + γ2

4

)

+γ1 − γ2 · γ

d
− 8 · γ2

d · k
· µ

(for some constant γ , γ1 and γ2), then

tSUCCESS =( µSUCCESS − 1) ·d.

Note that this expression is in the form of

ψ

(
µ + A1

)
− ψ

(
µ + A2

)
− A3 · µ + A4 ≥ 0. (6)

As to the digamma function, we know that (consult

Equation (6.3.5) in Abramowitz and Stegun (1964))

ψ( z + 1) = ψ( z) +1

z
.

Thus, we can see that

A1 − A2

µ + A1

≤ ψ

(
µ + A1

)
− ψ

(
µ + A2

)
≤ A1 − A2

µ + A2

. (7)
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Combining inequalities (6) and (7), we see that we must

determine the minimal µ for which

A1 − A2

µ + A1

≥ A3 · µ − A4. (8)

Hence, we find the minimal µ for which

A3 · µ2 + ( A1A3 − A4) · µ + ( A2 − A1 − A1A4) ≤ 0. (9)

Note that A3 > 0 and that µ ∈ ( 0, ∞). Thus, both roots

have the same sign (where for negative roots there is no

valid solution, and for positive roots the minimum of them

is the solution). Roots of opposite sign are not possible,

since this would imply the solution µ = 0, which in turn

is impossible as F0 �= ∅, and as at least one contamination

spread took place. µ1 and µ2 are defined as

A4 − A1A3 ±
√

( A1A3 − A4)2 −4A3( A2 − A1 − A1A4)

2A3

.

After some algebra, and by assigning the values of A1,

A2, A3 and A4, we get the requested result.

6.6. An Upper Bound for k

Using the previous upper bound for the time it takes k

agents to clean an initially contaminated region of known

geometric properties, a corresponding bound for the

number of agents required to guarantee a successful

cleaning of the region (in a finite amount of time) can be

produced.

Theorem 7. Given a contaminated region of properties S0,

|∂F0| and W (F0), spreading every d time steps, in order

to guarantee a successful cleaning of the region before the

contamination is able to spread even once, the minimal

number of cleaning agents required is upper bounded as

follows:

( k1 ≤ k ≤ k2) ∧ ( k > 0) ,

where

k1,2 = 2δ ± 2
√

δ2−( |∂F0| − 1) W ( F0),

where

δ = −|∂F0| + 1 + d

8
.

Proof. Let us use the first part of Theorem 5:

8( |∂F0| − 1) · ( W ( F0) +k)

k
+ 2k ≤ d.

After some algebra, we obtain

2k2+( 8|∂F0| − 8 − d) k+( 8|∂F0| − 8) W ( F0) ≤ 0.

And, after extracting the value of k from the quadratic

equation, the result follows. Theorem 7 is illustrated in

Figures 31 and 32.

Fig. 31. An example of Theorem 7. The graph presents an

upper bound of the number of agents needed to guarantee a

successful cleaning of a region of initial size of 10,000 tiles and

a perimeter cardinality of 1,000 tiles, as a function of the width

of the region, namely—its “bulkiness”. Notice how the effect this

geometric feature has on the number of agents required increases

dramatically as the time intervals between contamination spreads

decrease.

It would be interesting to investigate whether a similar

result can be produced, in the form of a lower bound for

the number of agents required for cleaning a region while

at most m spreads take place. Such a result can be derived

from Theorems 5 and 6, and is the topic of another paper

that is currently in preparation.

7. Related Work

As mentioned in previous sections, the cooperative cleaners

problem has significant similarity to other types of

multi-agent problems, such as cooperative coverage or

cooperative demining problems. In recent years, a lot of

effort went into designing systems and algorithms for

handling such tasks. In this process, various models and

assumptions concerning the agents and their capabilities

were used.

In general, most of the techniques used for the task

of a distributed coverage use some sort of cellular

decomposition. For example, in Rekleitis et al. (2004)

the area to be covered is divided between the agents

based on their relative locations. In Butler et al. (2001)

a different decomposition method is being used, which is

analytically shown to guarantee a complete coverage of

the area. Another interesting work is presented in Acar

et al. (2001), discussing two methods for cooperative

coverage (one probabilistic and the other based on an

exact cellular decomposition). All of the works mentioned

above, however, rely on the assumption that the cellular

decomposition of the area is possible. This, in turn, requires

the use of memory resources, used for storing the dynamic

map generated, the boundaries of the cells, etc. As the initial
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Fig. 32. An example of Theorem 7. Observe how as
S0
∂F0

increases

(namely, the initial region is “bulkier”), it becomes easier to

guarantee the proper cleaning of the region with a smaller number

of agents. The width of the initial region was selected to reflect a

reasonable proportion considering the changing cardinality value

of the perimeter ∂F0.

size and geometric features of the area are generally not

assumed to be known in advance, agents equipped with

merely a constant amount of memory will not be able to use

such algorithms. In this work, we were interested in a multi-

agent system which could perform cooperative coverage

with use of a minimal amount of memory, unrelated to the

size and geometry of the covered (or cleaned) area (this

requirement is presented in Section 3). Such a system was

analyzed in the later part of this work, and its ability to

guarantee a completion of the task was shown.

Surprisingly, while some existing works concerning

distributed (and decentralized) coverage present analytic

proofs for the ability of the system to guarantee the

completion of the task (for example, in Acar et al. (2001),

Butler et al. (2001) and Batalin and Sukhatme (2002)),

most of them lack analytic bounds for the coverage time

(although in many cases an extensive amount of empirical

results of this nature is made available by extensive

simulations). Although a proof for the coverage completion

is an essential element in the design of a multi-agent system,

analytic indicators for its efficiency are in our opinion of

great importance. We provide some such results, as bounds

for the cleaning time of the agents, in Sections 4,5 and 6 of

this work.

An interesting work to mention in this context is

that of Koenig and collaborators (Koenig and Liu 2001;

Svennebring and Koenig 2004), where a swarm of ant-

like robots is used for repeatedly covering an unknown

area, using a real-time search method called node counting.

By using this method, the robots are shown to be able to

efficiently perform such a coverage mission, and analytic

bounds for the coverage time are discussed. Another work

discussing a decentralized coverage of terrains is presented

in Zheng and Koenig (2007). This work examines domains

with non-uniform traversability. Completion times are

given for the proposed algorithm, which is a generalization

of the forest search algorithm. In this work, though, the

region to be searched is assumed to be known in advance—

a crucial assumption for the search algorithm, which relies

on a cell-decomposition procedure.

Vertex-ant-walk, a variation of the node-counting algori-

thm presented in Wagner et al. (1998), is shown to achieve a

coverage time of O( nδG), where δG is the graph’s diameter.

This work is based on a previous work in which a coverage

time of O( n2δG) was demonstrated (Thrun. 1992). Another

work, called Exploration as graph construction, provides a

coverage of degree-bounded graphs in O( n2) time, and can

be found in Dudek et al. (1991). Here a group of limited ant

robots explores an unknown graph using special “markers”.

As most coverage problems focus on achieving complete

coverage (and sometimes in minimal time), it is worth

mentioning in this scope the work of Conner et al. (2005),

in which an interesting additional constraint is added. As

this work was designed for an autonomous painting system,

the uniformity of the coverage was also demanded (in

order to maintain the same thickness of the paint layer). In

addition, this work examined the problem of 3-D coverage,

contrary to most search and cover methods focusing on 2-

D versions. We note nevertheless that the main focus of

this work was the use of an efficient single agent for the

mission, instead of dealing with a cooperative multi-agent

setting.

The cooperative cleaners problem is also strongly related

to the problem of distributed search after mobile and

evading target(s) (Koenig et al. 2007; Altshuler et al. 2008;

Borie et al. 2009) or the problems discussed under the

names of “Cops and robbers” or “Lions and men” pursuits

(Isler et al. 2006).

8. Experimental Results

Several simulation implementations of the SWEEP

cleaning protocol were made (these simulated environments

are currently available online at Technion’s Intelligent

Systems Laboratory’s web site). We note that the full

implementation of the SWEEP protocol involved writing

code that effectively implemented a finite data automaton

agent with O( 1) local memory, working according to the

rules above. A multi-agent system was then simply a setting

where at each initial location such an agent automaton was

instantiated and then the system simply ran its course of

cleaning the environment.

Exhaustive simulations were carried out, examining the

cleaning activity of the agents in regions with various

geometric features. Figures 33, 34 and 35 depict the

cleaning process of several contaminated regions—for each

one, the cleaning time for various numbers of agents is

presented. As the agents’ cleaning times are influenced

by their initial locations, for every number of agents, a

multitude of simulations were performed, one for each
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possible location (namely, the total number of simulations

for any number of agents equaled |∂F0|). The maximal

and minimal cleaning times for each number of agents are

measured, as well as the average cleaning time (calculated

for all initial locations). Figure 36 for example demonstrates

how placing the agents at different starting points allows

them to successfully clean regions which were impossible to

clean when the agents were concentrated at a single starting

point. Figure 37 demonstrates the dynamic nature of the

agents’ cleaning efficiency, by comparing the contaminated

region’s size to the whereabouts of the agents at various

times. Figure 38 demonstrates the changes in the geometric

features of a region while it is being cleaned, as well as the

influence the number of agents has on the efficiency of the

cleaning.

9. Discussion and Conclusion

This work described the dynamic cooperative cleaners

problem, where a group of simple and limited agents

must clean a dynamic “contaminated” region spreading due

to contamination of neighbors. This problem has several

interesting applications, some of which are the coordination

of fire-fighting units (see Casbeer et al. (2006) for details)

or an implementation of a distributed anti-virus system for

computer networks (Janakiraman et al. 2003). Additional

applications are distributed search engines (Bender et al.

2005), as well as various military applications. The

problem is also related to the geometric problem of pocket

machining (Held 1991). An interesting problem of cleaning

and maintenance of a system of pipes by an autonomous

agent is discussed in Neubauer (1993) and a multi-agent

version can be of much interest. The importance of cleaning

hazardous waste by agents is described in Hedberg (1995).

As mentioned previously, our cooperative algorithms

approach can be considered as a case of social behavior in

the sense of Shoham and Tennenholtz (1995), where one

induces multi-agent cooperation by forcing the agents to

obey some simple “social behavior” guidelines.

A theoretical lower bound for the cleaning time of a given

contaminated region was shown, yielding a way to exhibit

input scenarios which are impossible to clean. SWEEP, a

cooperative cleaning protocol to be implemented by each

agent, was presented and its performance was compared

to the lower bound. The algorithm’s performance was

then analyzed, and several analytic upper bounds on its

completion time were discussed.

9.1. Protocol’s Robustness

The issue of an algorithm’s robustness and fault tolerance

is a major aspect of robotic systems, as the environments

in which the agents operate may often include unpredicted

change from the original specification of the system, such

as various kinds of noises, robots’ malfunctions, etc.

Fig. 33. An example of a cleaning mission by agents using the

SWEEP cleaning protocol, trying to clean a contaminated square

(see the original contaminated shape at the top, on the right). A

graph of the size of the region as a function of the time, for

10 agents and a spreading delay of d = 30, appears in the left

top corner, as well as size and shape of the region at several

times during the cleaning. The three graphs at the bottom depict

the cleaning time (maximal, minimal and average) for various

numbers of agents, and for three values of spreading delay. In

addition, the cleaning times are compared to the lower bound, as

appears in Theorem 2.

While analyzing the performance of the cleaning

protocol, the robotic agents were assumed to work perfectly.

In real robotic systems, however, this is not always the

case. In simulation, however, it was quite easy to examine

what happens when one or more agents disappear. The

disappearance of an agent which dies is necessary in our

framework in order for the system to work properly.

As to the SWEEP protocol, using the analytic bounds

presented in Section 6 (and specifically Theorems 4, 5,

6 and 7), we have shown that as long as enough agents

are still functioning properly, the cleaning mission can

still be accomplished successfully, albeit more slowly. But
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Fig. 34. An example of a cleaning mission by agents using the

SWEEP cleaning protocol, trying to clean a contaminated circle

(see the original contaminated shape at the top, on the right). A

graph of the size of the region as a function of the time, for

10 agents and a spreading delay of d = 30, appears in the left

top corner, as well as size and shape of the region at several

times during the cleaning. The three graphs at the bottom depict

the cleaning time (maximal, minimal and average) for various

numbers of agents, and for three values of spreading delay. In

addition, the cleaning times are compared to the lower bound, as

appears in Theorem 2.

what if some agents start to cheat? Such adversaries could

have catastrophic consequences, since a malfunctioning or

“crazy” agent may clean a critical point and disconnect the

contaminated region.

As discussed in Section 5.3, one of the requirements

of the SWEEP protocol is a complete fault tolerance to

malfunctions in the agents, meaning that, even if one or

several agents stop working (“die” and disappear) the rest of

the agents will continue the cleaning process as efficiently

as their number allows them. The basic idea enabling

this robustness is the complete independence between the

agents, due to the full decentralized nature of the system

(as the agents do not share the cleaning mission between

Fig. 35. An example of a cleaning mission by agents using the

SWEEP cleaning protocol, trying to clean a contaminated region

in the shape of several rooms, connected by narrow corridors (see

the original contaminated shape at the top, on the right). A graph

of the size of the region as a function of the time, for 20 agents

and a spreading delay of d = 30, appears in the left top corner,

as well as size and shape of the region at several times during

the cleaning. The graph at the bottom depicts the cleaning time

(maximal, minimal and average) for various numbers of agents,

and for spreading delay of d = 30.

Fig. 36. The graph presents the evolution of the size and shape

of a contaminated region in the shape of a circle, expanding every

d = 20 time steps, being cleaned by k = 7 agents, using the

SWEEP protocol).

them, nor do they rely on one another in the performance of

their cleaning process).

A different aspect of the algorithm’s robustness is the

performance of the agents in noisy environments. In

general, random noise can appear and influence various

aspects of the system—in sensing whether a tile should

be cleaned, in sensing the presence of other agents in

an agent’s vicinity, in the agent’s movement, etc. As in

almost any system, it is easy to see that severe noise

may significantly affect the algorithm’s efficiency, and

 at MASSACHUSETTS INST OF TECH on February 20, 2012ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


1064 The International Journal of Robotics Research 30(8)

Fig. 37. The graph presents the cleaning process of a (relatively

large) “digital sphere”. Observe how the size of the region

increases at various times. Examining the appearance of the region

at those times reveals that the majority of agents are being located

at the vicinity of the initial location of the agents (a point which is

artificially kept critical, according to the SWEEP protocol)—see

snapshots at the bottom. After several traversals of the region, this

part of the region is composed mainly of critical points, which are

not cleaned by the agents. Hence, when traveling through this part,

the cleaning efficiency of the agents diminishes temporarily, and

as the region continues to spread, its global size increases.

may even prevent the agents from completing the mission

altogether. For example, difficulties in sensing whether a

tile should be cleaned or not may cause an agent to clean

a critical point, thus separating the region into several

connected components. In addition, noises in the agents’

movement system may cause the agents to detach from the

contaminated region, thus delaying, or even preventing, the

completion of the cleaning process. Whereas a situation

in which the noise level is kept at a reasonable level

(i.e. correct identification of clean and contaminated tiles,

and movement noises), it is the authors’ opinion that the

completion of the algorithm may still be achieved, although

the cleaning time in such a case is expected to increase.

When the agent has difficulties in the sensors in charge of

detecting other agents in its vicinity, and interpreting their

signaling (see relevant sections for details about signaling

and synchronization), several problematic scenarios (which

these signaling mechanisms were designed to avoid) may

occur. However, simulations show that in such cases often

only the cleaning time is affected, while the completion

of the cleaning mission is preserved. Nevertheless, as this

issue was not fully investigated yet, a perfect neighbors’

detection is still one of the algorithm’s requirements.

One example for the above-described problem is

presented in Figure 23, in which a failure in the sensing

mechanism may damage the simple connectivity of the

contaminated region. Note that in such scenarios, there

is least a single agent in each of the new contaminated

Fig. 38. This example demonstrates the change in the geometric

properties of the contaminated region as a result of the cleaning

process. Notice the “phase-transition” effect the number of agents

has on the ability of the agents to entirely clean the region.

Given three groups of agents, comprising 20, 23 and 25 agents,

respectively, all three groups first achieve a very similar cleaning

effect in the first 2000 time steps (presenting a significant decrease

in the region’s size), followed by a 1000 time step long plateau.

However, whereas the first two group fail to continue cleaning the

region, causing its size to grow significantly, the third group is able

to complete the cleaning of the region using an additional 2000

time steps. Note that this dramatic change in the final state of the

system is achieved after increasing the number of agents by less

than 10%.

components. Therefore, each component is an instance

of the cooperative cleaners problem, for which the upper

bound for the cleaning time may be applied.

Another example is demonstrated in Figure 24, where a

bug in the waiting mechanism (see Section 5.9 for more

details) may prevent some of the agents from cleaning

contaminated tiles. The same holds for possible bugs in

the resting mechanism (see Section 5.10 for more details),

which may cause several agents to move together, acting as

a single cleaning agent.

9.2. Collisions and the Clustering Effect

Another question of interest is the resolution of collisions

between agents—the formation of clusters of agents located

in the same tile, and delaying each other. In this work

we resolve such a problem by artificially producing an

implicitly agreed order among the agents, depending on

their previous locations and movements. However, it is

an interesting open question whether randomization-based

methods may achieve better results.

9.3. Probabilistic Cooperative Cleaners

While the methods proposed in the scope of this work, as

well as the analysis methods used, were all deterministic, it
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is interesting to examine the design of stochastic variants

of these algorithms. It is our belief that such variants

are expected to demonstrate increased robustness (mainly

with regards to rogue robots, or various malfunctions and

noises).

Furthermore, the model itself can be altered, to become

more “realistic”. For example, Definition 3 could be

replaced with a probabilistic contamination expansion

rule, according to which at every time step each

contaminated tile has a (either fixed or environment-

influenced) probability to contaminate its neighbors.

9.4. Agents’ Communication

Another interesting point that may be interesting to discuss

is that of inter-agent communication (i.e. the lack thereof).

In this work we use the contamination on the floor

as a means of implicit inter-agent communication. Still,

whenever a close-range communication is required, other

ways for communication between agents may be suggested.

One is to use heat trails for this end, as was reported

in Russell (1993). In Steels (1990), self organization is

achieved among a group of lunar robots that have to explore

an unknown region, and bring special rock samples back to

the mother spaceship, by programming each robot to drop

a pebble at each point he visits and walk around at random

with a bias towards the negative gradient of the pebble’s

concentration.

9.5. Agents’ Memory and Computation

Resources

As mentioned previously, while implementing the SWEEP

protocol the agents must use counters of O( 1) bits. Such

counters are enough as we know (using the proof of Lemma

5 in Wagner et al. (2008)) that the maximal number of

agents that may simultaneously reside in the same tile at

any given moment is upper bounded by O( 1). Therefore,

counting the agents located in the immediate vicinity can

be done using counters of O( 1) bits. Note that this also

implies that given a team of k agents cleaning an expanding

region in the grid, towards the end of the cleaning process

the agents are likely to be located at O( k
4
) connected tiles,

while each tile contains approximately four agents. When

this scenario happens, it is identified by the Check Near

Completion of Mission procedure of SWEEP, causing the

agents to instantly clean the contaminated tiles. Notice that

the execution of the Check Near Completion of Mission

procedure requires each agent to communicate with O( 1)

agents located in its immediate vicinity. This type of

communication is allowed under our model’s assumptions

(similarly to the implementation of the waiting and resting

mechanisms). In addition, the time it takes to execute the

Check Near Completion of Mission procedure equals the

time it takes to send O( k) messages. We assume that

the time required for processing a message is negligible

compared to the time it takes the agents to move and

clean tiles. Therefore, the execution time of the Check Near

Completion of Mission procedure is still O( 1).

9.6. The “Elastic Barrier” Assumption

Throughout this paper two alternatives for the spreading

of the contamination were used. A basic spreading model

was first defined in Definition 4 in Section 3, assuming

the connection between each two contaminated tiles. This

basic model is sufficiently strong for the discussion of lower

bounds and impossibility results, as appear in this work.

Later on, a second spreading model was introduced,

simulating an “elastic barrier” which preserves the

simple connectivity of the region throughout its evolution

(Definition 9 in Section 5.4). Such an assumption was

required to alow for the proper analysis of the SWEEP

protocol. While discussing the need for this assumption,

it should first be noted that the barrier assumption is not

mandatory for the execution of the protocol, but only for its

analysis. Namely, even if holes are created (and provided

the agents are not “trapped” inside them), the protocol

would function properly, albeit less efficiently. Furthermore,

even if no barrier is assumed, our extensive simulation

experiments show that for many initial contaminated

regions the performance of the protocol will not be affected

at all.

The analysis of the agents’ performance under the

“basic” model, with no barrier, is still an open problem. We

believe that this can be done by further analyzing the effect

of the spread of contamination which is not confined by a

barrier on the geometrical properties of the contaminated

region.

We believe that, in spite of the fact that the elastic barrier

is non-physical and requires a weakening of the behavior of

the dynamic world, the agents assumed in this work retain

their very limited capabilities and the problem remains an

example of a truly distributed swarm of identical agents,

competing with an adversary which has a well-defined and

local rule of changing the environment.

9.7. Dynamic Cooperative Cleaning Feasibility

An important further aspect of the problems investigated

herein is the feasibility question, namely, estimating the

minimal number of agents required to guarantee a proper

cleaning of a given contaminated region (regardless of

the cleaning time). From the upper bounds presented in

Theorems 4, 5 and 6, some rough estimates can be derived.

However, it seems that additional investigation of this

subject is necessary.

An interesting example of the difficulty of producing

accurate estimates for the cleaning time of a contaminated

region is presented in Figure 39. This example (in which

the size of the contaminated region increases considerably

before the drop towards a complete cleaning of the region)
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Fig. 39. This example demonstrates the difficulty of producing

accurate estimations for the cleaning time of contaminated

regions. The initial contaminated region appears as the left-

hand chart whereas the graph on the right presents the size of

the region as the cleaning process of agents using the SWEEP

protocol advances. Notice that for about two-thirds of the cleaning

time, the size of the contaminated region is actually greater

than that of the initial region. Observing this graph, we can see

that during the first half of the cleaning process, the geometric

features of the contaminated region undergo dramatic changes,

resulting in a region of the same size, but different in its other

features (which apparently make it easier for the agents to clean

it). The importance of this example is its demonstration of a

counterexample for any claim that a tight upper bound for the

cleaning time which takes advantage of the initial size of the

contaminated region is possible.

demonstrates why it is impossible to generate tighter upper

bounds for this problem, using merely the initial size of the

contaminated region.

It is of interest to notice here that an off-line version of

the problem, that is: finding the shortest path that visits all

grid points in F, where F is completely known in advance,

is NP-hard even for a single agent. It is a direct consequence

of the fact that the Hamilton path in a non-simple grid graph

is NP-complete (Itai et al. 1982).

9.8. Cleaning Style

Our approach presented in this work is that cleaning is

always done at the boundary, in a “layers peeling” fashion.

However, it is possible that better efficiency would be

achieved using other approaches:

1. Given that several neighbors are contaminated, visit the

non-critical ones first (even if not on the boundary).

This approach is quite efficient for one agent, but its

effect when multiple agents are involved is hard to

anticipate, as well as the deadlock that may result.

2. When entering a large “room” (that is—upon passing

from a critical area to a non-critical one)—we could

designate the entrance by a special type of token, so

that other agents will enter only in the case there is no

other work to do. This approach may guarantee that the

agents will be distributed between the large rooms of

the F configuration. This is attractive if the region has

such rooms of quite similar areas. The use of tokens of

limited data capacity is similar to the use of pheromones

by many insects. As was mentioned previously, studies

of ants (e.g. Adler and Gordon (1992))show that the

pheromone-based search strategies used by ants in

foraging for food in unknown terrains tend to be

very efficient. It is believed that ants build a network

of information with vertices represented by points of

encounter between ants’ agents and the information is

passed either between ants at a vertex with a physical

encounter with other ants or via pheromone traces that

are left on the ground. Inspired by nature, an interesting

model for communicating in multi-agent systems is that

of ant-walk (e.g. Yanovski et al. (2001)). In this model,

information is spread to other agents via small amounts

of data that are written by an agent at various places in

the environment (e.g. edges or vertices in the graph) and

can be later used or modified by other agents visiting

that vertex. For additional reading on such approaches,

see also Felner et al. (2006).

3. Quite a different idea is to divide the work into two

phases. In the first phase (the “distribution phase”), the

agents locate themselves uniformly around the area.

Then, in the second phase, each agent cleans around

his “center”. If the distribution is appropriate, the

number of interactions between agents in the second

phase (which is a major cause for decreasing the

cleaning efficiency) should be minimal. The problem

of calculating and forming the optimal distribution,

however, is still to be solved.

4. Understanding that the efficiency of the agents’

cleaning is significantly affected by the geometric

features of the contaminated region, and that those

features are dynamic (due to the contamination

spreading and the agents’ cleaning), a division of

the agents into two groups could also be made, one

in charge of actively controlling various geometric

features of the contaminated region by cleaning or even

contaminating specific tiles, while the second takes

care of the actual cleaning itself. The idea behind this

scheme is that although the number of agents in the

“cleaning group” is smaller than the total number of
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agents available, the improved efficiency of those agents

will compensate their decreased number, resulting

in an overall improvement of the swarm’s cleaning

performance. One such geometric feature might be

the ratio between the region’s perimeter and its size

(also known as the shape factor: |∂Ft |
St

). For example,

it can be seen that if the shape factor is guaranteed to

be bounded throughout the entire cleaning process as

follows: ∀t, |∂Ft |
St

≥ ϒ , tighter analytic bounds can be

produced (Altshuler et al. 2006a).

In closing, we would like to quote a statement made by

H.A. Simon after watching an ant making his laborious way

across a wind-and-wave-molded beach (Simon 1981):

“An ant, viewed as a behaving system, is quite simple.

The apparent complexity of its behavior over time is

largely a reflection of the environment in which it finds

itself.”

Such a point of view, as well as the results of our

simulations and analysis, shows that even simple, ant-like

robotic creatures, when properly programmed, may lead

to very interesting, adaptive and quite efficient emergent

goal-oriented behaviors.

Appendix: On the Isoperimetric Inequality in

Grid Domains

In this section we discuss the isoperimetric inequality in

grid regions. Namely, that the digital shape of a given area

which has the minimal number of neighbors is a digital

sphere. This result was previously required by Theorem 1

in Section 4. For more general results on different types of

discrete lattices, see Vainsencher and Bruckstein (2008).

Theorem 8. For all the shapes of area S, let F be the

shape with the minimal number of clean 4Neighbors; then

the number of clean 4Neighbors of F is at least the

number of 4Neighbors of the largest digital sphere of size

at most S.

Proof. We first need the following definition.

Definition 21. Let lru and lld denote two infinite sets of tiles,

each organized as a straight line slanted by 45 degrees (in

the lower right direction). Similarly, let llu and lrd denote

two infinite sets of tiles, each organized as a straight line

slanted by 45 degrees (in the lower left direction).

For any shape F, let lru be placed above and to the right

of F, let llu be placed above and to the left of F, let lrd be

placed below and to the right of F and let lld be placed below

and to the left of F. Let us move lru and lrd to the left, until

they touch F. In addition, let us move llu and lld to the right,

until they touch F. Note that the four lines form a bounding

slanted rectangle around F.

lru

lrd

llu

lld

�

�

�

�
��✠

❅❅■

❅❅❘

��✒

1

2

4

3

Fig. 40. An example of a slanted-bounding-rectangle.

Definition 22. Let us remove all the tiles of lru, llu, lrd
and lld which are not part of this rectangle, and denote the

remaining tiles by slanted-bounding-rectangle( F).

Definition 23. For each of the tile sets lru, lrd , lld and llu,

let us denote the last tiles of F that are 4Neighbors of

the sets (assuming clockwise movement) by 1, 2, 3 and 4,

respectively.

An example appears in Figure 40.

Let us project all the tiles of slanted-bounding-

rectangle(F) that are located between points 1 and 2

leftwards. Similarly, let us project the tiles between points

2 and 3 upwards, the tiles between point 3 and 4 rightwards

and the tiles between points 4 and 1 downwards, until

they all become 4Neighbors of the tiles of F. It is easy to

see that after this projection each tile of slanted-bounding-

rectangle( F) will be “met” by at least a single tile of F.

In addition, it is impossible that after the projection, two

tiles of slanted-bounding-rectangle( F) will merge, since

for some projecting direction, there is at most one tile of

each projection coordinate (namely, when projecting left

there is at most one tile for each Y coordinate, when

projecting downwards there is at most one tile for each X

coordinate, etc). Thus, the number of 4Neighbors of F is at

least the number of tiles in slanted-bounding-rectangle( F),

denoted by slanted-bounding-rectangle( F), namely:

∀F, 4Neighbors( F) ≥ |
slanted-bounding-rectangle( F) |. (10)

Note that slanted-bounding-rectangle(F) in Figure 40

contains two pairs of tiles which are 4 connected.

Definition 24. For each slanted rectangle R, let us define

canonical-slanted-rectangle( R) to be the smallest slanted

rectangle which bounds R such that canonical-slanted-

rectangle( R) does not contain pairs of tiles which are 4

connected. In other words, assuming that the world is a

chessboard colored in black and white, then canonical-

slanted-rectangle( R) is the minimal slanted rectangle that

contains R, whose tiles have the same color.

It can easily be seen that for some slanted rectangle R, in

order to produce

CR = canonical-slanted-rectangle( R) ,
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Fig. 41. For a shape F, the right-hand chart demonstrates slanted-

bounding-rectangle( F) while the left-hand chart demonstrates

canonical-slanted-rectangle (slanted-bounding-rectangle( F)).

at most two sides of the four sides of R must be moved by

one tile. In addition, each time a side of R is moved, its

length should be increased by at most 1. As a result, the

number of tiles in CR is at most the number of tiles in R

plus 2, namely

∀ rectangles R,

| canonical-slanted-rectangle( R) | ≤ |R| + 2. (11)

An example appears in Figure 41.

Combining Equations (10) and (11), we see that for every

region F, the value of 4Neighbors( F) is greater than or

equal to

|canonical-slanted-bounding-rectangle( F) | − 2. (12)

Let CR be the smallest canonical slanted rectangle which

contains at least S tiles. Let a and b denote the sides of CR

and let p denote the number of tiles CR comprises. Then

p = 2( a + b) −4, (13)

which also means that

a = p + 4

2
− b.

Let f ( a, b) denote the area of a canonical slanted

rectangle of sides a and b. Since a canonical slanted

rectangle contains a − 1 slanted rows of b − 1 tiles and

a − 2 slanted rows of b − 2 tiles, we see that

f ( a, b) = ( a − 1) ( b − 1) +( a − 2) ( b − 2) . (14)

We would now like to find a solution for the following

optimization problem:

min p s.t. f ( a, b) ≥ S ∧ p = 2( a + b) −4.

After some arithmetic, Equation (14) can be written as

a = f ( a, b) −5 + 3b

2b − 3
. (15)

Combining this with Equation (13), we get

p = 2 · f ( a, b) −5 + 3b

2b − 3
+ 2b − 4.

Since we require that f ( a, b) ≥ S, we can write the

following:

p ≥ ρ � 2 · S − 5 + 3b

2b − 3
+ 2b − 4. (16)

Note that the value of b which will minimize ρ (denoted

by bmin) may not be an integer value, where the meaning of

b is the length of the side of CR, which must be an integer

number. However, since for all b ∈ N, ρ( b) ≥ ρ( bmin)

and since p ≥ ρ, the validity of the bound is preserved

(however, the bound may become slightly less tight). In

order to minimize ρ, we shall calculate

∂ρ

∂b
= 2 · 3( 2b − 3) −2( S − 5 + 3b)

( 2b − 3)2
+ 2 = 0

and, after some arithmetic, we get

b =
√

2S − 1 + 3

2
.

By examining the behavior of ∂2ρ

∂b2 , we can see that for

b =
√

2S−1+3
2

, since S ≥ 1, then ∂2ρ

∂b2 > 0, meaning that ρ is

indeed minimized at this point.

By assigning the value of bmin to Equations (15) and (16),

we can see that for bmin, a = b (meaning that CR is the

shape of the perimeter of a digital sphere) and that

p ≥ 2(
√

2S − 1 + 1) .

It is easy to see that a sphere of size S has exactly

2(
√

2S − 1 + 1) 4Neighbors and therefore it is the shape

that minimizes the number of 4Neighbors for a given

area S.

Since the bound was produced for a canonical slanted

rectangle, and combined with Equation (12), we get

∀F of size S, 4Neighbors( F) ≥ 2
√

2S − 1.

Notes

1. For counting purposes, the agents must be equipped with

counters that can store the number of agents in their

immediate vicinity. This can of course be implemented using

O( log k) memory. However, throughout the proof of Lemma 5

in Wagner et al. (2008), it is shown that the maximal number

of agents that may simultaneously reside in the same tile

at any given moment is upper bounded by O( 1). Therefore,

counting the agents in the immediate vicinity can be done

using counters of O( 1) bits.
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