
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL

Int. J. Robust. Nonlinear Control 0000; 00:1–31

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/rnc

Multi-agent deployment for visibility coverage in

polygonal environments with holes

Karl J. Obermeyer1∗, Anurag Ganguli2, Francesco Bullo1

1 Center for Control, Dynamical Systems, and Computation, Univ. of California at Santa Barbara, CA 93106, USA,

karl@engineering.ucsb.edu, bullo@engineering.ucsb.edu
2 UtopiaCompression Corporation, 11150 W. Olympic Blvd, Suite 820 Los Angeles, CA 90064, USA

anurag@utopiacompression.com

SUMMARY

This article presents a distributed algorithm for a group of robotic agents with omnidirectional vision to

deploy into nonconvex polygonal environments with holes. Agents begin deployment from a common

point, possess no prior knowledge of the environment, and operate only under line-of-sight sensing and

communication. The objective of the deployment is for the agents to achieve full visibility coverage of the

environment while maintaining line-of-sight connectivity with each other. This is achieved by incrementally

partitioning the environment into distinct regions, each completely visible from some agent. Proofs are

given of (i) convergence, (ii) upper bounds on the time and number of agents required, and (iii) bounds on

the memory and communication complexity. Simulation results and description of robust extensions are also

included. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: multi-agent system, sensor network, robotic network, swarm, visibility, line of sight,

deployment, coverage

1. INTRODUCTION

Robots are increasingly being used for surveillance missions too dangerous for humans, or which

require duty cycles beyond human capacity. In this article we design a distributed algorithm for

deploying a group of mobile robotic agents with omnidirectional vision into nonconvex polygonal

environments with holes, e.g., an urban or building floor plan. Agents are identical except for their

unique identifiers (UIDs), begin deployment from a common point, possess no prior knowledge of

the environment, and operate only under line-of-sight sensing and communication. The objective

of the deployment is for the agents to achieve full visibility coverage of the environment while

maintaining line-of-sight connectivity (at any time the agents’ visibility graph consists of a single

connected component). We call this the Distributed Visibility-Based Deployment Problem with

∗Correspondence to: karl.obermeyer@gmail.com

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using rncauth.cls [Version: 2010/03/27 v2.00]

2 K. J. OBERMEYER, A. GANGULI, F. BULLO

Connectivity. Once deployed, the agents may supply surveillance information to an operator through

the ad-hoc line-of-sight communication network. A graphical description of our objective is given

in Fig. 1.

Figure 1. This sequence (left to right, top to bottom) shows a simulation run of the distributed visibility-
based deployment algorithm described in Sec. 6. Agents (black disks) initially are colocated in the
lower left corner of the environment. As the agents spread out, they claim areas of responsibility
(green) which correspond to cells of the incremental partition tree TP . Blue lines show line-of-
sight connections between agents responsible for neighboring vertices of TP . Once agents have
settled to their final positions, every point in the environment is visibile to some agent and the
agents form a line-of-sight connected network. An animation of this simulation can be viewed at

http://motion.me.ucsb.edu/∼karl/movies/dwh.mov .

Approaches to visibility coverage problems can be divided into two categories: those where

the environment is known a priori and those where the environment must be discovered. When

the environment is known a priori, a well-known approach is the Art Gallery Problem in which

one seeks the smallest set of guards such that every point in a polygon is visible to some guard.

This problem has been shown both NP-hard [1] and APX-hard [2] in the number of vertices n

representing the environment. The best known approximation algorithms offer solutions only within

a factor of O(log g), where g is the optimum number of agents [3]. The Art Gallery Problem with

Connectivity is the same as the Art Gallery Problem, but with the additional constraint that the

guards’ visibility graph must consist of a single connected component, i.e., the guards must form a

connected network by line of sight. This problem is also NP-hard in n [4]. Many other variations on

the Art Gallery Problem are well surveyed in [5, 6, 7]. The classical Art Gallery Theorem, proven

first in [8] by induction and in [9] by a beautiful coloring argument, states that ⌊n
3 ⌋ vertex guards† are

always sufficient and sometimes necessary to cover a polygon with n vertices and no holes. The Art

Gallery Theorem with Holes, later proven independently by [10] and [11], states that ⌊n+h
3 ⌋ point

†A vertex guard is a guard which is located at a vertex of the polygonal environment.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

MULTI-AGENT DEPLOYMENT 3

guards‡ are always sufficient and sometimes necessary to cover a polygon with n vertices and h

holes. If guard connectivity is required, [12] proved by induction and [13] by a coloring argument,

that ⌊n−2
2 ⌋ vertex guards are always sufficient and occasionally necessary for polygons without

holes. We are not aware of any such bound for connected coverage of polygons with holes. For

polygonal environments with holes, centralized camera-placement algorithms described in [14] and

[15] take into account practical imaging limitations such as camera range and angle-of-incidence,

but at the expense of being able to obtain worst-case bounds as in the Art Gallery Theorems. The

constructive proofs of the Art Gallery Theorems rely on global knowledge of the environment and

thus are not amenable to emulation by distributed algorithms.

One approach to visibiliy coverage when the environment must be discovered is to first use SLAM

(Simultaneous Localization And Mapping) techniques [16] to explore and build a map of the entire

environment, then use a centralized procedure to decide where to send agents. In [17], for example,

deployment locations are chosen by a human user after an initial map has been built. Waiting for

a complete map of the entire environment to be built before placing agents may not be desirable.

In [18] agents fuse sensor data to build only a map of the portion of the environment covered so

far, then heuristics are used to deploy agents onto the frontier of the this map, thus repeating this

procedure incrementally expands the covered region. For any techniques relying heavily on SLAM,

however, synchronization and data fusion can pose significant challenges under communication

bandwidth limitations. In [19] agents discover and achieve visibility coverage of an environment

not by building a geometric map, but instead by sharing only combinatorial information about the

environment, however, the strategy focuses on the theoretical limits of what can be achieved with

minimalistic sensing, thus the amount of robot motion required becomes impractical.

Most relevant to and the inspiration for the present work are the distributed visibility-based

deployment algorithms, for polygonal environments without holes, developed recently by Ganguli

et al [20, 21, 22]. These algorithms are simple, require only limited impact-based communication,

and offer worst-case optimal bounds on the number of agents required. The basic strategy is to

incrementally construct a so-called nagivation tree through the environment. To each vertex in the

navigation tree corresponds a region of the the environment which is completely visible from that

vertex. As agents move through the environment, they eventually settle on certain nodes of the

navigation tree such that the entire environment is covered.

The contribution of this article is the first distributed deployment algorithm which solves, with

provable performance, the Distributed Visibility-Based Deployment Problem with Connectivity in

polygonal environments with holes. Our algorithm operates using line-of-sight communication and

a so-called partition tree data structure similar to the navigation tree used by Ganguli et al as

described above. The algorithms of Ganguli et al fail in polygonal environments with holes because

branches of the navigation tree conflict when they wrap around one or more holes. Our algorithm,

however, is able to handle such “branch conflicts”. Given at least ⌊n+2h−1
2 ⌋ agents in an environment

with n vertices and h holes, the deployment is guaranteed to achieve full visibility coverage of

the environment in time O(n2 + nh), or time O(n + h) under certain technical conditions. We

also prove bounds on the memory and communication complexity. The deployment behaves in

simulations as predicted by the theory and can be extended to achieve robustness to agent arrival,

‡A point guard is a guard which may be located anywhere in the interior or on the boundary of a polygonal environment.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

4 K. J. OBERMEYER, A. GANGULI, F. BULLO

agent failure, packet loss, removal of an environment edge (such as an opening door), or deployment

from multiple roots.

This article is organized as follows. We begin with some technical definitions in Sec. 2,

then a precise statement of problem and assumptions in Sec. 3. Details on the agents’ sensing,

dynamics, and communication are given in Sec. 4. Algorithm descriptions, including pseudocode

and simulation results, are presented in Sec. 5 and Sec. 6. We conclude in Section 7.

2. NOTATION AND PRELIMINARIES

We begin by introducing some basic notation. The real numbers are represented by R. Given a

set, say A, the interior of A is denoted by int(A), the boundary by ∂A, and the cardinality by |A|.

Two sets A and B are openly disjoint if int(A) ∩ int(B) = ∅. Given two points a, b ∈ R
2, [a, b] is

the closed segment between a and b. Similarly,]a, b[is the open segment between a and b. The

number of robotic agents is N and each of these agents has a unique identifier (UID) taking a

value in {0, . . . , N − 1}. Agent positions are P = (p[0], . . . , p[N−1]), a tuple of points in R
2. Just as

p[i] represents the position of agent i, we use such superscripted square brackets with any variable

associated with agent i, e.g., as in Table IV.

We turn our attention to the environment, visibility, and graph theoretic concepts. The

environment E is polygonal with vertex set VE , edge set EE , total vertex count n = |VE | = |EE |,

and hole count h. Given any polygon c ⊂ E , the vertex set of c is Vc and the edge set is Ec. A

segment [a, b] is a diagonal of E if (i) a and b are vertices of E , and (ii)]a, b[⊂ int(E). Let e be

any point in E . The point e is visible from another point e′ ∈ E if [e, e′] ⊂ E . The visibility polygon

V(e) ⊂ E of e is the set of points in E visible from e (Fig. 2). The vertex-limited visibility polygon

Ṽ(e) ⊂ V is the visibility polygon V(e) modified by deleting every vertex which does not coincide

with an environment vertex (Fig. 2). A gap edge of V(e) (resp. Ṽ(e)) is defined as any line segment

[a, b] such that]a, b[⊂ int(E), [a, b] ⊂ ∂V(e) (resp. [a, b] ⊂ ∂Ṽ(e)), and it is maximal in the sense

that a, b ∈ ∂E . Note that a gap edge of Ṽ(e) is also a diagonal of E . For short, we refer to the gap

edges of V(e) as the visibility gaps of e. A set R ⊂ E is star-convex if there exists a point e ∈ R such

Figure 2. In a simple nonconvex polygonal environment are shown examples of the visibility polygon (red,
left) of a point observer (black disk), and the vertex-limited visibility polygon (red, right) of the same point.

that R ⊂ V(e). The kernel of a star-convex set R, is the set {e ∈ E|R ⊂ V(e)}, i.e., all points in R

from which all of R is visible. The visibility graph Gvis,E(P) of a set of points P in environment E

is the undirected graph with P as the set of vertices and an edge between two vertices if and only if

they are (mutually) visible. A tree is a connected graph with no simple cycles. A rooted tree is a tree

with a special vertex designated as the root. The depth of a vertex in a rooted tree is the minimum

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

MULTI-AGENT DEPLOYMENT 5

number of edges which must be treversed to reach the root from that vertex. Given a tree T , VT is

its set of vertices and ET its set of edges.

3. PROBLEM DESCRIPTION AND ASSUMPTIONS

The Distributed Visibility-Based Deployment Problem with Connectivity which we solve in the

present work is formally stated as follows:

Design a distributed algorithm for a network of autonomous robotic agents to deploy

into an unmapped environment such that from their final positions every point in the

environment is visible from some agent. The agents begin deployment from a common

point, their visibility graph Gvis,E(P) is to remain connected, and they are to operate

using only information from local sensing and line-of-sight communication.

By local sensing we intend that each agent is able to sense its visibiliity gaps and relative positions

of objects within line of sight. Additionally, we make the following main assumptions:

(i) The environment E is static and consists of a simple polygonal outer boundary together with

disjoint simple polygonal holes. By simple we mean that each polygon has a single boundary

component, its boundary does not intersect itself, and the number of edges is finite.

(ii) Agents are identical except for their UIDs (0, . . . , N − 1).

(iii) Agents do not obstruct visibility or movement of other agents.

(iv) Agents are able to locally establish a common reference frame.

(v) There are no communication errors nor packet losses.

Later, in Sec. 6.6 we will describe how our nominal deployment algorithm can be extended to

relax some assumptions.

4. NETWORK OF VISUALLY-GUIDED AGENTS

In this section we lay down the sensing, dynamic, and communication model for the agents. Each

agent has “omnidirectional vision” meaning an agent possesses some device or combination of

devices which allows it to sense within line of sight (i) the relative position of another agent, (ii)

the relative position of a point on the boundary of the environment, and (iii) the gap edges of its

visibility polygon.

For simplicity, we model the agents as point masses with first order dynamics, i.e., agent i may

move through E according to the continuous time control system

ṗ[i] = u[i], (1)

where the control u[i] is bounded in magnitude by umax. The control action depends on time,

values of variables stored in local memory, and the information obtained from communication and

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

6 K. J. OBERMEYER, A. GANGULI, F. BULLO

sensing. Although we present our algorithms using these first order dynamics, the crucial property

for convergence is only that an agent is able to navigate along any (unobstructed) straight line

segment between two points in the environment E , thus the deployment algorithm we describe is

valid also for higher order dynamics.

The agents’ communication graph is precisely their visibility graph Gvis,E(P), i.e., any visibility

neighbors (mutually visible agents) may communicate with each other. Agents may send their

messages using, e.g., UDP (User Datagram Protocol). Each agent (i = 0, . . . , N − 1) stores received

messages in a FIFO (First-In-First-Out) buffer In Buffer[i] until they can be processed. Messages

are sent only upon the occurrence of certain asynchronous events and the agents’ processors need

not be synchronized, thus the agents form an event-driven asynchronous robotic network similar to

that described, e.g., in [23]. In order for two visibility neighbors to establish a common reference

frame, we assume agents are able to solve the correspondence problem: the ability to associate the

messages they receive with the corresponding robots they can see. This may be accomplished, e.g.,

by the robots performing localization, however, as mentioned in Sec. 1, this might use up limited

communication bandwidth and processing power. Simpler solutions include having agents display

different colors, “license plates”, or periodic patterns from LEDs [24].

5. INCREMENTAL PARTITION ALGORITHM

We introduce a centralized algorithm to incrementally partition the environment E into a finite set

of openly disjoint star-convex polygonal cells. Roughly, the algorithm operates by choosing at each

step a new vantage point on the frontier of the uncovered region of the environment, then computing

a cell to be covered by that vantage point (each vantage point is in the kernel of its corresponding

cell). The frontier is pushed as more and more vantage point - cell pairs are added until eventually

the entire environment is covered. The vantage point - cell pairs form a directed rooted tree structure

called the partition tree TP . This algorithm is a variation and extension of an incremental partition

algorithm used in [22], the main differences being that we have added a protocol for handling

holes and adapted the notation to better fit the added complexity of handling holes. The deployment

algorithm to be described in Sec. 6 is a distributed emulation of the centralized incremental partition

algorithm we present here.

Before examining the precise pseudocode Table I, we informally step through the incremental

partition algorithm for the simple example of Fig. 3a-f. This sequence shows the environment

partition together with corresponding abstract representations of the partition tree TP . Each vertex

of TP is a vantage point - cell pair and edges are based on cell adjacency. Given any vertex of TP ,

say (pξ, cξ), ξ is the PTVUID (Partition Tree Vertex Unique IDentifier). The PTVUID of a vertex

at depth d is a d-tuple, e.g., (1), (2,1), or (1,1,1). The symbol ∅ is used as the root’s PTVUID.

The algorithm begins with the root vantage point p∅. The cell of p∅ is the grey shaded region c∅ in

Fig. 3a, which is the vertex-limited visibility polygon Ṽ(p∅). According to certain technical criteria,

made precise later, child vantage points are chosen on the endpoints of the unexplored gap edges.

In Fig. 3a, dashed lines show the unexplored gap edges of c∅. Selecting p(1) as the next vantage

point, the corresponding cell c(1) becomes the portion of Ṽ(p(1)) which is across the parent gap

edge and extends away from the parent’s cell. The vantage point p(2) and its cell c(2) are generated

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

MULTI-AGENT DEPLOYMENT 7

Table I. Centralized Incremental Partition Algorithm

INCREMENTAL PARTITION(E , p∅)

1: {Compute and Insert Root Vertex into TP}

2: c∅ ← Ṽ(p∅);
3: for each gap edge g of cξ do
4: label g as unexplored in c∅;
5: insert (p∅, c∅) into TP ;
6: {Main Loop}
7: while any cell in TP has unexplored gap edges do
8: cζ ← any cell in TP with unexplored gap edges;
9: g ← any unexplored gap edge of cζ ;

10: (pξ, cξ)← CHILD(E , TP , ζ, g); {See Tab. II}
11: {Check for Branch Conflicts}
12: if there exists any cell cξ′ in TP which is in branch conflict with cξ then
13: discard (pξ, cξ);
14: label g as phantom wall in cζ ;
15: else
16: insert (pξ, cξ) into TP ;
17: label g as child in cζ ;
18: return TP ;

in the same way. There are now three vertices, (p∅, c∅), (p(1), c(1)), and (p(2), c(2)) in TP (Fig. 3b).

In a similar manner, two more vertices, (p(2,1), c(2,1)) and (p(2,1,1), c(2,1,1)), have been added in

Fig. 3c. An intersection of positive area is found between cell c(2,1,1) and the cell of another branch

of TP , namely c(1). To solve this branch conflict, the cell c(2,1,1) is discarded and a special marker

called a phantom wall (thick dashed line in Fig. 3d) is placed where its parent gap edge was. A

phantom wall serves to indicate that no branch of TP should cross a particular gap edge. The vertex

(p(1,2), c(1,2)) added in Fig. 3e thus can have no children. Finally, Fig. 3f shows the remaining

vertices (p(1,1), c(1,1)) and (p(1,1,1), c(1,1,1)) added to TP so that the entire environment is covered

and the algorithm terminates.

Now we turn our attention to the pseudocode Table I for a precise description of the algorithm.

The input is the environment E and a single point p∅ ∈ VE . The output is the partition tree TP . We

have seen that each vertex of the partition tree is a vantage point - cell pair. In particular, a cell is a

data structure which stores not only a polygonal boundary, but also a label on each of the polygon’s

gap edges. A gap edge label takes one of four possible values: parent, child, unexplored,

or phantom wall. These labels allow the following exact definition of the partition tree.

Definition 5.1 (Partition Tree TP)

The directed rooted partition tree TP has

(i) vertex set consisting of vantage point - cell pairs produced by the incremental partition

algorithm of Table I, and

(ii) a directed edge from vertex (pζ , cζ) to vertex (pξ, cξ) if and only if cζ has a child gap edge

which coincides with a parent gap edge of cξ.

Stepping through the pseudocode Table I, lines 1-5 compute and insert the root vertex (p∅, c∅) into

TP . Upon entering the main loop at line 7, line 8 selects a cell cζ arbitrarily from the set of cells

in TP which have unexplored gap edges. Line 9 selects an arbitrary unexplored gap edge g

of cζ . The next vantage point candidate will be placed on an endpoint of g by a call on line 10 to

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

8 K. J. OBERMEYER, A. GANGULI, F. BULLO

3
56

4

21

c∅

p∅

p∅, c∅

(a)

c(1)

c∅

p(2) p(1)

c(2)

p∅

p(1), c(1)

p∅, c∅

p(2), c(2)

(b)

c(2,1,1)

c(1)

c(2)

p(2,1)

c(2,1)

p(2,1,1)

p∅

c∅

p(2) p(1)

p(1), c(1)

p∅, c∅

p(2,1), c(2,1)

p(2,1,1), c(2,1,1)

p(2), c(2)

(c)

Figure 3. This simple example shows how the incremental partition algorithm of Table I progresses (a)-(f).
Cell vantage points are shown by black disks. The portion of the environment E covered at each stage is
shown in grey (left) along with a corresponding abstract depiction of the partition tree (right). A phantom
wall (thick dashed line), shown first in (d), comes about when there is a branch conflict, i.e., when cells
from different branches of the partition tree TP are not openly disjoint. The final partition can be used to

triangulate the environment as shown in Fig. 4.

s

the CHILD function of Table II. The PTVUID ξ is computed by the successor function on line 1 of

Table II. For any d-tuple ζ and positive integer i, successor(ζ, i) is simply the (d + 1)-tuple which is

the concatenation of ζ and i, e.g., successor((2, 1), 1)) = (2, 1, 1). The CHILD function constructs

a candidate vantage point pξ and cell cξ as follows. In the typical case, when the parent cell cζ has

more than three edges, cζ’s vertices are enumerated counterclockwise from pζ , e.g., as c∅’s vertices

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

MULTI-AGENT DEPLOYMENT 9

c(1)
p(2) p(1)

c(2)

p(2,1)

c(2,1)

p∅

c∅

p(1), c(1)

p∅, c∅

p(2,1), c(2,1)

p(2), c(2)

(d)

c(2)

p(1)

c(1)

p(1,2)

c(1,2)

c(2,1)

p(2,1)

p∅

c∅

p(2)

p(1,2), c(1,2)

p(1), c(1)

p∅, c∅

p(2,1), c(2,1)

p(2), c(2)

(e)

c(1,1,1)

p(2,1)

c(2,1)

c(1)
p(1,1)

p(1,2)

c(1,2)

c(1,1)
p(1,1,1)

p∅

c∅

p(2) p(1)

c(2)

p(1,1,1), c(1,1,1)

p(1,1), c(1,1) p(1,2), c(1,2)

p(1), c(1)

p∅, c∅

p(2,1), c(2,1)

p(2), c(2)

(f)

Figure 3. (continuation)

in Fig. 3a or Fig. 6. In the special case of cζ being a triangle, e.g., as the triangular cells in Fig. 6, cζ’s

vertices are enumerated such that the 3 lands on cζ’s parent gap edge. The vertex of g which is odd

in the enumeration is selected as pξ. Occasionally there may be double vantage points (colocated),

e.g., as p(2) and p(3) in Fig. 6. We will see in Sec. 5.1 that this parity-based vantage point selection

scheme is important for obtaining a special subset of the vantage points called the sparse vantage

point set. Returning to Table I, the final portion of the main loop, lines 11-17, checks whether cξ

is in branch conflict or (pξ, cξ) should be added permanently to TP . A cell cξ is in branch conflict

with another cell cξ′ if and only if cξ and cξ′ are not openly disjoint (see Fig. 5). The main algorithm

terminates when there are no more unexplored gap edges in TP .

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

10 K. J. OBERMEYER, A. GANGULI, F. BULLO

Table II. Incremental Partition Subroutine

CHILD(E , TP , ζ, g)

1: ξ ← successor(ζ, i), where g is the ith nonparent gap edge of cζ counterclockwise from
pζ ;

2: if |Vcξ | > 3 then
3: enumerate cζ ’s vertices 1, 2, 3, . . . counterclockwise from pζ ;
4: else
5: enumerate cζ ’s vertices so that pζ is assigned 1 and the remaining vertices of cζ are

assigned 2 and 3
such that the vertex assigned 3 is on the parent gap edge of cζ ;

6: pξ ← vertex on g assigned an odd integer in the enumeration;

7: cξ ← Ṽ(pξ);
8: truncate cξ at g such that only the portion remains which is across g from pζ ;
9: delete from cξ any vertices which lie across a phantom wall from pξ;

10: for each gap edge g′ of cξ do
11: if g′ == g then
12: label g′ as parent in cξ;

13: else if g′ coincides with an existing phantom wall then
14: label g′ as phantom wall in cξ;
15: else
16: label g′ as unexplored in cξ;
17: return (pξ, cξ);

Figure 4. The partition tree produced by the centralized incremental partition algorithm of Table I or the
distributed deployment algorithm of Table VI can be used to triangulate an environment, as shown here for
the simple example of Fig. 3. The triangulation is constructed by drawing diagonals (dashed lines) from

each vantage point (black disks) to the visible environment vertices in its cell.

An important difference between our incremental partition algorithm and that of Ganguli et al

[22] is that the set of cells computed by our incremental partition is not unique. This is because

the freedom in choosing cell cζ and gap g on lines 8-9 of Table I allows different executions of the

algorithm to fill the same part of the environment with different branches of TP . This may result

in different sets of phantom walls as well. A phantom wall is only created on line 14 of Table I

when there is a branch conflict. This discarding may seem computationally wasteful because the

environment could just be made simply connected by choosing h phantom walls (one for each hole)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

MULTI-AGENT DEPLOYMENT 11

cξ

cξ′pξ′

pξ

(a)

pξ

pξ′

cξ

cξ′

(b)

pξ

cξ pξ′

cξ′

(c)

Figure 5. The incremental partition algorithm of Table I and distributed deployment algorithm of Table VI
may discard a cell cξ if it is in branch conflict with another cell cξ′ already in the partition tree, i.e., when cξ

and cξ′ and are not openly disjoint. In these three examples, blue represents one cell cξ , red another cell cξ′ ,
and purple their intersection cξ ∩ cξ′ . A cell can even conflict with it’s own parent if they enclose a hole as

in (c).

prior to executing the algorithm. Such an approach, however, would not be amenable to distributed

emulation without a priori knowledge of the environment.

The following important properties we prove for the incremental partition algorithm are similar

to properties we obtain for the distributed deployment algorithm in Sec. 6.

Lemma 5.2 (Star-Convexity of Partition Cells)

Any partition tree vertex (pξ, cξ) constructed by the incremental partition algorithm of Table I, has

the properties that

(i) the cell cξ is star-convex, and

(ii) the vantage point pξ is in the kernel of cξ.

Proof

Given a star-convex set, say S, let K be the kernel of S. Suppose that we obtain a new set S′ by

truncating S at a single line segment l who’s endpoints lie on the boundary ∂S. It is easy so see

that the kernel of S′ contains K ∩ S′, thus S′ must be star-convex if K ∩ S′ is nonempty. Indeed

l could not possibly block line of sight from any point in K ∩ S′ to any point p in S′, otherwise

p would have been truncated. Inductively, we can obtain a set S′ by truncating the set S at any

finite number of line segments and the kernel of S′ will be a superset of S′ ∩ K. Now consider a

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

12 K. J. OBERMEYER, A. GANGULI, F. BULLO

3

2

1

3

5

3

3

3

46

2

1

2
1 1

1

2

2

p∅

p(1)

p(2,1)

p(3,1,1)

p(3,1)

p(3), p(2)
p(2,1,1)

Figure 6. The example used in Fig. 3 showed a typical incremental partition in which there were neither
double vantage points nor any triangular cells. This example, on the other hand, shows these special cases.
Disks, black or white, show vantage points produced by the incremental partition algorithm of Table I.
Integers show enumerations of the cells used for the parity-based vantage point selection scheme. The
double vantage points p(2) and p(3) are colocated. The cells c(2), c(3), c(2,1), c(3.1), c(2,1,1), and c(3,1,1)

are triangular. The vantage points colored black are the sparse vantage points found by the postprocessing
algorithm of Table III. Under the distributed deployment algorithm of Table VI, robotic agents position

themselves at sparse vantage points.

partition tree vertex (pξ, cξ). By definition, the visibility polygon V(pξ) is star-convex and pξ is in

the kernel. By the above reasoning, the vertex-limited visibility polygon Ṽ(pξ) is also star-convex

and has pξ in its kernel because Ṽ(pξ) can be obtained from V(pξ) by a finite number of line segment

truncations (lines 8 and 9 of Table II). Likewise, cξ must be star-convex with pξ in its kernel because

cξ is obtained from Ṽ(pξ) by a finite number of line segment truncations at the parent gap edge and

phantom walls.

Theorem 5.3 (Properties of the Incremental Partition Algorithm)

Suppose the incremental partition algorithm of Table I is executed on an environment E with n

vertices and h holes. Then

(i) the algorithm returns in finite time a partition tree TP such that every point in the environment

is visible to some vantage point,

(ii) the visibility graph of the vantage points Gvis,E({pξ|(pξ, cξ) ∈ TP}) consists of a single

connected component,

(iii) the final number of vertices in TP (and thus the total number of vantage points) is no greater

than n + 2h − 2,

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

MULTI-AGENT DEPLOYMENT 13

(iv) there exist environments where the final number of vertices in TP is equal to the upper bound

n + 2h − 2, and

(v) the final number of phantom walls is precisely h.

Proof

We prove the statements in order. The algorithm processes unexplored gap edges one by one

and terminates when there are no more unexplored gap edges. Once an unexplored gap edge

has been processed, it is never processed again because its label changes to phantom wall or

child. Gap edges of cells are diagonals of the environment and there are no more than
(

n
2

)

= n2−n
2

possible diagonals, which is finite, therefore the algorithm must terminate in finite time. Lemma 5.2

guarantees that if the entire environment is covered by cells of TP , then every point is visible to some

vantage point. Suppose the final set of cells does not cover the entire environment. Then there must

be a portion of the environment which is topologically isolated from the rest of the environment

by phantom walls, otherwise an unexplored gap edge would have expanded into that region.

However, this would mean that a phantom wall was created at the parent gap edge of a candidate

cell which was not in branch conflict. This is not possible because a phantom wall is only ever

created if there is a branch conflict (lines 12-14 Table I). This completes the proof of statement (i).

Statement (ii) follows from Lemma 5.2 together with the fact that every vantage point is placed

on the boundary of its parent’s cell. Given two vantage points in TP , say pξ and pξ′ , a path

through Gvis,E({pξ|(pξ, cξ) ∈ TP}) from pξ to pξ′ can be constructed as follows. Follow parent-

child visibility links up to the root vantage point p∅, then follow parent-child visibility links from

p∅ down to pξ′ . Since such a path can always be constructed between any pair of vantage points,

Gvis,E({pξ|(pξ, cξ) ∈ TP}) must consist of a single connected component.

For statement (iii), we triangulate E by triangulating the cells of TP individually as in Fig. 4.

Each cell cξ is triangulated by drawing diagonals from pξ to the vertices of cξ. The total number of

triangles in any triangulation of a polygonal environment with holes is n + 2h − 2 (Lemma 5.2 in

[6]). Since there is at least one triangle per cell and at most one vantage point per cell, the number

of vantage points cannot exceed the maximum number of triangles n + 2h − 2.

Statement (iv) is proven by the example in Fig. 7a.

For statement (v), we argue topologically. Suppose the final number of phantom walls were less

than h. Then somewhere two branches of the parition tree must share a gap edge with no phantom

wall separating them. If this shared gap edge is not a phantom wall, it must be either (1) a child in

branch conflict, or (2) unexplored. Either way, the algorithm would have tried to create a cell there

but then deleted it and created a phantom wall; a contradiction. Now suppose there were more than

h phantom walls. Then a cell would be topologically isolated by phantom walls from the rest of the

environment. This is not possible because phantom walls can never be created at the parent-child

gap edge between two cells. Since the final number of phantom walls can be neither less nor greater

than h, it must be h.

5.1. A Sparse Vantage Point Set

Suppose we were to deploy robotic agents onto the vantage points produced by the incremental

partition algorithm (one agent per vantage point). Then, as Theorem 5.3 guarantees, we would

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

14 K. J. OBERMEYER, A. GANGULI, F. BULLO

p(1,1,1)

p∅

p(1)

p(1,1)

(a)

p(1)

p∅

p(1,1)

(b)

Figure 7. (a) An example of when the final number of vantage points in TP is equal to the upper bound

n + 2h− 2 given in Theorem 5.3. (b) An example of when the number of points in R
2 where at least one

sparse vantage point is located is equal to the upper bound
j

n+2h−1
2

k

given in Theorems 5.5 and 6.4.

Table III. Postprocessing of Partition Tree

LABEL VANTAGE POINTS(E , TP)

1: while there exists a vantage point pξ in TP such that pξ has not yet been labeled

and
`

pξ is at a leaf or all child vantage points of pξ have been labeled
´

do
2: if |Vcξ | == 3 and pξ has exactly one child vantage point labeled sparse then
3: label pξ as nonsparse;
4: else
5: label pξ as sparse;

achieve our goal of complete visibility coverage with connectivity. The number of agents required

would be no greater than the number of vantage points, namely n + 2h − 2. This upper bound,

however, can be greatly improved upon. In order to reduce the number of vantage points agents

must deploy to, the postprocessing algorithm in Table III takes the partition tree output by the

incremental partition algorithm and labels a subset of the vantage points called the sparse vantage

point set. Starting at the leaves of the partition tree and working towards the root, vantage points are

labeled either nonsparse or sparse according to criterion on line 2 of Table III. As proven in

Theorem 5.5 below, the sparse vantage points are suitable for the coverage task and their cardinality

has a much better upper bound than the full set of vantage points. All the vantage points in the

example of Fig. 3 are sparse. Fig. 6 shows an example of when only a proper subset of the vantage

points is sparse.

Lemma 5.4 (Properties of a Child Vantage Point of a Triangular Cell)

Let (pξ, cξ) be a partition tree vertex constructed by the incremental partition algorithm of Table I

and suppose cξ has a parent cell cζ which is a triangle. Then pξ is in the kernel of pζ . Furthermore,

if pζ has a parent vantage point pζ′ (the grandparent of pξ), then pξ is visible to pζ′ .

Proof

The kernel of a triangular (and thus convex) cell cζ is all of cζ . By Lemma 5.2, pζ′ is in the kernel of

cζ′ . According to the parity-based vantage point selection scheme (line 5 of Table II), pξ is located

at a point common to cζ′ , cζ , and cξ, therefore pξ is in the kernel of cζ and visible to cζ′ .

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

MULTI-AGENT DEPLOYMENT 15

Theorem 5.5 (Properties of the Sparse Vantage Point Set)

Suppose the incremental partition algorithm of Table I is executed to completion on an environment

E with n vertices and h holes and the vantage points of the resulting partition tree are labeled by the

algorithm in Table III. Then

(i) every point in the environment is visible to some sparse vantage point,

(ii) the visibility graph of the sparse vantage points Gvis,E({pξ|(pξ, cξ) ∈ TP}) consists of a single

connected component,

(iii) the number of points in R
2 where at least one sparse vantage point is located is no greater than

⌊

n+2h−1
2

⌋

, and

(iv) there exist environments where the upper bound
⌊

n+2h−1
2

⌋

in (iii) is met.

Proof

Statements (i) and (ii) follow directly from Lemma 5.4 together with statements (i) and (ii) of

Theorem 5.3.

For statement (iii) we use a triangulation argument similar to that used in [22] for environments

without holes. We use the same triangulation as in the proof of Theorem 5.3 (Fig. 4). The total

number of triangles in any triangulation of a polygonal environment with holes is n + 2h − 2

(Lemma 5.2 in [6]). Suppose we can assign at least one unique triangle to p∅ whenever p∅ is sparse

and at least two unique triangles to all other sparse vantage point locations. Then using the formula

for the total number of triangles, we see the total number of sparse vantage point locations is upper

bounded by
⌊

(n + 2h − 2) + 1

2

⌋

=

⌊

n + 2h − 1

2

⌋

,

which is the desired result. Indeed we can make such an assignment of triangles to sparse vantage

point locations. Our argument relies on the parity-based vantage point selection scheme and the

criterion for labeling a vantage point as sparse on line 2 of Table III. To any sparse vantage point

location, say of pξ other than the root, we assign one triangle in the parent cell. The triangle in the

parent cell is the triangle formed by its parent gap edge together with its parent’s vantage point. To

each sparse vantage point location, say of pξ, including the root, we assign additionally one triangle

in the cell cξ. If cξ has no children, then any triangle in cξ can be assigned to pξ. If cξ has children

(in which case it must have greater than onen triangle) we need to check that it has more triangles

than child vantage point locations with odd parity. Suppose cξ has an even number of edges. Then

this number of edges can be written 2m where m ≥ 2. The number of triangles in cξ is 2m − 2 and

the number of odd parity vertices in cξ where child vantage points could be placed is m − 1. This

means at most m − 1 triangles in cξ are assigned to odd parity child vantage point locations, which

leaves (2m − 2) − (m − 1) = m − 1 ≥ 1 triangles to be assigned to the location of pξ. The case of

cξ having an odd number of edges is proven analogously.

Statement (iv) is proven by the example in Fig. 7.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

16 K. J. OBERMEYER, A. GANGULI, F. BULLO

Agent Mode

explore lead

proxy

(a)

proxytour

cξ′

pξ

cξ

pξ′

(b)

Figure 8. (a) In the distributed deployment algorithm of Table VI, each agent may switch between lead,
proxy, and explore mode based on certain asynchronous events. Leader agents are responsible for
maintaining a distributed representation of the partition tree TP , proxies help establish communication for
solving branch conflicts, and explorers systematically navigate through TP in search of opportunities to
become a leader or proxy. The agent mode color code is used also in Fig. 10 and 12. (b) Even if a pair
of leader agents (black) are not mutually visible, their cells (cξ and cξ′) may intersect as in Fig. 5, shown
here abstractly by a Venn diagram. Sending a proxy agent (yellow), on a proxy tour around one of the cell
boundaries guarantees it will enter the cells’ intersection so that communication between leaders can be
proxied. The leaders can then establish a local common reference frame and compare cell boundaries in

order to solve branch conflicts.

Cell Status

deleted

retracting

contending

permanent

(a)

(b) (c) (d)

Figure 9. (a) In the distributed deployment algorithm of Table VI, any cell in a leader’s memory has a
status which takes the value retracting, contending, or permanent. (b) Each cell status is initially
retracting. The status of a retracting cell is advanced to contending after the execution of a proxy
tour in which the cell is truncated as necessary to ensure no branch conflict with any permanent cells. (c)
In a second proxy tour, a contending cell is deleted if it is found to be in branch conflict with another
contending cell of smaller PTVUID (according to total ordering Def. 6.2), otherwise its status is advanced
to permanent. (d) Only when a cell has attained status permanent can any child cells be added at its

unexplored gap edges (continued in Fig. 10). The cell status color code is used in Fig. 10 as well as 12.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

MULTI-AGENT DEPLOYMENT 17

(a) (b) (c)

(d) (e) (f)

Figure 10. Color codes correspond to those in Fig. 8 and 9. (a,b) Once a cell has status permanent,
arriving explorer agents can be sent to become leaders at child gap edges. (c-f) Any remaining explorer
agents continue systematically navigating the partition tree in search of a leader or proxy tasks they could

perform.

1

2 6

753

4

1

2

3

4

5

7

6

Figure 11. In the distributed deployment algorithm of Table VI, explorer agents search the partition tree
TP depth-first for leader or proxy tasks they could perform. An agent in a cell, say cξ , can always order
the gap edges of cξ , e.g., counterclockwise from the parent gap edge. The depth-first search progresses by
the explorer agent always moving to the next unvisited child or unexplored gap edge in that ordering. The
agent thus moves from cell to cell deeper and deeper until a leaf (a vertex with no children) is found. Once
at a leaf, the agent backtracks to the most recent vertex with unvisited child or unexplored gap edges and
the process continues. As an example, (left) shows the depth-first order an agent would visit the vertices of
TP in Fig. 3f if the gap edges in each cell were ordered couterclockwise from the parent gap edge. If the
agent instead uses a gap edge ordering cyclically shifted by one, then (right) shows the different resulting
depth-first order. If each agent uses a different gap edge ordering, e.g., cyclically shifted by their UID, then
different branches of TP are explored in parallel and the deployment tends to cover the environment more

quickly. Cf. Fig. 10.

6. DISTRIBUTED DEPLOYMENT ALGORITHM

In this section we describe how a group of mobile robotic agents can distributedly emulate the

incremental partition and vantage point labeling algorithms of Sec. 5, thus solving the Distributed

Visibility-Based Deployment Problem with Connectivity. We first give a rough overview of the

algorithm, called DISTRIBUTED DEPLOYMENT(), and later explain in more detail with aid of

the pseudocode in Table VI. Each agent i has a local variable mode[i], among others, which takes

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

18 K. J. OBERMEYER, A. GANGULI, F. BULLO

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 12. With color codes from Fig. 8 and 9, here is a simple example of agents executing the distributed
deployment algorithm of Table VI. (a) Agents enter the environment and the leader initializes the root cell
to status permanent because no branch conflicts could possibly exist yet. Explorer agents move out to
become leaders of child cells. (b) The lower child cell is initialized with status permanent because it has
no gap edges and thus cannot be in branch conflict. The upper two child cells are initialized to retracting
because they could be in branch conflict at unexplored gap edges; indeed there is a branch conflict at the
dark red overlap region. The remaining explorer agents continue moving out to the new cells. (c) Once
the explorers reach the retracting cells, they become proxies and run tours around the cells to check for
branch conflict with permanent cells. (d) After the first proxy tours, the child cells’ statuses are advanced to
contending and each proxy run a second tour. (e) During the second proxy tours, the branch conflict is
detected between contending cells and the cell with higher PTVUID is deleted. The agents that were in the
deleted cell move back up the partition tree and continue exploring depth-first. The other proxy becomes a
leader of a new child cell initialized to retracting. (f) One of the explorers arrives at the retracting cell
and begins a proxy tour to advance the cell to contending. (g) The proxy runs a second tour and advances
the cell to permanent and the partition is completed. (h) Remaining explorers continue navigating the
partition tree depth-first in search of tasks; this adds robustness because they will be able to fill in anywhere

an agent may fail or a door may open.

a value lead, proxy, or explore. For short, we call an agent in lead mode a leader, an agent

in proxy mode a proxy, and an agent in explore mode an explorer. Agents may switch between

modes (see Fig. 8a) based on certain asynchronous events. Leaders settle at sparse vantage points

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

MULTI-AGENT DEPLOYMENT 19

and are responsible for maintaining in their memory a distributed representation of the partition tree

TP consistent with Definition 5.1. By distributed representation we mean that each leader i retains

in its memory up to two vertices of responsibility, (p
[i]
1 , c

[i]
1) and (p

[i]
2 , c

[i]
2), and it knows which gap

edges of those vertices lead to the parent and child vertices in TP .§ We call (p
[i]
1 , c

[i]
1) the primary

vertex of agent i and (p
[i]
2 , c

[i]
2) the secondary vertex. A leader typically has only a primary vertex

in its memory and may have also a secondary only if it is either positioned (1) at a double vantage

point, or (2) at a sparse vantage point adjacent to a nonsparse vantage point. Each cell in a leader’s

memory has a status which takes the value retracting, contending, or permanent (see

Fig. 9). Only when a cell has attained status permanent can any child TP vertices be added at its

unexplored gap edges.

Remark 6.1 (3 Cell Statuses)

In our system of three cell statuses, a cell must go through two steps before attaining status

permanent. Intuitively, the need for two steps arrises from the fact that an agent must first

determine the boundary of its cell before it can even know what other cells are in branch conflict or

place children according to the parity-based vantage point selection scheme. Hence, the first proxy

tour allows truncation of the cell boundary at all permanent cells. Only after that, when the boundary

is known, is the second proxy tour run and the cell deconflicted with other contending cells. Note

that even in the centralized incremental partition algorithm two steps had to be taken by a newly

constructed cell: the cell had to be (1) truncated at existing phantom walls, and then (2) deleted if it

was in branch conflict.¶

The job of a proxy agent is to assist leaders in advancing the status of their cells towards

permanent by proxying communication with other leaders (see Fig 8b). Any agent which is not

a leader or proxy is an explorer. Explorers merely move in depth-first order systematically about

TP in search of opportunity to serve as a proxy or leader (see Fig. 10 and 11). To simplify the

presentation, let us assume for now that, as in the examples Fig. 3 and Fig. 12, no double vantage

points or triangular cells occur. Under this assumption, each leader will be responsible for only one

TP vertex, its primary vertex, and all vantage points will be sparse. The deployment begins with all

agents colocated at the first vantage point p∅. One agent, say agent 0, is initialized to lead mode

with the first cell c
[0]
ξ1

= c∅ = Ṽ(p∅) in its memory. All other agents are initialized to explore

mode. Agent 0 can immediately advance the status of c∅ to permanent because it cannot possibly

be in branch conflict (no other cells even exist yet); in general, however, cells can only transition

between statuses when a proxy tour is executed. Agent 0 sees all the explorers in its cell and assigns

as many as necessary to become leaders so that there will be one new leader positioned on each

unexplored gap edge of c∅. The new leader agents move concurrently to their new respective vantage

points while all remaining explorer agents move towards the next cell in their depth-first ordering.

When a leader first arrives at its vantage point, say pξ, of the cell cξ, it initializes cξ to have status

retracting and boundary equal to the portion of Ṽ(pξ) which is across the parent gap edge

§The subscripts of a leader agent’s vertices of responsibility are not to be confused with PTVUIDs, i.e., (p
[i]
1 , c

[i]
1) and

(p
[i]
2 , c

[i]
2) are not in general the same as (p(1), c(1)) and (p(2), c(2)).

¶We did attempt to simplify the distributed deployment alogrithm and make the cells only go through a single step, i.e.,
a single proxy tour to become permanent, however, there seem to be other difficulties with such an approach, particularly
with time complexity bounds.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

20 K. J. OBERMEYER, A. GANGULI, F. BULLO

and extends away from the parent’s cell. When an explorer agent comes to such a newly created

retracting cell, the leader assigns that explorer to become a proxy and follow a proxy tour which

traverses all the gap edges of cξ. During the proxy tour, the proxy agent is able to communicate

with any leader of a permanent cell that might be in branch conflict with the cξ. The cell cξ is thus

truncated as necessary to ensure it is not in branch conflict with any permanent cell. When this

first proxy tour is complete, the status of cξ is advanced to contending. The leader of cξ then

assigns a second proxy tour which again traverses all the gap edges of cξ. During this second proxy

tour, the leader communicates, via proxy, with all leaders of contending cells which come into line

of sight of the proxy. If a branch conflict is detected between cξ and another contending cell, the

agents have a shoot-out: they compare PTVUIDs of the cells and agree to delete the one which is

larger according to the following total ordering.

Definition 6.2 (PTVUID Total Ordering)

Let ξ1 and ξ2 be distinct PTVUIDs. If ξ1 and ξ2 do not have equal depth, then ξ1 < ξ2 if and only

if the depth of ξ1 is less than the depth of ξ2. If ξ1 and ξ2 do have equal depth, then ξ1 < ξ2 if and

only if ξ1 is lexicographically smaller than ξ2.‖

When a cell cξ with parent cζ is deleted, two things happen: (1) The leader of cζ marks a phantom

wall at its child gap edge leading to cξ, and (2) all agents that were in cξ become explorers, move

back into cζ , and resume depth-first searching for new tasks as in Fig. 12e. If the second proxy tour

of a cell cξ is completed without cξ being deleted, then the status of cξ is advanced to permanent

and its leader may then assign explorers to become leaders of child TP vertices at cξ’s unexplored

gap edges. Agents in different branches of TP create new cells in parallel and run proxy tours in an

effort to advance those cells to status permanent. New TP vertices can in turn be created at the

unexplored gap edges of the new permanent cells and the process continues until, provided there are

enough agents, the entire environment is covered and the deployment is complete.

We now turn our attention to pseudocode Table VI to describe DIS-

TRIBUTED DEPLOYMENT() in more detail. For brevity, this pseudocode is written at a

fairly high level. The interested reader may view more implementation details in our technical

report available electronically [25]. The algorithm consists of three threads which run concurrently

in each agent: communication (lines 1-6), navigation (lines 7-13), and internal state transition (lines

14-21). An outline of the local variables used for these threads is shown in Tables IV and V. The

communication thread tracks the internal states of all an agent’s visibility neighbors. One could

design a custom communication protocol for the deployment which would make more efficient use

of communication bandwidth, however, we find it simplifies the presentation to assume agents have

direct access to their visibility neighbors’ internal states via the data structure Neighbor Data[i].

The navigation thread has the agent follow, at maximum velocity umax, a queue of waypoints

called Route[i] as long as the internal state component c
[i]
ξproxied

.Wait Set is empty (it is only ever

nonempty for a proxy agent and its meaning is discussed further in Section 6.2). The waypoints can

be represented in a local coordinate system established by the agent every time it enters a new cell,

e.g., a polar coordinate system with origin at the cell’s vantage point. In the internal state transition

thread, an agent switches between lead, proxy, and explore modes. The agent reacts to

‖ For example, (1) < (2) and (1, 3) < (3, 2), but (3, 2) < (1, 3, 1).

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

MULTI-AGENT DEPLOYMENT 21

Table IV. Agent Local Variables for Distributed Deployment

Use Name Brief Description

Communication

UID[i] := i agent Unique IDentifier

In Buffer[i] FIFO queue of messages received from

other agents

Neighbor Data[i] data structure which tracks relevant state

information of visibility neighbors

state change interrupt[i] boolean, true if and only if internal state

has changed between the last and current

iteration of the communication thread

new visible agent interrupt[i] boolean, true if and only if a new

agent became visible between the last and

current iteration of the communication

thread

Navigation
Route[i] FIFO queue of waypoints

p[i], ṗ[i], u position, velocity, and velocity input

Internal State

mode[i] agent mode takes a value lead, proxy,

or explore

Vantage Points[i] := (p
[i]
ξ1

, p
[i]
ξ2

) vantage points used in lead mode for

distributed representation of TP ; may

have size 0, 1, or 2; each pξ may be

labeled either sparse or nonsparse

Cells[i] := (c
[i]
ξ1

, c
[i]
ξ2

) cells used in lead mode for distributed

representation of TP ; may have size 0, 1,

or 2; cell fields shown in Tab. V

c
[i]
ξproxied

used in proxy mode as local copy of cell

being proxied

ξ
[i]
current, ξ

[i]
last PTVUIDs of current and last TP vertices

visited in depth-first search; used in

explore mode to navigate TP

different asynchronous events depending on what mode it is in. We treat the details of the different

mode behaviors in the following Sections 6.1, 6.2, and 6.3.

6.1. Leader Behavior

The LEAD() subroutine of the internal state transition thread, called on line 17 of Table VI, is

shown in Table VII with the behavior grouped into four sections: attempt cell construction (lines

1-6), assign tasks (lines 7-11), react to deconfliction events (lines 12-20), and propagate sparse

vantage point information (lines 21-30). A leader attempts to construct a cell, say cξ, whenever it

first arrives at pξ. In order to guarantee an upper bound on the number of agents required by the

deployment (Theorem 6.4), the leader must enforce that any cell it adds to TP contains at least

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

22 K. J. OBERMEYER, A. GANGULI, F. BULLO

Table V. Cell Data Fields for Distributed Deployment

Name Brief Description

ξ PTVUID (Partition Tree Vertex Unique IDentifier)

cξ.Boundary polygonal boundary with each gap edge labeled either as

parent, child, unexplored, or phantom wall; child

gap edges may be additionally labeled with an agent UID if

that agent has been assigned as leader of that gap edge

cξ.status cell status may take a value retracting, contending, or

permanent

cξ.proxy uid UID of agent assigned to proxy cξ; takes value ∅ if no proxy

has been assigned

cξ.Wait Set set of PTVUIDs used by proxy agents to decide when they

should wait for another cell’s proxy tour to complete before

deconfliction can occur, thus preventing race conditions

Table VI. Distributed Deployment Algorithm

DISTRIBUTED DEPLOYMENT()

1: { Communication Thread }
2: while true do
3: in message← In Buffer[i].PopFirst();

4: update Neighbor Data[i] according to in message;

5: if state change interrupt[i] or visible agent interrupt[i] then
6: broadcast internal state information;

7: { Navigation Thread }
8: while true do
9: while Route[i] is not empty and p[i] 6= Route[i].First() and c

[i]
ξproxied

.Wait Set is empty

do
10: u[i] ← velocity with magnitude umax and direction towards Route[i].First();

11: u[i] ← 0;

12: if p[i] == Route[i].First() then
13: Route[i].PopFirst();

14: { Internal State Transition Thread }
15: while true do
16: if mode[i] == lead then
17: LEAD(); { See Tab. VII }

18: else if mode[i] == proxy then
19: PROXY(); { See Tab. VIII }

20: else if mode[i] == explore then
21: EXPLORE(); { See Tab. IX }

one unique triangle which is not in any other cell of the distributed TP representation. This can be

accomplished by the leader first looking at its Neighbor Data to see if the parent gap edge, call it g,

is contained in the cell of any neighbor other than the parent. If not, then the existence of a unique

triangle is guaranteed because cell vertices always coincide with environment vertices. In that case

the agent safely initializes the cell to retracting status and waits for a proxy agent to help it

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

MULTI-AGENT DEPLOYMENT 23

Table VII. Distributed Deployment Subroutine

LEAD()

1: { Attempt cell construction }

2: if there is a vantage point pξ in Vantage Points[i] for which no cell has yet been constructed

and p[i] == pξ then
3: if at least one triangle can be made available for cξ then
4: initialize cξ with status retracting and insert into Cells[i];
5: else
6: delete (pξ, cξ);

7: { Assign tasks }

8: if Cells[i] has a permanent cell with unexplored gap edge g then
9: assign an agent to become leader at g;

10: else if Cells[i] contains nonpermanent cell c
[i]
ξ

in need of a proxy then

11: assign some agent to proxy c
[i]
ξ

;

12: { React to deconfliction events }

13: if cell cξ in Cells[i] corresponds to a cell c
[j]
ξproxied

in Neighbor Data[i] then

14: update all cξ data fields to match c
[j]
ξproxied

;

15: if Neighbor Data[i] shows a proxy has deleted a cell corresponding to cξ in Cells[i] or
`

Neighbor Data[i] shows contending cell c
[j]
ξproxied

in branch conflict with contending cell cξ

in Cells[i] and ξ
[j]
proxied < ξ

´

then
16: delete (pξ, cξ);

17: if Neighbor Data[i] shows a cell has been deleted at child gap edge g of cell cξ in Cells[i]

then
18: label g as phantom wall in cξ;

19: if Neighbor Data[i] shows a proxy tour was successfully completed without deletion for a

cell cξ in Cells[i] then
20: advance cξ .status; cξ .proxy uid← ∅;

21: { Propagate sparse vantage point information }

22: if there is an unlabeled vantage point pξ in Vantage Points[i] with permanent cell cξ in

Cells[i] and
`

(pξ, cξ) is a leaf or Cells[i] and Neighbor Data[i] show all child vantage

points have been labeled
´

then
23: if |Vcξ | == 3 and Cells[i] or Neighbor Data[i] shows a child vantage point labeled

sparse then
24: label pξ as nonsparse;
25: else
26: label pξ as sparse;

27: if Cells[i] contains exactly one cell cξ with pξ labeled sparse and p[i] == pξ and
Neighbor Data[i] shows a cell cζ which is the parent of cξ and pζ is labeled nonsparse
then

28: insert cζ into Cells[i] and pζ into Vantage Points[i];

29: if Neighbor Data[i] shows a leader agent j with p
[j]
ξ1

labeled sparse and c
[i]
ξ2

== c
[j]
ξ2

and

ξ
[j]
2 is the parent PTVUID of ξ

[i]
1 then

30: clear p
[i]
ξ2

and c
[i]
ξ2

; Route[i] ← straight path to p
[i]
ξ1

;

advance the cell’s status towards permanent. If, however, g is contained in a neighbor cell other

than the parent, then the leader may have to either switch to proxy mode to proxy for another leader

in line of sight (if the candidate cell is primary), or else wait for the other cell to be proxied (if the

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

24 K. J. OBERMEYER, A. GANGULI, F. BULLO

Table VIII. Distributed Deployment Subroutine

PROXY()

1: if Route[i] is nonempty and Neighbor Data[i] shows proxied cell has not been deleted
then

2: if cproxied.status == retracting then
3: { Truncate cξproxied

at permanent cell }

4: if Neighbor Data[i] shows permanent cell cξ in branch conflict with c
[i]
ξproxied

then

5: truncate c
[i]
ξproxied

at cξ;

6: { Prevent race conditions and deadlock }

7: if Neighbor Data[i] shows contending cell cξ in branch conflict with c
[i]
ξproxied

and cξ .proxy uid 6= ∅ and
`

ξ
[i]
proxied /∈ cξ .Wait Set or ξ < ξ

[i]
proxied

´

then

8: c
[i]
ξproxied

.Wait Set← c
[i]
ξproxied

.Wait Set ∪ ξ;

9: else
10: c

[i]
ξproxied

.Wait Set← c
[i]
ξproxied

.Wait Set \ ξ;

11: else if cproxied.status == contending then
12: { Shoot-out with other contending cells }

13: if
`

Neighbor Data[i] shows contending cell cξ in branch conflict with c
[i]
ξproxied

and

ξ < ξ
[i]
proxied

´

then

14: delete c
[i]
ξproxied

; mode[i] ← explore;

15: { Prevent race conditions and deadlock }

16: if Neighbor Data[i] shows retracting cell cξ in branch conflict with c
[i]
ξproxied

and cξ .proxy uid 6= ∅ and
`

ξ
[i]
proxied /∈ cξ .Wait Set or ξ < ξ

[i]
proxied

´

then

17: c
[i]
ξproxied

.Wait Set← c
[i]
ξproxied

.Wait Set ∪ ξ;

18: else
19: c

[i]
ξproxied

.Wait Set← c
[i]
ξproxied

.Wait Set \ ξ;

20: else
21: enter previous mode, explore or lead;

candidate cell is secondary). If the agent determines that a contending or permanent cell other than

the parent contains g, then it deletes the cell and a phantom wall is labeled.

A leader agent may assign tasks once it has initialized cell(s) in its memory. The assignment may

be of an explorer to become a leader of a child vertex, of an explorer to become a proxy, of a leader

to become a proxy, of itself to lead a secondary TP vertex which is the child of its primary vertex

(this happens when the primary vertex is a triangle), or of another leader to a secondary vertex at a

double vantage point. Note that in making the assignments, all vantage points are selected according

to the same parity-based vantage point selection scheme used in the incremental partition algorithm

of Sec. 5.

So that the distributed representation of TP remains consistent, a leader must react to several

deconfliction events. If a proxy truncates the boundary of a retracting cell, deletes a contending cell,

advances the status of a cell, or adds/removes PTVUIDs to a cell’s Wait Set, then the corresponding

leader of that cell must do the same. In fact, whenever two agents (either proxies or leaders)

communicate and their contending cells are in branch conflict, the cell with lower PTVUID will be

deleted. Every such cell deletion results in a phantom wall being marked in the parent cell. Although

it is not stated explicitely in the pseudocode, note that when a cell is deleted the leader must wait

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

MULTI-AGENT DEPLOYMENT 25

Table IX. Distributed Deployment Subroutine

EXPLORE()

1: if Neighbor Data[i] shows a permanent cell cξ where ξ == ξ
[i]
current then

2: ξ′ ← PTVUID of next vertex in depth-first ordering;
3: if gap edge g at ξ′ has already been assigned a leader then
4: { Continue exploring }

5: ξ
[i]
last ← ξ

[i]
current; ξ

[i]
current ← ξ′;

6: Route[i] ← local shortest path to midpoint of g through cξ;

7: else if gap edge g at ξ′ has agent i labeled as its leader then
8: { Become leader }

9: mode[i] ← lead; p
[i]
ξ1
← pξ′ ;

10: Route[i] ← local shortest path to pξ′ through cξ;

11: else if Neighbor Data[i] shows a cell cξ such that cξ .proxy uid == i and ξ 6= ξ
[i]
proxied

then
12: { Become proxy }

13: mode[i] ← proxy; c
[i]
ξproxied

← cξ;

14: Route[i] ← tour which traverses all gap edges of cξ and returns to parent gap edge;

15: if Neighbor Data[i] shows c
ξ
[i]
current

has been deleted then

16: {Move up partition tree away from deleted cell }

17: Route[i] ← local shortest path towards cξlast
; swap ξ

[i]
last and ξ

[i]
current;

briefly at the cell’s vantage point until any agent that was proxying comes back to the parent cell;

otherwise the proxy could loose line of sight with the rest of the network. If a proxy tour is completed

successfully without cell deletion, then the cell status is advanced towards permanent.

By settling only to sparse vantage points, fewer agents are needed to guarantee full coverage.

This is accomplished by agents swaping permanent cells with other leaders in such a way that

the information about which vantage points are sparse is propagated up TP whenever a leaf is

discovered.

6.2. Proxy Behavior

The PROXY() subroutine of the internal state transition thread, called on line 19 of Table VI, is

shown in Table VIII. One of two main behaviors are executed depending on whether the proxied

cell has status retracting (lines 2-10) or contending (lines 11-19). Suppose an agent i is

proxying for a cell cξ in leader agent j’s memory. Then agent i keeps a local copy of cξ in c
[i]
ξproxied

and modifies it during the proxy tour. Agent j updates cξ to match c
[i]
ξproxied

whenever a change

occurs. If agent i is proxying for a retracting cell, then it traverses the gap edges of c
[i]
ξproxied

while

truncating the cell boundary at any encountered permanent cells in branch conflict. The goal is for

the retracting proxied cell to not be in branch conflict with any permanent cells by the end of the

proxy tour when its status is advanced to contending. If agent i encounters a contending cell, say

cξ′ , and the criteria on line 7 are satisfied, then agent i must pause its proxy tour, i.e., pause motion

until cξ′ becomes permanent or deleted. If the proxy were not to pause, then it would run the risk of

the contending cell becoming permanent after the opportunity for the proxy to perform truncation

had already passed. The pausing is accomplished by adding ξ′ to the cell field c
[i]
ξproxied

.Wait Set read

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

26 K. J. OBERMEYER, A. GANGULI, F. BULLO

by the navigation thread. Once the proxy tour is over, the leader of the proxied cell advances the

cell’s status to contending and the proxy agent enters its previous mode, either explore or lead.

If agent i is proxying for a contending cell, then the goal is for that cell to not be in branch conflict

with any other contending cells by the end of the proxy tour, if the cell’s status is to be advanced to

permanent. To this end, agent i traverses the gap edges of c
[i]
ξproxied

while comparing ξ
[i]
proxied with

the PTVUID of every encountered contending cell in branch conflict with c
[i]
ξproxied

. If a contending

cell with PTVUID less than ξ
[i]
proxied is encountered, then the proxied cell is deleted and agent i

heads straight back to the parent gap edge where it will end the proxy tour and enter explore

mode. If agent i encounters a retracting cell, say cξ′ , and the criteria on line 16 are satisfied, then

agent i must pause its proxy tour, i.e., pause motion, until cξ′ becomes contending or truncated

out of branch conflict. If the proxy were not to pause, then it would run the risk of the retracting

cell becoming contending after the opportunity for the proxy to perform deconfliction had already

passed. The pausing is accomplished by adding ξ′ to the cell field c
[i]
ξproxied

.Wait Set read by the

navigation thread. Finally, if a contending cell with PTVUID less than ξ
[i]
proxied is never encountered,

then the leader of the proxied cell advances the cell’s status to permanent and the proxy agent

enters explore mode.

Note that the use of PTVUID total ordering (Definition 6.2) on lines 7,13, and 16 of PROXY()

precludes the possibility of both (1) race conditions in which the status of cells is advanced before

the proper branch deconflictions have taken place, and (2) deadlock situations where contending

and retracting cells are indefinitely waiting for each other.

6.3. Explorer Behavior

The EXPLORE() subroutine of the internal state transition thread, called on line 21 of Table VI, is

shown in Table IX. Of all agent modes, explore behavior is the simplest because all the agent

has to do is navigate TP in depth-first order (see Fig. 10 and 11) until a leader agent assigns

them to become a leader at an unexplored gap edge or to perform a proxy task. The local shortest

paths between cells (lines 6,10, and 17) can be computed quickly and easily by the visibility graph

method [26]. If the current cell that an explorer agent is visiting is ever deleted because of branch

deconfliction, the explorer simply moves up TP and continues depth-first searching. By having

each agent use a different gap edge ordering for the depth-first search, the deployment tends to

explore many partition tree branches in parallel and thus converge more quickly. In our simulations

(Sec. 6.5), we had each agent cyclically shift their gap edge ordering by their UID, subject to

the following restriction important for proving an upper bound on number of required agents in

Theorem 6.4.

Remark 6.3 (Restriction on Depth-First Orderings)

Each agent in an execution of the distributed deployment may search TP depth-first using any child

ordering as long as every pair of child vertices adjacent at a double vantage point are visited in the

same order by every agent.

6.4. Performance Analysis

The convergence properties of the Distributed Depth-First Connected Deployment Algorithm of

Table VI are captured in the following theorems.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

MULTI-AGENT DEPLOYMENT 27

Theorem 6.4 (Convergence)

Suppose that N agents are initially colocated at a common point p∅ ∈ VE of a polygonal environment

E with n vertices and h holes. If the agents operate according to the Depth-First Connected

Deployment Algorithm of Table VI, then

(i) the agents’ visibility graph Gvis,E(P) consists of a single connected component at all times,

(ii) there exists a finite time t∗, such that for all times greater than t∗ the set of vertices in the

distributed representation of the partition tree TP remains fixed,

(iii) if the number of agents N ≥ ⌊n+2h−1
2 ⌋, then for all times greater than t∗ every point in the

environment E will be visibile to some agent, and there will be no more than h phantom walls,

and

(iv) if N > ⌊n+2h−1
2 ⌋, then for all times greater than t∗ every cell in the distributed representation

of TP will have status permanent and there will be precisely h phantom walls.

Proof

We prove the statements in order. Nonleader agents, as we have defined their behavior, remain

at all times within line of sight of at least one leader agent. Leader agents likewise remain in the

kernel of their cell(s) of responsibility and within line of sight of the leader agent responsible for

the corresponding parent cell(s). Given any two agents, say i and j, a path can thus be constructed

by first following parent-child visibility links from agent i up to the leader agent responsible for

the root, then from the leader agent responsible for the root down to agent j. The agents’ visibility

graph must therefore consist of a single connected component, which is statement (i).

For statement (ii), we argue similarly to the proof of Theorem 5.3(i). During the deployment, cells

are constructed only at unexplored gap edges. A cell either (1) advances though a finite number of

status changes or (2) it is deleted during a proxy tour. Either way, each cell is only modified a finite

number of times and only one cell is ever created at any particular unexplored gap edge. Since

unexplored gap edges are diagonals of the environment and there are only finitely many possible

diagonals, we conclude the set of vertices in the distributed representation of TP must remain fixed

after some finite time t∗.

For statement (iii), we rely on an invariant: during the distributed deployment algorithm, at

least two unique triangles can be assigned to every leader agent which has at least one cell of

responsibility, other than the root cell, in its memory; at least one unique triangle can be assigned

to the leader agent which has the root cell in its memory. One of the triangles is in a leader’s own

cell (primary or secondary) and its existence is enforced by a leader whenever it initializes a cell in

Table VII. The second triangle is in a parent cell of a cell in the agent’s memory. The existence of

this second triangle is ensured by the depth-first order restriction stipulated in Remark 6.3 together

with the parity-based vantage point selection scheme. Remembering that the maximum number of

triangles in any triangulation is n + 2h − 2 and arguing precisely as we did for the sparse vantage

point locations in the proof of Theorem 5.5(iii), we find the number of agents required for full

coverage can be no greater than ⌊n+2h−1
2 ⌋. As in the proof of Theorem 5.3(v), the number of

phantom walls can be no greater than h because if it where then some cell would be topologically

isolated.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

28 K. J. OBERMEYER, A. GANGULI, F. BULLO

Proof of statement (iv) is as for statement (iii), but because there is one extra agent and depth-

first is systematic, the extra agent is guaranteed to eventually proxy any remaining nonpermanent

cells into permanent status and create phantom walls to separate all conflicting partition tree

branches.

Remark 6.5 (Near Optimality without Holes)

As mentioned in Sec. 1, (n − 2)/2 guards are always sufficient and occasionally necessary for

visibility coverage of any polygonal environment without holes. This means that when h = 0, the

bound on the number of sufficient agents in Theorem 6.4 statement (iii) differs from the worst-case

optimal bound by at most one.

Theorem 6.6 (Time to Convergence)

Let E be an environment as in Theorem 6.4. Assume time for communication and processing are

negligible compared with agent travel time and that E has uniformly bounded diameter as n → ∞.

Then the time to convergence t∗ in Theorem 6.4 statement (ii) is O(n2 + nh). Moreover, if the

maximum perimeter length of any vertex-limited visibility polygon in E is uniformly bounded as

n → ∞, then t∗ is O(n + h).

Proof

As in the proof of Theorem 6.4, every cell which is never deleted has at least one unique triangle and

there are at most n + 2h − 2 triangles total, therefore there are at most n + 2h − 2 cells which are

never deleted. The maximum number of phantom walls ever created is h (Theorem 6.4). Since cells

are only ever deleted when a phantom wall is created, at most h cells are ever deleted. Summing

the bounds on the number cells which are and are not deleted, we see the total number of cells

any agent must ever visit during the distributed deployment is n + 2h − 2 + h = n + 3h − 2. Let

ld be the maximum diameter of any vertex-limited visibility polygon in E . Then, neglecting time

for proxy tours, an agent executing depth-first search on TP will visit every vertex of TP in time

at most 2umaxld(n + 3h − 2). Now Let lp be the maximum perimeter length of any vertex-limited

visibility polygon in E . Then the total amount of time agents spend on proxy tours, counting two

tours for each cell, is 2umaxlp(n + 3h − 2). Exploring and leading agents operate in parallel and at

most every agent waits for every proxy tour, so it must be that

t∗ ≤ 2umax(lp + ld)(n + 3h − 2).

While the diameter of E being uniformly bounded implies ld is uniform bounded, lp may be

O(n).

The performance of a distributed algorithm can also be measured by agent memory requirements

and the size of messages which must be communicated.

Lemma 6.7 (Memory and Communication Complexity)

Let k be the maximum number of vertices of any vertex-limited visibility polygon in the

environment E and suppose E is represented with fixed resolution. Then the required memory size

for an agent to run the distributed deployment algorithm is O(Nk) bits and the message size is O(k)

bits.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

MULTI-AGENT DEPLOYMENT 29

Proof

The memory required by an agent for its internal state is dominated by its cell(s) of responsibility

(of which there are at most two) and proxy cell (at most one). A cell requires O(k) bits, therefore

the internal state requires O(k) bits. The overall amount of memory in an agent is dominated by

Neighbor Data[i], which holds no more than N internal states, therefore the memory requirement

of an agent is O(Nk). Agents only ever broadcast their internal state, therefore the message size is

O(k).

6.5. Simulation Results

We used C++ and the VisiLibity library [27] to simulate the Distributed Depth-First Deployment

Algorithm of Table VI. An example simulation run is shown in Fig. 1 for an environment

with n = 41 vertices and h = 4 holes. An animation of this simulation can be viewed at

http://motion.me.ucsb.edu/∼karl/movies/dwh.mov . To reduce clutter, we have

omitted from this larger example the agent mode and cell status color codes used in Fig. 8, 9, 10,

and 12. The environment was fully covered in finite time by only 13 agents, which indeed is less

than the upper bound ⌊n+2h−1
2 ⌋ = 24 given by Theorem 6.4.

6.6. Extensions

There are several ways that the distributed deployment algorithm can be directly extended for

robustness to agent arrival, agent failure, packet loss, and removal of an environment edge.

Robustness to agent arrival can be achieved by having any new agents simply enter explore

mode, setting ξ
[i]
current to be the PTVUID of the first cell they land in, and setting ξ

[i]
last to be the

parent PTVUID of ξcurrent. The line-of-sight connectivity guaranteed by Theorem 6.4 allows single-

agent failures to be detected and handled by having the visibility neighbors of a failed agent move

back up the partition tree as necessary to patch the hole left by the failed agent. For robustness to

packet loss, agents could add a receipt confirmation and/or parity check protocol. If a portion of the

environment were blocked off during the beginning of the deployment but then were revealed by an

edge removal (interpreted as the “opening of a door”), the deployment could proceed normally as

long as the deleted edge were labeled as an unexplored gap edge in the cell it belonged to.

Less trivial extensions include (1) the use of distributed assignment algorithms such as [28, 29]

for guiding explorer agents to tasks faster than depth-first search, or (2) performing the deployment

from multiple roots, i.e., when different groups of agents begin deployment from different locations.

Deployment from multiple roots can be achieved by having the agents tack on a root identifier to

their PTVUID, however, it appears this would increase the bound on number of agents required in

Theorem 6.4 by up to one agent per root.

7. CONCLUSION

In this article we have presented the first distributed deployment algorithm which solves, with

provable performance, the Distributed Visibility-Based Deployment Problem with Connectivity in

polygonal environments with holes. We began by designing a centralized incremental partition

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

30 K. J. OBERMEYER, A. GANGULI, F. BULLO

algorithm, then obtained the distributed deployment algorithm by asynchronous distributed

emulation of the centralized algorithm. Given at least ⌊n+2h−1
2 ⌋ agents in an environment with

n vertices and h holes, the deployment is guaranteed to achieve full visibility coverage of the

environment in time O(n2 + nh), or time O(n + h) if the maximum perimeter length of any vertex-

limited visibility polygon in E is uniformly bounded as n → ∞. If k is the maximum number

of vertices of any vertex-limited visibility polygon in an environment E represented with fixed

resolution, then the required memory size for an agent to run the distributed deployment algorithm

is O(Nk) bits and message size is O(k) bits. The deployment behaved in simulations as predicted

by the theory and can be extended to achieve robustness to agent arrival, agent failure, packet loss,

removal of an environment edge (such as an opening door), or deployment from multiple roots.

There are many interesting possibilities for future work in the area of deployment and nonconvex

coverage. Among the most prominent are: 3D environments, dynamic environments with moving

obstacles, and optimizing different performance measures, e.g., based on continuous instead of

binary visibility, or with minimum redundancy requirements.

ACKNOWLEDGEMENT

This work has been supported in part by ONR Award N00014-07-1-0721, NSF Award IIS-0904501, and

a DoD SMART fellowship. Thanks to Michael Schuresko (UCSC) and Antonio Franchi (Uni Roma) for

helpful comments.

REFERENCES

1. Lee DT, Lin AK. Computational complexity of art gallery problems. IEEE Transactions on Information Theory

1986; 32(2):276–282.

2. Eidenbenz S, Stamm C, Widmayer P. Inapproximability results for guarding polygons and terrains. Algorithmica

2001; 31(1):79–113.

3. Efrat A, Har-Peled S. Guarding galleries and terrains. Information Processing Letters 2006; 100(6):238–245.

4. Liaw BC, Huang NF, Lee RCT. The minimum cooperative guards problem on k-spiral polygons. Canadian

Conference on Computational Geometry, Waterloo, Canada, 1993; 97–102.

5. Urrutia J. Art gallery and illumination problems. Handbook of Computational Geometry, Sack JR, Urrutia J (eds.).

North-Holland, 2000; 973–1027.

6. O’Rourke J. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.

7. Shermer TC. Recent results in art galleries. Proceedings of the IEEE 1992; 80(9):1384–1399.

8. Chvátal V. A combinatorial theorem in plane geometry. Journal of Combinatorial Theory. Series B 1975; 18:39–41.

9. Fisk S. A short proof of Chvátal’s watchman theorem. Journal of Combinatorial Theory. Series B 1978; 24:374.

10. Bjorling-Sachs I, Souvaine D. An efficient algorithm for guard placement in polygons with holes. Discrete and

Computational Geometry 1995; 13(1):77–109.

11. Hoffmann F, Kaufmann M, Kriegel K. The art gallery theorem for polygons with holes. IEEE Symposium on

Foundations of Computer Science (FOCS), San Juan, Puerto Rico, 1991; 39–48.

12. Hernández-Peñalver G. Controlling guards. Canadian Conference on Computational Geometry, Saskatoon,

Canada, 1994; 387–392.

13. Pinciu V. A coloring algorithm for finding connected guards in art galleries. Discrete Mathematical and Theoretical

Computer Science, Lecture Notes in Computer Science, vol. 2731/2003, Springer, 2003; 257–264.

14. González-Baños H, Latombe JC. A randomized art-gallery algorithm for sensor placement. ACM Symposium on

Computational Geometry, Medford, MA, 2001; 232–240.

15. Erdem UM, Sclaroff S. Automated camera layout to satisfy task-specific and floor plan-specific coverage

requirements. Computer Vision and Image Understanding 2006; 103(3):156–169.

16. Thrun S, Burgard W, Fox D. Probabilistic Robotics. MIT Press, 2005.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

MULTI-AGENT DEPLOYMENT 31

17. Simmons R, Apfelbaum D, Fox D, Goldman R, Haigh K, Musliner D, Pelican M, Thrun S. Coordinated deployment

of multiple heterogenous robots. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, Takamatsu, Japan, 2000;

2254–2260.

18. Howard A, Matarić MJ, Sukhatme GS. An incremental self-deployment algorithm for mobile sensor networks.

Autonomous Robots 2002; 13(2):113–126.

19. Suri S, Vicari E, Widmayer P. Simple robots with minimal sensing: From local visibility to global geometry.

International Journal of Robotics Research 2008; 27(9):1055–1067.

20. Ganguli A, Cortés J, Bullo F. Distributed deployment of asynchronous guards in art galleries. American Control

Conference, Minneapolis, MN, 2006; 1416–1421.

21. Ganguli A, Cortés J, Bullo F. Visibility-based multi-agent deployment in orthogonal environments. American

Control Conference, New York, 2007; 3426–3431.

22. Ganguli A. Motion coordination for mobile robotic networks with visibility sensors. PhD Thesis, Electrical and

Computer Engineering Department, University of Illinois at Urbana-Champaign Apr 2007.

23. Bullo F, Cortés J, Martı́nez S. Distributed Control of Robotic Networks. Applied Mathematics Series, Princeton

University Press, 2009. Available at http://www.coordinationbook.info.

24. Cruz D, McClintock J, Perteet B, Orqueda OAA, Cao Y, Fierro R. Decentralized cooperative control: A multivehicle

platform for research in networked embedded systems. IEEE Control Systems Magazine 2007; 27(3):58–78.

25. Obermeyer K, Ganguli A, Bullo F. Multi-agent deployment for visibility coverage in polygonal environments with

holes Aug 2010. Available at http://arxiv.org/abs/1008.4990.

26. Nilsson NJ. A mobile automaton: An application of artificial intelligence techniques. Int. Conference on Artificial

Intelligence, 1969; 509–520.

27. Obermeyer KJ. The VisiLibity library. http://www.VisiLibity.org 2008. R-1.

28. Moore BJ, Passino KM. Distributed task assignment for mobile agents. IEEE Transactions on Automatic Control

2007; 52(4):749–753.

29. Zavlanos MM, Spesivtsev L, Pappas GJ. A distributed auction algorithm for the assignment problem. IEEE Conf.

on Decision and Control, 2008; 1212–1217.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)

Prepared using rncauth.cls DOI: 10.1002/rnc

	Introduction
	Notation and Preliminaries
	Problem Description and Assumptions
	Network of Visually-Guided Agents
	Incremental Partition Algorithm
	A Sparse Vantage Point Set

	Distributed Deployment Algorithm
	Leader Behavior
	Proxy Behavior
	Explorer Behavior
	Performance Analysis
	Simulation Results
	Extensions

	Conclusion

