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Abstract

Imitation learning algorithms can be used to learn a policy from expert demonstra-
tions without access to a reward signal. However, most existing approaches are not
applicable in multi-agent settings due to the existence of multiple (Nash) equilibria
and non-stationary environments. We propose a new framework for multi-agent
imitation learning for general Markov games, where we build upon a generalized
notion of inverse reinforcement learning. We further introduce a practical multi-
agent actor-critic algorithm with good empirical performance. Our method can be
used to imitate complex behaviors in high-dimensional environments with multiple
cooperative or competing agents.

1 Introduction

Reinforcement learning (RL) methods are becoming increasingly successful at optimizing reward
signals in complex, high dimensional environments [1]. A key limitation of RL, however, is the
difficulty of designing suitable reward functions for complex and not well-specified tasks [2, 3]. If
the reward function does not cover all important aspects of the task, the agent could easily learn
undesirable behaviors [4]. This problem is further exacerbated in multi-agent scenarios, such as
multiplayer games [5], multi-robot control [6] and social interactions [7]; in these cases, agents do
not even necessarily share the same reward function and might even have conflicting rewards.

Imitation learning methods address these problems via expert demonstrations [8–11]; the agent
directly learns desirable behaviors by imitating an expert. Notably, inverse reinforcement learn-
ing (IRL) frameworks assume that the expert is (approximately) optimizing an underlying reward
function, and attempt to recover a reward function that rationalizes the demonstrations; an agent
policy is subsequently learned through RL [12, 13]. Unfortunately, this paradigm is not suitable for
general multi-agent settings due to environment being non-stationary to individual agents [14] and
the existence of multiple equilibrium solutions [15]. The optimal policy of one agent could depend
on the policies of other agents, and vice versa, so there could exist multiple solutions in which each
agents’ policy is the optimal response to others.

In this paper, we propose a new framework for multi-agent imitation learning – provided with
demonstrations of a set of experts interacting with each other in the same environment, we aim to
learn multiple parametrized policies that imitate the behavior of each expert respectively. Using the
framework of Markov games, we integrate multi-agent RL with a suitable extension of multi-agent
inverse RL. The resulting procedure strictly generalizes Generative Adversarial Imitation Learning
(GAIL, [16]) in the single agent case. Imitation learning in our setting corresponds to a two-player
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game between a generator and a discriminator. The generator controls the policies of all the agents
in a distributed way, and the discriminator contains a classifier for each agent that is trained to
distinguish that agent’s behavior from that of the corresponding expert. Upon training, the behaviors
produced by the policies should be indistinguishable from the training data. We can incorporate prior
knowledge into the discriminators, including the presence of cooperative or competitive agents. In
addition, we propose a novel multi-agent natural policy gradient algorithm that addresses the issue of
high variance gradient estimates commonly observed in reinforcement learning [14, 17]. Empirical
results demonstrate that our method can imitate complex behaviors in high-dimensional environments,
such as particle environments and cooperative robotic control tasks, with multiple cooperative or
competitive agents; the imitated behaviors are close to the expert behaviors with respect to “true”
reward functions which the agents do not have access to during training.

2 Preliminaries

2.1 Markov games

We consider an extension of Markov decision processes (MDPs) called Markov games [18]. A
Markov game (MG) for N agents is defined via a set of states S , and N sets of actions {Ai}

N
i=1. The

function P : S × A1 × · · · × AN → P(S) describes the (stochastic) transition process between
states, where P(S) denotes the set of probability distributions over the set S. Given that we are
in state st at time t, the agents take actions (a1, . . . , aN ) and the state transitions to st+1 with
probability P (st+1|st, a1, . . . , aN ). Each agent i obtains a (bounded) reward given by a function
ri : S × A1 × · · · × AN → R. Each agent i aims to maximize its own total expected return
Ri =

∑∞
t=0 γ

tri,t, where γ is the discount factor, by selecting actions through a (stationary and
Markovian) stochastic policy πi : S ×Ai → [0, 1]. The initial states are determined by a distribution
η : S → [0, 1]. The joint policy is defined as π(a|s) =

∏N

i=1 πi(ai|s), where we use bold variables
without subscript i to denote the concatenation of all variables for all agents (e.g., π denotes the joint
policy

∏N

i=1 πi in a multi-agent setting, r denotes all rewards, a denotes actions of all agents). We
use expectation with respect to a policy π to denote an expectation with respect to the trajectories it
generates, and use subscript −i to denote all agents except for i. For example, (ai, a−i) represents
(a1, . . . , aN ), the actions of all N agents.

2.2 Reinforcement learning and Nash equilibrium

In reinforcement learning (RL), the goal of each agent is to maximize total expected return Eπ[r(s, a)]
given access to the reward signal r. In single agent RL, an optimal Markovian policy exists but the
optimal policy might not be unique (e.g., all policies are optimal for an identically zero reward; see
[19], Chapter 3.8). An entropy regularizer can be introduced to resolve this ambiguity. The optimal
policy is found via the following RL procedure:

RL(r) = argmax
π∈Π

H(π) + Eπ[r(s, a)], (1)

where H(π) is the γ-discounted causal entropy [20] of policy π ∈ Π.

Definition 1 (γ-discounted Causal Entropy). The γ-discounted causal entropy for a policy π is
defined as follows:

H(π) , Eπ[− log π(a|s)] = Est,at∼π

[

−

∞
∑

t=0

γt log π(at|st)

]

.

The addition of H(π) in (1) resolves this ambiguity – the policy with both the highest reward and the
highest entropy1 is unique because the entropy function is strictly concave with respect to π.

In Markov games, however, the optimal policy of an agent depends on other agents’ policies. One
approach is to use an equilibrium solution concept, such as Nash equilibrium [15]. Informally, a
set of policies {πi}Ni=1 is a Nash equilibrium if no agent can achieve higher reward by unilaterally

1We use the term “entropy” to denote the γ-discounted causal entropy for policies in the rest of the paper.
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changing its policy, i.e., ∀i ∈ [1, N ], ∀π̂i 6= πi,Eπi,π−i
[ri] ≥ Eπ̂i,π−i

[ri]. The process of finding a
Nash equilibrium can be defined as a constrained optimization problem ([21], Theorem 3.7.2):

min
π∈Π,v∈RS×N

fr(π,v) =

N
∑

i=1

(

∑

s∈S

vi(s)− Eai∼πi(·|s)qi(s, ai)

)

(2)

vi(s) ≥ qi(s, ai) , Eπ−i

[

ri(s,a) + γ
∑

s′∈S

P (s′|s,a)vi(s
′)

]

∀i ∈ [N ], s ∈ S, ai ∈ Ai (3)

a , (ai, a−i) , (a1, . . . , aN ) v , [v1; . . . ; vN ]

where the joint action a includes actions a−i sampled from π−i and ai. Intuitively, v can be thought
of as a value function and q represents the Q-function that corresponds to v. The constraints enforce
the Nash equilibrium condition – when the constraints are satisfied, (vi(s)−qi(s, ai)) is non-negative
for every i ∈ [N ]. Hence fr(π,v) is always non-negative for a feasible (π,v). Moreover, this
objective has a global minimum of zero if a Nash equilibrium exists, and π forms a Nash equilibrium
if and only if fr(π,v) reaches zero while being a feasible solution ([22], Theorem 2.4).

2.3 Inverse reinforcement learning

Suppose we do not have access to the reward signal r, but have demonstrations D provided by an
expert (N expert agents in Markov games). Imitation learning aims to learn policies that behave
similarly to these demonstrations. In Markov games, we assume all experts/players operate in the
same environment, and the demonstrations D = {(sj ,aj)}

M
j=1 are collected by sampling s0 ∼

η(s),at = πE(at|st), st+1 ∼ P (st+1|st,at); we assume knowledge of N , γ, S, A, as well as
access to T and η as black boxes. We further assume that once we obtain D, we cannot ask for
additional expert interactions with the environment (unlike in DAgger [23] or CIRL [24]).

Let us first consider imitation in Markov decision processes (as a special case to Markov games) and
the framework of single-agent Maximum Entropy IRL [8, 16] where the goal is to recover a reward
function r that rationalizes the expert behavior πE :

IRL(πE) = argmax
r∈RS×A

EπE
[r(s, a)]−

(

max
π∈Π

H(π) + Eπ[r(s, a)]

)

In practice, expectations with respect to πE are evaluated using samples from D.

The IRL objective is ill-defined [12, 10] and there are often multiple valid solutions to the problem
when we consider all r ∈ R

S×A. To resolve this ambiguity, [16] introduce a convex reward function
regularizer ψ : RS×A → R, which can be used for example to restrict rewards to be linear in a
pre-determined set of features [16]:

IRLψ(πE) = argmax
r∈RS×A

−ψ(r) + EπE
[r(s, a)]−

(

max
π∈Π

H(π) + Eπ[r(s, a)]

)

(4)

2.4 Imitation by matching occupancy measures

[16] interprets the imitation learning problem as matching two occupancy measures, i.e., the distribu-
tion over states and actions encountered when navigating the environment with a policy. Formally, for
a policy π, it is defined as ρπ(s, a) = π(a|s)

∑∞
t=0 γ

tP (st = s|π). [16] draws a connection between
IRL and occupancy measure matching, showing that the former is a dual of the latter:

Proposition 1 (Proposition 3.1 in [16]).

RL ◦ IRLψ(πE) = argmin
π∈Π

−H(π) + ψ⋆(ρπ − ρπE
)

Here ψ⋆(x) = supy x
⊤y − ψ(y) is the convex conjugate of ψ, which could be interpreted as a

measure of similarity between the occupancy measures of expert policy and agent’s policy. One
instance of ψ = ψGA gives rise to the Generative Adversarial Imitation Learning (GAIL) method:

ψ⋆GA(ρπ − ρπE
) = max

D∈(0,1)S×A

EπE
[log(D(s, a))] + Eπ[log(1−D(s, a))] (5)
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The resulting imitation learning method from Proposition 1 involves a discriminator (a classifier D)
competing with a generator (a policy π). The discriminator attempts to distinguish real vs. synthetic
trajectories (produced by π) by optimizing (5). The generator, on the other hand, aims to perform
optimally under the reward function defined by the discriminator, thus “fooling” the discriminator
with synthetic trajectories that are difficult to distinguish from the expert ones.

3 Generalizing IRL to Markov games

Extending imitation learning to multi-agent settings is difficult because there are multiple rewards
(one for each agent) and the notion of optimality is complicated by the need to consider an equilibrium
solution [15]. We use MARL(r) to denote the set of (stationary and Markovian) policies that form a
Nash equilibrium under r and have the maximum γ-discounted causal entropy (among all equilibria):

MARL(r) = argmin
π∈Π,v∈RS×N

fr(π,v)−H(π) (6)

vi(s) ≥ qi(s, ai) ∀i ∈ [N ], s ∈ S, ai ∈ Ai

where q is defined as in Equation (3). Our goal is to define a suitable inverse operator MAIRL, in
analogy to IRL in Equation (4), which chooses a reward that creates a margin between the expert and
every other policy. However, the constraints in the Nash equilibrium optimization (Equation (6)) can
make this challenging. To that end, we derive an equivalent Lagrangian formulation of (6), where
we “move” the constraints into the objective function, so that we can define a margin between the
expected reward of two sets of policies that captures their “difference”.

3.1 Equivalent constraints via temporal difference learning

Intuitively, the Nash equilibrium constraints imply that any agent i cannot improve πi via 1-step
temporal difference learning; if the condition for Equation (3) is not satisfied for some vi, qi, and
(s, ai), this would suggest that we can update the policy for agent i and its value function. Based on
this notion, we can derive equivalent versions of the constraints corresponding to t-step temporal
difference (TD) learning.

Theorem 1. For a certain policy π and reward r, let v̂i(s;π, r) be the unique solution to the Bellman
equation:

v̂i(s;π, r) = Ea∼π

[

ri(s,a) + γ
∑

s′∈S

P (s′|s,a)v̂i(s
′;π, r)

]

∀s ∈ S.

Denote q̂
(t)
i ({s(j),a(j)}t−1

j=0, s
(t), a

(t)
i ;π, r) as the discounted expected return for the i-th agent

conditioned on visiting the trajectory {s(j),a(j)}t−1
j=0, s

(t) in the first (t − 1) steps and choosing

action a
(t)
i at the t step, when other agents use policy π−i:

q̂
(t)
i ({s(j),a(j)}t−1

j=0, s
(t), a

(t)
i ;π, r)

=

t−1
∑

j=0

γjri(s
(j), a(j)) + γtEa−i∼π−i

[

ri(s
(t),a(t)) + γ

∑

s′∈S

P (s′|s,a(t))v̂i(s
′;π, r)

]

.

Then π is Nash equilibrium if and only if for all t ∈ N
+, i ∈ [N ], j ∈ [t], s(j) ∈ S, a(j) ∈ A

v̂i(s
(0);π, r) ≥ Ea−i∼π−i

[

q̂
(t)
i ({s(j),a(j)}t−1

j=0, s
(t), a

(t)
i ;π, r)

]

, Q
(t)
i ({s(j), a

(j)
i }tj=0;π, r).

(7)

Intuitively, Theorem 1 states that if we replace the 1-step constraints with (t+1)-step constraints, we
obtain the same solution as MARL(r), since (t+ 1)-step TD updates (over one agent at a time) are
still stationary with respect to a Nash equilibrium solution. So the constraints can be unrolled for t
steps and rewritten as v̂i(s(0)) ≥ Q

(t)
i ({s(j), a

(j)
i }tj=0;π, r) (corresponding to Equation (7)).

4



3.2 Multi-agent inverse reinforcement learning

We are now ready to construct the Lagrangian dual of the primal in Equation (6), using the equivalent
formulation from Theorem 1. The first observation is that for any policy π, f(π, v̂) = 0 when v̂
is defined as in Theorem 1 (see Lemma 1 in appendix). Therefore, we only need to consider the
“unrolled” constraints from Theorem 1, obtaining the following dual problem

max
λ≥0

min
π

L(t+1)
r

(π, λ) ,

N
∑

i=1

∑

τi∈T t
i

λ(τi)
(

Q
(t)
i (τi;π, r)− v̂i(s

(0);π, r)
)

(8)

where Ti(t) is the set of all length-t trajectories of the form {s(j), a
(j)
i }tj=0, with s(0) as initial state, λ

is a vector ofN · |Ti(t)| Lagrange multipliers, and v̂ is defined as in Theorem 1. This dual formulation
is a sum over agents and trajectories, which uniquely corresponds to the constraints in Equation 7.

In the following theorem, we show that for a specific choice of λ we can recover the difference of the
sum of expected rewards between two policies, a performance gap similar to the one used in single
agent IRL in Equation (4). This amounts to “relaxing” the primal problem.
Theorem 2. For any two policies π⋆ and π, let

λ⋆
π
(τi) = η(s(0))πi(a

(0)
i |s(0))

t
∏

j=1

πi(a
(j)
i |s(j))

∑

a
(j−1)
−i

P (s(j)|s(j−1), a(j−1))π⋆−i(a
(j)
−i |s

(j))

be the probability of generating the sequence τi using policy πi and π⋆−i. Then

lim
t→∞

L(t+1)
r (π⋆, λ⋆

π
) =

N
∑

i=1

Eπi,π
⋆
−i
[ri(s, a)]−

N
∑

i=1

Eπ⋆
i
,π⋆

−i
[ri(s, a)] (9)

where L
(t+1)
r (π⋆, λ⋆

π
) corresponds to the dual function where the multipliers are the probability of

generating their respective trajectories of length t.

We provide a proof in Appendix A.3. Intuitively, the λ⋆(τi) weights correspond to the probability of
generating trajectory τi when the policy is πi for agent i and π⋆−i for the other agents. As t→ ∞, the

first term of left hand side in Equation (8),
∑N

i=1

∑

τi∈T t
i
λ(τi)Q

(t)
i (τi), converges to the expected

total reward Eπi,π
⋆
−i
[ri], which is the first term of right hand side. The marginal of λ⋆ over the initial

state is the initial state distribution, so the second term of left hand side,
∑

s v̂(s)η(s), converges to
Eπ⋆

i
,π⋆

−i
[ri], which is the second term of right hand side. Thus, the left hand side and right hand side

of Equation (8) are the same as t→ ∞. We could also view the right hand side of Equation (8) as the
case where policies of π⋆−i are part of the environment.

Theorem 2 motivates the following definition of multi-agent IRL with regularizer ψ.

MAIRLψ(πE) = argmax
r

−ψ(r) +

N
∑

i=1

(EπE
[ri])−

(

max
π

N
∑

i=1

(βHi(πi) + Eπi,πE−i
[ri])

)

,

where Hi(πi) = Eπi,πE−i
[− log πi(ai|s)] is the discounted causal entropy for policy πi when other

agents follow πE−i
, and β is a hyper-parameter controlling the strength of the entropy regularization

term as in [16]. This formulation is a strict generalization to the single agent IRL in [16].
Corollary 2.1. If N = 1, β = 1 then MAIRLψ(πE) = IRLψ(πE).

Furthermore, if the regularization ψ is additively separable, and for each agent i, πEi
is the unique

optimal response to other experts πE−i
, we obtain the following:

Theorem 3. Assume that ψ(r) =
∑N

i=1 ψi(ri), ψi is convex for each i ∈ [N ], and that MARL(r)
has a unique solution2 for all r ∈ MAIRLψ(πE), then

MARL ◦ MAIRLψ(πE) = argmin
π∈Π

N
∑

i=1

−βHi(πi) + ψ⋆i (ρπi,E−i
− ρπE

) (10)

where πi,E−i
denotes πi for agent i and πE−i

for other agents.

2The set of Nash equilibria is not always convex, so we have to assume MARL(r) returns a unique solution.
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The above theorem suggests that ψ-regularized multi-agent inverse reinforcement learning is seeking,
for each agent i, a policy whose occupancy measure is close to one where we replace policy πi with
expert πEi

, as measured by the convex function ψ⋆i .

However, we do not assume access to the expert policy πE during training, so it is not possible
to obtain ρπi,E−i

. Therefore, we consider an alternative approach where we match the occupancy
measure between ρπE

and ρπ. We can obtain our practical algorithm if we select an adversarial
reward function regularizer and remove the effect from entropy regularizers.

Proposition 2. If β = 0, and ψ(r) =
∑N

i=1 ψi(ri) where ψi(ri) = EπE
[g(ri)] if ri > 0; +∞

otherwise, and

g(x) =

{

−x− log(1− ex) if ri > 0
+∞ otherwise

then

argmin
π

N
∑

i=1

ψ⋆i (ρπi,πE−i
− ρπE

) = argmin
π

N
∑

i=1

ψ⋆i (ρπi,π−i
− ρπE

) (11)

and both are equal to πE .

Theorem 3 and Proposition 2 discuss the differences from the single agent scenario. In Theorem 3 we
make the assumption that MARL(r) has a unique solution, which is always true in the single agent
case due to convexity of the space of the optimal policies. In Proposition 2 we remove the entropy
regularizer because here the causal entropy for πi may depend on the policies of the other agents.
Specifically, the entropy for the left hand side of Equation (11) conditions on πE−i

and the entropy
for the right hand side conditions on π−i (both would disappear in the single-agent case).

4 Practical multi-agent imitation learning

Despite the recent successes in deep RL, it is notoriously hard to train policies with RL algorithms-
because of high variance gradient estimates. This is further exacerbated in Markov games since an
agent’s optimal policy depends on other agents [14, 17]. In this section, we address these problems
and propose practical algorithms for multi-agent imitation.

4.1 Multi-agent generative adversarial imitation learning

We select ψi to be our reward function regularizer in Proposition 2; this corresponds to the two-player
game introduced in Generative Adversarial Imitation Learning (GAIL, [16]). For each agent i, we
have a discriminator (denoted as Dωi

) mapping state action-pairs to scores optimized to discriminate
expert demonstrations from behaviors produced by πi. Implicitly, Dωi

plays the role of a reward
function for the generator, which in turn attempts to train the agent to maximize its reward thus
fooling the discriminator. We optimize the following objective:

min
θ

max
ω

Eπθ

[

N
∑

i=1

logDωi
(s, ai)

]

+ EπE

[

N
∑

i=1

log(1−Dωi
(s, ai))

]

(12)

We update πθ through reinforcement learning, where we also use a baseline Vφ to reduce variance.
We outline the algorithm – Multi-Agent GAIL (MAGAIL) – in Appendix B.

We can augment the reward regularizer ψ(r) using an indicator y(r) denoting whether r fits our prior
knowledge; the augmented reward regularizer ψ̂ : RS×A → R ∪ {∞} is then: ψ(r) if y(r) = 1 and
∞ if y(r) = 0. We introduce three types of y(r) for common settings.

Centralized The easiest case is to assume that the agents are fully cooperative, i.e. they share the
same reward function. Here y(r) = I(r1 = r2 = . . . rn) and ψ(r) = ψGA(r). One could argue this
corresponds to the GAIL case, where the RL procedure operates on multiple agents (a joint policy).

Decentralized We make no prior assumptions over the correlation between the rewards. Here
y(r) = I(ri ∈ R

Oi×Ai) and ψi(ri) = ψGA(ri). This corresponds to one discriminator for each agent
which discriminates the trajectories as observed by agent i. However, these discriminators are not
learned independently as they interact indirectly via the environment.

6



(o1, a1) (o2, a2)

(o1, a1) (o2, a2)

D

T (st+1|st, at)

(a) Centralized (Cooperative)

(o1, a1) (o2, a2)

(o1, a1) (o2, a2)

D1 D2

T (st+1|st, at)

(b) Decentralized (Mixed)

(o1, a1)

(o2, a2)(o1, a1)

(o2, a2)

D1 = −D2

(c) Zero-sum (Competitive)

Figure 1: Different MAGAIL algorithms obtained with different priors on the reward structure. The
discriminator tries to assign higher rewards to top row and low rewards to bottom row. In centralized
and decentralized, the policy operates with the environment to match the expert rewards. In zero-sum,
the policy do not interact with the environment; expert and policy trajectories are paired together as
input to the discriminator.

Zero Sum Assume there are two agents that receive opposite rewards, so r1 = −r2. As such, ψ is
no longer additively separable. Nevertheless, an adversarial training procedure can be designed using
the following fact:

v(πE1
, π2) ≥ v(πE1

, πE2
) ≥ v(π1, πE2

) (13)

where v(π1, π2) = Eπ1,π2
[r1(s, a)] is the expected outcome for agent 1, and is modeled by the

discriminator. The discriminator could then try to maximize v for trajectories from (πE1 , π2) and
minimize v for trajectories from (π2, πE1) according to Equation (13).

These three settings are in summarized in Figure 1.

4.2 Multi-agent actor-critic with Kronecker factors

To optimize over the generator parameters θ in Eq. (12) we wish to use an algorithm for multi-agent
RL that has good sample efficiency in practice. Our algorithm, which we refer to as Multi-agent
Actor-Critic with Kronecker-factors (MACK), is based on Actor-Critic with Kronecker-factored
Trust Region (ACKTR, [25–27]), a state-of-the-art natural policy gradient [28, 29] method in deep
RL. MACK uses the framework of centralized training with decentralized execution [17]; policies
are trained with additional information to reduce variance but such information is not used during
execution time. We let the advantage function of every agent agent be a function of all agents’
observations and actions:

Aπi

φi
(s,at) =

k−1
∑

j=0

(γjri(st+j ,at+j) + γkV πi

φi
(st+k, a−i,t+k))− V πi

φi
(st, a−i,t) (14)

where V πi

φi
(sk, a−i) is the baseline for i, utilizing the additional information (a−i) for variance

reduction. We use (approximated) natural policy gradients to update both θ and φ but without trust
regions to schedule the learning rate, using a linear decay learning rate schedule instead.

MACK has some notable differences from Multi-Agent Deep Deterministic Policy Gradient [14]. On
the one hand, MACK does not assume knowledge of other agent’s policies nor tries to infer them;
the value estimator merely collects experience from other agents (and treats them as black boxes).
On the other hand, MACK does not require gradient estimators such as Gumbel-softmax [30, 31] to
optimize over discrete actions, which is necessary for DDPG [32].

5 Experiments

We evaluate the performance of (centralized, decentralized, and zero-sum versions) of MAGAIL
under two types of environments. One is a particle environment which allows for complex interactions
and behaviors; the other is a control task, where multiple agents try to cooperate and move a plank
forward. We collect results by averaging over 5 random seeds. Our implementation is based on
OpenAI baselines [33]; please refer to Appendix C for implementation details3.

3Code for reproducing the experiments are in https://github.com/ermongroup/multiagent-gail.
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Figure 2: Average true reward from cooperative tasks. Performance of experts and random policies
are normalized to one and zero respectively. We use inverse log scale for better comparison.

We compare our methods (centralized, decentralized, zero-sum MAGAIL) with two baselines. The
first is behavior cloning (BC), which learns a maximum likelihood estimate for ai given each state
s and does not require actions from other agents. The second baseline is a GAIL IRL baseline that
operates on each agent separately – for each agent we first pretrain the other agents with BC, and
then train the agent with GAIL; we then gather the trained GAIL policies from all the agents and
evaluate their performance.

5.1 Particle environments

We first consider the particle environment proposed in [14], which consists of several agents and
landmarks. We consider two cooperative environments and two competitive ones. All environments
have an underlying true reward function that allows us to evaluate the performance of learned agents.

The environments include: Cooperative Communication – two agents must cooperate to reach one
of three colored landmarks. One agent (“speaker”) knows the goal but cannot move, so it must convey
the message to the other agent (“listener”) that moves but does not observe the goal. Cooperative
Navigation – three agents must cooperate through physical actions to reach three landmarks; ideally,
each agent should cover a single landmark. Keep-Away – two agents have contradictory goals, where
agent 1 tries to reach one of the two targeted landmarks, while agent 2 (the adversary) tries to keep
agent 1 from reaching its target. The adversary does not observe the target, so it must act based on
agent 1’s actions. Predator-Prey – three slower cooperating adversaries must chase the faster agent
in a randomly generated environment with obstacles; the adversaries are rewarded by touching the
agent while the agent is penalized.

For the cooperative tasks, we use an analytic expression defining the expert policy; for the competitive
tasks, we use MACK to train expert policies based on the true underlying rewards (using larger
policy and value networks than the ones that we use for imitation). We then use the expert policies to
simulate trajectories D, and then do imitation learning on D as demonstrations, where we assume
the underlying rewards are unknown. Following [34], we pretrain our Multi-Agent GAIL methods
and the GAIL baseline using behavior cloning as initialization to reduce sample complexity for
exploration. We consider 100 to 400 episodes of expert demonstrations, each with 50 timesteps,
which is close to the amount of timesteps used for the control tasks in [16]. Moreover, we randomly
sample the starting position of agent and landmarks each episode, so our policies have to learn to
generalize when they encounter new settings.

5.1.1 Cooperative tasks

We evaluate performance in cooperative tasks via the average expected reward obtained by all the
agents in an episode. In this environment, the starting state is randomly initialized, so generalization
is crucial. We do not consider the zero-sum case, since it violates the cooperative nature of the task.
We display the performance of centralized, decentralized, GAIL and BC in Figure 2.

Naturally, the performance of BC and MAGAIL increases with more expert demonstrations. MA-
GAIL performs consistently better than BC in all the settings; interestingly, in the cooperative
communication task, centralized MAGAIL is able to achieve expert-level performance with only 200
demonstrations, but BC fails to come close even with 400 trajectories. Moreover, the centralized MA-
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Table 1: Average agent rewards in competitive tasks. We compare behavior cloning (BC), GAIL (G),
Centralized (C), Decentralized (D), and Zero-Sum (ZS) methods. Best marked in bold (high vs. low
rewards is preferable depending on the agent vs. adversary role).

Task Predator-Prey
Agent Behavior Cloning G C D ZS

Adversary BC G C D ZS Behavior Cloning
Rewards -93.20 -93.71 -93.75 -95.22 -95.48 -90.55 -91.36 -85.00 -89.4

Task Keep-Away
Agent Behavior Cloning G C D ZS

Adversary BC G C D ZS Behavior Cloning
Rewards 24.22 24.04 23.28 23.56 23.19 26.22 26.61 28.73 27.80

GAIL performs slightly better than decentralized MAGAIL due to the better prior, but decentralized
MAGAIL still learns a highly correlated reward between two agents.

5.1.2 Competitive tasks

We consider all three types of Multi-Agent GAIL (centralized, decentralized, zero-sum) and BC
in both competitive tasks. Since there are two opposing sides, it is hard to measure performance
directly. Therefore, we compare by letting (agents trained by) BC play against (adversaries trained
by) other methods, and vice versa. From Table 1, decentralized and zero-sum MAGAIL often perform
better than centralized MAGAIL and BC, which suggests that the selection of the suitable prior ψ̂ is
important for good empirical performance.

5.2 Cooperative control

In some cases we are presented with sub-optimal expert demonstrations because the environment has
changed; we consider this case in a cooperative control task [35], where N bipedal walkers cooperate
to move a long plank forward; the agents have incentive to collaborate since the plank is much longer
than any of the agents. The expert demonstrates its policy on an environment with no bumps on the
ground and heavy weights, while we perform imitation in an new environment with bumps and lighter
weights (so one is likely to use too much force). Agents trained with BC tend to act more aggressively
and fail, whereas agents trained with centralized MAGAIL can adapt to the new environment. With
10 (imperfect) expert demonstrations, BC agents have a chance of failure of 39.8% (with a reward of
1.26), while centralized MAGAIL agents fail only 26.2% of the time (with a reward of 26.57). We
show videos of respective policies in the supplementary.

6 Discussion

There is a vast literature on single-agent imitation learning [36]. Behavior Cloning (BC) learns the
policy through supervised learning [37]. Inverse Reinforcement Learning (IRL) assumes the expert
policy optimizes over some unknown reward, recovers the reward, and learns the policy through
reinforcement learning (RL). BC does not require knowledge of transition probabilities or access to
the environment, but suffers from compounding errors and covariate shift [38, 23].

Most existing work in multi-agent imitation learning assumes the agents have very specific reward
structures. The most common case is fully cooperative agents [39], where the challenges mainly
lie in other factors, such as unknown role assignments [40], scalability to swarm systems [41] and
agents with partial observations [42]. In non-cooperative settings, [43] consider the case of IRL
for two-player zero-sum games and cast the IRL problem as Bayesian inference, while [44] assume
agents are non-cooperative but the reward function is a linear combination of pre-specified features.

Our work is the first to propose a general multi-agent IRL framework that combines state-of-the art
multi-agent reinforcement learning methods [14, 17] and implicit generative models such as generative
adversarial networks [45]. Experimental results demonstrate that it is able to imitate complex
behaviors in high-dimensional environments with both cooperative and adversarial interactions. An
interesting future direction is to explore new paradigms for learning from experts, such as allowing
the expert to participate in the agent’s learning process [24].
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