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Abstract— The problem of driving a set of vehicles (agents)
to a desired target configuration under event-based communi-
cation and measurement constraints is analyzed. We start by
studying the single agent problem, where we propose a waypoint
based solution, along with two alternative control strategies.
After deriving their properties and proving some relevant
results, we proceed to study the two agent case. We generalize
the results obtained for this network to the multi agent network.
Our strategy is able to position each agent within a given
distance of its target while satisfying the constraints. We provide
some numerical examples for relevant scenarios.

I. INTRODUCTION

The deployment of a formation of several vehicles has, in

some applications, several advantages over the use of just one

vehicle. A far from complete account of formation control

designs includes [1]–[6], to name a few. In the particular case

of maritime applications, an autonomous underwater vehicle

(AUV) formation will take less time to cover a wider area.

Also, if the sampled property has a low spatial rate of change,

then the larger number of samples will result in increased

data redundancy. These advantages come at a cost, namely,

the complexity that arises from the coordination of the agents

involved.

In multi-agent problems a common issue is that of limited

communication range, which is usually taken into account

as a restriction on the inter-agent distance. However, in

underwater applications there are some additional limitations.

Underwater communication, for one, is typically severely

constrained both in range and in bandwidth (1200 bps is a

typical figure [7]). Moreover, acoustic modems are typically

power hungry and expensive [8]. Underwater positioning

is also quite challenging (GPS does not work underwater)

and good navigation instruments are very expensive. This is

why in some applications low cost vehicles have to surface

periodically to get GPS fixes.

We take advantage of the fact that the agent has to

surface to get a position fix to limit communication to these

intervals, where it can use more efficient wireless modules

to communicate with other agents. At the same time, since

these are the only instants where we are able to have position
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feedback (i.e., each agent can only measure its position at

these instants), the computation of control signals will also

share this constraint. Motivated by the above observations,

the goal of this paper is to design a control strategy that

drives a formation of AUVs from the initial to the target set

of positions, subject to the given event constraints and under

the effect of external disturbances such as ocean currents.

The problem presented here is related to some extent to

those usually posed in the context of event-driven control

(EDC). Our approach shares some aspects with what is

presented in [9], particularly, that the control signal is only

updated when the error norm exceeds a certain threshold.

Of interest is also a comparative analysis of the time and

event-driven paradigms presented in [10]. EDC has also been

extended to networked control systems. In [11], the event

triggering scheme proposed in [9] is used on a wireless

network based distributed control system. The applications

of EDC to both formation control and communication-

constrained problems are also of interest to our problem.

In [12] the authors present both centralized and distributed

approaches to an agreement problem, which is considered as

a simplification of the formation control problem presented

in [13].

In this article we use a boundedness assumption regarding

the disturbance set to obtain an event-triggered control strat-

egy for the single agent problem that generates a waypoint so

that the agent can measure its position and update the control

signal before the position uncertainty exceeds a threshold

value. This waypoint-based solution is later generalized and

proven to work for a formation. The conditions for this gen-

eralization are also stated. Two provably correct alternative

control laws that satisfy the event constraints are derived

under the same assumption, which is then used to obtain the

corresponding sufficient conditions.

This note is organized as follows: in Section II we present

the problem definition along with the vehicle model and

some relevant background concepts. The single-agent version

of the problem is studied in Section III, where we introduce

the waypoint-based approach and the proposed control strate-

gies, which are shown to be provably correct. Moreover, we

will also derive sufficient conditions for target reachability

for both strategies, making room for a short comparative

analysis. Section IV deals with the application of our solution

to a generic multi-agent network. Some relevant numerical

examples are shown and discussed in Section V, followed by

a summary of our results and open problems in Section VI.
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II. PROBLEM STATEMENT

Our problem can be defined as driving a formation of M
planar (x ∈ R

2) agents A = {a1, a2, . . . , aM} from the set

of initial positions X0 = {x1
0, x

2
0, . . . , x

M
0 } to a set of target

positions XT = {x1
T , x

2
T , . . . , x

M
T } within a specified time

tT . We denote the position of agent k (ak) at time ti by

xk(ti) or xk
i interchangeably.

We assume that the external disturbances are additive. This

way, vehicle motion can be described by

ẋ(t) = u(t) + ω(t) (1)

where the external disturbance ω(t) will lie in the disturbance

set Ω ⊂ R
2. As it is likely that this set is unknown, we

will make the least number of assumptions regarding it. The

control signal u(t) takes values in the admissible control set

U , which is expressed as an upper bound on the control signal

norm, arising from the vehicle’s maximum linear speed:

U = {u ∈ R
2 : ‖u‖ ≤ umax} (2)

Although this may seem an overly simplified model, our

initial assumption allows for the superposition principle to

be applied, so the vehicle dynamics can be disregarded to

some extent - even more so if we recall that our interest is

in path planning and not attitude control.

As we have mentioned, position measurement can only

take place at certain time instants ti. Communication can

also take place at these instants if the agents between

which it occurs are connected. Here, we use a fairly simple

communication model to construct the network graph. Given

a communication range r, the network’s adjacency matrix A
at time ti is such that

aj,k(ti) =

{

1, if ‖xj(ti)− xk(ti)‖ ≤ r
0, otherwise .

(3)

We are thus interested in an event-based control strategy

which is able to keep the formation connected while driving

it to the target.

III. THE SINGLE AGENT PROBLEM

Let us start by analyzing the motion of a single agent.

We are particularly interested in the position at the instants

ti when the agent is stopped, and at which the control

u(t) can be updated. For this reason, it is natural to as-

sume that u(t) is an admissible piecewise continuous signal

u(t) =
⋃N−1

i=0 ui(t), such that ui : [ti, ti+1] → R
2, ∀i ∈

{0, 1, . . . , N − 1}. The solution to (1) is thus

x(ti) = x0 +

i−1
∑

k=0

(
∫ tk+1

tk

uk(τ)dτ + δk+1

)

(4)

where δi+1 is the position drift from ti to ti+1:

δi+1 =

∫ ti+1

ti

ω(t)dt (5)

As we will see, the particular case where all the ui are

constant will be of interest to us, and for which we can

rewrite (4) as

x(tN ) = x0 +

N−1
∑

i=0

ui(ti+1 − ti) +
N
∑

i=1

δi (6)

Before devising a control strategy that is able to drive the

agent from its initial position to the target within the specified

time, we should first ask if the the target is reachable, that is,

if it can be reached in the specified time using an admissible

control signal. To answer this question, we can compute the

system’s reachable set at time tT which, for the undisturbed

system, is simply a disc of radius umax(tT − t0) centered at

x(t0). Thus, if the target position is inside this disc it will

be reachable. We state this condition as follows:

Lemma 1 (Target reachability under no disturbances):

Consider the system described by (1) with u(t) in (2) and

ω(t) = 0 for t ∈ [t0, tT ]. xT is reachable within tT departing

from x0 at t0 if and only if ‖xT − x0‖ (tT − t0)
−1 ≤ umax,

and can be reached by setting u(t) = (xT −x0)(tT − t0)
−1.

The control signal defined in lemma 1 is energy-wise op-

timal, in the sense that it has the smallest possible ‖u(t)||
(linear speed). This way, if the target isn’t reachable using

that control signal, then it isn’t reachable.

Having a control that is able to drive the agent to the target

position, we move on to the scenario where disturbances are

present. To compute the system’s reachable set for this case

would require a complete knowledge of the disturbance set

Ω, which is something that might not be available. Assuming

Ω is bounded, we can consider its over approximation

Ωover ⊇ Ω and use it to determine the uncertainty set -

the set of all positions the agent can reach given a control

u(t). The motivation for this is that while underwater, the

vehicle will be running open-loop, so results on the vehicle’s

position uncertainty become necessary. We define the upper

bound on the external disturbance, γ:

γ ≥ max
ω∈Ω

(‖ω‖) (7)

where γ, which can be interpreted as an upper bound

on the position uncertainty growth rate, defines the over-

approximating disturbance set: Ωover = {ω : ‖ω‖ ≤ γ}.

Using the superposition principle, we can split (1) into two

systems and consider its effects separately: ẏ(t) = u(t) and

ż(t) = ω(t), with u(t) ∈ U and ω(t) ∈ Ω respectively.

The uncertainty set at time t1, ∆(t1), will thus be the latter

system’s reachable set at time t1, centered around y(t1).
Again, as we do not know Ω, we use Ωover to obtain an over

approximation of the reachable set, yielding (t1−t0)Ωover - a

scaling relative to the origin of Ωover by a factor of (t1−t0).
So, at a given time t, the over-approximating uncertainty set

∆over(t) will be a disc of radius t centered around the agent’s

ideal position at that time instant (figure 1).

A. A waypoint based approach

Definition (7) gives us an upper bound on the uncertainty

as a function of time. Assuming that we do not want the
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x1 ≡ ẋ1

x2 ≡ ẋ2

ω

Ω

x(t0)

x(t1)

ω
(t 1

− t
0
)

∆(t1)

Fig. 1. Disturbance and uncertainty sets for system (1), given a control u(t)
that would take the system from x(t0) to x(t1), were there no disturbances.

agent to drift more than ǫ meters from its ideal path, we

can use it to compute the instants at which the agent should

stop to surface and get a position fix: tε = ǫγ−1, where ǫ

is the maximum position uncertainty. Notice that with this

equation we have implicitly assumed that our upper bound

γ holds for the interval [t0, tT ]. The agent will thus stop

every tε seconds, in a total of N =
⌊

(tT − t0)t
−1
ε

⌋

stops.

We define

ti = t0 + i · tε, i ∈ {0, 1 . . . , N} (8)

as the ith stopping time. Consequently, we have that tT =
tN + tf , with tf ∈ [0, tε). As we will see, we will try to

reach the target at t = tN , leaving the remaining time (tf )

to adjust our position.

Noting that ti+1 = ti+tε, and taking the norm of equation

(5) yields

‖δi+1‖ =
∥

∥

∥

∫ ti+tε

ti
ω(t)dt

∥

∥

∥
≤

∫ ti+tε

ti
‖ω(t)‖ dt

≤ γ · tε ≤ ǫ, ∀i ∈ {0, 1, . . . , N − 1} (9)

Thus, the agent will never be more than ǫ meters from its

estimated (ideal) position.

As we have mentioned earlier, we assume we have a

control strategy u = h(·) that is able to drive the agent from

x(ti) to x(tT ) = xT under no disturbances. This being true,

we can use the given control strategy in the case where there

are disturbances, knowing from equation (9) that we will

never be more than ǫ meters from where we intended to be.

So, at time ti, the agent will compute ui, the control signal

it will use in the time interval [ti, ti+1], driving it from xi

to a point Wi+1 given by Wi+1 = xi+
∫ ti+1

ti
ui(t)dt, which

we call the i + 1th waypoint. Since there are disturbances,

however, then the agent will most likely stop at a position

different from Wi+1, xi+1 given by

xi+1 = xi +

∫ ti+1

ti

(ui(t) + ω(t))dt

= Wi+1 + δi+1 (10)

with the distance between the two points given by eq. (9).

B. Control strategies

Now that we have devised a waypoint-based mechanism

that gives us an upper bound on the distance to the ideal

trajectory, we still need to devise a control strategy that

satisfies our requirements. One idea is to use the energy-

wise optimal control strategy introduced in the ideal case

(lemma 1), by re-applying it at each stopping point. We call

this strategy h1(·) and the main results for it are given in the

following paragraphs.

Theorem 1 (The h1(·) control strategy): Consider the

system described by (1) and controlled by

ui(t) = h1(ti, xi, tT , xT )

= (xT − xi) (tN − ti)
−1

(11)

for all i ∈ {0, 1, . . . , N − 1}. Under the specified control

law the following properties hold: (i) x(tN ) = xT + δN , (ii)

‖xT − x(tN )‖ ≤ ǫ. A sufficient condition for this theorem to

hold is ‖xT − x0‖ (tN − t0)
−1

+ γ ·HN−1 ≤ umax, where

Hk =
∑k

i=1
1
i

is the kth harmonic number.

Proof: We begin by proving properties (i) and (ii). Writ-

ing the expressions for ui and Wi+1 for the first iterations

will lead to the following expressions

ui = (xt − x0) (tN − t0)
−1 −

i
∑

k=1

δk(tN − tk)
−1 (12)

Wi+1 = x0 +
i+ 1

N
(xT − x0) +

i
∑

k=1

N − (i+ 1)

N − k
δk (13)

To obtain the agent’s position at time tN , we use equation

(6):

x(tN ) = x0 +
N−1
∑

i=0

uitε +
N
∑

i=1

δi.

Using equations (12) and (8), the second term on the right

hand side can be rewritten as

N−1
∑

i=0

uitε = xT − x0 −
N−1
∑

i=1

δi

yielding xN = xT + δN , and from (9) we have that

‖xN − xT ‖ ≤ ǫ. As for the condition, it can be obtained by

considering the worst-case scenario, where the disturbance

velocity is constant and opposite to the direction of motion.

Let δi = δ∗, for all i ∈ {1, 2, . . . , N − 1}, where

δ∗ = − (xT − x0)
ǫ

‖xT − x0‖
(14)

Under this assumption, the control signal norm can be

written as ‖ui‖ = ‖xT − x0‖ (tN − t0)
−1

+ γHi. This

expression is monotonically increasing with respect to i,
and will achieve its maximum for i = N − 1: ‖ui‖ =
‖xT − x0‖ (tN − t0)

−1
+ γHN−1.

Looking at the expression for the control signal obtained

using this control strategy (12), we can see that if ω does not

have a zero mean and, more specifically, if it is opposite to

the direction of motion, then ui will become monotonically

increasing, which may become a problem given our admissi-

ble control set. This is also easy to see if we notice that h1(·)
uses [ti, tN ] to compensate for δi. If, instead, we compensate

for δi during [ti, ti+1], we will obtain the following results:
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Theorem 2 (The h2(·) control strategy): Consider the

system described by (1) and controlled by

ui(t) = h2(δi, tT , xT )

= (xT − x0) (tN − t0)
−1 − δit

−1
ε

(15)

for all i ∈ {0, 1, . . . , N − 1}. Under the specified control

law the following properties hold: (i) x(tN ) = xT + δN , (ii)

‖xT − x(tN )‖ ≤ ǫ. A sufficient condition for this theorem

to hold is ‖xT − x0‖ (tN − t0)
−1

+ γ ≤ umax.

Proof: Just as we did in the previous proof, we begin by

proving properties (i) and (ii) and deriving the expressions for

ui and Wi+1 by writing down the corresponding expressions

for the first iterations, which will lead us to

ui = (xT − x0) (tN − t0)
−1 − δit

−1
ε

(16)

Wi+1 = x0 +
i+ 1

N
(xT − x0) (17)

Replacing ui in equation (6) by equation (16) will yield

xN = xT + δN , and again, from (9) we have ‖xN − xT ‖ ≤
ǫ. To derive the condition we again take the worst case

approach of considering δi = δ∗, as in equation (14) for

all i ∈ {1, 2, . . . , N − 1}. This way the control signal norm

becomes ‖ui‖ = ‖xT − x0‖ (tN − t0)
−1

+ γ. Notice that as

this norm is not dependent on i, it will correspond to the

upper bound on the vehicle’s speed.

The h2(·) control strategy was devised with the purpose

of improving h1(·)’s performance. Although we were able

to relax the (sufficient) target reachability condition, this

does not necessarily mean that it is a better performing

control strategy, as the conditions were obtained under the

particular assumption of adverse disturbances. Still, looking

at expressions (13) and (17), we can see that using h2(·) the

waypoints will always lie in the straight line connecting x0

to xT - which may not always happen for h1(·).
As both control strategies will try to reach the target at

t = tN , in some cases there will be some time left, more

precisely tf seconds, which can be used for finer positioning:

Corollary 1 (The final approach): Consider the system

described by (1) such that x(tN ) = xT + δN . Setting, at

t = tN , uf = −δN · t−1
f , the following properties hold: (i)

xf = xT + δf , (ii) ‖xf − xT ‖ ≤ γ · tf .

IV. THE MULTI-AGENT PROBLEM

Having devised a strategy for the single agent version of

the original problem, we move on to the multi-agent problem.

We begin extending our results to the two-agent network.

A. The two-agent network

Consider a simple, two-agent network, where we let one

of them (the leader, aL) “behave” as in the single agent

scenario, with the difference that it must, at every instant ti,
inform the other agent about where it is going to go next -

the next waypoint - as well as when it plans to get there -

the travel time.

The follower then uses this information to determine its

next waypoint. However, there are two requirements that

must be met in order for the follower to have access to the

leader’s information - at all stopping instants ti, the follower

must: (i) be synchronized with the leader (more specifically

the departure and arrival times are required to be the same as

the leader’s), and (ii) be within the leader’s communication

range. Failing to meet either one of these requirements will

likely result in agent loss.

We define the initial and target sets by X0 = {xL
0 , x

F
0 }

and XT = {xL
T , x

F
T } respectively. Since the network is also

a formation, it is natural to assume that xF
0 = xL

0 +cL,F and

xF
T = xL

T + cL,F , where cL,F denotes the desired relative

position between the leader and the follower. In fact, as it

is desirable to maintain the inter-agent relative position, we

use this to determine the follower’s waypoint:

WF
i+1 = WL

i+1 + cL,F (18)

Assuming our requirements are satisfied - we will later derive

the conditions for which this is true - we want to know the

follower’s position at time tN , xF (tN ) = xF
N . We start by

rewriting equation (6) for the follower:

xF (tN ) = xF
0 +

N−1
∑

i=0

uF
i · tε +

N
∑

i=1

δFi (19)

We can use equations (18) and (10) to obtain uF
i = uL

i +
(

δLi − δFi
)

t−1
ε

. Replacing in (19) will yield

xF (tN ) = xF
0 +

N−1
∑

i=0

uL
i tε +

N−1
∑

i=1

δLi + δFN (20)

so in order to find xF
N we have to check this equation for

each control strategy. As we know from the previous section,

both control strategies provide constant control signals, so

equation (6) holds. Using this equation together with theo-

rems 1 and 2 we can write, regardless of the leader’s control

strategy:

xL
0 +

N−1
∑

i=0

uL
i tε +

N
∑

i=1

δLi = xL
T + δLN

Plugging this into equation (20) will result in xF (tN ) =
xF
T + δFN and ‖xF (tN ) − xF

T ‖ ≤ ǫ, which means we have

for the follower the same results we have for the leader.

Now that we have the results on the follower’s position,

we have to deal with our initial requirements. Assuming

synchronization is possible if the agents are within each

other’s range, we only need to care about the communi-

cation requirement. Since communication only takes place

at the stopping instants, we will be interested in the inter-

agent distance at those instants ti, which can be expressed

as ‖xL(ti) − xF (ti)‖ = ‖δLi − δFi − cL,F ‖ In order to

obtain the upper bound on this distance, we assume Ω

is the same for both agents and let the two drift apart

from each other (δLi = −δFi = − ε

‖cL,F ‖cL,F ) to obtain

‖xL
i −xF

i ‖ ≤ 2ǫ+‖cL,F ‖. So, for the two agents to be able to

communicate with each other, the following condition should

hold: ǫ ≤ 1
2 (r − ‖cL,F ‖). To obtain this condition we took

the expression for the inter agent distance at time ti and

let the two agents drift in opposite directions, away from

A!@



each other. If instead we let them drift towards each other,

there will be an instant at which xL(t) = xF (t) and the

two agents will collide. In this worst case perspective, this

will take tε =
1
2‖cL,F ‖γ−1 time units to happen, assuming

the initial relative position between the two agents is equal to

cL,F . Since tε = ǫγ−1, the corresponding condition on ǫ will

be ǫ < 1
2‖cL,F ‖. We have thus derived sufficient conditions

on ǫ for our initial requirements to hold.

B. The multi-agent network

We can now move on to our original problem, where we

have a set of agents A = {a1, a2, . . . , aM} as well as the

initial and target sets, X0 =
{

x1
0, x

2
0, . . . , x

M
0

}

and XT =
{

x1
T , x

2
T , . . . , x

M
T

}

, and a matrix C ∈ R
M×M×2 expressing

the desired relative positions between the agents (ci,j ∈ R
2is

the desired relative position between agents ai and aj). We

will keep some aspects of the two-agent network, such as the

presence of a leader, and the use of the formation property

of the network to define waypoints.

We assign one agent, a1, the task of leading the network to

the target set, which it does by computing its next waypoint

and then transmitting it (broadcast) to the rest of the network.

Even though it is very likely that not all agents are within

the leader’s communication range, the followers can act as

repeaters, so we have for agent j:

W j
i+1 = WL

i+1 + cL,j (21)

Looking at the equation above we see that if we consider

the leader and any other agent separately from the rest of

the network, we will be dealing with the same two-agent

network as before. Doing this for all agents in the network,

it is easy to see that we are able to extend the results we

obtained for the two-agent network.

Theorem 3 (The h1(·) control strategy (multi-agent)):

Consider a set of M agents, A = {a1, a2, . . . , aM} where

each agent is described by (1), and let the leader (a1) be

controlled by

uL
i (t) = h1

(

xL
T , x

L
i , tN , ti

)

=
(

xL
T − xL

i

)

(tN − ti)
−1

(22)

for all i ∈ {0, 1, . . . , N − 1}. Under this control law the

following properties hold: (i) xk(tN ) = xk
T + δkN , (ii)

∥

∥xk
T − xk(tN )

∥

∥ ≤ ǫ for all k ∈ {1, 2, . . . ,M}.

Theorem 4 (The h2(·) control strategy (multi-agent)):

Consider a set of M agents, A = {a1, a2, . . . , aM} where

each agent is described by (1), and let the leader (a1) be

controlled by

uL
i (t) = h2

(

xL
T , δ

L
i , tN , tε

)

= xL
T · t−1

N − δLi · t−1
ε

(23)

for all i ∈ {0, 1, . . . , N − 1}. Under this control law the

following properties hold: (i) xk(tN ) = xk
T + δkN , (ii)

∥

∥xk
T − xk(tN )

∥

∥ ≤ ǫ for all k ∈ {1, 2, . . . ,M}.

Both theorems can be proved using the two-agent network

approach to the M − 1 leader-follower subnetworks.

When analyzing the two-agent network, we saw that hav-

ing the leader use any of the control strategies proposed for

the single agent case would successfully drive the network

close to the target set, if the conditions on the inter-agent

distance were met. Having concluded that the multi-agent

network can be “reduced” (in some sense) to the two-agent

network, the same conditions will apply. Consequently, we

will also need to extend these conditions on the inter-agent

distance to the n-agent network.

Consider the C matrix, expressing the desired relative

positions between the M agents in the network. Defining

di,j = ‖ci,j‖ as the (desired) distance between agents ai and

aj , then i∗, j∗ = argmin (di,j)i &=j
will be the two closest

agents in the network. Consequently, their uncertainty sets,

∆i∗ and ∆j∗ , will be the ones that take the least amount

of time to overlap. As this overlap represents a collision

possibility between the two agents, we must choose ǫ such

that the uncertainty sets do not overlap or, in other words,

the position uncertainty does not exceed half of the distance

between the two agents:

ǫ <
1

2
di∗,j∗ (24)

Equation (24) defines what we call the collision avoidance

condition.

As we had seen, an essential requirement for our approach

to work with the two agent network was that the two agents

had to be within each other’s communication range. This also

applies to the multi-agent scenario, meaning that the network

has to remain connected. Consider agent ai, for example, in

a network where every agent has a communication range

equal to r. This agent has a certain set of agents within its

communication range - its neighboring set N (i) to be exact,

Assuming we do not want it to lose connectivity to any of

these, we write the corresponding condition for agent i (ǫi) as

ǫi ≤ 1
2

(

r −maxj∈N (i) (di,j)
)

. Notice that this is the same

as stating that we want the network’s adjacency matrix to

remain the same for all ti. As we want this to be true for all

agents, we express the range condition as

ǫ ≤ min
i∈A

[

1

2

(

r − max
j∈N (i)

(di,j)

)]

(25)

where A is the set of all agents in the network.

It should be mentioned that both these conditions have

been obtained by considering worst-case scenarios and,

consequently, might be overly conservative, so care should

be taken when choosing the maximum position uncertainty

parameter, ǫ.

V. NUMERICAL EXAMPLES

Consider a formation A = {a1, a2, a3, a4, a5} where each

agent is described by (1), with U = {u ∈ R
2 : ‖u‖ ≤

10m/s} and Ω = {ω ∈ R
2 : ‖ω − ω‖ ≤ 1m/s}, uniformly

distributed with mean ω = [−1, 1]T , for all agents. Each

agent has a communication range r equal to 90 meters, and

the leader’s target is located at xT = [500, 0]T with tT =
100 seconds. The formation constraints are c1,2 = c2,4 =
[−50, 50]T and c1,3 = c3,5 = [−50,−50]T . We define γ =

A!A



2.5m/s so that (7) holds. As for ǫ, (24) and (25) will lead to

ǫ ≤ 25
√
2 and ǫ ≤ 1

2 (90− 50
√
2), so for the two conditions

to hold we set ǫ ≤ 10 meters. These two conditions are

somewhat conservative, so we let ǫ = 20, having that tε = 8
seconds and N = 12 stops, leaving tf = 4 seconds for the

final approach and thus, a (final) upper bound on the distance

to the target of γ · tf = 10 meters.

In the following figures, the estimated and true trajectories

are shown in blue and red respectively. The stopping points

are depicted as black dots and the correspondent over-

approximating uncertainty sets as blue circles. The connec-

tivity between agents is represented by a dashed black line.

Looking at figures 2a and 2b the greater sensitivity of the

system’s trajectory using the h1(·) control strategy (com-

pared to that of h2(·)) is evident, not only from the trajectory

itself, but also from the distance between waypoints. This

shows what we had previously pointed out - the use of

a larger time frame to compensate for the position drifts

can cause some issues in scenarios with an adverse mean

disturbance.
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(a) Formation trajectory using the h1(·) control strategy
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(b) Formation trajectory using the h2(·) control strategy

Fig. 2. Simulation results

VI. CONCLUSIONS AND FUTURE WORK

We have proposed an event based approach to solve the

multi-agent problem under communication and measurement

constraints, which relies on using a mild assumption on the

disturbance set: an upper bound on the growth rate of the

position uncertainty, γ . This bound, together with the user-

defined maximum position uncertainty ǫ is used to determine

when the agent should stop. Two alternative control strategies

are able to drive the agent to the target while guaranteeing

that the agent’s distance to its ideal position is never greater

than ǫ. All of these results were derived for the single

agent problem and later extended to the original multi-agent

problem. Sufficient conditions for the main results were also

derived.

There are two assumptions we make in the paper that point

to future directions for development. Firstly, the disturbance

set over-approximation we use to obtain γ may, in some

cases, be a very gross approximation. Secondly, we assume

γ to be constant over [t0, tT ]. The relaxation of these

assumptions is a topic of ongoing efforts. Other important

open problems concern extending our solution to the multi-

agent network in a distributed fashion (without having just

one agent deciding on where should the formation go next),

as well as to non-linear agent dynamics.
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