
Multi-Agent Influence Diagrams for Representing and Solving Games

Daphne Koller
Computer Science Dept.

Stanford University
Stanford, CA 94305-9010

koller@ cs.stanford.edu

Brian Milch*
Computer Science Dept.

Stanford University
Stanford, CA 94305-9010

milch @ cs.stanford.edu

Abstract

Game theory provides a theoretical basis for defining ratio-
nal behavior in multi-agent scenarios. However, the compu-
tational complexity of finding equilibria in large games has
limited game theory’s practical applications. In this paper,
we explore the application of structured probabilistic models
to multi-agent scenarios. We define multi-agent influence di-
agrams (MAIDs), which represent games in a way that allows
us to take advantage of independence relationships among
variables. This representation allows us to define a notion
of strategic relevance: D’ is strategically relevant to D if, to
optimize the decision rule at D, the decision maker needs to
know the decision rule at D’. We provide a sound and com-
plete graphical criterion for determining strategic relevance.
We then show how strategic relevance, which is made explicit
by the MAID structure, can be exploited in algorithms for
computing equilibria to obtain exponential savings in certain
classes of games.

Introduction

Game theory (Fudenberg & Tirole 1991) provides a math-
ematical framework for determining what behavior is ra-
tional for agents interacting with each other in a partially
observable environment. However, the computational com-
plexity of finding equilibria in games has hindered the ap-
plication of game theory to real-world problems. Most algo-
rithms for finding equilibria operate on the strategic form of
a game, whose size is typically exponential in the size of the
game tree (McKelvey & McLennan 1996). Even algorithms
that operate directly on the game tree (Romanovskii 1962;
Koller, Megiddo, &von Stengel 1994) are not a solution, as
for games involving many decisions, the game tree can be
prohibitively large. As an extreme case, if the game tree is
symmetric (i.e., all paths to leaves have the same sequence
of decisions), the number of leaf nodes is exponential in the
number of decisions.

This problem of state space explosion also occurs in deci-
sion trees, the single-agent versions of game trees. Influence
diagrams (IDs) (Howard & Matheson 1984) allow single-
agent decision problems to be represented and solved with-
out this exponential blow-up. Like Bayesian networks (Pearl

*Now at Google Inc.
Copyright © 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1988), influence diagrams represent the conditional inde-
pendencies among variables. These formalisms allow us
to take advantage of the structure in real-world problems to
solve them more efficiently. In this paper, we present an ex-
tension of influence diagrams to the multi-agent setting, with
the goal of providing compact representations and more ef-
ficient solution algorithms for game-theoretic problems.

Multi-agent influence diagrams (MAIDs) represent deci-
sion problems involving multiple agents in a structured way.
We show that MAIDs allow us to exploit not only the depen-
dencies between the probabilistic attributes in the domain
(as in Bayesian networks), but also the dependencies be-
tween strategic variables. We define a notion of strategic
relevance: a decision variable D strategically relies on an-
other decision variable Dt when, to optimize the decision
rule in D, the decision-making agent needs to know the de-
cision rule in Dt. We provide a graph-based criterion, which
we call s-reachability, for strategic relevance, and show that
it is sound and complete in the same sense that d-separation
is sound and complete for probabilistic dependence. We
also provide a polynomial time algorithm for computing s-
reachability.

The notion of strategic relevance allows us to define a data
structure we call the relevance graph -- a directed graph
that indicates when one decision variable in the MAID relies
on another. We then show that this data structure can be
exploited to provide more efficient algorithms for computing
equilibria: it allows a large game to be broken up into several
smaller games, whose equilibria can be combined to obtain
a global equilibrium.

Multi-Agent Influence Diagrams (MAIDs)

We will introduce MAIDs using a simple two-agent sce-
nario:

Example I Alice is considering building a patio behind her
house, and the patio would be more valuable to her if she
could get a clear view of the ocean. Unfortunately, there
is a tree in her neighbor Bob’s yard that blocks her view.
Being somewhat unscrupulous, Alice considers poisoning
Bob ’ s tree, which might cause it to become sick. Bob cannot
tell whether Alice has poisoned his tree, but he can tell if the
tree is getting sick, and he has the option of calling in a tree
doctor (at some cost). The attention of a tree doctor reduces

45

From: AAAI Technical Report SS-01-03. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

the chance that the tree will die during the coming winter.
Meanwhile, Alice must make a decision about building her
patio before the weather gets too cold. When she makes this
decision, she knows whether a tree doctor has come, but she
cannot observe the health of the tree directly. A MAID for
this scenario is shown in Figure 1.

Figure l: MAID for the Tree Killer example. Alice’s deci-
sion and utility variables are in dark gray and Bob’s in light
gray.

To define a MAID more formally, we begin with a set .A of
agents. The world in which the agents act is represented by
the set C of chance variables, and a set 79a of decision vari-
ables for each agent a E A. Chance variables correspond
to moves by nature, and are represented in the diagram as
ovals. The decision variables for agent a are variables whose
values a gets to choose, and are represented as rectangles in
the diagram. We use D to denote Ua6at 79a, and 1) to de-

note C tO 79. Each variable V E 12 has a finite set dom(V) of
possible values, called its domain. The agents’ utility func-
tions are specified using utility variables: For each agent
a 6 .A, we have a set/./a of utility variables, represented
as diamonds in the diagram, that take on real numbers as
values.

A MAID defines a directed acyclic graph with its vari-
ables as the nodes, where each variable X is associated with
a set of parents Pa(X) C 12. Note that utility variables
cannot be parents of other variables. For each chance vari-
able X 6 C, the MAID specifies a conditional probability
distribution (CPD): a distribution Pr(X I pa) for each in-
stantiation pa of Pa(X). For a decision variable D 6 79a,
Pa(D) is the set of variables whose values agent a knows
when he chooses a value for D. Thus, the choice agent
a makes for D can be contingent only on these variables.
The value of a utility variable U is a deterministic function
of the values of Pa(U); we use U(pa) to denote the util-
ity value for node U when Pa(U) = pa. For each utility
variable U E H, f specifies, for each instantiation pa of
Pa(U), the corresponding utility value f[U](pa), which
abbreviate using U(pa). The total utility that an agent a de-
rives from an instantiation of 12 is the sum of the utilities
specified by the utility variables in Ha for this instantiation.
Thus, by breaking an agent’s utility function into several

variables, we are simply defining an additive decomposition
of the agent’s utility function (Howard & Matheson 1984;
Keeney & Raiffa 1976).

The behavior of the agents is defined by a set of decision
rules.

Definition 1 A decision rule for a decision variable D is a
function that maps each instantiation pa of Pa(D) to a prob-
ability distribution over dom(D). An assignment of decision
rules to every decision D E 79a for a particular agent a E .A
is called a strategy.

An assignment a of decision rules to every decision D 6 79
is called a strategy profile. A partial strategy profile ac is
an assignment of decision rules to a subset E of 79. We will
also use (re to denote the restriction of a to E, and cr-E to
denote the restriction of a to variables not in E.

Note that a decision rule has exactly the same form as a
CPD. Thus, if we have a MAID .At, then a partial strategy
profile a that assigns decision rules to a set E of decision
variables induces a new MAID .A4 [tr] where the elements
of E have become chance variables. That is, each D E g
corresponds to a chance variable in .A4 [or] with tr(D) as its
CPD. When a assigns a decision rule to every decision vari-
able in .A4, the induced MAID is simply a BN: it has no
more decision variables. This BN defines a joint probability
distribution P~ over all the variables in .A4.

With this probability distribution, we can now write an
equation for the utility that agent a expects to receive in a
MAID .A4 if the agents play a given strategy profile tr:

EUa (a) = ~ ~ U(pa)P~-M(pa) (1)
UEL/. pa6 x Pa(U)

where x Pa(U) is the joint domain of Pa(U).
In the game-theoretic framework, we typically consider a

strategy profile to represent rational behavior if it is a Nash
equilibrium (Nash 1950). Intuitively, a strategy profile is
Nash equilibrium if no agent has an incentive to deviate from
the strategy specified for him by the profile, as long as the
other agents do not deviate from their specified strategies.

Definition 2 A strategy profile cr is a Nash equilibrium for
a MAID .A4 if for all agents a E ,4 and all strategies a’ "

Ella (o’) EUa ((0_9° o")).-- ~ "Da

MAIDs and Games
A MAID provides a compact representation of a scenario
that can also be represented as a game in strategic or ex-
tensive form. In this section, we discuss how to convert a
MAID into an extensive-form game. We also show how,
once we have found an equilibrium strategy profile for a
MAID, we can convert it into a behavior strategy profile for
the extensive form game. The word "node" in this section
refers solely to a node in the tree, as distinguished from the
nodes in the MAID.

We use a straightforward extension of a construction
of (Pearl 1988) for converting an influence diagram into
decision tree. The basic idea is to construct a tree with splits
for decision and chance nodes in the MAID. We need to
split on a chance variable before its value is observed by

46

some decision node; we need only split on chance vari-
ables that are observed at some point in the process. More
precisely, the set of variables included in our game tree is
G = 7:) U UD~V Pa(D).

We begin by defining a total ordering -~ over G that is
consistent with the topological order of the MAID: if there
is a directed path from X to Y, then X -g Y. Our tree 7"
is a symmetric tree, with each path containing splits over
all the variables in G in the order defined by --~. Each node
is labeled with a partial instantiation inst (N) of G, in the
obvious way. For each agent a, the nodes corresponding
to variables D E D, are decision nodes for a; the other
nodes are all chance nodes. To define the information sets,
consider two decision nodes M and M~ that correspond to a
variable D. We place M and M’ into the same information
set if and only if inst (M) and inst (M’) assign the same
values to Pa(D).

To determine the probabilities for the chance nodes, we
must do probabilistic inference. It turns out that we can
choose an arbitrary fully mixed strategy profile a for our
MAID .hi (one where no decision has probability zero),
and do inference in the BN 34 [a] induced by this strat-
egy profile. Consider a chance node N corresponding to
a chance variable C. For each value e E dom(C), let
Nc be the child of N corresponding to the choice C = c.
Then we define the probability of going from N to Nc as
P~a(inst(Nc)] inst(N)). Note that if we split on a deci-
sion variable D before G, then the decision rule aD does not
affect this computation because inst (N) includes values for
D and all its parents. If we split on D after C’, then D can-
not be an ancestor of C in the MAID, and inst (N) cannot
specify evidence on D or any of its descendants. Therefore,
aD cannot affect the computation. Hence, the probabilities
of the chance nodes are well-defined.

We define the payoffs at the leaves by computing a distri-
bution over the parents of the utility nodes, given an instan-
tiation of G. For a leaf N, the payoff for agent a is:

~ U(pa)P~ (pa l inst(N))
UED/,, paE x Pa(U)

The mapping between MAIDs and trees also induces an
obvious mapping between strategy profiles in the different
representations. A MAID strategy profile specifies a proba-
bility distribution over dom(D) for each pair (D, pa), where
pa is an instantiation of Pa(D). The information sets in
the game tree correspond one-to-one with these pairs, and a
behavior strategy in the game tree is a mapping from infor-
mation sets to probability distributions. Clearly the two are
equivalent.

Based on this construction, we can now state the follow-
ing equivalence lemma:

Lemma 1 Let 34 be a MAID and 7" be its corresponding
game tree. Then for any strategy profile a, the payoff vector
for a in 34 is the same as the payoff vector for a in T.

The number of nodes in 7" is exponential in the number
of decision variables, and in the number of chance variables
that are observed during the course of the game. While this
blowup is unavoidable in a tree representation, it can be quite

significant in certain games. Thus, a MAID can be exponen-
tially smaller than the extensive game it corresponds to.

Example 2 Suppose a road is being built from north to
south through undeveloped land, and n agents have pur-
chased plots of land along the road. As the road reaches
each agent’s plot, the agent needs to choose what to build
on his land. His utility depends on what he builds, on some
private information about the suitability of his land for var-
ious purposes, and on what is built north, south, and across
the road from his land. The agent can observe what has
already been built immediately to the north of his land (on
both sides of the road), but he cannot observe further north;
nor can he observe what will be built across from his land
or south of it.

The MAID representation is very compact. There are
n chance nodes, corresponding to the private information
about each agent’s land, and n decision variables. Each de-
cision variable has at most three parents: the agent’s private
inform, ation, and the two decisions regarding the two plots
to the north of the agent’s land. Thus, the size of the MAID
is linear in n. Conversely, any game tree for this situation
must split on each of the n chance nodes and each of the n
decisions, leading to a representation that is exponential in
n.

A MAID representation is not always more compact. If
the game tree is naturally asymmetric, a naive MAID repre-
sentation can be exponentially larger than the tree. We return
to this problem in Section .

Strategic Relevance
To take advantage of the independence structure in a MAID,
we would like to find a global equilibrium through a series
of relatively simple local computations. The difficulty is that
in order to determine the optimal decision rule for a sin-
gle decision variable, we usually need to know the decision
rules for some other variables. In Example 1, when Alice is
deciding whether to poison the tree, she needs to compare
the expected utilities of her two alternatives. However, the
probability of the tree dying depends on the probability of
Bob calling a tree doctor if he observes that the tree is sick.
Thus, we need to know the decision rule for CallTreeDoctor
to determine the optimal decision rule for PoisonTree. In
such situations, we will say that PoisonTree (strategically)
relies on CallTreeDoctor, or that CallTreeDoctor is rel-
evant to PoisonTree. On the other hand, CallTreeDoctor
does not rely on PoisonTree. Bob gets to observe whether
the tree is sick, and TreeDead is conditionally indepen-
dent of PoisonTree given TreeSick, so the decision rule for
PoisonTree is not relevant to Bob’s decision.

We will now formalize this intuitive discussion of strate-
gic relevance. Suppose we have a strategy profile, and we
would like to find a decision rule for a single decision vari-
able D E 79~ that maximizes a’s expected utility, assuming
the rest of the strategy profile remains fixed.

Definition 3 Let ~ be a decision rule for a variable D in a
MAID 34. Then ~ is optimal for a strategy profile a if, in the
induced MAID Ad [a-D] (where the only remaining decision
node is D), the strategy profile (~) is a Nash equilibrium.

47

Given this definition of optimality for a strategy profile,
we can now define strategic relevance.

Definition 4 A decision variable D strategically relies on a
decision variable D’ in a MAID 34 if there are two strategy
profiles a and a~ such that a and tr ~ differ only at D~, but
some decision rule for D is optimal for cr and not for a~.

If D does not rely on D~, then a decision rule for D that
is optimal for a strategy profile a is also optimal for any
strategy profile a’ that differs from a only at D’.

It turns out that strategic relevance corresponds to a sim-
ple graph-theoretic property in a MAID. To begin with, sup-
pose we have a strategy profile a for a MAID 34, and con-
sider finding an optimal decision rule for D in 34 [a-o],
where D is the only decision node. The optimality of the
decision rule at D depends only on the utility nodes/1o that
are descendants of D in the MAID. The other utility nodes
are irrelevant, because the decision at D cannot influence
them. Now, based on the independence properties implied
by the graph structure, we can prove the following lemma:

Lemma 2 Let 6 be a decision rule for a decision variable
D E 79a in a MAID 34, and let a be a strategy profile for
34. Then ~ is optimal for a if and only if for every instanti-
ation paD of Pa(D) where pM (PaD) > O, the probability
distribution ~(D [pa) is:

argmax Z
Zp*

UEUD paU E x Pa(U)

U(Pau)" Z P*(d)pM(Pau d’paD)

dEdom(D

(2)

So to be optimal for a strategy profile a, a decision rule
just has to satisfy Equation 2. If the expression being maxi-
mized in Equation 2 is independent of the decision rule that
a assigns to another decision variable D~, then D does not
rely on D’. Thus, we would like a graphical criterion for de-
tecting when this expression is independent of the decision
rule for some node. The appropriate formal notion turns out
to be that of a requisite probability node.

Definition 5 Let 2(and y be sets of variables in the di-
rected acyclic graph defined by a BN or MAID. Then a node
Z is a requisite probability node for the query P(X I Y)
there exist two functions P1 and Pz that assign CPDs to all
the nodes in the graph, such that P1 and P2 differ only at Z,
butPl(XlY) P2(X I Y)

Intuitively, the decision rule at D~ is only relevant to D if D~

(viewed as a chance node) is a relevant probability node for
P(UD I D, Pa(D)).

Geiger et al. (1990) provide a graphical criterion for test-
ing whether a node Z is a requisite probability node for a
query P(X I Y). We add to Z a new "dummy" parent 2
whose values correspond to CPDs for Z, selected from some
set of possible CPDs. Then Z is a requisite probability node
for P(X I Y) if and only if Z can influence X given y. This
condition can easily be checked using the standard notion of
active paths in the BN. Thus, Z is a requisite probability

node for P(X I 3;) if and only if there would be an active
path from a new parent of Z to X, given y.

Based on this analysis, we can define s-reachability, a
graphical criterion for detecting strategic relevance. Note
that unlike d-separation in Bayesian networks, s-reachability
is not necessarily a symmetric relation.

Definition 6 A node D~ is s-reachable from a node D in a
MAID if there is some utility node U E UD such that if a
new parent D~ were added to D~, there would be an active
path from D~ to Pa(U) given Pa(D) U {D}.

As we now show, s-reachability is sound and complete
for strategic relevance in the same sense that d-separation is
sound and complete for independence in Bayesian networks.

Theorem 1 (Soundness) If D and D~ are two decision
nodes in a MAID and D’ is not s-reachable from D in the
MAID, then D does not rely on D’.

Theorem 2 (Completeness) If a node D’ is s-reachable
from a node D in a MAID, then there is some MAID with
the same graph structure in which D relies on D~.

As for BNs, the completeness result is somewhat weaker:
s-reachability does not imply relevance in every MAID. We
can choose the probabilities and utilities in the MAID in
such a way that the influence of one decision rule on an-
other does not manifest itself. However, s-reachability is the
most precise graphical criterion we can use" it will not iden-
tify a strategic relevance unless that relevance actually exists
in some MAID that has the given graph structure. Our proof
of this theorem involves constructing an appropriate assign-
ment of CPDs and utility functions to the MAID, and de-
pends on the completeness proof in (Geiger, Verma, & Pearl
1990).

Since strategic relevance is a binary relation, we can rep-
resent it as a directed graph. As we show below, this graph
turns out to be extremely useful.

Definition 7 The relevance graph for a MAID 34 is a graph
whose nodes are the decision nodes of.M, and whose edges
are the pairs of nodes (D, D~) such that D relies on D~.

To construct the graph for a given MAID, we need to
determine, for each decision node D, the set of nodes D~
that are s-reachable from D. Using an algorithm such as
Shachter’s Bayes-Ball (Shachter 1998), we can find this set
for any given D in time linear in the number of nodes in the
MAID. By repeating the algorithm for each D, we can de-
rive the relevance graph in time quadratic in the number of
MAID nodes.

It is interesting to consider the relevance graphs of various
simple games. In the examples in Figure 2, the decision node

¯D belongs to agent a, and D’ belongs to agent b. Example
(a) represents a perfect-information game. Since agent b can
observe the value of D, he does not need to know the deci-
sion rule for D in order to evaluate his options. Thus, D~

does not rely on D. On the other hand, agent a cannot ob-
serve D~ when she makes decision D, and D~ is relevant to
a’s utility, so D relies on Dq Example (b) represents a game
where the agents do not have perfect information: agent b
cannot observe D when making decision D’. However, the

48

(a) (b) co) (d) (e)

Figure 2: Five simple MAIDs (top), and their relevance
graphs (bottom). A two-color diamond represents a pair
utility nodes, one for each agent, with the same parents.

information is "perfect enough": the utility for b does not
depend on D directly, but only on the chance node, which b
can observe. Hence D~ does not rely on D.

Examples (c) and (d) represent scenarios where the agents
move simultaneously, and thus neither can observe the
other’s move. In (c), each agent’s utility node is influenced
by both decisions, so D relies on D~ and D~ relies on D.
Thus, the relevance graph is cyclic. In (d), however, the rel-
evance graph is acyclic despite the fact that the agents move
simultaneously. The difference here is that agent a no longer
cares what agent b does, because her utility is not influenced
by b’s decision. In graphical terms, there is no active path
from D~ to a’s utility node given D.

One might conclude that a decision node D~ never relies
on a decision node D when D is observed by D~, but the
situation is more subtle. Consider example (e), which rep-
resents a simple card game: agent a observes a card, and
decides whether to bet (D); agent b observes only agent a’s
bet, and decides whether to bet (D~); the utility of both de-
pends on their bets and the value of the card. Even though
agent b observes the actual decision in D, he needs to know
the decision rule for D in order to know what the value of
D tells him about the chance node. Thus, D~ relies on D;
indeed, when D is observed, there is an active path from D
that runs through the chance node to the utility node.

Computing Equilibria using Divide &
Conquer

The computation of a Nash equilibrium for a game is ar-
guably the key computational task in game theory. In this
section, we show how the structure of the MAID can be ex-
ploited to provide substantially faster algorithms for finding
equilibria.

The key insight behind our algorithm is the use of the
relevance graph to break up the task of finding an equilib-
rium into a series of subtasks, each over a much smaller
game. Since algorithms for finding equilibria in general
games have complexity that is superlinear in the number
of levels in the game tree, breaking the game into smaller
games will significantly improve the complexity of finding
a global equilibrium.

The algorithm is a generalization of existing backward in-
duction algorithms for decision trees and perfect information
games (Zermelo 1913) and for influence diagrams (Jensen,
Jensen, & Dittmer 1994). The basic idea is as follows: in
order to optimize the decision rule for D, we need to know
the decision rule for all decisions D~ that are relevant for
D. For example, the relevance graph for the Troo Killor ex-
ample (Figure 3(a)) shows that to optimize PoisonTree, we
must first decide on the decision rules for BuildPatio and
TreeDoctor. However, we can optimize TreeDoctor with-
out knowing the decision rules for either of the other de-
cision variables. Having decided on the decision rule for
TreeDoctor, we can now optimize BuildPatio and then fi-
nally PoisonTree.

(a) (b)

Figure 3: Relevance graphs for (a) the Tree Killor example;
(b) the Road example with n =

In this simple case, the relevance graph is acyclic, allow-
ing us to process the variables one at a time. In general,
however, we might have cycles in the relevance graph; e.g.,
Figure 3(b) contains the relevance graph for the Road exam-
ple with n = 6. Here, we cannot sequentially optimize in-
dividual decisions, because at various points in the process,
there is no decision node that only relies on decisions for
which we have already obtained a decision rule. However,
we can perform a backward induction process over subsets
of nodes:

Definition 8 A set S of nodes in a directed graph is a
strongly connected component (SCC) if for every pair
nodes D ~ D’ E S, there exists a directed path from D
to D~. A maximal SCC is an SCC that is not a strict subset
of any other SCC.

The maximal SCCs are outlined in Figure 3(b). We can
find the maximal SCCs of a graph in linear time, construct-
ing a component graph whose nodes are the maximal SCCs
of the relevance graph. There is an edge from component
C to component C~ in the component graph if and only if
there is an edge from some element of C to some element of
C~ in the relevance graph. The component graph is always
acyclic (Cormen, Leiserson, & Rivest 1990). Thus, we can
define an ordering C1,... ,Cm over the maximal SCCs of
the relevance graph, such that whenever i < j, no element
of Cj relies on any element of Ci.

49

Based on this definition, we can now provide a divide-
and-conquer algorithm for computing Nash equilibria in
MAIDs.

1 Let ~r° be an arbitrary fully mixed strategy profile
2 Fori = 0 throughm- 1:
3 Let 7- be a partial strategy profile for C(m-0 that is

Nash equilibrium in .halL/cri--c(m-i)
r

J
4 Let crTM / 7-)= (O" (70n_i))

5 Output ~rr~ as an equilibrium of.M

The algorithm iterates backwards over the SCC’s, finding
an equilibrium strategy profile for each SCC in the MAID
induced by the previously selected decision rules (with ar-
bitrary decision rules for some decisions that are not rele-
vant for this SCC). Finding the equilibrium in this induced
MAID requires the use of a subroutine for finding equilib-
ria in games. We simply convert the induced MAID into a
game tree, as described in Section, and use a standard game-
solving algorithm (McKelvey & McLennan 1996).

If the relevance graph is acyclic, each SCC consists of a
single node, so each decision is optimized by itself. In this
case, the algorithm is very similar to the standard backward
induction algorithm in perfect information games. However,
we obtain acyclic relevance graphs in a wider range of situ-
ations. For example, the relevance graph of the Treo Killer
example is acyclic, although the game does not have perfect
information.

The proof that this algorithm is correct requires a se-
quence of lemmas. So far we have considered strategic rel-
evance only as a binary relation between nodes. Suppose 61
is a decision rule for D1 that is optimal for a strategy profile
a, and D1 relies on neither D2 nor D3. Then changing ~z at
either D2 or D3 does not affect the optimality of 6. But one
might worry that changing (r at both D2 and D3 might cause
6 to lose optimality. The following lemma shows that such
a thing cannot happen: if we have a set of decisions none
of which are individually relevant, then the entire set is not
relevant.

Lemma 3 Let ~r be a strategy profile, D be a decbion node,
and 6 be a decision rule for D that is optimal for ~r. If ~rr is
another strategy profile such that cr(D’) -- or’ (D’) whenever
D relies on Dr, then 6 is also optimal for ~rr.

Proof: We proceed by induction on the number k of nodes
where ~r and cr~ differ. For the base case, k = 0 and cr = crt,
so it is obvious that 6 is also optimal for crr. Now as an induc-
tive hypothesis, assume the lemma holds whenever ~z and ar

differ on exactly k nodes. Then suppose cr and ar differ on
k + 1 nodes. Select any node D’ such that ~r(D’) ~ cr’(D’).
By the conditions of the lemma, this means D does not rely
on Dr. Now construct a strategy profile 6. that agrees with
~r on all nodes but Dr, and agrees with ~rr on Dr. Because ~r
and # differ only on D’, 6 must also be optimal for 6.; oth-
erwise D would rely on Dr. But 6" and crr differ on only k
nodes, so by the inductive hypothesis, 6 is optimal for ar as
well. ¯

Thus, we can change the decision rules for a whole set of
nodes that are irrelevant for D without affecting the optimal-

ity of a decision rule for D. But in our divide and conquer
algorithm, we are concerned with the optimality of a par-
tial strategy profile 7- for an entire set C of decision nodes.
Clearly, if none of the decision nodes in C rely on a node
D~ ~ C, then changing the decision rule for D’ would not
give .any agent an incentive to deviate at a single decision
node in C. But might an agent want to deviate at several
decision nodes simultaneously?

We can answer this question in the negative if we make the
standard assumption of perfect recall: agents never forget
their previous actions or observations. More formally:

Definition 9 An agent a has perfect recall with respect to
a total order -4 over 79a if for all D)Dr E 79,, D --4 Dr
implies that D E Pa(D’) and Pa(D) C Pa(D’).

Note that if D and its parents are parents of D~, then there
cannot be an active path from a new parent/3 of D to any
descendant of D’, given Dr and Pa(Dr). Thus, by Theo-
rem 1, Dr does not rely on D. This observation leads to the
following lemma:

Lemma 4 If an agent has perfect recall with respect to a
total order -~, and 19 -.< D~, then D~ does not rely on D.

We can now show that if a single agent has no incentive
to deviate at a single decision node, then he has no incentive
to deviate at any group of nodes.

Lemma 5 Let .A4 be a MAID with a single agent a, who
has perfect recall Let ~r be a strategy for a in .hd such that
for every D E 79, ~r(D) is optimal for cr. Then crb a Nash
equillbrium in .h4.1

Proof: To show that cr is a Nash equilibrium, we must
show that for all other strategies ~#:

We proceed by induction on the number k of decisions
where a and ar differ. If k = 0, then cr = a’, so obvi-
ously EUa (~r) = EU~ (crY). As an inductive hypothesis,
suppose that whenever ~rr differs from cr on k or fewer nodes,
EUo _>

Now suppose (7’ differs from er on k + 1 nodes. Since
has perfect recall, Lemma 4 tells us there is a total order -.<
over 79 such that whenever D -4 Dr, D’ does not rely on
D. Let D* be the last decision in this ordering such that
(rr(D*) 7~ (r(D*). That is, if crr(D) ¢ ~r(D), then
D = D* or D -4 D*. In either case, D* does not rely on
D. Let 6 = a(D), and 6’ = at(D). We are given that
is optimal for cr. But since ar differs from cr only at nodes
that D* does not rely on, we know by Lemma 3 that 6 is
also optimal for ~rr. In particular, 6 yields at least as much
expected utility as 6r in .M [0"%.] . So:

EUa (C/_D,,6) >_ EUa (a’)

tThe notion of Nash equilibrium in the single agent case re-
duces to the simpler notion of the agent acting optimally under
uncertainty.

50

But the strategy (fit_D., 6) differs from a at only k decision
nodes, so by the inductive hypothesis:

EUa ((7) > EUa (a’_o., 6)

So by transitivity:

EUa (a) _> EUa t)

Given this result, we can show that changing the decision
rules for nodes that are not relevant to any node in a set C
does not affect the optimality of a partial strategy profile over
C.

Lemma 6 Let a be a strategy profile for a MAID .All where
every agent has perfect recall, and let r be a partial strategy
profile for a set 8 of decision nodes in .M. Suppose T is
a Nash equilibrium in .M [a-c], and E is a set of decision
nodes in M (disjoint from C) such that no node in C relies
on any node in 8. Then if a’ is another strategy profile that
differs from a only on 8, T is also a Nash equilibrium in
M [a~_c].

Proof: For each agent a, let Ca = C fq 79a. If Ca # 0, let Ta
be the restriction of r to Ca, and 7-_a be the restriction of T to
t7 \ Ca. By the definition of a Nash equilibrium, it suffices to
show that in the induced MAID .M [a~_c], no agent a has an
incentive to deviate from ra to another strategy ra’, assuming
the other agents adhere to T. In other words, we must show
that Ta is a Nash equilibrium in the induced single-agent in-
fluence diagram .M [al_c, T-a].

Consider an arbitrary decision D E Ca. We are given
that r is an equilibrium in .M [a-c], so the decision rule
ra(D) is optimal for (a-c,r). We are also given that (r~

differs from a only at nodes that are irrelevant for D. So
by Lemma 3, ~-a(D) is also optimal for (a~_c,T). This is
equivalent to saying that Ta(D) is optimal for the strategy
Ta in .M [a~_c,~-_a]. Since every Ta(D) is optimal for Ta,
Lemma 5 implies that Ta is a Nash equilibrium. ¯

Recall that our algorithm produces a strategy profile aTM.

Lemma 6 implies that for each SCC C in the relevance graph,
the partial strategy profile that am specifies for C is a Nash
equilibrium in .M Jam_c]. Thus, no agent has an incentive to
deviate from am on the nodes within any single SCC. We
now prove a lemma that generalizes Lemma 5, showing that
in fact, no agent has an incentive to deviate from am on any
group of nodes.

Lemma 7 Let .h4 be a MAID where every agent has perfect
recall, and let C1,... , Cm be sets of decision nodes in .M
such that whenever i < j, no element of Cd relies on any
element of Ci. lf a is a strategy profile for jt4 such that for
each i E [1, m], ac, is a Nash equilibrium in .AA [a-c,], then
a is a Nash equilibrium for M.

Proof: We must show that for any agent a and any alter-
native strategy tr~ for I)a, EUa (a) _> EUa (a-a, a~).
proceed by induction on the number of sets Ci where aa and

’ differ. The base case is where they differ on zero sets;O"a
’ and EUa (a) EUa (a, a~a). As an inductivethen aa = aa =

’ differs from aa on khypothesis, suppose that whenever aa
or fewer sets, EUa (a) _> EUa (a-a, a’).

’ differs from aa on k + 1 sets. For eachNow suppose aa
set Ci, let Ci,a = CifqT)a. Let Cj be the last set in the ordering
where the partial strategy profiles aa (Cj,a) and er~ (Cj,a) are
different. Let "ca = aa(Cj,a), and r~ = a’~(Cj,a). Since
a(Cj) is an equilibrium in .M [a_cj], we know that ra is
an equilibrium in .M [a-a, (aa)-cj]. But a~ differs from
aa only on sets Ci where i < j, and no node in Cj relies
on any node in these sets. So by Lemma 6, "Ca is also an

0"equilibrium in .M [a-a, (a)-Cj]. In particular, ra yields at
least as much expected utility as q-~ in .M [a-a, (a~)-c~].
So:

EUx~ (a-a, (a~)-c~, ~-a) > EUA4 (a-a,

But ((aa)_SOOj, dif fers fro m aa on only k s ets. So by
the inductive hypothesis:

O’lEUM (a) > EUM (a-a, (a)-Scc~,

So by transitivity:

EUA4 (a) > EU~ (a-a, cr~).

Using this lemma, we can finally prove the correctness of
our algorithm.

Theorem 3 If .M is a MAID where every agent has perfect
recall, then the strategy profile crm derived by the algorithm
above is a Nash equilibrium for .&t.

Proof: Consider any SCC C(m-i), where < i < m.By
construction, ai+~ assigns to C(m-i) a partial strategy pro-

(7ifile T that is a Nash equilibrium in A// [_c(~_o]. Because

(m - i) decreases as i increases from one iteration of the
algorithm to the next, am differs from ai only on SCC’s
Cj where j < (m - i). Because the ordering of SCC’s
a topological ordering in the relevance graph, no node in
C(m-i) relies on any node in Cj where j < (m - i). There-
fore am agrees with ai on all nodes that are relevant for any
node in C(m-i). So by Lemma 6, T is a Nash equilibrium in

o-m.M [._c(m_,)] . Since this is true for every SCC, Lemma 7
implies that am is a Nash equilibrium in .M. ¯

Experimental Results
To demonstrate the potential savings resulting from our al-
gorithm, we tried it on the Road example. As shown in the
relevance graph in Figure 3(b), the decision for a given plot
relies on the decisions about the plot across from it and the
plot directly to the south. However, it does not rely on the
decision about the land directly north of it, because this de-
cision is observed. None of the other decisions affect this
agent’s utility directly. The SCC’s in the relevance graph all
have size 2: they correspond to pairs of decisions about plots
that are across from each other.

Even for small values of n, it is infeasible to solve
the Road example with standard game-solving algorithms.

51

Suppose the chance and decision variables each have three
possible values, corresponding to three types of buildings.
Then the game tree corresponding to the Road MAID has
32n terminal nodes. Since each agent (except the first two)
can observe three ternary variables, he has 27 information
sets. So the number of possible pure (deterministic) strate-
gies for each agent is 32r, and the number of pure strategy
profiles for all n players is (327)(n-2) ̄ (33)2. In the sim-
plest interesting case, where n = 4, we obtain a game tree
with 6561 terminal nodes, and standard solution algorithms
would need to operate on a strategic-form game matrix with
about 4.7 x 1027 entries (one for each pure strategy profile).

SO00

4500

4000

3500

~3ooo

5OO

0

, , , , ,

Divide end Conquer Algorithm

5 10 15 20 25 30
Number of Plots of Land

Figure 4: Performance results for the Road example.

Figure 4 shows how our divide-and-conquer algorithm
performs on the Road example. We converted each of
the induced MAIDs constructed during the algorithm into a
small game tree, and used the game solver GAMBIT (McK-
elvey, McLennan, & Turocy 2000) to solve it. As expected,
the time required by our algorithm grows polynomially with
n. Thus, we can solve a Road MAID with 34 agents (corre-
sponding to a game tree with 368 terminal nodes) in about
hour and 21 minutes.

Discussion and Future Work

We have introduced a new formalism, multi-agent influence
diagrams (MAIDs), for modeling multi-agent scenarios with
imperfect information. MAIDs allow the conditional inde-
pendence structure of a scenario to be represented explic-
itly, limiting the state space explosion which plagues both
strategic-form and extensive-form games. We have also
shown that MAIDs allow us to define a qualitative graph-
based notion that represents strategic relevance, and to ex-
ploit it as the basis for algorithms that find equilibria effi-
ciently.

Although the possibility of extending influence diagrams
to multi-agent scenarios was recognized at least fifteen years
ago (Shachter 1986), the idea seems to have been dormant
for some time. Suryadi and Gmytrasiewicz (1999) have used
influence diagrams as a framework for learning in multi-
agent systems. The focus of their work is very differ-

ent, and they do not consider the computational benefits
derived from the influence diagram representation. Milch
and Koller (2000) use multi-agent influence diagrams as
representational framework for reasoning about agents’ be-
liefs and decisions. However, they do not deal explicitly
with the conversion of a MAID into a game tree, and leave
open the question of how to find equilibria. Nilsson and
Lauritzen (2000) have done related work on limited mem-
ory influence diagrams, or LIMIDs. Although they mention
that LIMIDs could be applied to multi-agent scenarios, they
only consider the use of LIMIDs to speed up inference in
single-agent settings.

MAIDs are also related to La Mura’s (2000) game net-
works, which incorporate both probabilistic and utility in-
dependence. La Mura defines a notion of strategic indepen-
dence, and also uses it to break up the game into separate
components. However, his notion of strategic independence
is an undirected one, and thus does not allow as fine-grained
a decomposition as the directed relevance graph used in this
paper, nor the use of a backward induction process for deci-
sions that are not strategically independent.

This work leaves many interesting open questions. First,
there is a great deal of work to be done in relating MAIDs to
existing concepts in game theory, particularly equilibrium
refinements. On the algorithmic front, the most pressing
question is whether we can take advantage of independence
structure within SCCs in the relevance graph. On the rep-
resentational front, it is important to extend MAIDs to deal
with asymmetric situations, where the decisions to be made
and the information available depend on previous decisions
or chance moves. Game trees represent such asymmetry
in a natural way, whereas in MAIDs (as in influence dia-
grams and BNs), a naive representation of an asymmetric
situation typically leads to unnecessary blowup. We may
be able to avoid these difficulties in MAIDs by explicitly
representing context-specificity, as in (Boutilier et al. 1996;
Smith, Holtzman, & Matheson 1993), integrating the best of
the game tree and MAID representations.

References

Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller,
D. 1996. Context-specific independence in Bayesian net-
works. In Proc. 12th UAI, 115-123.

Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990.
Introduction to Algorithms. Cambridge, MA: MIT Press.

Fudenberg, D., and Tirole, J. 1991. Game Theory. Cam-
bridge, MA: MIT Press.

Geiger, D.; Verma, T.; and Pearl, J. 1990. Identifying in-
dependence in Bayesian networks. Networks 20:507-534.

Howard, R. A., and Matheson, J. E. 1984. Influence dia-
grams. In Readings on the Principles and Applications of
Decision Analysis. Strategic Decisions Group. 721-762.

Jensen, E; Jensen, E V.; and Dittmer, S. L. 1994. From
influence diagrams to junction trees. In Proc. lOth UAL
367-’373.

Keeney, R. L., and Raiffa, H. 1976. Decisions with Mul-

52

tiple Objectives: Preferences and Value Tradeoffs. John
Wiley & Sons, Inc.
Koller, D.; Megiddo, N.; and von Stengel, B. 1994. Fast
algorithms for finding randomized strategies in game trees.
In Proc. 26th STOC, 750-759.
La Mura, P. 2000. Game networks. In Proc. 16th UAI,
335-342.
McKelvey, R. D., and McLennan, A. 1996. Computation of
equilibria in finite games. In Handbook of Computational
Economics, volume 1. Amsterdam: Elsevier Science. 87-
142.
McKelvey, R. D.; McLennan, A.; and Turocy, T. 2000.
GAMBIT software, California Institute of Technology.
http://www.hss.caltech.edu/gambit/Gambit.html.

Milch, B., and Koller, D. 2000. Probabilistic models for
agents’ beliefs and decisions. In Proc. 16th UAI, 389-396.
Nash, J. 1950. Equilibrium points in n-person games. Proc.
National Academy of Sciences 36:48-49.

Nilsson, D., and Lauritzen, S. L. 2000. Evaluating influ-
ence diagrams with LIMIDs. In Proc. 16th UAI, 436-445.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann.

Romanovskii, I.V. 1962. Reduction of a game with
complete memory to a matrix game. Soviet Mathematics
3:678-681.

Shachter, R. D. 1986. Evaluating influence diagrams. Op-
erations Research 34:871-882.
Shachter, R. D. 1998. Bayes-ball: The rational pastime. In
Proc. 14th UAI, 480-487.
Smith, J. E.; Holtzman, S.; and Matheson, J.E. 1993.
Structuring conditional relationships in influence diagrams.
Operations Research 41 (2):280-297.
Suryadi, D., and Gmytrasiewicz, P. J. 1999. Learning mod-
els of other agents using influence diagrams. In Kay, J., ed.,
Proc. 7th lnt’l Conf. on User Modeling, 223-232.
Zermelo, E. 1913. Uber eine Anwendung der Mengenlehre
auf der Theorie des Schachspiels. In Proceedings of the
Fifth International Congress on Mathematics.

53

