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Abstract

The advances in reinforcement learning have recorded sublime success in various domains. 

Although the multi-agent domain has been overshadowed by its single-agent counterpart 

during this progress, multi-agent reinforcement learning gains rapid traction, and the latest 

accomplishments address problems with real-world complexity. This article provides an 

overview of the current developments in the field of multi-agent deep reinforcement learn-

ing. We focus primarily on literature from recent years that combines deep reinforcement 

learning methods with a multi-agent scenario. To survey the works that constitute the con-

temporary landscape, the main contents are divided into three parts. First, we analyze the 

structure of training schemes that are applied to train multiple agents. Second, we consider 

the emergent patterns of agent behavior in cooperative, competitive and mixed scenarios. 

Third, we systematically enumerate challenges that exclusively arise in the multi-agent 

domain and review methods that are leveraged to cope with these challenges. To conclude 

this survey, we discuss advances, identify trends, and outline possible directions for future 

work in this research area.

Keywords Multi-agent systems · Multi-agent learning · Machine learning · Reinforcement 

learning · Deep learning · Survey

1 Introduction

A multi-agent system describes multiple distributed entities—so-called agents—which 

take decisions autonomously and interact within a shared environment (Weiss 1999). Each 

agent seeks to accomplish an assigned goal for which a broad set of skills might be required 

to build intelligent behavior. Depending on the task, an intricate interplay between agents 

can occur such that agents start to collaborate or act competitively to excel opponents. 

Specifying intelligent behavior a-priori through programming is a tough, if not impossible, 

task for complex systems. Therefore, agents require the ability to adapt and learn over time 
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by themselves. The most common framework to address learning in an interactive environ-

ment is reinforcement learning (RL), which describes the change of behavior through a 

trial-and-error approach.

The field of reinforcement learning is currently thriving. Since the breakthrough of 

deep learning methods, works have been successful at mastering complex control tasks, 

e.g. in robotics (Levine et al. 2016; Lillicrap et al. 2016) and game playing (Mnih et al. 

2015; Silver et  al. 2016). The key to these results is based on learning techniques that 

employ neural networks as function approximators (Arulkumaran et  al. 2017). Despite 

these achievements, the majority of works investigated single-agent settings only, although 

many real-world applications naturally comprise multiple decision-makers that interact at 

the same time. The areas of application encompass the coordination of distributed systems 

(Cao et al. 2013; Wang et al. 2016b) such as autonomous vehicles (Shalev-Shwartz et al. 

2016) and multi-robot control (Matignon et  al. 2012a), the networking of communica-

tion packages (Luong et al. 2019), or the trading on financial markets (Lux and Marchesi 

1999). In these systems, each agent discovers a strategy alongside other entities in a com-

mon environment and adapts its policy in response to the behavioral changes of others. 

Carried by the advances of single-agent deep RL, the multi-agent reinforcement learning 

(MARL) community has been surged with new interest and a plethora of literature has 

emerged lately (Hernandez-Leal et al. 2019; Nguyen et al. 2020). The use of deep learning 

methods enabled the community to exceed the historically investigated tabular problems 

to challenging problems with real-world complexity (Baker et al. 2020; Berner et al. 2019; 

Jaderberg et al. 2019; Vinyals et al. 2019).

In this paper, we provide an extensive review of the recent advances in the area of multi-

agent deep reinforcement learning (MADRL). Although multi-agent systems enjoy a rich 

history (Busoniu et al. 2008; Shoham et al. 2003; Stone and Veloso 2000; Tuyls and Weiss 

2012), this survey aims to shed light on the contemporary landscape of the literature in 

MADRL.

1.1  Related work

The intersection of multi-agent systems and reinforcement learning holds a long record of 

active research. As one of the first surveys in the field, Stone and Veloso (2000) analyzed 

multi-agent systems from a machine learning perspective and classified the reviewed lit-

erature according to heterogeneous and homogeneous agent structures as well as commu-

nication skills. The authors discussed issues associated with each classification. Shoham 

et al. (2003) criticized the ill-posed problem statement of MARL which is in the authors’ 

opinion unclear and called for more grounded research. They proposed a coherent research 

agenda which includes four directions for future research. Yang and Gu (2004) reviewed 

algorithms and pointed out that the main difficulty lies in the generalization to continuous 

action and state spaces and in the scaling to many agents. Similarly, Busoniu et al. (2008) 

presented selected algorithms and discussed benefits as well as challenges of MARL. Ben-

efits include computational speed-ups and the possibility of experience sharing between 

agents. In contrast, drawbacks are the specification of meaningful goals, the non-station-

arity of the environment, and the need for coherent coordination in cooperative games. In 

addition to that, they posed challenges such as the exponential increase of computational 

complexity with the number of agents and the alter-exploration problem where agents must 

gauge between the acquisition of new knowledge and the exploitation of current knowl-

edge. More specifically, Matignon et al. (2012b) identified challenges for the coordination 
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of independent learners that arise in fully cooperative Markov Games such as non-station-

arity, stochasticity, and shadowed equilibria. Further, they analyzed conditions under which 

algorithms can address such coordination issues. Another work by Tuyls and Weiss (2012) 

accounted for the historical developments of MARL and evoked non-technical challenges. 

They criticized that the intersection of RL techniques and game theory dominates multi-

agent learning, which may render the scope of the field too narrow and investigations are 

limited to simplistic problems such as grid worlds. They claimed that the scalability to 

high numbers of agents and large and continuous spaces are the holy grail of this research 

domain.

Since the advent of deep learning methods and the breakthrough of deep RL, the field 

of MARL has attained new interest and a plethora of literature has emerged during the last 

years. Nguyen et al. (2020) presented five technical challenges including nonstationarity, 

partial observability, continuous spaces, training schemes, and transfer learning. They dis-

cussed possible solution approaches alongside their practical applications. Hernandez-Leal 

et al. (2019) concentrated on four categories including the analysis of emergent behaviors, 

learning communication, learning cooperation, and agent modeling. Further survey litera-

ture focuses on one particular sub-field of MADRL. Oroojlooyjadid and Hajinezhad (2019) 

reviewed recent works in the cooperative setting while Da  Silva and Costa (2019) and 

Da Silva et al. (2019) focused on knowledge reuse. Lazaridou and Baroni (2020) reviewed 

the emergence of language and connected two perspectives, which comprise the conditions 

under which language evolves in communities and the ability to solve problems through 

dynamic communication. Based on theoretical analysis, Zhang et  al. (2019) focused on 

MARL algorithms and presented challenges from a mathematical perspective.

1.2  Contribution and survey structure

The contribution of this paper is to present a comprehensive survey of the recent research 

directions pursued in the field of MADRL. We depict a holistic overview of current chal-

lenges that arise exclusively in the multi-agent domain of deep RL and discuss state-of-the-

art solutions that were proposed to address these challenges. In contrast to the surveys of 

Hernandez-Leal et al. (2019) and Nguyen et al. (2020), which focus on a subset of topics, 

we aim to provide a widened and more comprehensive overview of the current investiga-

tions conducted in the field of MADRL while recapitulating what has already been accom-

plished. We identify contemporary challenges and discuss literature that addresses such. 

We see our work complementary to the theoretical survey of Zhang et al. (2019).

We dedicate this paper to an audience who wants an excursion to the realm of MADRL. 

Readers shall gain insights about the historical roots of this still young field and its current 

developments, but also understand the open problems to be faced by future research. The 

contents of this paper are organized as follows. We begin with a formal introduction to 

both single-agent and multi-agent RL and reveal pathologies that are present in MARL in 

Sect. 2. We then continue with the main contents, which are categorized according to the 

three-fold taxonomy as illustrated in Fig. 1.

We analyze training architectures in Sect. 3, where we categorize approaches accord-

ing to a centralized or distributed training paradigm and additionally differentiate into 

execution schemes. Thereafter, we review literature that investigates emergent pat-

terns of agent behavior in Sect. 4. We classify works in terms of the reward structure 

(Sect.  4.1), the language between multiple agents (Sect.  4.2), and the social context 

(Sect.  4.3). In Sect.  5, we enumerate current challenges of the multi-agent domain, 
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which include the non-stationarity of the environment due to simultaneously adapting 

learners (Sect.  5.1), the learning of meaningful communication protocols in coopera-

tive tasks (Sect. 5.2), the need for coherent coordination of agent actions (Sect. 5.3), the 

credit assignment problem (Sect.  5.4), the ability to scale to an arbitrary number of 

decision-makers (Sect.  5.5), and non-Markovian environments due to partial observa-

tions (Sect.  5.6). We discuss the matter of MADRL, pose trends that we identified in 

recent literature, and outline possible future work in Sect.  6. Finally, this survey con-

cludes in Sect. 7.

Sect. 3

Agent 1 Agent N

Environment

Centralized

Distributed

Training Paradigm Execution Scheme

Centralized

Decentralized

Sect. 5

Sect. 4

Communication

Coordination

Partial Observability

Non-Stationarity

Emergent Patterns of
Agent Behavior

Credit Assignment

Scaling

Fig. 1  Schematic structure of the main contents in this survey. In Sect.  3, we review schemes that are 
applied to train agent behavior in the multi-agent setting. The training of agents can be divided into two 
paradigms which are namely distributed (Sect. 3.1) and centralized (Sect. 3.2). In Sect. 4, we consider the 
emergent patterns of agent behavior with respect to the reward structure (Sect. 4.1), the language (Sect. 4.2) 
and the social context (Sect. 4.3). In Sect. 5, we enumerate current challenges of MADRL which include 
the non-stationarity of the environment due to co-adapting agents (Sect. 5.1), the learning of communica-
tion (Sect. 5.2), the need for a coherent coordination of actions (Sect. 5.3), the credit assignment problem 
(Sect. 5.4), the ability to scale to an arbitrary number of decision-makers (Sect. 5.5), and non-Markovian 
environments due to partial observations (Sect. 5.6)
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2  Background

In this section, we provide a formal introduction into the concepts of RL. We start with 

the Markov decision process as a framework for single-agent learning in Sect.  2.1. We 

continue with the multi-agent case and introduce the Markov Game in Sect. 2.2. Finally, 

we pose pathologies that arise in the multi-agent domain such as the non-stationarity of 

the environment from the perspective of a single learner, relative over-generalization, and 

the credit assignment problem in Sect. 2.3. We provide the formal concepts behind these 

MARL pathologies in order to drive our discussion about the state-of-the-art approaches in 

Sect. 5. The scope of this background section is deliberately focusing on classical MARL 

works to reveal the roots of the domain and to give the reader insights into the early works 

on which modern MADRL approaches rest.

2.1  Single‑agent reinforcement learning

The traditional reinforcement learning problem (Sutton and Barto 1998) is concerned 

with learning a control policy that optimizes a numerical performance by making deci-

sions in stages. The decision-maker called agent interacts with an environment of unknown 

dynamics in a trial-and-error fashion and occasionally receives feedback upon which the 

agent wants to improve. The standard formulation for such sequential decision-making is 

the Markov decision process, which is defined as follows (Bellman 1957; Bertsekas 2012, 

2017; Kaelbling et al. 1996).

De�nition 1 Markov decision process (MDP) A Markov decision process is formalized 

by the tuple (X, U, P, R, �) where X  and U  are the state and action space, respectively, 

P ∶ X × U → P(X) is the transition function describing the probability of a state transi-

tion, R ∶ X × U × X → ℝ is the reward function providing an immediate feedback to the 

agent, and � ∈ [0, 1) describes the discount factor.

The agent’s goal is to act in such a way as to maximize the expected performance on 

a long-term perspective with regard to an unknown transition function P . Therefore, the 

agent learns a behavior policy � ∶ X → P(U) that optimizes the expected performance 

J throughout learning. The performance is defined as the expected value of discounted 

rewards

 over the initial state distribution �
0
 while selected actions are governed by the policy � . 

Here, we regard the infinite-horizon problem where the interaction between agent and 

environment does not terminate after a countable number of steps. Note that the learning 

objective can also be formalized for finite-horizon problems (Bertsekas 2012, 2017). As an 

alternative to the policy performance, which describes the expected performance as a func-

tion of the policy, one can define the utility of being in a particular state in terms of a value 

function. The state-value function V
�
∶ X → ℝ describes the utility under policy � when 

starting from state x, i.e.

(1)J = �
x0∼�0 , x

t+1∼P, u
t
∼�

[

∞
∑

t=0

�
t
R(x

t
, u

t
, x

t+1)

]
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 In a similar manner, the action-value function Q
�
∶ X × U → ℝ describes the utility of 

being in state x, performing action u, and following the policy � thereafter, that is

 In the context of deep reinforcement learning, either the policy, a value function or both 

are represented by neural networks.

2.2  Multi‑agent reinforcement learning

When the sequential decision-making is extended to multiple agents, Markov Games1 are 

commonly applied as framework. The Markov Game was originally introduced by Littman 

(1994) to generalize MDPs to multiple agents that simultaneously interact within a shared 

environment and possibly with each other. The definition is formalized in a discrete-time 

setting and is denoted as follows (Littman 1994).

De�nition 2 Markov Games (MG) The Markov Game is an extension to the MDP and 

is formalized by the tuple 
(

N, X, {U
i
}, P, {R

i}, �

)

 , where N = {1,… , N} denotes the set 

of N > 1 interacting agents and X  is the set of states observed by all agents. The joint 

action space is denoted by U = U
1
×⋯ × U

N which is the collection of individual action 

spaces from agents i ∈ N  . The transition probability function P ∶ X × U → P(X) 

describes the chance of a state transition. Each agent owns an associated reward func-

tion Ri
∶ X × U × X → ℝ that provides an immediate feedback signal. Finally, � ∈ [0, 1) 

describes the discount factor.

At stage t, each agent i ∈ N  selects and executes an action depending on the indi-

vidual policy �i ∶ X → P(U
i
) . The system evolves from state x

t
 under the joint action u

t
 

with respect to the transition probability function P to the next state x
t+1

 while each agent 

receives Ri as immediate feedback to the state transition. Akin to the single-agent problem, 

the aim of each agent is to change  its policy in such a way as to optimize the received 

rewards on a long-term perspective.

A special case of the MG is the stateless setting X = � called strategic-form game2. 

Strategic-form games describe one-shot interactions where all agents simultaneously 

execute an action and receive a reward based on the joint action after which the game 

ends. Significant progress within the  MARL community  has been accomplished by 

studying this simplified stateless setting, which  is still under active research to cope 

with several pathologies as discussed later in this section. These games are also known 

(2)V
�
(x) = �

x
t+1∼P, u

t
∼�

[

∞
∑

t=0

�
t
R(x

t
, u

t
, x

t+1) ∣ x0 = x

]

.

(3)Q�(x, u) = �xt+1∼P, ut>0∼�

[

∞
∑

t=0

�
tR(xt, ut, xt+1) ∣ x0 = x, u0 = u

]

.

1 Markov games are also known as Stochastic Games (Shapley 1953), but we continue to use the term 
Markov Game to draw a clear distinction between deterministic Markov Games and stochastic Markov 
Games.
2 The strategic-form game is also known as matrix game or normal-form game. The most commonly stud-
ied strategic-form game is the one with N = 2 players, the so-called bi-matrix game.
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as matrix games because the reward function is represented by an N × N matrix. The 

formalism which extends to multi-step sequential stages is called extensive-form game.

In contrast to the single-agent case, the value function V i
∶ X → ℝ does not only 

depend on the individual policy of agent i but also on the policies of other agents, i.e. 

the value function for agent i is the expected sum

 when the agents behave according to the joint policy � . We  denote the joint policy 

� ∶ X → P(U) as the collection of all individual policies, i.e. � = {�1,… ,�N} . Further, 

we make use of the convention that −i denotes all agents except i, meaning for policies that 

�
−i = {�1,… ,�i−1,�i+1,… ,�N}.

The optimal policy is determined by the individual policy and the other agents’ strat-

egies. However, when other agents’ policies are fixed, the agent i can maximize its own 

utility by finding the best response �i

∗
 with respect to the other agents’ strategies.

De�nition 3 Best response The agent’s i best response �i

∗
∈ Π

i to the joint policy �−i of 

other agents is

for all states x ∈ X  and policies �i
∈ Π

i.

In general, when all agents learn simultaneously, the found best response may not be 

unique (Shoham and Leyton-Brown 2008). The concept of best response can be leveraged 

to describe the most influential solution concept from game theory: the Nash equilibrium.

De�nition 4 Nash equilibrium A solution where each agent’s policy �∗

i
 is the best 

response to the other agents’ policy �−i

∗
 such that the following inequality

holds true for all states x ∈ X  and all policies �i
∈ Π

i
∀i is called Nash equilibrium.

Intuitively spoken, a Nash equilibrium is a solution where one agent cannot improve 

when the policies of other agents are fixed, that is no agent can improve by unilaterally 

deviating from �∗ . However, a Nash equilibrium may not be unique. Thus, the concept 

of Pareto-optimality might be useful (Matignon et al. 2012b).

De�nition 5 Pareto-optimality A joint policy � Pareto-dominates a second joint policy �̂ 

if and only if

A Nash equilibrium is regarded to be Pareto-optimal if no other has greater value 

and, thus, is not Pareto-dominated.

Classical MARL literature can be categorized according to different features, such as 

the type of task and the information available to agents. In the remainder of this section, 

(4)V
i

�i,�−i
(x) = �

x
t+1∼P,u

t
∼�

[

∞
∑

t=0

�
t
R

i(x
t
, u

t
, x

t+1) ∣ x0 = x

]

V
i

�
i

∗
,�

−i
(x) ≥ V

i

�
i
,�

−i
(x)

V
i

�
i

∗
,�

−i

∗

(x) ≥ V
i

�
i
,�

−i

∗

(x)

V i
�
(x) ≥ V i

�̂
(x) ∀i, ∀x ∈ X and V j

�
(x) > V

j

�̂
(x) ∃j, ∃ x ∈ X.
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we introduce MARL concepts based on the taxonomy proposed in Busoniu et al. (2008). 

For one, the primary factor that influences the learned agent behavior is the type of task. 

Whether agents compete or cooperate is promoted by the designed reward structure.

(1) Fully cooperative setting All agents receive the same reward R = R
i
= ⋯ = R

N for 

state transitions. In such an equally-shared reward setting, agents are motivated to col-

laborate and try to avoid the failure of an individual to maximize the performance of the 

team. More generally, we talk about cooperative settings when agents are encouraged to 

collaborate but do not own an equally-shared reward.

(2) Fully competitive setting Such problem is described as a zero-sum 

Markov Game where the sum of rewards equals zero for any state transition, i.e. 

R =
∑N

i=1
R

i(x, u, x
�) = 0 . Agents are prudent to maximize their own individual reward 

while minimizing the reward of the others. In a loose sense, we refer to competitive 

games when agents are encouraged to excel against opponents, but the sum of rewards 

does not equal zero.

(3) Mixed setting Also known as general-sum game, the mixed setting is neither fully 

cooperative nor fully competitive and, thus, does not incorporate restrictions on agent 

goals.

Beside the reward structure, other taxonomy may be used to differentiate between the 

information available to the agents. Claus and Boutilier (1998) distinguished between 

two types of learning, namely independent learners and joint-action learners. The former 

ignores the existence of other agents and cannot observe the rewards and selected actions 

of others as considered  in Bowling and Veloso (2002) and Lauer and Riedmiller (2000). 

Joint-action learners, however, observe the taken actions of all other actions a-posteriori as 

shown in Hu and Wellman (2003) and Littman (2001).

2.3  Formal introduction to multi‑agent challenges

In the single-agent formalism, the agent is the only decision-instance that influences  the 

state of the environment. State transitions can be clearly attributed to the agent, whereas 

everything outside the agent’s field of impact is regarded as part of the underlying system 

dynamics. Even though the environment may be stochastic, the learning problem remains 

stationary.

On the contrary, one of the fundamental problems in the multi-agent domain is that 

agents update their policies during the learning process simultaneously, such that the envi-

ronment appears non-stationary from the perspective of a single agent. Hence, the Markov 

assumption of an MDP no longer holds, and agents face—without further treatment—a 

moving target problem (Busoniu et al. 2008; Yang and Gu 2004).

De�nition 6 Non-stationarity A single agent faces a moving target problem when the 

transition probability function changes

 due to the co-adaption �i ≠ �̄
i
∃ i ∈ N  of agents.

Above, we have introduced the Nash equilibrium as a solution concept where each 

agent’s policy is the best response to the others. However, it has been shown that agents can 

converge, despite a high degree of randomness in action selection, to sub-optimal solutions 

P(x� | x, u,�
1
,… ,�

N) ≠ P(x� | x, u, �̄
1
,… , �̄

N),
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or can get stuck between different solutions (Wiegand 2004). Fulda and Ventura (2007) 

investigated such convergence to solutions and described a Pareto-selection problem called 

shadowed equilibrium.

De�nition 7 Shadowed equilibrium A joint policy �̄ is shadowed by another joint policy 

�̂ in a state x if and only if

An equilibrium is shadowed by another when at least one agent exists who, when uni-

laterally deviating from �̄ , will see no better improvement than for deviating from �̂ (Mat-

ignon et al. 2012b). As a form of shadowed equilibrium, the pathology of relative over-

generalization describes that a sub-optimal Nash equilibrium in the joint action space is 

preferred over an optimal solution. This phenomenon arises since each agent’s policy per-

forms relatively well when paired with arbitrary actions from other agents (Panait et  al. 

2006; Wei and Luke 2016; Wiegand 2004).

In a Markov Game, we assumed that each agent observes a state x, which encodes all 

necessary information about the world. However for complex systems, complete infor-

mation might not be perceivable. In such partially observable settings, the agents do not 

observe  the whole state space but merely a subset Oi
⊂ X  . Hence, the agents are con-

fronted to deal with sequential decision-making under uncertainty. The partially observable 

Markov Game (Hansen et al. 2004) is the generalization of both MG and MDP.

De�nition 8 Partially observable Markov Games (POMG) The POMG is mathemati-

cally denoted by the tuple 
(

N, X, {U
i
}, {O

i
}, P, {R

i}, �

)

 , where N = {1,… , N} denotes 

the set of N > 1 interacting agents, X  is the set of global but unobserved system states, and 

U  is the set of individual action spaces U
i
 . The observation space O denotes the collection 

of individual observation spaces Oi . The transition probability function is denoted by P , 

the reward function associated with agent i by Ri , and the discount factor is �.

When agents face a cooperative task with a shared reward function, the POMG is then 

known as decentralized Partially Observable Markov decision process (dec-POMDP) 

(Bernstein et  al. 2002; Oliehoek and Amato 2016). In partially observable domains, the 

inference of good policies is extended in complexity since the history of interactions 

becomes meaningful. Hence, the agents usually incorporate history-dependent policies 

�
i

t
∶ {O

i
}

t>0
→ P(U

i
) , which map from a history of observations to a distribution over 

actions.

De�nition 9 Credit assignment problem In the fully-cooperative setting with joint reward 

signals, an individual agent cannot conclude the impact of its own action towards the 

team’s success and, thus, faces a credit assignment problem.

In cooperative games, agents are encouraged to maximize a common goal through a 

joint reward signal. However, agents cannot ascertain their contribution to the eventual 

reward when they do not experience the taken joint action or deal with partial observa-

tions. Associating rewards to agents is known as the credit assignment problem (Chang 

et al. 2004; Weiß 1995; Wolpert and Tumer 1999).

(5)
V
�i ,�̄−i (x) < min

j,�j

V
�j ,�̂

−j (x) ∃ i,�i.
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Some of the above-introduced pathologies occur in all cooperative, competitive, and 

mixed tasks, whereas some pathologies like relative over-generalization, credit assign-

ment, and miss-coordination are predominant issues in cooperative settings. To cope with 

these pathologies, still commonly studied settings are tabular worlds such as variations of 

the climbing game where solutions are not yet found, e.g. when the environment exhib-

its reward stochasticity (Claus and Boutilier 1998). Thus, simple worlds remain a fertile 

ground for further research, especially for problems like shadowed equilibria, non-sta-

tionarity or alter-exploration problems3 and continue to matter for modern deep learning 

approaches.

3  Analysis of training schemes

The training of multiple agents has long been a computational challenge (Becker et  al. 

2004; Nair et al. 2003). Since the complexity in the state and action space grows exponen-

tially with the number of agents, even modern deep learning approaches may reach their 

limits. In this section, we describe training schemes that are used in practice for learning 

agent policies in the multi-agent setting similar to the ones described in Bono et al. (2019). 

We denote training as the process during which agents acquire data to build up experience 

and optimize their behavior with respect to the received reward signals. In contrast, we 

refer test time4 to the step after the training when the learned policy is evaluated but is no 

further refined. The training of agents can be broadly divided into two paradigms, namely 

centralized and distributed (Weiß 1995). If the training of agents is applied in a centralized 

manner, policies are updated based on the mutual exchange of information during the train-

ing. This additional information is then usually removed at test time. In contrast to the cen-

tralized scheme, the training can also be handled in a distributed fashion where each agent 

performs updates on its own and develops an individual policy without utilizing foreign 

information.

In addition to the training paradigm, agents may deviate in the way of how they select 

actions. We recognize two execution schemes. Centralized execution describes that agents 

are guided from a centralized unit, which computes the joint actions for all agents. On 

the contrary, agents determine actions according to their individual policy for decentralized 

execution. An overview of the training schemes is depicted in Fig. 2 while Table 1 lists the 

reviewed literature of this section.

3.1  Distributed training

In distributed training schemes, agents learn independently of other agents and do not 

rely on explicit information exchange.

4 Note that test and execution time are often used interchangeably in recent literature. For clarity, we use 
the term test for the post-training evaluation and the term execution for the action selection with respect to 
some policy.

3 The alter-exploration dilemma, also known as the exploration-exploitation problem, describes the trade-
off an agent faces to decide whether to choose actions that extend experience or take decisions that are 
already optimal according to the current knowledge.
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De�nition 10 Distributed training decentralized execution (DTDE) Each agent i has an 

associated policy �i ∶ O
i
→ P(U

i
) which maps local observations to a distribution over 

individual actions. No information is shared between agents such that each agent learns 

independently.

The fundamental drawback of the DTDE paradigm is that the environment appears 

non-stationary from a single agent’s viewpoint because agents neither have access to 

the knowledge of others, nor do they perceive the joint action. The first approaches in 

this training scheme were studied in tabular worlds. The work by Tan (1993) investi-

gated the question if independently learning agents can match with cooperating agents. 

The results showed that independent learners learn slower in tabular and deterministic 

worlds. Based on that, Claus and Boutilier (1998) examined both independent and joint-

action learners in cooperative stochastic-form games and empirically showed that both 

types of learning can converge to an equilibrium in deterministic games. Subsequent 

works elaborated on the DTDE scheme in discretized worlds (Hu and Wellman 1998; 

Lauer and Riedmiller 2000).

More recent works report that distributed training schemes  scale poorly with the 

number of agents due to the extra sample complexity, which is added to the learning 

problem. Gupta et al. (2017) showed that distributed methods have inferior performance 

compared to policies that are trained with a centralized training paradigm. Similarly, 

Foerster et  al. (2018b) showed that the speed of independently learning actor-critic 

methods is slower than using  centralized training. In further works, DTDE has been 

applied to cooperative navigation tasks (Chen et al. 2016; Strouse et al. 2018), to par-

tially observable  domains (Dobbe et  al. 2017; Nguyen et  al. 2017b; Srinivasan et  al. 

2018), and to social dilemmas (Leibo et al. 2017).

Due to  limited information in the distributed setting, independent learners are con-

fronted with several pathologies (Matignon et al. 2012b). Besides non-stationarity, envi-

ronments may exhibit stochastic transitions or stochastic rewards, which further compli-

cates learning. In addition to that, the search for an optimal policy influences the other 

agents’ decision-making, which may lead to action shadowing and impacts the balance 

between exploration and knowledge exploitation.

A line of recent works expands independent learners with techniques to cope with 

the aforementioned MARL pathologies in cooperative domains. First, Omidshafiei et  al. 

(2017) introduced a decentralized experience replay extension called Concurrent Experi-

ence Replay Trajectories (CERT) that enables independent learners to face a cooperative 

Env EnvEnv

Agent 1 Agent N Agent 1 Agent N Agent 1 Agent N

Information

Update
Update

UpdateUpdate Update

Fig. 2  Training schemes in the multi-agent setting. (Left) CTCE holds a joint policy for all agents. (Middle) 
Each agent updates its own individual policy in DTDE. (Right) CTDE enables agents to exchange addi-
tional information during training which is then discarded at test time
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and partially observable setting by rendering samples more stable and efficient. Similarly, 

Palmer et  al. (2018) extended the experience replay of Deep Q-Networks with leniency, 

which associates stored state-action pairs with decaying temperature values that govern 

the amount of applied leniency. They showed that this induces optimism in value func-

tion updates and can overcome relative over-generalization. Another work by Palmer et al. 

(2019) proposed negative update intervals double-DQN as an mechanism that identifies 

and removes generated data from the replay buffer that  leads to mis-coordination. Alike, 

Lyu and Amato 2020 proposed decentralized quantile estimators which identify non-sta-

tionary transition samples based on the likelihood of returns. Another work that aims to 

improve upon independent learners can be found in Zheng et  al. (2018a) who used two 

auxiliary mechanisms, including a lenient reward approximation and a prioritized replay 

strategy.

A different research direction can be seen in  distributed population-based training 

schemes where agents are optimized through an online evolutionary process such that 

under-performing agents are substituted by mutated versions of better agents (Jaderberg 

et al. 2019; Liu et al. 2019).

3.2  Centralized training

The centralized training paradigm describes agent policies that are updated based on 

mutual information. While the sharing of mutual information between agents is enabled 

during the training, this additional information is then discarded at test time. The central-

ized training can be further differentiated into the centralized and decentralized execution 

scheme.

De�nition 11 Centralized training centralized execution (CTCE) The CTCE scheme 

describes a centralized executor � ∶ O → P(U) modeling the joint policy that maps the 

collection of distributed observations to a set of distributions over individual actions.

Some applications assume an unconstrained and instantaneous information exchange 

between agents. In such a setting, a centralized executor can be leveraged to learn the 

joint policy for all agents. The CTCE paradigm allows the straightforward employment 

of single-agent training methods such as actor-critics (Mnih et al. 2016) or policy gradi-

ent algorithms (Schulman et  al. 2017) to multi-agent problems. An obvious flaw is that 

state-action spaces grow exponentially by the number of agents. To address the so-called 

curse of dimensionality, the joint model can be factored into individual policies for each 

agent. Gupta et al. (2017) represented the centralized executor as a set of independent sub-

policies such that agents’ individual action distributions are captured rather than the joint 

action distribution of all agents, i.e. the joint action distribution P(U) =
∏

i
P(U

i
) is fac-

tored into independent action distributions. Next to the policy, the value function can be 

factored so that the joint value is decomposed into a sum of local value functions, e.g. the 

joint action-value function can be expressed by Q
�
(o1,… , oN , u1,… , un) =

∑

i
Qi

�
(oi, ui) as 

shown in Russell and Zimdars (2003). A recent approach for the value function factoriza-

tion is investigated in Sunehag et al. (2018). However, a phenomenon called lazy agents 

may occur in the CTCE setting when one agent learns a good policy but a second agent has 

less incentive to learn a good policy, as his actions may hinder the first agent, resulting in a 

lower reward (Sunehag et al. 2018).
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Although CTCE regards the learning problem as a single-agent case, we include the 

paradigm in this paper because the training schemes presented in the subsequent sec-

tions occasionally use CTCE as performance baseline and conduct comparisons.

De�nition 12 Centralized training decentralized execution (CTDE) Each agent i holds 

an individual policy �i ∶ O
i
→ P(U

i
) which maps local observations to a distribution over 

individual actions. During training, agents are endowed with additional information, which 

is then discarded at test time.

The CTDE paradigm presents the state-of-the-art practice for learning with multiple 

agents (Kraemer and Banerjee 2016; Oliehoek et al. 2008). In classical MARL, such set-

ting was utilized as joint action learners which has the advantage that perceiving joint 

actions a-posteriori discards the non-stationarity in the environment (Claus and Boutilier 

1998). As of late, CTDE has been successful in MADRL approaches (Foerster et al. 2016; 

Jorge et  al. 2016). Agents utilize shared computational facilities or other forms of com-

munication to exchange information during training. By sharing mutual information, the 

training process can be eased and the learning speed can become superior when matched 

against independently trained agents (Foerster et al. 2018b). Moreover, agents can bypass 

non-stationarity when extra information about the selected actions is available to all agents 

during training such that the consequences of actions can be attributed to the respective 

agents. In what follows, we classify the CTDE literature according to the agent structure.

Homogeneous agents exhibit a common structure or the same set of skills, e.g. the same 

learning model or share common goals. Owning the same structure, agents can share parts 

of their learning model or experience with other agents. These approaches can scale well 

with the number of agents and may allow an efficient learning of behaviors. Gupta et al. 

(2017) showed that policies based on parameter sharing can be trained more efficiently 

and, thus, can outperform independently learned ones. Although agents own the same 

policy network, different agent behaviors can emerge because each agent perceives differ-

ent observations at test time. It has been thoroughly demonstrated that parameter sharing 

can help to accelerate the learning progress (Ahilan and Dayan 2019; Chu and Ye 2017; 

Peng et  al. 2017; Sukhbaatar et  al. 2016; Sunehag et  al. 2018). Next to parameter shar-

ing, homogeneous agents can employ value-based methods where an approximation of the 

value function is learned based on mutual information. Agents profit from the joint actions 

and other agents’ policies that are available during training and incorporate this extra infor-

mation into centralized value functions (Foerster et al. 2016; Jorge et al. 2016). Such infor-

mation is then discarded at test time. Many approaches consider the decomposition of a 

joint value function into combinations of individual value functions (Castellini et al. 2019; 

Rashid et al. 2018; Son et al. 2019; Sunehag et al. 2018). Through decomposition, each 

agent faces a simplified sub-problem of the original problem. Sunehag et al. (2018) showed 

that agents learning on local sub-problems scale better with the number of agents than 

CTCE or independent learners. We elaborate on value function-based factorization more 

detailed in Sect. 5.4 as an effective approach to tackle credit assignment problems.

Heterogeneous agents, on the contrary, differ in structure and skill. An instance for het-

erogeneous policies can be seen in the extension of an actor-critic approach with a cen-

tralized critic, which allows information sharing to amplify the performance of individual 

agent policies. These methods can be distinguished from each other based on the repre-

sentation of the critic. Lowe et al. (2017) utilized one centralized critic for each agent that 

is augmented with additional information during training. The critics are provided with 



909Multi-agent deep reinforcement learning: a survey  

1 3

information about every agent’s policy, whereas the actors perceive only local observa-

tions. As a result, the agents do not depend on explicit communication and can overcome 

the non-stationarity in the environment. Likewise, Bono et  al. (2019) trained multiple 

agents with individual policies that share information with a centralized critic and demon-

strated that such setup might improve results on standard benchmarks. Besides the utiliza-

tion of one critic for each agent, Foerster et al. (2018b) applied one centralized critic for all 

agents to estimate a counterfactual baseline function that marginalizes out a single agent’s 

action. The critic is conditioned on the history of all agents’ observations or, if available, 

on the true global state. Typically, actor-critic methods underlie a variance in the critic 

estimation that is further exacerbated by the number of agents. Therefore, Wu et al. (2018) 

proposed an action-dependent baseline which includes  information from other agents to 

reduce the variance in the critic estimation function. Further works that incorporate one 

centralized critic for distributed policies can be found in Das et al. (2019), Iqbal and Sha 

(2019) and Wei et al. (2018).

Another way to perform decentralized execution is by employing a master-slave archi-

tecture, which can resolve coordination conflicts between multiple agents. Kong et  al. 

(2017) applied a centralized master executor which shares information with decentralized 

slaves. In each time step, the master receives local information from the slaves and shares 

its internal state in return. The slaves compute actions conditioned on their local obser-

vation and the master’s internal state. Similar approaches that make use of different lev-

els of abstraction are hierarchical methods (Kumar et  al. 2017) that  operate at different 

time scales or levels of abstraction. We elaborate on hierarchical methods in more detail in 

Sect. 5.3.

4  Emergent patterns of agent behavior

Agents adjust their policy to maximize the task success and react to the behavioral changes 

of other agents. The dynamic interaction between multiple decision-makers, which simul-

taneously affects the state of the environment, can cause the emergence of specific behavio-

ral patterns. An obvious way to influence the development of agent behavior is through the 

designed reward structure. By promoting incentives for cooperation, agents can learn team 

strategies where they try to collaborate and optimize upon a mutual goal. Agents support 

other agents since the cumulative reward for cooperation is greater than acting selfishly. 

On the contrary, if the appeals for maximizing the individual performance are larger than 

being cooperative, agents can learn greedy strategies and maximize their individual reward. 

Such competitive attitudes can yield high-level strategies like manipulating adversaries to 

gain an advantage. However, the boundaries between competition and cooperation can be 

blurred in the multi-agent setting. For instance, if one agent competes with other agents, it 

is sometimes useful to cooperate temporarily in order to receive a higher reward in the long 

run.

In this section, we review the literature that is interested in developed agent behaviors. 

We differentiate occurring behaviors according to the reward structure (Sect. 4.1), the lan-

guage between agents (Sect. 4.2), and the social context (Sect. 4.3). Table 2 summarizes 

the reviewed literature based on this classification. Note that we focus in this section not 

on works that introduce new methodologies but on literature that analyzes the emergent 

behavioral patterns.
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4.1  Reward structure

The primary factor that influences the emergence of agent behavior is the reward struc-

ture. If the reward for mutual cooperation is larger than individual reward maximization, 

agents tend to learn policies that seek to collaboratively solve the task. In particular, Leibo 

et al. (2017) compared the magnitude of the team reward in relation to the individual agent 

reward. They showed that the higher the numerical team reward is compared to the indi-

vidual reward, the greater is the willingness to collaborate with other agents. The work by 

Tampuu et al. (2017) demonstrated that punishing the whole team of agents for the failure 

of a single agent can also cause cooperation. Agents learn policies to avoid the malfunction 

of an individual, support other agents to prevent failure, and improve the performance of 

the whole team. Similarly, Diallo et al. (2017) used the Pong video game to investigate the 

coordination between agents and examined how developed behaviors change regarding the 

reward function. For a comprehensive review of learning in cooperative settings, one can 

consider the article by Panait and Luke (2005) for classical MARL and Oroojlooyjadid and 

Hajinezhad (2019) for recent MADRL.

In contrast to the cooperative scenario, one can value individual performance greater 

than the collaboration among agents. A competitive setting motivates agents to outperform 

their adversary counterparts. Tampuu et al. (2017) used the video game Pong and manipu-

lated the rewarding structure to examine the emergence of agent behavior. They showed 

that the higher the reward for competition, the more likely an agent tries to outplay its 

opponents by using techniques such as wall bouncing or faster ball speed. Employing such 

high-level strategies to overwhelm the adversary maximizes the individual reward. Simi-

larly, Bansal et al. (2018) investigated competitive scenarios, where agents competed in a 

3D world with simulated physics to learn locomotion skills such as running, blocking, or 

tackling other agents with arms and legs. They argued that adversarial training could help 

to learn more complex agent behaviors than the environment can exhibit. Likewise, the 

works of Leibo et al. (2017) and Liu et al. (2019) investigated the emergence of behaviors 

due to the reward structure in competitive scenarios.

If the rewards appear in sparse frequency, agents can be equipped with intrinsic reward 

functions that provide denser feedback signals and, thus, can overcome the sparsity or even 

the absence of external rewards. One way to realize this is with intrinsic motivation, which 

is based on the concept of maximizing an internal reinforcement signal by actively dis-

covering novel or surprising patterns (Chentanez et al. 2005; Oudeyer and Kaplan 2007; 

Schmidhuber 2010). Intrinsic motivation encourages agents to explore states that have been 

scarcely or never visited and to perform novel actions in those states. Most approaches of 

intrinsic motivation can be broadly divided into two categories (Pathak et al. 2017). First, 

agents are encouraged to explore unknown states where the novelty of states is measured by 

a model that captures the distribution of visited environment states (Bellemare et al. 2016). 

Second, agents can be motivated to reduce the uncertainty about the consequences of their 

own actions. The agent builds a model that learns the dynamics of the environment by 

lowering the prediction error of the follow-up states with respect to the taken actions. The 

uncertainty indicates the novelty of new experience since the model can only be accurate in 

states which it has already encountered or can generalize from previous knowledge (Hout-

hooft et al. 2016; Pathak et al. 2017). For a recent survey on intrinsic motivation in RL, 

one can regard the paper by Aubret et al. (2019). The concept of intrinsic motivation was 

transferred to the multi-agent domain by Sequeira et al. (2011), who studied  the motiva-

tional impact on multiple agents. Investigations on the emergence of agent behavior based 
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on intrinsic rewards have been abundantly conducted in Baker et al. (2020), Hughes et al. 

(2018), Jaderberg et al. (2019), Jaques et al. (2018), Jaques et al. (2019), Peysakhovich and 

Lerer (2018), Sukhbaatar et al. (2017), Wang et al. (2019) and Wang et al. (2020b).

4.2  Language

The development of language corpora and communication skills of autonomous agents 

attracts great attention within the community. For one, the behavior that emerges during the 

deployment of abstract language as well as the learned composition of multiple words to 

form meaningful contexts is of interest (Kirby 2002). Deep learning methods have widened 

the scope of computational methodologies for investigating the development of language 

between dynamic agents (Lazaridou and Baroni 2020). For building rich behaviors and 

complex reasoning, communication based on high-dimensional data like visual perception 

is a widespread practice (Antol et al. 2015). In the following, we focus on works that inves-

tigate the emergence of language and analyze behavior. Papers that propose new method-

ologies for developing communication protocols are discussed in Sect. 5.2. We classify the 

learning of language according to the performed task and the type of interaction the agents 

pursue. In particular, we differentiate between referential games and dialogues.

The former, referential games, describe cooperative games where the speaking agent 

communicates an objective via messages to another listening agent. Lazaridou et al. (2017) 

showed that agents could learn communication protocols solely through interaction. For 

a meaningful information exchange, agents evolved semantic properties in their language. 

A key element of the study was to analyze if the agents’ interactions are interpretable for 

humans, showing limited yet encouraging results. Likewise, Mordatch and Abbeel (2018) 

investigated the emergence of abstract language that arises through the interaction between 

agents in a physical environment. In their experiments, the agents should learn a discrete 

set of vocabulary by solving navigation tasks through communication. By involving more 

than three agents in the conversation and by penalizing an arbitrary size of vocabulary, 

agents agreed on a coherent set of vocabulary and discouraged ambiguous words. They 

also observed that agents learned a syntax structure in the communication protocol that 

is consistent in vocabulary usage. Another work by Li and Bowling (2019) found out that 

compositional languages are easier to communicate with other agents than languages with 

less structure. In addition, changing listening agents during the learning can promote the 

emergence of language grounded on a higher degree of structure. Many studies are con-

cerned with the development of communication in referential games grounded on visual 

perception as it can be found in Choi et al. (2018), Evtimova et al. (2018), Havrylov and 

Titov (2017), Jorge et  al. (2016), Lazaridou et  al. (2018) and Lee et  al. (2017). Further 

works consider the development of communication in social dilemmas (Jaques et al. 2018, 

2019).

As the second category, we describe the emergence of behavioral patterns in com-

munication while conducting dialogues. One type of dialogue are negotiations in which 

agents pursue to agree on decisions. In a study about negotiations with natural language, 

Lewis et  al. (2017) showed that agents could master linguistic and reasoning problems. 

Two agents were both shown a collection of items and were instructed to negotiate about 

how to divide the objects among both agents. Each agent was expected to maximize the 

value of the bargained objects. Eventually, the agents learned to use high-level strategies 

such as deception to accomplish higher rewards over their opponents. Similar studies con-

cerned with negotiations are covered in Cao et  al. (2018) and He et  al. (2018). Another 
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type of dialogue are scenarios where the emergence of communication is investigated in 

a question-answering style as shown by Das et al. (2017). One agent received an image as 

input and was instructed to ask questions about the shown image while the second agent 

responded, both in natural language.

Many of the above-mentioned papers report that utilizing a communication channel can 

increase task performance in terms of the cumulative reward. However, numerical perfor-

mance measurements provide evidence but do not give insights about the communication 

abilities learned by the agents. Therefore, Lowe et al. (2019) surveyed metrics which are 

applied to assess the quality of learned communication protocols and provided recommen-

dations about the usage of such metrics. Based on that, Eccles et al. (2019) proposed to 

incorporate inductive bias into the learning objective of agents, which could promote the 

emergence of a meaningful communication. They showed that inductive bias could lead to 

improved results in terms of interpretability.

4.3  Social context

Next to the reward structure and language, the research community actively investigates the 

emerging agent behaviors in social contexts. Akin to humans, artificial agents can develop 

strategies that exploit patterns in complex problems and adapt behaviors in response to oth-

ers (Baker et al. 2020; Jaderberg et al. 2019). We differentiate the following literature along 

different dimensions, such as the type of social dilemma and the examined psychological 

variables.

Social dilemmas have long been studied as conflict scenario in which agents gauge 

between individualistic and collective profits (Crandall and Goodrich 2011; De Cote et al. 

2006). The tension between cooperation and defection is evaluated as an atomic decision 

according to the numerical values of a pay-off matrix. This pay-off matrix satisfies inequal-

ities in the reward function such that agents must decide between cooperation, to benefit as 

a whole team, or defection, to maximize selfish performance. To temporally extend matrix 

games, sequential social dilemmas have been introduced to investigate long-term strategic 

decisions of agent policies rather than short-term actions (Leibo et al. 2017). The arising 

behaviors in these dilemmas can be classified along psychological variables known from 

human interaction (Lange et al. 2013) such as the gain of individual benefits (Lerer and 

Peysakhovich 2017), the fear of future consequences (Pérolat et al. 2017), the assessment 

of the impact on another agent’s behavior (Jaques et  al. 2018, 2019), the trust between 

agents (Pinyol and Sabater-Mir 2013; Ramchurn et  al. 2004; Yu et  al. 2013), and the 

impact of emotions on the decision-making (Moerland et al. 2018; Yu et al. 2013).

Kollock (1998) divided social dilemmas into commons dilemmas and public goods 

dilemmas. The former, commons dilemmas describe the trade-off between individualistic 

short-term benefits and long-term common interests on a task that is shared by all agents. 

Recent works on the commons dilemma can be found in Foerster et  al. (2018a), Leibo 

et al. (2017) and Lerer and Peysakhovich (2017). In public goods dilemmas, agents face 

a scenario where common-pool resources are constrained and oblige a sustainable use of 

resources. The phenomenon called the tragedy of commons predicts that self-interested 

agents fail to find socially positive equilibria, which eventually results in the over-exploita-

tion of the common resources (Hardin 1968). Investigations on the trial-and-error learning 

in common-pool resource scenarios with multiple decision-makers are covered in Hughes 

et al. (2018), Pérolat et al. (2017) and Zhu and Kirley (2019).
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5  Current challenges

In this section, we depict several challenges that arise in the multi-agent RL domain and, 

thus, are currently under active research. We approach the problem of non-stationarity 

(Sect.  5.1) due to the presence of multiple learners in a shared environment and review 

literature regarding the development of communication skills (Sect. 5.2). We further inves-

tigate the challenge of learning coordination (Sect.  5.3). Then, we survey the difficulty 

of attributing rewards to specific agents as the credit assignment problem (Sect. 5.4) and 

examine scalability issues (Sect. 5.5), which increase with the number of agents. Finally, 

we consider environments where states are only partially observable (Sect.  5.6). While 

some challenges are omnipresent in the MARL domain, such as non-stationarity or scal-

ability, others like the credit assignment problem or the learning of coordination and com-

munication are prevailing in the cooperative setting.

We aim to provide a holistic overview of the contemporary challenges that constitute 

the landscape in reinforcement learning with multiple agents and survey treatments that 

were suggested in recent works. In particular, we focus on those challenges which are cur-

rently under active research and where progress has been accomplished recently. There are 

still open problems that have not been or partially addressed so far. Such problems are dis-

cussed in Sect. 6. Deliberately, we do not regard challenges that also persist in the single-

agent domain, such as sparse rewards or the exploration-exploitation dilemma. We refer 

the interested reader for an overview of those topics to the articles of Arulkumaran et al. 

(2017) and Li (2018). Much of the surveyed literature cannot be assigned to one particular 

but rather to several of the proposed challenges. Hence, we associate the subsequent litera-

ture to the one challenge which we believe best addresses it (Table 3).

5.1  Non‑stationarity

One major problem resides in the presence of multiple agents that interact within a shared 

environment and learn simultaneously. Due to the co-adaption, the environment dynamics 

appear non-stationary from the perspective of a single agent. Thus, agents face a moving 

target problem if they are not provided with additional knowledge about other agents. As 

a result, the Markov assumption is violated, and the learning constitutes an inherently dif-

ficult problem (Hernandez-Leal et al. 2017; Laurent et al. 2011). The naïve approach is to 

neglect the adaptive behavior of agents. One can either ignore the existence of other agents 

(Matignon et al. 2012b) or discount the adaptive behavior by assuming the others’ behav-

ior to be static or optimal (Lauer and Riedmiller 2000). By making such assumptions, the 

agents are considered as independent learners, and traditional single-agent reinforcement 

algorithms can be applied. First attempts have been studied in Claus and Boutilier (1998) 

and Tan (1993), which showed that independent learners could perform well in simple 

deterministic environments. However, in complex or stochastic environments, independent 

learners often result in poor performance (Lowe et al. 2017; Matignon et al. 2012b). More-

over, Lanctot et al. (2017) argued that independent learners could over-fit to other agents’ 

policies during the training and, thus, may fail to generalize at test time.

In the following, we review literature, which addresses the non-stationarity in a multi-

agent environment, and categorize the approaches into those with experience replay, cen-

tralized units, and meta-learning. A similar categorization proposed Papoudakis et  al. 

(2019). We identify further approaches which cope with non-stationarity by establishing 
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communication between agents (Sect.  5.2) or building models (Sect.  5.3). However, we 

discuss these topics separately in the respective sections.

Experience replay mechanism Recent successes with reinforcement learning methods 

such as deep Q-networks (Mnih et  al. 2015) rest upon an experience replay mechanism. 

However, it is not straightforward to employ experience replays to the multi-agent setting 

because past experience becomes obsolete with the adaption of agent policies over time. To 

encounter this, Foerster et al. (2017) proposed two approaches. First, they decay outdated 

transition samples from the replay memory to stabilize targets and then use importance 

sampling to incorporate off-policy samples. Since the agents’ policies are known during 

the training, off-policy updates can be corrected with importance-weighted policy likeli-

hoods. Second, the state space of each agent is enhanced with estimates of the other agents’ 

policies, so-called fingerprints5, to prevent non-stationarity. The value functions can then 

be conditioned on a fingerprint, which clears the age of data sampled from the replay mem-

ory. Another extension for experience replays was proposed by Palmer et al. (2018) who 

applied leniency to every stored transition sample. Leniency associates each sample of the 

experience memory with a temperature value, which gradually decays by the number of 

state-action pair visits. Further utilization of the experience replay mechanism to cope with 

non-stationarity can be found in Tang et al. (2018) and Zheng et al. (2018a). Nevertheless, 

if the contemporary dynamics of the learners are neglected, algorithms can utilize short-

term buffers as applied in Baker et al. (2020) and Leibo et al. (2017).

Centralized Training Scheme As already discussed in Sect. 3.2, the CTDE paradigm can 

be leveraged to share mutual information between learners to ease training. The availability 

of information during the training can loosen the non-stationarity of the environment since 

agents are augmented with information about others. One approach is to enhance actor-

critic methods with centralized critics over which mutual information is shared between 

agents during the training (Bono et al. 2019; Iqbal and Sha 2019; Wei et al. 2018). Lowe 

et al. (2017) embedded each agent with one centralized critic that is augmented with all 

agents’ observations and actions. Based on this additional information, agents face a sta-

tionary environment during the training while acting decentralized on local observations at 

test time. Next to the equipment of one critic per agent, all agents can share one global cen-

tralized critic. Foerster et al. (2018b) applied one centralized critic conditioned on the joint 

action and observations of all agents. The critic computes an agent’s individual advantage 

through estimating the value of the joint action based on a counterfactual baseline, which 

marginalizes out single agents’ influence. Another approach to the CTDE scheme can be 

seen in value-based methods. Rashid et  al. (2018) learned a joint action-value function 

conditioned on the joint observation-action history. The joint action-value function is then 

divided into agent individual value functions based on monotonic non-linear composition. 

Foerster et  al. (2016) used action-value functions that share information through a com-

munication channel during the training but then discarded it at test time. Similarly, Jorge 

et  al. (2016) employed communication during training to promote information exchange 

for optimizing action-value functions.

Meta-Learning Sometimes, it can be useful to learn how to adapt to the behavioral 

changes of others. This learning-to-learn approach is known as meta-learning (Finn and 

Levine 2018; Schmidhuber et  al. 1996). Recent works in the single-agent domain have 

shown promising results (Duan et al. 2016; Wang et al. 2016a). Al-Shedivat et al. (2018) 

5 Fingerprints draw their inspiration from Tesauro (2004) who eluded non-stationarity by conditioning each 
agent’s policy on estimates of other agents’ policies.
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transferred this approach to the multi-agent domain and developed a meta-learning based 

method to tackle the consecutive adaptation of agents in non-stationary environments. 

Regarding non-stationarity as a sequence of stationary tasks, agents learn to exploit 

dependencies between successive tasks and generalize over co-adapting agents at test time. 

They evaluated the resulting behaviors in a competitive multi-agent setting where agents 

fight in a simulated physics environment. Meta-learning can also be utilized to construct 

agent models (Rabinowitz et al. 2018). By learning how to model other agents and make 

inferences on them, agents learn to predict the other agent’s future action sequences. They 

embedded this principle into how one agent learns to capture the behavioral patterns of 

other agents efficiently.

5.2  Learning communication

Agents capable of developing communication and language corpora pose one of the vital 

challenges in machine intelligence (Kirby 2002). Intelligent agents must not only decide 

on what to communicate but also when and with whom. It is indispensable that the devel-

oped language is grounded on a common consensus such that all agents understand the 

spoken language, including its semantics. The research efforts in learning to communicate 

have  intensified because many pathologies can be overcome by incorporating communi-

cation skills into agents, including non-stationarity, coherent coordination among agents, 

and partial observability. For instance, when an agent knows the actions taken by others, 

the learning problem becomes stationary again from a single agent’s perspective in a fully 

observable environment. Even partial observability can be loosened by messaging local 

observations to other participants through communication, which helps compensate for 

limited knowledge (Goldman and Zilberstein 2004).

The common framework to investigate communication is the dec-POMDP (Oliehoek 

and Amato 2016) which is a fully cooperative setting where agents perceive partial obser-

vations of the environment and try to improve upon an equally-shared reward. In such dis-

tributed systems, agents must not only learn how to cooperate but also how to communicate 

in order to optimize the mutual objective. Early MARL works investigated communication 

rooted in tabular worlds with limited observability (Kasai et al. 2008). Since the spring of 

deep learning methods, the research of learning communication has witnessed great atten-

tion because advanced computational methods provide new opportunities to study highly 

complex data.

In the following, we categorize the surveyed literature according to the message 

addressing. First, we describe the broadcasting scenario where sent messages are received 

by all agents. Second, we look into works that use targeted messages to decide on the 

recipients by using an attention mechanism. Third and last, we review communication in 

networked settings where agents communicate only with their local neighborhood instead 

of the whole population. Figure  3 shows a schematic illustration of this categorization. 

Another taxonomy may be based on the discrete or continuous nature of messages and the 

frequency of passed messages.

Broadcasting Messages are addressed to all participants of the communication channel. 

Foerster et al. (2016) studied how agents learn discrete communication protocols in dec-

POMDPs in order to accomplish a fully-cooperative task. Being in a CTDE setting, the 

communication is not restricted during the training but bandwidth-limited at test time. To 

discover meaningful communication protocols, they proposed two methods. The first, rein-

forced inter-agent learning (RIAL), is based on deep recurrent Q-networks combined with 
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independent Q-learning where each agent learns an action-value function conditioned on 

the observation history as well as messages from other agents. Additionally, they applied 

parameter sharing so that all agents share and update common features from only one 

Q-network. The second method, differentiable inter-agent learning (DIAL), combines the 

centralized learning paradigm with deep Q-networks. Messages are delivered over discrete 

connections, which are based on a relaxation to become differentiable. In contrast, Sukh-

baatar et al. (2016) proposed CommNet as an architecture that allows the learning of com-

munication between agents purely based on continuous protocols. They showed that each 

agent learns the joint-action and a sparse communication protocol that encodes meaning-

ful information. The authors emphasized that the decreased observability of vicious states 

encourages the importance of communication between agents. To foster scalable commu-

nication protocols that also facilitate heterogeneous agents, Peng et al. (2017) introduced 

the bidirectionally-coordinated network (BiCNet) where agents learn in a vectorized actor-

critic framework to communicate. Through communication, they were able to coordinate 

heterogeneous agents in a combat game of StarCraft.

Targeted communication When agents are endowed with targeted communication pro-

tocols, they utilize an attention mechanism to determine when, what and with whom to 

communicate. Jiang and Lu (2018) introduced ATOC as an attentional communication 

model that enables agents to send messages dynamically and selectively so that commu-

nication takes place among a group of agents only when required. They argued that atten-

tion is essential for large-scale settings because agents learn to decide which information 

is most useful for decision-making. Selective communication is the reason why ATOC 

outperforms CommNet and BiCNet on the conducted navigation tasks. A similar conclu-

sion was drawn by Hoshen (2017) who introduced the vertex attention interaction network 

(VAIN) as an extension to the CommNet. The baseline approach is extended with an atten-

tion mechanism that increases performance due to the focus on only relevant agents. The 

work by Das et al. (2019) introduced targeted multi-agent communication (TarMAC) that 

uses attention to decide with whom and what to communicate by actively addressing other 

agents for message passing. Jain et  al. (2019) proposed TBONE for visual navigation in 

cooperative tasks. In contrast to former works, which are limited to the fully-cooperative 

setting, Singh et al. (2019) considered mixed settings where each agent owns an individual 

Fig. 3  Schematic illustration of communication types. Unilateral arrows represent unidirectional messages, 
while bilateral arrows symbolize bidirectional message passing. (Left) In broadcasting, messages are sent to 
all participants of the communication channel. For better visualization, the broadcasting of only one agent 
is illustrated but each agent can broadcast messages to all other agents. (Middle) Agents can target the com-
munication through an attention mechanism that determines when, what and with whom to communicate. 
(Right) Networked communication describes the local connection to neighborhood agents
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reward function. They proposed the individualized controlled continuous communication 

model (IC3Net), where agents learn when to exchange information using a gating mecha-

nism that blocks incoming communication requests if necessary.

Networked communication Another form of communication is a networked communica-

tion protocol where agents can exchange information with their neighborhood (Nedic and 

Ozdaglar 2009; Zhang et al. 2018). Agents act decentralized based on local observations 

and received messages from network neighbors. Zhang et  al. (2018) used an actor-critic 

framework where agents share their critic information with their network neighbors to pro-

mote global optimality. Chu et  al. (2020) introduced the neural communication protocol 

(NeurComm) to enhance communication efficiency by reducing queue length and intersec-

tion delay. Further, they showed that a spatial discount factor could stabilize training when 

only the local vicinity is regarded to perform policy updates. For theoretical contributions, 

one may consider the works of Qu et al. (2020), Zhang et al. (2018) and Zhang et al. (2019) 

whereas the paper of Chu et al. (2020) provides an application perspective in the domain of 

traffic light control.

Extensions Further methods approach the improvement of coordination skills by apply-

ing intrinsic motivation (Jaques et al. 2018, 2019), by making the communication protocol 

more robust or scalable (Kim et al. 2019; Singh et al. 2019), and maximizing the utility of 

the communication through efficient encoding (Celikyilmaz et  al. 2018; Li et  al. 2019b; 

Wang et al. 2020c).

The above-reviewed papers focus on new methodologies about communication proto-

cols. Besides that, a bulk of literature considers the analysis of emergent language and the 

occurrence of agent behavior, which we discuss in Sect. 4.2.

5.3  Coordination

Successful coordination in multi-agent systems requires agents to agree on a consensus 

(Wei Ren et  al. 2005). In particular, accomplishing a joint goal in cooperative settings 

demands a coherent action selection such that the joint action optimizes the mutual task 

performance. Cooperation among agents is complicated when stochasticity is present in 

system transitions and rewards or when agents observe only partial information of the envi-

ronment’s state. Mis-coordination may arise in the form of action shadowing when explor-

atory behavior influences the other agents’ search space during learning and, as a result, 

sub-optimal solutions are found.

Therefore, the agreement upon a mutual consensus necessitates the sharing and collec-

tion of information about other agents to derive optimal decisions. Finding such a consen-

sus in the decision-making may happen explicitly through communication or implicitly by 

constructing models of other agents. The former requires skills to communicate with others 

so that agents can express their purpose and align their coordination. For the latter, agents 

need the ability to observe other agents’ behavior and reason about their strategies to build 

a model. If the prediction model is accurate, an agent can learn the other agents’ behavioral 

patterns and direct actions towards a consensus, leading to coordinated behavior. Besides 

explicit communication and constructing agent models, the CTDE scheme can be lever-

aged to build different levels of abstraction, which are applied to learn high-level coordina-

tion while independent skills are trained at low-level.

In the remainder of this section, we focus on methods that solve coordination issues 

without establishing communication protocols between agents. Although communication 

may ease coordination, we discuss this topic separately in Sect. 5.2.



921Multi-agent deep reinforcement learning: a survey  

1 3

Independent learners The naïve approach to handle multi-agent problems is to regard 

each agent individually such that other agents are perceived as part of the environment and, 

thus, are neglected during learning. Opposed to joint action learners, where agents expe-

rience the selected actions of others a-posteriori, independently learning agents face the 

main difficulty of coherently choosing actions such that the joint action becomes optimal 

concerning the mutual goal (Matignon et al. 2012b). During the learning of good policies, 

agents influence each other’s search space, which can lead to action shadowing. The notion 

of coordination among several autonomously and independently acting agents enjoys a 

long record, and a bulk of research was conducted in settings with non-communicative 

agents (Fulda and Ventura 2007; Matignon et al. 2012b). Early works investigated the con-

vergence of independent learners and showed that the convergence to solutions is feasi-

ble under certain conditions in deterministic games but fails in stochastic environments 

(Claus and Boutilier 1998; Lauer and Riedmiller 2000). Stochasticity, relative over-gener-

alization, and other pathologies such as non-stationarity and the alter-exploration problem 

led to new branches of research including hysteretic learning (Matignon et al. 2007) and 

leniency (Potter and De  Jong 1994). Hysteretic Q-learning was introduced to encounter 

the over-estimation of the value function evoked by stochasticity. Two learning rates are 

used to increase and decrease the value function updates while relying on an optimistic 

form of learning. A modern approach to hysteretic learning can be seen in Palmer et al. 

(2018) and Omidshafiei et al. (2017). An alternative method to adjust the degree of applied 

optimism during learning is leniency (Panait et al. 2006; Wei and Luke 2016). Leniency 

associates selected actions with decaying temperature values that govern the amount of 

applied leniency. Agents are optimistic during the early phase when exploration is still high 

but become less lenient for frequently visited state-action pairs over the training so that 

value estimations become more accurate towards the end of learning.

Further works expanded independent learners with enhanced techniques to cope with 

the MARL pathologies mentioned above. Extensions to the deep Q-network can be seen in 

additional mechanisms used for the experience replay (Palmer et al. 2019), the utilization 

of specialized estimators (Zheng et  al. 2018a) and the use of implicit quantile networks 

(Lyu and Amato 2020). Further literature investigated independent learners as benchmark 

reference but reported limited success in cooperative tasks of various domains when no 

other techniques are applied to alleviate the issue of independent learners (Foerster et al. 

2018b; Sunehag et al. 2018).

Constructing models An implicit way to achieve coordination among agents is to cap-

ture the behavior of others by constructing models. Models are functions that take past 

interaction data as input and output predictions about the agents of interest. This can be 

very important to render the learning process robust against the decision-making of other 

agents in the environment (Hu and Wellman 1998). The constructed models and the pre-

dicted behavior vary widely depending on the approaches and the assumptions being made 

(Albrecht and Stone 2018).

One of the first works based on deep learning methods was conducted by He et  al. 

(2016) in an adversarial setting. They proposed an architecture that utilizes two neural 

networks. One neural network captures the opponents’ strategies, and the second network 

estimates the opponents’ Q-values. These networks jointly learn models of opponents by 

encoding observations into a deep Q-network. Another work by Foerster et  al. (2018a) 

introduced a learning method where the policy updates rely on the impact on other agents. 

The opponent’s policy parameters can be inferred from the observed trajectory by using a 

maximum likelihood technique. The arising non-stationarity is tackled by accounting only 

recent data. An additional possibility is to address the information gain about other agents 
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through Bayesian methods. Raileanu et al. (2018) employed a model where agents estimate 

the other agents’ hidden states and embed these estimations into their own policy. Inferring 

other agents’ hidden states from their behavior allows them to choose appropriate actions 

and promotes eventual coordination. Foerster et  al. (2019) used all publicly available 

observations in the environment to calculate a public belief over agents’ local information. 

Another work by Yang et al. (2018a) used Bayesian techniques to detect opponent strate-

gies in competitive games. A particular challenge is to learn agent models in the presence 

of fast adapting agents, which amplifies the problem of non-stationarity. As a countermeas-

ure, Everett and Roberts (2018) proposed the switching agent model (SAM), which learns 

a set of opponent models and a switching mechanism between models. By tracking and 

detecting the behavioral adaption of other agents, the switching mechanism learns to select 

the best response from the learned set of opponent models and, thus, showed superior per-

formance over single model learners.

Further works on constructing models can be found in cooperative tasks (Barde et al. 

2019; Tacchetti et al. 2019; Zheng et al. 2018b) with imitation learning (Grover et al. 2018; 

Le et al. 2017), in social dilemmas (Jaques et al. 2019; Letcher et al. 2019), and by pre-

dicting behaviors from observations (Hong et al. 2017; Hoshen 2017). For a comprehen-

sive survey on constructing models in multi-agent systems, one may consider the work of 

Albrecht and Stone (2018).

Besides resolving the coordination problem, building models of other agents can cope 

with the non-stationarity in the environment. As soon as one agent has knowledge about 

others’ behavior, previously unexplainable transition dynamics can be attributed to the 

responsible agents, and the environment becomes stationary again from the viewpoint of 

an individual agent.

Hierarchical methods Learning to coordinate can be challenging if multiple decision-

makers are involved due to the increasing complexity (Bernstein et al. 2002). An approach 

to deal with the coordination problem is by abstracting low-level coordination to higher 

levels. The idea originated in the single-agent domain where hierarchies for temporal 

abstraction are employed to ease long-term reward assignments (Dayan and Hinton 1993; 

Sutton et  al. 1999). Lower levels entail only partial information of the higher levels so 

that the learning task becomes simpler the lower the level of abstraction. First attempts for 

hierarchical multi-agent RL can be found in the tabular case (Ghavamzadeh et  al. 2006; 

Makar et al. 2001). A deep approach was proposed by Kumar et al. (2017), where a higher-

level controller guides the information exchange between decentralized agents. Grounded 

on the high-level controller, the agents communicate with only one other agent at each 

time step, which allows the exploration of distributed policies. Another work by Han et al. 

(2019) is built upon the options framework (Sutton et  al. 1999) where they embedded a 

dynamic termination criterion for Q-learning. By adding a termination criterion, agents 

could flexibly quit the option execution and react to the behavioral changes of other agents. 

Related to the idea of feudal networks (Dayan and Hinton 1993), Ahilan and Dayan (2019) 

applied a two-level abstraction of agents to a cooperative multi-agent setting where, in con-

trast to other methods, the hierarchy relied on rewards instead of state goals. They showed 

that this approach could be well suited for decentralized control problems. Jaderberg et al. 

(2019) used hierarchical representations that allowed agents to reason at different time 

scales. The authors demonstrated that agents are capable of solving mixed cooperative and 

competitive tasks in simulated physics environments. Another work by Lee et al. (2020) 

proposed a hierarchical method to coordinate two agents on robotic manipulation and loco-

motion tasks to accomplish collaboration such as object pick and placement. They learned 

primitive skills on the low-level, which are guided by a higher-level policy. Further works 
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cover hierarchical methods in cooperation tasks (Cai et al. 2013; Ma and Wu 2020; Tang 

et al. 2018) or social dilemmas (Vezhnevets et al. 2019). An open challenge for hierarchi-

cal methods is the autonomous creation and discovery of abstract goals from data (Schaul 

et al. 2015; Vezhnevets et al. 2017).

5.4  Credit assignment problem

In the fully-cooperative setting, agents are encouraged to maximize an equally-shared 

reward signal. Even in a fully-observable state space, it is difficult to determine which 

agents and actions contributed to the eventual reward outcome when agents do not have 

access to the joint action. Claus and Boutilier (1998) showed that independent learners 

could not differentiate between the teammate’s exploration and the stochasticity in the 

environment even in a simple bi-matrix game. This can render the learning problem dif-

ficult because agents should be ideally provided with feedback corresponding to the task 

performance to enable sufficient learning. Associating rewards to agents is known as the 

credit assignment problem (Weiß 1995; Wolpert and Tumer 1999). This problem is intensi-

fied by the sequential nature of reinforcement learning where agents must understand not 

only the impact of single actions but also the entire action sequences that eventually lead 

to the reward outcome (Sen and Weiss 1999). An additional challenge arises when agents 

have only access to local observations of the environment, which we discuss in Sect. 5.6. In 

the remainder of this section, we consider three actively investigated approaches that deal 

with how to determine the contribution of agents jointly-shared reward settings.

Decomposition Early works approached the credit assignment problem by applying fil-

ters (Chang et al. 2004) or modifying the reward function such as reward shaping (Ng et al. 

1999). Recent approaches focus on exploiting dependencies between agents to decompose 

the reward among the agents with respect to their actual contribution towards the global 

reward (Kok and Vlassis 2006). The learning problem is simplified by dividing the task 

into smaller and, hence, easier sub-problems through decomposition. Sunehag et al. (2018) 

introduced the value decomposition network (VDN) which factorizes the joint action-value 

function into a linear combination of individual action-value functions. The VDN learns 

how to optimally assign an individual reward according to the agent’s performance. The 

neural network helps to disambiguate the joint reward signal concerning the impact of the 

agent. Rashid et al. (2018) proposed QMIX as an improvement over VDN. QMIX learns 

a centralized action-value function that is decomposed into agent individual action-value 

functions through non-linear combinations. Under the assumption of monotonic relation-

ships between the  centralized Q-function and the  individual Q-functions, decentralized 

policies can be extracted by individual argmax operations. As an advancement over both 

VDN and QMIX, Son et al. (2019) proposed QTRAN, which discards the assumption of 

linearity and monotonicity in the factorization and allows any non-linear combination of 

value functions. Further approaches about the factorization of value functions can be found 

in Castellini et al. (2019), Chen et al. (2018), Nguyen et al. (2017b), Wang et al. (2020a), 

Wang et al. (2020c) and Yang et al. (2018b).

Marginalization Next to the decomposition into simpler sub-problems, one can apply 

an extra function that marginalizes out the effect of agent individual actions. Nguyen 

et al. (2018) introduced a mean collective actor-critic framework which marginalizes out 

the actions of agents by using an approximation of the critic and reduces the variance of 

the gradient estimation. Similarly, Foerster et  al. (2018b) marginalized out the individ-

ual actions of agents by applying a counterfactual baseline function. The counterfactual 
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baseline function uses a centralized critic, which calculates the advantage of a single agent 

by comparing the estimated return of the current joint-action to the counterfactual baseline. 

The impact of a single agent’s action is determined and can be attributed to the agent itself. 

Another work by Wu et  al. (2018) used a marginalized action-value function as a base-

line to reduce the variance of critic estimates. The marginalization approaches are closely 

related to the difference rewards proposed by Tumer and Wolpert (2004) who determine 

the impact of an agent’s individual action compared to the average reward of all agents.

Inverse reinforcement learning Credit assignment problems can be evoked by a bad 

design of the reinforcement learning problem. Misinterpretations of the agents can lead to 

failure because unintentional strategies are explored, e.g. if  the reward function does not 

capture all important aspects of the underlying task (Amodei et  al. 2016). Therefore, an 

important step in the problem design is the reward function. However, designing a reward 

function can be challenging for complex problems (Hadfield-Menell et  al. 2017) and 

becomes even more complicated for multi-agent systems since different agents may accom-

plish different goals. Another approach to address the credit assignment problem is by 

inverse reinforcement learning (Ng and Russell 2000) that describes how an agent learns a 

reward function that explains the demonstrated behavior of an expert without having access 

to the reward signal. The learned reward function can then be used to build strategies. The 

work of Lin et  al. (2018) applied the principle of inverse reinforcement learning to the 

multi-agent setting. They showed that multiple agents could recover reward functions that 

are correlated with the ground truths. Related to inverse RL, imitation learning can be used 

to learn from expert knowledge. Yu et al. (2019) imitated expert behaviors to learn high-

dimensional policies in both cooperative and competitive environments. They were able to 

recover the expert policies for each individual agent from the provided expert demonstra-

tions. Further works on imitation learning consider the fully cooperative setting (Barrett 

et al. 2017; Le et al. 2017) and Markov Games with mixed settings (Song et al. 2018).

5.5  Scalability

Training a large number of agents is inherently difficult. Every agent involved in the envi-

ronment adds extra complexity to the learning problem such that the computational effort 

grows exponentially by the number of agents. Besides complexity concerns, sufficient scal-

ing also demands agents to be robust towards the behavioral adaption of other agents. How-

ever, agents can leverage the benefit of distributed knowledge shared and reused between 

agents to accelerate the learning process. In the following, we review approaches that 

address the handling of many agents and discuss possible solutions. We broadly classify 

the surveyed works into those that apply some form of knowledge reuse, reduce the com-

plexity of the learning problem, and develop robustness against the policy adaptions of 

other agents.

Knowledge reuse The training of individual learning models does scale poorly with the 

increasing number of agents because the computational effort increases due to the combi-

natorial possibilities. Knowledge reuse strategies are employed  to ease the learning pro-

cess and scale RL to complex problems by reutilizing previous knowledge into new tasks. 

Knowledge reuse can be applied in many facets (Silva et al. 2018).

First, agents can make use of a parameter sharing technique if they exhibit homogene-

ous structures, e.g. the weights in a neural network for sharing parts or the whole learn-

ing model with others. Sharing the parameters of a policy enables an efficient training pro-

cess that can scale up to an arbitrary number of agents and, thus, can boost the learning 
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process (Gupta et  al. 2017). Parameter sharing has proven to be useful in various appli-

cations such as learning to communicate (Foerster et al. 2016; Jiang and Lu 2018; Peng 

et al. 2017; Sukhbaatar et al. 2016), modeling agents (Hernandez-Leal et al. 2019), and in 

partially observable cooperative games (Sunehag et al. 2018). For a discussion on different 

parameter sharing strategies, one may consider the paper by Chu and Ye (2017).

As the second approach, knowledge reuse can be applied in form of transfer learning 

(Da Silva et al. 2019; Da Silva and Costa 2019). Experience obtained in learning to per-

form one task may also improve the performance in a related but different task (Taylor and 

Stone 2009). Da Silva and Costa (2017) used a knowledge database from which an agent 

can extract previous solutions of related tasks and embed such information into the cur-

rent task’s training. Likewise, Da Silva et al. (2017) applied expert demonstrations where 

the agents take the role of students that ask a teacher for advice. They demonstrated that 

simultaneously learning agents could advise each other through knowledge transfer. Fur-

ther works on transfer learning can be found in the cooperative multi-agent setting (Omid-

shafiei et al. 2019) and in natural language applications (Luketina et al. 2019). In general 

multi-agent systems, the works of (Boutsioukis et al. 2012; Taylor et al. 2013) substantiate 

that transfer learning can speed up the learning process.

Besides parameter sharing and transfer learning, curriculum learning may be applied 

for the scaling to many agents. Since tasks become more challenging to master and more 

time consuming to train as the number of agents increases, it is often challenging to learn 

from scratch. Curriculum learning starts with a small number of agents and then gradually 

enlarges the number of agents over the training course. Through the steady increase within 

the curriculum, trained policies can perform better than without a curriculum (Gupta et al. 

2017; Long et al. 2020; Narvekar et al. 2016). Curriculum learning schemes can also cause 

improved generalization and faster convergence of agent policies (Bengio et  al. 2009). 

Further works show that agents can generate learning curricula automatically (Sukhbaatar 

et al. 2017; Svetlik et al. 2017) or can create arms races in competitive settings (Baker et al. 

2020).

Complexity reduction Many real-world applications naturally encompass large numbers 

of simultaneously interacting agents (Nguyen et  al. 2017a, b). As the quantity of agents 

increases, the requirement to contain the curse of dimensionality becomes inevitable. Yang 

et al. (2018b) addressed the issue of scalability with a mean-field method. The interactions 

between large numbers of agents are estimated by the impact of a single agent compared 

to the mean impact of the whole or local agent population. The complexity reduces as the 

problem is broken down into pairwise interactions between an agent and its neighborhood. 

Regarding the average effect to its neighbors, each agent learns the best response towards 

its proximity. Another approach to constrain the explosion in complexity is by factorizing 

the problem into smaller sub-problems (Guestrin et al. 2002). Chen et al. (2018) decom-

posed the joint action-value function into independent components and used pairwise inter-

actions between agents to render large-scale problems computationally tractable. Further 

works studied large-scale MADRL problems with graphical models (Nguyen et al. 2017a) 

and the CTDE paradigm (Lin et al. 2018).

Robustness Another desired property is the robustness of learned policies to perturba-

tions in the environment caused by other agents. Perturbations are fortified by the number 

of agents and the resulting growth of the state-action space. In supervised learning, a com-

mon problem is that models can over-fit to the data set. Similarly, over-fitting can occur 

in RL frameworks if environments provide little or no deviation (Bansal et al. 2018). To 

maintain robustness over the training process and to the other agents’ adaption, several 

methods have been proposed.
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First, regularization techniques can be used to prevent over-fitting to other agents’ 

behavior. Examples can be seen in policies ensembles (Lowe et al. 2017), where a collec-

tion of different sub-policies is trained for each agent, or can be found in best responses to 

policy mixtures (Lanctot et al. 2017).

Second, adversarial training can be applied to mitigate the vulnerability of polices 

towards perturbations. Pinto et  al. (2017) added an adversarial agent to the environment 

that applied targeted disturbances to the learning process. By hampering the training, the 

agents were compelled to encounter these disturbances and develop robust policies. Simi-

larly, Li et al. (2019a) used an adversarial setting to reduce the sensitivity of agents towards 

the environment. Bansal et  al. (2018) demonstrated that policies, which are trained in a 

competitive setting, could yield behaviors that are far more complex than the environment 

itself. From an application perspective, Spooner and Savani (2020) studied robust decision-

making in market making.

The observations from above are in accordance with the findings of related studies 

about the impact of self-play (Raghu et  al. 2018; Sukhbaatar et  al. 2017). Heinrich and 

Silver (2016) used self-play to learn approximate Nash equilibria of imperfect-information 

games and showed that self-play could be used to obtain better robustness in the learned 

policies. Similarly, self-play was used to compete with older versions of policies to ren-

der the learned behaviors more robust (Baker et al. 2020; Berner et al. 2019; Silver et al. 

2018). Silver et  al. (2016) adapted self-play as a regularization technique to prevent the 

policy network from over-fitting by playing against older versions of itself. However, 

Gleave et al. (2020) studied the existence of adversarial policies in competitive games and 

showed that complex policies could be fooled by comparably easy strategies. Although 

agents trained through self-play proved to be more robust, allegedly random and uncoordi-

nated strategies caused agents to fail at the task. They argued that the vulnerability towards 

adversarial attacks increases with the dimensionality of the observation space. A further 

research direction for addressing robustness is to render the learning representation invari-

ant towards permutations, as shown in Liu et al. (2020).

5.6  Partial observability

Outside an idealized setting, agents neither can observe  the global state of the environ-

ment, nor do they have access to the internal knowledge of other agents. By perceiving 

only partial observations, a single observation does not capture all relevant information 

about the environment and its history. Hence, the Markov property is not fulfilled, and the 

environment appears non-Markovian. An additional difficulty elicited by partial observ-

ability is the lazy agent problem which can occur in cooperative settings (Sunehag et al. 

2018). As introduced in Sect. 2.2, the common frameworks that deal with partial observ-

ability are POMPDs for general settings and dec-POMDPs for cooperative settings with 

a shared reward function. Dec-POMDPs are computationally challenging (Bernstein et al. 

2002) and still intractable when solving problems with real-world complexity (Amato et al. 

2015). However, recent work accomplished promising results in video games with imper-

fect information (Baker et al. 2020; Berner et al. 2019; Jaderberg et al. 2019; Vinyals et al. 

2019).

A natural way to deal with non-Markovian environments is through information 

exchange between the decision-makers (Goldman and Zilberstein 2004). Agents that are 

able to communicate can compensate for their limited knowledge by propagating informa-

tion and fill the lack of knowledge about other agents or the environment (Foerster et al. 
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2016). As we already discussed in Sect. 5.2, there are several ways to incorporate commu-

nication capabilities into agents. A primary example is Jiang and Lu (2018) who used an 

attention mechanism to establish communication under partial observations. Rather than 

having a fixed frequency for the information exchange, they learned to communicate on-

demand. Further approaches under partial observability have been investigated in coopera-

tive tasks (Das et al. 2019; Sukhbaatar et al. 2016) or mixed settings (Singh et al. 2019).

In the following, we review papers that cope with partial observability by incorporating 

a memory mechanism. Agents, which have the capability of memorizing past experiences, 

can compensate for the lack of information.

Memory mechanism A common way to tackle partial observability is the usage of deep 

recurrent neural networks, which equip agents with a memory mechanism to store informa-

tion that can be relevant in the future (Hausknecht and Stone 2015). However, long-term 

dependencies render the decision-making difficult since experiences that were observed in 

the further past may have been forgotten (Hochreiter and Schmidhuber 1997). Approaches 

involving recurrent neural networks to deal with partial observability can be realized with 

value-based approaches (Omidshafiei et al. 2017) or actor-critic methods (Dibangoye and 

Buffet 2018; Foerster et al. 2018b; Gupta et al. 2017). Foerster et al. (2019) used a Bayes-

ian method to tackle partial observability in cooperative settings. They used all publicly 

available features of the environment and agents to determine a public belief over the 

agents’ internal states. A severe concern in MADRL is that the memorization of past infor-

mation is exacerbated by the number of agents involved during the learning process.

6  Discussion

In this section, we discuss findings from previous sections. We enumerate trends that we 

have  identified in recent literature.  Since these  trends are useful for addressing current 

challenges, they may also be an avenue for upcoming research. To the end of our discus-

sion, we point out possible future work. We elaborate on problems where only a minority 

of research has been conducted and pose two problems which we find the toughest ones to 

overcome.

Despite the recent advances in many directions, many pathologies such as relative over-

generalization combined with reward stochasticity are not yet solved, even in allegedly 

simple tabular worlds. MADRL has taken profit from the history of MARL by scaling up 

the  insights to more complex problems. Approaches where strong solutions exist in sim-

plified MARL settings may be transferable to the MADRL domain. Thus by enhancing 

older methods with new deep learning approaches, unsolved problems and concepts from 

MARL continue to matter in MADRL. An essential point for MADRL is that reproduc-

ibility is taken conscientiously. Well-known papers from the single-agent domain underline 

the significance of hyper-parameters, the number of independent random seeds, and cho-

sen code-base towards the eventual task performance (Henderson et al. 2018; Islam et al. 

2017). To maintain steady progress, the reporting of all used hyper-parameters and a trans-

parent conduction of experiments is crucial. We want to make the community aware that 

these findings may also be valid for the multi-agent domain. Therefore, it is inevitable that 

standardized frameworks are created in which different algorithms can be compared along 

with their merits and demerits. Many individual environments have been proposed which 

exhibit intricate structure and real-world complexity (Baker et al. 2020; Beattie et al. 2016; 

Johnson et al. 2016; Juliani et al. 2018; Song et al. 2019; Vinyals et al. 2017). However, 



928 S. Gronauer, K. Diepold 

1 3

no consistent benchmark yet exists that provides a unified interface and allows a fair com-

parison between different kinds of algorithms grounded on a great variety of tasks like the 

OpenAI Gym (Brockman et al. 2016) for single-agent problems.

6.1  Trends

Over  the last years, approaches in the multi-agent domain achieved successes based on 

recurring patterns of good practice. We have identified four trends in state-of-the-art litera-

ture that have been frequently applied to address current challenges (Table 4).

As the first trend, we observe curriculum learning as an approach to divide the learning 

process into stages to deal with scalability issues. By starting with a small quantity, the 

number of agents is gradually enlarged over the learning course so that large-scale train-

ing becomes feasible (Gupta et al. 2017; Long et al. 2020; Narvekar et al. 2016). Alterna-

tively, curricula can also be employed to create different stages of difficulty, where agents 

face relatively easy tasks at the beginning and gradually more complex tasks as their skills 

increase (Vinyals et al. 2019). Besides that, curriculum training is used to investigate the 

emergence of agent behavior. Curricula describe engineered changes in the dynamics of the 

environment. Agents adapt their behaviors over time in response to the strategic changes of 

others, which can yield arms races between agents. This process of continual adaption is 

referred to autocurricula (Leibo et al. 2019), which have been reported in several works 

(Baker et al. 2020; Sukhbaatar et al. 2017; Svetlik et al. 2017).

Second, we recognize a trend towards deep neural networks embedded with recurrent 

units to memorize experience. By having the ability to track the history of state transitions 

and the decisions of other agents, the non-stationarity of the environment due to multiple 

decision-makers and partially observable states can be addressed in small problems (Omid-

shafiei et al. 2017), and can be managed sufficiently well in complex problems (Baker et al. 

2020; Berner et al. 2019; Jaderberg et al. 2019).

Third, an active line of research is exploring the development of communication skills. 

Due to the rise of deep learning methods, new computational approaches are available to 

investigate the emergence of language between interactive agents (Lazaridou and Baroni 

2020). Despite the plethora of works that analyze emergent behaviors and semantics, 

many works propose methods that endow agents with communication skills. By express-

ing their intension, agents can align their coordination and find a consensus (Foerster et al. 

2016). The non-stationarity from the perspective of a single learner can be eluded when 

agents disclose their history. Moreover, agents can share their local information with others 

to alleviate partial observability (Foerster et al. 2018b; Omidshafiei et al. 2017).

Table 4  Our identified trends in MADRL and the addressed challenges

Trend Addressed challenge(s)

Curriculum learning Scalability

Memory Non-stationarity, partial observability

Communication Non-stationarity, coordination, partial observability

CTDE Non-stationarity, coordination, partial observabil-
ity, credit assignment, scalability
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Fourth and last, we note a clear trend towards the CTDE paradigm that enables the sha-

ing of  information during the training. Local information such as the observation-action 

history, function values, or policies can be made available to all agents during the train-

ing, which renders the environment stationary from the viewpoint of an individual agent 

and may diminish partial observability (Lowe et al. 2017). Further, the credit assignment 

problem can be addressed when information is available about all agents, and a centralized 

mechanism can attribute the individual contribution to the respective agent (Foerster et al. 

2018b). Further challenges that can be loosened are coordination and scalability when 

the lack of information of an individual agent is compensated, and the learning process is 

accelerated (Gupta et al. 2017).

6.2  Future work

Next to our identified trends, which are already under active research, we recognize areas 

that have not been sufficiently explored yet. One such area is multi-goal learning where 

each agent has an individually associated goal that needs to be optimized. However, global 

optimality can only be accomplished if agents also allow others to be successful in their 

task (Yang et al. 2020). Typical scenarios are cooperative tasks such as public good dilem-

mas, where agents are obliged to the sustainable use of limited resources, or autonomous 

driving, where agents have individual destinations and are supposed to coordinate the 

path-finding to avoid crashes. A similar direction is multi-task learning where agents are 

expected to perform well not only  on one single but  also on related  other tasks (Omid-

shafiei et  al. 2017; Taylor and Stone 2009). Besides multi-goal and multi-task learning, 

another avenue for future work is present in safe MADRL. Safety is a highly desired prop-

erty because autonomously acting agents are expected to ensure system performance while 

holding to safety guarantees during learning and employment (García et al. 2015). Several 

works in single-agent RL are concerned with safety concepts, but its applicability to mul-

tiple agents is limited and still in its infancy (Zhang and Bastani 2019; Zhu et al. 2020). 

Akin to the growing interest in learning to communicate, a similar effect may happen in 

the multi-agent domain, where deep learning methods open new paths. For an application 

perspective on safe autonomous driving, one can consider the article by Shalev-Shwartz 

et al. (2016). Another possible direction for future research offers the intersection between 

MADRL and evolutionary methodologies. Evolutionary algorithms have been used in ver-

satile contexts of multi-agent RL, e.g. for building intrinsic motivation (Wang et al. 2019), 

shaping rewards (Jaderberg et al. 2019), generating curricula (Long et al. 2020) and analyz-

ing dynamics (Bloembergen et al. 2015). Since evolution requires many entities to adapt, 

multi-agent RL is a natural playground for such algorithms.

Beyond the current challenges and reviewed literature of Sect. 5, we identify two prob-

lems that we regard as the most challenging problems to overcome by future work. We 

primarily choose these two problems since they are the ones that matter the most when 

it comes to the applicability of algorithms to real-world scenarios. Most research focuses 

on learning within homogeneous settings where agents share common interests and opti-

mize a mutual goal. For instance, the learning of communication is mainly studied in dec-

POMDPs, where agents are expected to optimize upon a joint reward signal. When agents 

share common interests, the CTDE paradigm is usually a beneficial choice to exchange 

information between agents, and problems like non-stationarity, partial observability, and 

coordination can be diminished. However, heterogeneity implies that agents may have 

their own interests and goals, individual experience and knowledge, or different skills and 
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capabilities. Limited research has been conducted in heterogeneous scenarios, although 

many real-world problems naturally comprise a mixture of different entities. Under real-

world conditions, agents have only access to local and heterogeneous information on which 

decisions must be taken. The fundamental problem in the multi-agent domain is and ever 

has been the curse of dimensionality (Busoniu et  al. 2008; Hernandez-Leal et  al. 2019). 

The state-action space and the combinatorial possibilities of agent interactions increase 

exponentially by the number of agents, which renders sufficient exploration itself a difficult 

problem. This is intensified when agents have only access to partial observations of the 

environment or when the environment is of continuous nature. Although powerful function 

approximators like neural networks can cope with continuous spaces and generalize well 

over large spaces, open questions remain like how to explore large and complex spaces suf-

ficiently well and how to solve large combinatorial optimization problems.

7  Conclusion

Even though multi-agent reinforcement learning enjoys a long record, historical approaches 

hardly exceeded the complexity of discretized environments with a limited amount of 

states and actions (Busoniu et al. 2008; Tuyls and Weiss 2012). Since the breakthrough of 

deep learning methods, the field is undergoing a rapid transformation, and many previously 

unsolved problems have become step by step tractable. Latest advances showed that tasks 

with real-world complexity could be mastered (Baker et al. 2020; Berner et al. 2019; Jader-

berg et al. 2019; Vinyals et al. 2019). Still, MADRL is a young field which attracts growing 

interest, and the amount of published literature rises swiftly. In this article, we surveyed 

recent works that combine deep learning methods with multi-agent reinforcement learn-

ing. We analyzed training schemes that are used to learn policies, and we reviewed patterns 

of agent behavior that emerge when multiple entities interact simultaneously. In addition, 

we systematically investigated challenges that are present in the multi-agent context and 

studied recent approaches that are under active research. Finally, we outlined trends which 

we have identified in state-of-the-art literature and proposed possible avenues for future 

work. With this contribution, we want to equip interested readers with the necessary tools 

to understand the contemporary challenges in MADRL by providing a more holistic over-

view of the recent approaches. We want to emphasize its potential and reveal opportunities 

as well as its limitations. In the foreseeable future, we expect an abundance of new litera-

ture to emanate and, hence, we want to encourage the community for further developments 

in this interesting and young field of research.
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