
Multi-Agent Management of Joint Schedules
Stephen F. Smith1, Anthony Gallagher1, Terry Zimmerman1, Laura Barbulescu1 and Zachary Rubinstein2

1 The Robotics Institute
Carnegie Mellon University

Pittsburgh PA 15213
{sfs,anthonyg,wizim,laurabar}@cs.cmu.edu

2 Department of Computer Science
University of New Hampshire

Durham, NH 03824-3591
zack@cs.unh.edu

Abstract
In this paper, we describe an incremental scheduling
framework designed to support joint management of
inter-dependent schedules by multiple executing agents.
We assume an uncertain execution environment and a
distributed representation of the overall problem and
schedule such that no single agent has a complete view.
Hence as unexpected execution events force changes
to individual agent schedules, agents must recognize
inter-dependencies and coordinate to revise schedules
in a way that continues to maximize the quality of their
joint activities. Our approach combines an underly-
ing flexible-times representation of the schedule, which
exploits temporal flexibility to absorb executional un-
certainty and insulate dependencies across agent sched-
ules, with an incremental approach to schedule revision,
which promotes solution stability and tends to minimize
the ripple effect of change across agent schedules. We
summarize basic mechanisms for constructing and re-
vising schedules, for integrating scheduling with exe-
cution and for generating options to focus coordination
with other agents. Our framework is being developed
and applied within the DARPA Coordinators program.

Introduction
The practical constraints of many application environments
require distributed management of executing plans and
schedules. Such factors as geographical separation of ex-
ecuting agents, limitations on communication bandwidth,
and the high tempo of execution dynamics will frequently
preclude any single agent from obtaining a complete global
view of the problem, and hence necessitate collaborative
yet localized planning and scheduling decisions. In such
circumstances, individual planning/scheduling agents must
be capable of (1) reconciling updates of execution results
and state with expectations contained in the current schedule
and recognizing the need for plan/schedule change; (2) gen-
erating local options for unilateral response to unexpected
events for purposes of keeping execution going while bet-
ter joint actions are being pursued; (3) selectively generat-
ing non-local options that offer the possibility of a higher
utility response but require some amount of change to inter-
dependent aspects of other agents’ plans/schedules; and (4)
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

responding to queries initiated by other agents in an attempt
to explore the viability of generated non-local options and to
implement a coordinated multi-agent response.

In this paper, we present a scheduling framework that
promotes joint management of inter-dependent schedules by
multiple agents in an uncertain execution environment, un-
der the assumption that no single agent has global visibility
of the entire schedule. We focus on a specific type of multi-
agent scheduling problem in which actions that are executed
within their constraints accrue quality and the overall objec-
tive is to maximize quality.

We take as our starting point a flexible-times representa-
tion of a given agent’s schedule, where the execution inter-
vals associated with scheduled actions are not fixed, but are
allowed to float within imposed time and action sequencing
constraints. This flexible times representation of the sched-
ule and its underlying implementation as a simple temporal
network (STN) model, offers several advantages. First, it
allows the explicit use of slack as a hedge against simple
executional uncertainty (e.g., action durations). We define
a schedule execution policy that allows immediate execu-
tion of any action within its latest start time window and
whose enabling activities have been executed. This allows
the agent’s executor thread to proceed with looser coupling
to the scheduler thread. Second, it provides a convenient
basis for managing “current time” as execution proceeds
and confirming the continuing viability of scheduled actions.
Following suggestions of previous work (Hunsberger 2002),
we specify an STN-based procedure for aligning the agent’s
schedule with updated values of “current time” and detect-
ing situations where one or more actions in the schedule can
no longer be feasibly executed as planned. Third, a flexible
times representation provides a natural criterion for detect-
ing the need to trigger a rescheduling process, i.e., a viola-
tion of one or more constraints in the current schedule. In a
fixed-times schedule, conflict detection simply implies that
the start and end times projected from the execution do not
precisely match those in the current schedule. In contrast
with this, the detection of a conflict (or negative cycle) in the
underlying STN network implies that all available slack has
been eliminated and that change is required to the sequence
of actions that is currently scheduled. We introduce tech-
niques for recovering from detected STN conflicts and tak-
ing appropriate rescheduling actions. Finally, an STN-based



representation can provide principled guidance for propos-
ing non-local rescheduling options. Building from previous
research (Smith, Hildum, & Crimm 2005), we develop a new
conflict-directed approach to identifying good opportunities
for coordinated, multi-agent schedule change.

In its most basic form, an agent in our framework consists
of the following components: (1) a scheduler, which oper-
ates on an STN representation of the agent’s portion of the
current problem and solution and incrementally manipulates
this solution as the dynamics of execution dictate, (2) a dis-
tributed state mechanism (DSM), which accepts new sched-
ules published by the scheduler and broadcasts selected el-
ements to remote agents with dependent decisions, (3) an
executor, which also receives updated schedules from the
DSM, and repeatedly initiates scheduled actions as they be-
come eligible for execution, and (4) a negotiator, which re-
quests non-local options from the scheduler and attempts to
implement them through explicit coordination actions. In
collaboration with SRI International, we have developed an
initial implementation of this agent architecture as part of
the DARPA Coordinators program. In this paper, we take
a scheduler-centric view of this agent architecture, and de-
scribe how the scheduler’s interactions support and focus the
multi-agent schedule execution and management process.

The remainder of the paper is organized as follows. First
we introduce the C TAEMS scheduling problem that our
scheduler is currently designed to address, and its Hierar-
chical Task Network (HTN) style representation of prob-
lems and initial schedules. Next, we summarize the sin-
gle agent scheduler, first discussing its core STN infrastruc-
ture and then its incremental, quality-driven scheduling al-
gorithm. We then discuss the scheduler’s interaction and op-
eration with the executor, emphasizing the loosely-coupled
but nonetheless closed-loop approach to schedule manage-
ment, and the STN-based mechanisms that make this pos-
sible. Next, we turn attention to the issue of coordinating
local rescheduling actions with other agents. We consider
techniques for generating non-local options and give exam-
ples of how they can be used. Before closing, we discuss
other related work in multi-agent schedule management. Fi-
nally, we sketch our current research plans.

The Coordinators Problem
The Coordinators problem specifies a group of agents that
have to collaborate to execute a network of tasks in a highly
dynamic environment. The tasks are distributed among the
agents such that no agent has a complete, “objective” view
of the whole problem. Instead, each agent has a “subjective
view” of the problem, containing only the tasks for which
it is responsible and the remote tasks that have interdepen-
dencies with the local tasks. The agents need to be able to
coordinate their actions and quickly react to changes in the
environment, while keeping their state consistent with the
execution state and responding to changes with actions that
ensure continuity in execution. A solution to the problem is
a schedule that specifies for each agent which tasks to exe-
cute and when. This schedule continuously changes based
on execution updates; the problem specifies an initial sched-
ule for each agent. The execution of each task has a quality

Figure 1: Problem represented in C TAEMS (objective
view)

value assigned to it. The problem objective is to maximize
the quality of the solution.

The problems are formally specified using a version
of the TAEMS language (Task Analysis, Environment
Modeling and Simulation) (Horling et al. 1999) called
C TAEMS (Boddy et al. 2005). The activities to be exe-
cuted by an agent are represented as a hierarchy of tasks
(tree) that is intended to model various levels of abstraction
corresponding to the tasks. This tree structure is similar to
hierarchical task network (HTN) planning representations;
in fact, TAEMS is often used as the annotation language on
top of HTN plans.

As indicated in Figure 1, at the highest, most abstract
level, the root of the tree is a special task called the task
group. On subsequent levels, the tasks constitute aggre-
gate activities, which can be decomposed on the lower levels
into other tasks and/or real-world activities to be executed,
termed ’methods’. These methods appear at the leaf level
in Figure 1. Each declared method a can only be executed
by a specified agent (denoted by ag(a) in Figure 1) and each
agent can be executing at most one method at any given time
(i.e. agents are unit-capacity resources). Methods acquire
quality once they are executed and the actual value is based
on an assigned discrete probability distribution.1 It is also
possible for a method to fail unexpectedly in execution, in
which case the reported quality is zero.

For each task, a quality accumulation function qaf is de-
fined, which specifies when and how a task accumulates
quality as its corresponding methods are executed. For ex-
ample, a task with a min qaf will accrue the quality of its
child with lowest quality if all children accumulate positive
quality when executed. Tasks with sum or max qafs acquire
quality as soon as one child executes with positive quality;
as their qaf names suggest, their respective values ultimately
will be the sum or the maximum quality of all children that
executed.

1Typically, a Coordinators problem has specified distributions
for method quality and duration, and only after execution are the
actual values for a method made known. For simplicity, Figures 1
and 2 show only fixed values for methods.



Agent1 Agent2

Figure 2: Subjective views for the two agents in the problem.

Activity interactions in the problem are modeled via non-
local effects (nles). Two types of nles can be specified:
“hard” and “soft”. The “hard” nles are used to model pre-
conditions: for example, the enables nle in Figure 1 stipu-
lates that the target method M5 can not be executed until
the source M4 accumulates quality. The “soft” nles don’t
need to be enforced, however, when they are, they amplify
(or dampen) the quality of the recipient task.

Both for tasks and for methods, release times and dead-
lines can be defined. Consider an activity a (either a task or
a method). We denote the release time rel(a) and the dead-
line dead(a); these times define the window within which
a must occur. Activities may also inherit these times from
ancestor tasks at any higher level. As time progresses and/or
the problem evolves, the effective time window of a is likely
to become tighter than the initial time window specified by
rel(a) and dead(a). The boundaries of the effective time
window of a are defined by its earliest start time, est(a), and
its latest finish time, lft(a). We also define the latest start
time of an activity lst(a) = lft(a)−dur(a) and the earliest
finish time as eft(a) = est(a) + dur(a), where dur(a) is
the duration of the method.

The Scheduler
The design of our agent scheduler builds on our previous
experience with incremental, flexible-times scheduling tech-
niques (Smith, Becker, & Kramer 2004; Smith, Hildum, &
Crimm 2005; Gallagher, Zimmerman, & Smith 2006 to ap-
pear). Incremental scheduling frameworks are ideally suited
for domains requiring tight scheduler-execution coupling:
rather than recomputing a new schedule in response to every
change, they respond quickly to execution events by localiz-
ing changes and making adjustments to the current schedule
to accommodate the event. Schedule stability is maintained,
providing better support for the continuity in execution. This
latter property is also advantageous in multi-agent settings,
since solution stability tends to minimize the ripple across
different agents’ schedules.

The coupling of incremental scheduling with flexible

times scheduling, where the selection of precise method
start times and finish times is delayed until execution time,
adds additional leverage in an uncertain, multi-agent exe-
cution environment. On one hand, slack can be used as a
hedge against uncertain method execution times. On the
other, it provides a basis for softening the impact of inter-
dependencies across agents.

In this section, we summarize the core scheduler that we
have developed to solve the Coordinators problem. In sub-
sequent sections we discuss its use in managing execution
and coordinating with other agents.

STN Infrastructure
To maintain the range of admissible values for the start and
end times of various methods in a given agent’s schedule,
we encode all problem and scheduling constraints impact-
ing these times in an underlying Simple Temporal Network
(STN)(Dechter, Meiri, & Pearl 1991). A STN represents
temporal constraints as a graph G < N, E >, where nodes
in N represent time points, and edges in E are distances
(labeled as < lower bound, upper bound > pairs) between
the time points in N . A special time point, called calen-
dar zero grounds the network and has the value 0. The net-
work maintains lower and upper bounds on the time points
by propagating the bounds on the distances of the edges.
Constraints on activities (e.g. release time, due time, du-
ration), and relationships between activities (e.g. parent-
child relation, enables) are uniformly represented as tempo-
ral constraints (i.e., edges) between relevant start and finish
time points. Scheduling decisions generally correspond to
the introduction of new constraints into the network (e.g.,
sequencing two methods assigned to the same agent) or the
adjustment of existing constraints (e.g., refining the duration
of an activity, changing the earliest start time). In either case,
constraint propagation updates the bounds of affected nodes
and checks for cycles in the resulting network. The lack of
any such cycle ensures continued temporal feasibility of the
plan. Otherwise a conflict has been detected, and backtrack-
ing (or some amount of constraint relaxation) is necessary.



Our implementation utilizes an incremental bounds propa-
gation and conflict checking algorithm based on (Cesta &
Oddi 1996).

Generating and Maintaining High-Quality
Schedules
The scheduler consists of two key components: a quality
propagator and an activity allocator that work in a tightly
integrated loop. The quality propagator parses the activity
hierarchy and collects a set of methods that (if scheduled)
would maximize the quality of the agent’s local problem.
The methods are collected without regard for resource con-
tention; in essence, the quality propagator optimally solves
a relaxed problem where agents are capable of performing
an infinite number of activities at once. The allocator se-
lects methods from this list and attempts to install them in
the agent’s schedule. Failure to do so reinvokes the quality
propagator with the problematic activity excluded.
The Quality Propagator The quality propagator per-
forms the following actions on the C TAEMS task structure:
• Computes the quality of activities in the task structure:

The quality qual(m) of a method m is computed from the
probability distribution of the execution outcomes. The
quality qual(t) of a task t is computed by applying its qaf
to the assessed quality of its children.

• Generates a list of contributors for each task: methods
that, if scheduled, will maximize the quality obtained by
the task.

• Generates a list of activators for each task: methods that,
if scheduled, are sufficient to qualify the task as sched-
uled. Methods in the activators list are chosen to minimize
demands on the agent’s timeline.
The first time the quality propagator is invoked, the qual-

ities of all tasks and methods are calculated and the initial
lists of contributors and activators are determined. Subse-
quent calls to the propagator occur as the allocator installs
methods on the agent’s timeline: failure of the allocator to
install a method causes the propagator to recompute a new
list of contributors and activators.
The Activity Allocator The activity allocator attempts to
install the contributors of the taskgroup identified by the
quality propagator on the agent’s timeline. An overview of
the allocator’s algorithm is shown in Figure 3. The contribu-
tors list is processed by the Filter routine. This routine uses
a quality-centric heuristic to sort the methods in decreasing
quality order. In addition, methods associated with a min
task are grouped together, due to the requirement that a min
task only accumulates quality if all its children are sched-
uled.

The allocator iteratively removes the first method mnew

from the agenda and attempts to install it. The Install rou-
tine starts by ensuring that all the activities that enable mnew

have been scheduled, and attempts to install any enabler that
is not. If any of the enabler activities fails to install, the
routine fails. Next, the enables constraints linking the en-
abler activities to mnew are activated. The STN rejects any

Allocate(Taskgroup)
1. SContr ← Filter(Contributors(Taskgroup))
2. while SContr
3. Method← Pop(SContr)
4. Success← Install(Method)
5. if Not Success
6. SContr ← Filter(Contributors(Taskgroup))
7. DeallocateNonContributors(Taskgroup)
8. end-if
9. end-while
end

Figure 3: Algorithm for Installing Taskgroup’s Contributors

infeasible enabler constraint by indicating a conflict. If a
conflict is detected, the routine uninstalls any enabler activ-
ity it had scheduled and returns failure. Finally, a place on
the agent’s timeline must be found for the method: Install
focuses on the portion of the agent’s timeline within mnew’s
time window and attempts to insert mnew by placing it be-
tween two currently scheduled methods. At the STN level,
mnew’s insertion breaks the sequencing constraint between
the two methods currently on the timeline, and inserts two
new sequencing constraints that chain mnew to these two
methods. If the insertion of both sequencing constraints suc-
ceeds, a place on the timeline for mnew has been found, and
the routine returns success. Otherwise, if the STN returns
a cycle, we re-chain the two original methods and try to in-
sert mnew elsewhere. If we don’t succeed in inserting mnew

anywhere within its time window, the routine returns failure.
If a method fails to install, any currently scheduled meth-

ods that are not part of the new agenda are uninstalled by the
DeallocateNonContributors routine.

The Dynamics of Execution
Maintaining a flexible-times schedule enables us to use a
conflict-driven approach to schedule repair: Rather than re-
acting to every event in the execution that may impact the ex-
isting schedule by computing an updated solution, the STN
can absorb any change that does not cause a conflict. Conse-
quently, computation (producing a new schedule) and com-
munication costs (informing other agents of changes that af-
fect them) are minimized.

One basic mechanism needed in order to handle execu-
tion within a scheduler is a dynamic model for current time.
We employ a model proposed by (Hunsberger 2002) that es-
tablishes a ’current-time’ time point and includes a link be-
tween it and the calendar-zero time point. As each method
is scheduled, a simple precedence constraint between the
current-time time point and the method is established. When
the scheduler receives an update to current time, the link be-
tween calendar-zero and current-time is updated to reflect
this new time, and as a consequence this constraint propa-
gates to all scheduled methods.

A second basic issue concerns synchronization between
the executor and the scheduler, as producer and consumer



of the schedule running on different threads within a given
agent. This coordination must be robust despite the fact that
the executor needs to start methods for execution in real-time
even while the scheduler may be reassessing the schedule
to maximize quality, and/or transmitting a revised schedule.
If the executor, for example, slates a method for execution
based on current time while the scheduler is instantiating
a revised schedule in which that method is no longer next-
to-be-executed, an inconsistent state may arise within the
agent architecture. This is addressed in part by introducing
a ”freeze window”; a short specified (and adjustable) time
period beyond current time within which any activity slated
as eligible to start in the current schedule cannot be resched-
uled by the scheduler.

The scheduler is triggered in response to various envi-
ronmental messages. There are two types of environmental
message classes that we discuss here as “execution dynam-
ics”: 1) feedback as a result of method execution - both the
agent’s own and that of other agents, and 2) changes in the
C TAEMS model corresponding to a prescribed set of evo-
lutions of the problem and environment. Such messages are
termed updates and are treated by the scheduler as direc-
tives to permanently modify parameters in its model. We
discuss these update types in turn here and defer until later
the discussion of queries, a ’what-if’ mode of invoking the
scheduler which is initiated by the negotiator in pursuit of
higher global quality.

Whether it is invoked via an update or a query, the sched-
uler’s response is an option; essentially a complete sched-
ule of activities the agent can execute along with associated
quality metrics. We define a local option as a valid schedule
for an agent’s activities, which does not require change to
any other agent’s schedule. The overarching design for han-
dling execution dynamics aims at anytime scheduling be-
havior in which a local option maximizing the local view of
quality is returned quickly and then globally higher quality
schedules, entailing inter-agent coordination are pursued by
the negotiator as time permits. As such, the default schedul-
ing mode for updates is to seek the highest quality local op-
tion according to its search strategy, instantiate it as its cur-
rent schedule, and notify the executor of the revision.

Responding to Activity Execution
As suggested earlier, a committed schedule consists of a se-
quence of methods, each with a designated [est, lst] start
time window (as provided by the underlying STN represen-
tation). The executor is free to execute a method any time
within its start time window, once any additional enabling
conditions have been confirmed. These scheduled start time
windows are established using the expected duration of each
scheduled method (derived from associated method duration
distributions during schedule construction). Of course as ex-
ecution unfolds, actual method durations may deviate from
these expectations. In these cases, the flexibility retained
in the schedule can be used to absorb some of this unpre-
dictability and modulate invocation of a schedule revision
process.

Consider the case of a method completion message, one of
the environmental messages that could be communicated to

the scheduler as an execution state update. If the completion
time is coincident with the expected duration (i.e., it com-
pletes exactly as expected), then the scheduler’s response is
to simply mark it as ’completed’ and and the agent can pro-
ceed to communicate the time at which it has accumulated
quality to any remote agents linked to the method via an nle.

However if the method completes with a duration
shorter than expected (i.e., finishes earlier than expected),
rescheduling action might be warranted. The posting of the
actual duration in the STN introduces no potential for con-
flict in this case, either with the lsts of local or remote meth-
ods that depend on this method as an enabler, or to succes-
sively scheduled methods on the agent’s timeline. However,
it may present a possibility for exploiting the unanticipated
scheduling slack. The flexible times representation afforded
by the STN provides a quick means of assessing whether
the next method on the timeline can begin immediate execu-
tion instead of waiting for its previously established est start
time. If indeed est of the next scheduled method can “spring
back” to current-time once the actual duration constraint
is substituted for the expected duration constraint, then the
schedule can be left intact and simply communicated back
to the executor. If alternatively, other problem constraints
prevent this relaxation of the est, then there is forced idle
time that may be exploited by revising the schedule, and the
scheduler is invoked (always respecting the freeze period).

If alternatively, the method completes later than expected,
then there is no need for rescheduling under flexible times
scheduling unless 1) the method finishes later than the lat-
est start time (lst) of the subsequent scheduled activity, or
2) it finishes later than its deadline. Thus we only invoke
the scheduler if, upon posting the late finish in the STN, a
constraint violation occurs. In the latter case no quality is
accrued and rescheduling is mandated even if there are no
conflicts with subsequent scheduled activities.

Other execution status updates that can be received by the
scheduler include:
• method start - If a method sent for execution is tarted

within its [est, lst] window, the scheduler response is to
mark it as ’in-process’. A method cannot start earlier than
when it is transmitted by the executor but due to vagaries
of the simulation system, and indeed in a real-world situ-
ation, it is possible for it to start later than requested. If
the posted start time causes an inconsistency in the STN
(e.g. because the expected method duration can no longer
be accommodated) the scheduler shortens the scheduled
duration based on the known distribution until either con-
sistency is restored or rescheduling is mandated.

• method failure - Any method under execution may fail
unexpectedly, garnering no quality for the agent. At this
point rescheduling is mandated as the method may enable
other activities or significantly impact quality in the ab-
sence of local repair. Again, the executor will proceed
with execution of the next method if its start time arrives
before the revised schedule is committed, and the sched-
uler accommodates this by respecting the freeze window.

• current time advances An update on ’current time’ may
arrive either alone or as part of any of the previously dis-



cussed updates. After the current-time link in the STN is
updated (as described above), if a conflict results it’s in-
dicative of an unanticipated state. In this case, the sched-
uler proceeds as if execution is consistent with its expec-
tations, subject to possible later updates.

Responding to Model Updates
The scheduler can also dynamically receive changes to the
agent’s underlying C TAEMS model. Dynamic revisions in
the outcome distributions for methods already in an agent’s
subjective view may impact the assessed quality and/or du-
ration values that shaped the current schedule. Similarly dy-
namic revisions in the designated release times and dead-
lines for methods and tasks already in an agent’s subjective
view can invalidate an extant schedule or present opportuni-
ties to boost quality. It is also possible during a Coordinators
problem run to receive updates in which new methods and
possibly entire task structures are given to the agent for in-
clusion in its subjective view. Model changes that involve
temporal constraints are handled in much the same fash-
ion as described for method starts and completions; only if
posting of the revised constraints leads to an STN conflict
is a rescheduling response is required. In the case of non-
temporal model changes, alternatively, rescheduling action
is currently always initiated.

Coordinating with Other Agents
Unexpected execution results and/or model changes will fre-
quently necessitate joint action by multiple agents. Consider
the example of an enable nle between two methods, where
different agents are responsible for scheduling the source
and target of the nle, respectively. Without a local incen-
tive to schedule the source, the target will never get sched-
uled. Moreover, even if the source does get scheduled, the
agent owning the target will not schedule it unless it is noti-
fied that its activity is now enabled. Finally, if an execution
bottleneck delays the scheduled start of the source, it may
no longer be possible to feasibly execute the target. Com-
munication and coordination between the agents involved is
fundamental to maximizing the quality gain in all such cir-
cumstances. In this section, we summarize the mechanisms
provided by the scheduler to support multi-agent coordina-
tion.

Implicit Coordination
A basic means of coordination is provided within our as-
sumed agent architecture by a Distributed State Mechanism
(DSM), which is responsible to for communicating changes
made to the model or schedule of a given agent to other “in-
terested” agents. More specifically, a given agent’s DSM
pushes any changes that are made to a task or method in its
subjective view to all other agents that also have that same
task or method in their subjective views. A recipient agent
treats changes as additional forms of updates, in this case,
modifying the current constraints associated with non-local
(but inter-dependent) tasks or methods. These changes are
reacted to in precisely the same manner as are updates re-
flecting schedule execution results, potentially triggering the
local scheduler if the need to reschedule is detected.

Generating Non-Local Options
As mentioned in the previous section, the scheduler’s first
response to any given query or update (either from execu-
tion or from another agent) is to generate one or more local
options. Such options represent (re)scheduling actions that
are consistent with all currently known constraints originat-
ing from other agents’ schedules, and hence can be imple-
mented without interaction with other agents. It may fre-
quently be the case, however, that a larger-scoped change to
the schedules of two or more agents can produce a higher-
quality response. To support such coordinated action by two
or more agents, the scheduler also provides basic mecha-
nisms for generating non-local options.

Generally speaking, a non-local option produced by a
given agent identifies a certain set of relaxations (to one or
more constraints imposed by methods that are scheduled by
one or more remote agents) that enables the generation of
a higher quality local schedule. A non-local option can be
used by a coordinating agent to formulate queries to other
agents, in order to determine the impact of such relaxations
from their local scheduling perspective. If the combined
quality change found as a result of issuing relevant queries is
a net gain, then this joint rescheduling action is subsequently
committed to.

The scheduler currently provides two mechanisms for
generating non-local options:
• optimistic synchronization - where search is directed at

exploring the potential impact on quality of making opti-
mistic assumptions about currently unscheduled, remote
enablers (or targets), and

• conflict-driven relaxation - where analysis of STN con-
flicts associated with local unscheduled methods is used
to identify and prioritize remote constraints to drop.
These two types of non-local options are discussed in

more detail in the subsections below.
Optimistic Synchronization To produce this type of non-
local options, the scheduler looks for unscheduled local
methods that need to be enabled by remote activities be-
fore they can be scheduled. For each such local method, the
scheduler attempts to schedule it, assuming the remote en-
ablers are scheduled. If successful, the scheduler produces a
non-local option, specifying the new schedule and the must-
schedule activities, which are the activities that need to be
scheduled by other agents.

Consider again the example in Figure 2. The maximum
quality that Agent1 can contribute to the task group is 15
(by scheduling M1, M2 and M3). The maximum quality
that Agent2 can contribute to the task group when M5 is
not scheduled is 10; the total quality accumulated for the
task group would then be 15 + 10 = 25. If M5 becomes
enabled, and both M5 and M6 are scheduled, the quality
contributed by Agent2 to the task group would be 30. For
this, M4 needs to be scheduled; because of the time window
constraints, M3 would not be scheduled anymore and the
new quality contributed by Agent1 to the task group would
be at most 5. However, since M5 is enabled, the total quality
for the task group node would be 5+30 = 35. Here, in order



Figure 4: A high quality task is added to the task structure
of Agent2. The new task and method are represented with
dotted lines.

Figure 5: If M4, M5 and M7 are scheduled, a conflict is
detected by the STN. M7 can not fit into the schedule, it
exceeds its deadline.

for a global higher quality to be achieved (35 as opposed to
25), Agent1 has to produce a local schedule that has a lower
quality value than the best it can obtain.

In optimistic synchronization, Agent2 will produce an op-
tion that designates:
• Both M5 and M6 are scheduled. The quality contributed

by Agent2 to the task group is 20 + 10 = 30.
• M4 is marked as a must-schedule for Agent1.

The coordination mechanism can then query Agent1
about the impact of scheduling M4. A query is handled by a
recipient agent’s scheduler in the same way as an update, ex-
cept that changes are made temporarily and then rolled back.
The coordination mechanism can infer that the overall qual-
ity if this non-local option were pursued would go down by
10 for Agent1 but up by 20 for Agent2; so overall the quality
would improve by 10.
Conflict-Driven Relaxation When generating this type of
non-local option, the scheduler assumes that constraints as-
sociated with remote methods can be relaxed in order to
schedule a currently unscheduled local method. An option
specifies a schedule and the constraints that need to be re-
laxed by other agents.

Consider Figure 5 where Agent1 has M1, M2 and M4 on
its timeline, and therefore est(M4) = 21. Agent2 has M5
and M6 on its timeline, with est(M5) = 31 (M6 could
be scheduled before or after M5). Suppose that during ex-
ecution, a model change update adds a new task to the task
structure of Agent2 (see Figure 4). If Agent2 could sched-
ule M7, the quality contributed by Agent2 to the task group
would be 70. However, if M5, M6 and M7 were sched-
uled, est(M7) = 46 (see Figure 5). The deadline for M7 is
lft(M7) = 55 and its duration is dur(M7) = 10. So, with
the current schedules for Agent1 and Agent2, M7 can not
be scheduled (lft(M7)− est(M7) > dur(M7)).

The basic steps in conflict-driven relaxation are:
• Schedule a currently unscheduled local method to gener-

ate a cycle in the STN. Agent2 attempts to schedule M7
by posting a sequencing constraint between M5 and M7.
The STN detects a conflict (negative cycle); the methods
involved in the conflict set are M4, M5 and M7.

• Filter conflict set for remotely imposed constraints in
the manner successfully employed in (Smith, Hildum, &
Crimm 2005). In our example, such constraints would be
related to M4 – in particular, the earliest finish time for
M4 is violated (needs to be 30 instead of 31).

• Selectively relax and recheck STN consistency. Making
eft(M4) = 30 would bring back the consistency in the
STN.
The coordination mechanism can then query Agent1

about the possibility of scheduling M4 such that it finishes
by time 30. Agent1 will generate an option showing either
M1 or M2 unscheduled. Note that the schedule quality for
Agent1 will not be affected for this particular example (be-
cause TT1 has a min qaf). However, in general the quality
of the schedule that has to accommodate the constraint re-
laxation might decrease. The negotiator will then have to
reason about the combined effect of the schedule quality in-
creases and possible decreases.

Related Work
Previous research by the scheduling community has demon-
strated the advantages of using STNs to keep a flexible-times
schedule. Several applications using STN-based schedulers
working in a tight-loop with the executor module have ap-
peared. (Muscettola et al. 1998) present the Remote Agent
framework to control NASA rovers. (Lemai & Ingrand
2004) outline the IxTeT-eXeC continuous planner for on-
line applications. This planner specializes in domains with
independent subsystems. (Ruml & Fromherz 2004) describe
a planner/scheduler for high-speed manufacturing. To han-
dle execution uncertainty (Morris & Muscettola 2000) re-
place the STN with a ’family’ of STNs, where each ’family’
member encodes different alternative constraints from the
potential outcome distributions of the activities. (Wehowsky
2003) augments the STN to encode potential choices of ac-
tivities in the STN graph; he uses this type of STN in the
context of a continuous planner in a multi-robot application.
(Shu, Effinger, & Williams 2005) present a novel STN-based
solution that allows the introduction of several (potentially



inconsistent) constraints into the network and implement an
iterative algorithm for reverting the STN back to a consis-
tent state. We are currently studying the potential use of
this new technology in our application. To the best of our
knowledge, all of these STN-based applications in the lit-
erature present centralized solutions. Our approach extends
the current state-of-the-art by producing the first distributed
STN-based scheduling application that works in a tight loop
with execution.

The multi-agent/multi-robot systems community has pro-
duced a variety of techniques for coordinating the activi-
ties of a group of agents. However, a great emphasis has
been placed on deciding how to divide the tasks among
the agents with relatively simple techniques used for task
scheduling. TAEMS (which C TAEMS extends) was de-
signed as a planner-independent task modeling framework
to encode agents’ goals in a Hierarchical Task Network
(HTN). TAEMS highlights the challenges and opportuni-
ties for more sophisticated distributed task scheduling ap-
proaches, and has been used in a variety of domains. Design-
to-time scheduling (Garvey & Lesser 1995) and design-to-
criteria scheduling (Wagner & Lesser 2000) have been de-
signed to produce coordinated agent schedules based on
TAEMS task structures. Both techniques use sophisticated
heuristics to drive the scheduling process. The resulting
schedules are fixed-times. To our knowledge, only a few
previous approaches have examined the use of flexible-times
STN-based schedules in a multi-agent setting. (Hunsberger
2002) presents one such approach, where an initial global
STN is decomposed into several ’temporally decoupled’
STNs that can then be provided to the agents in the system.

Status and Directions
The scheduling framework summarized in this paper has
been embedded in SRI International’s cMatrix agent archi-
tecture, and is currently undergoing a year 1 evaluation test
that entails closed-loop multi-agent management of sched-
ules across a range of C TAEMS problem instances (running
with the MASS C TAEMS simulator). Whereas our year 1
effort has focused on getting foundational scheduling and
coordination components in place, our major focus in the
coming year will be solidifying and and extending the multi-
agent coordination capabilities. Numerous opportunities ex-
ist for more extensively exploiting the STN conflict detec-
tion capabilities of the scheduler to provide a wider range
of options to the negotiation component. When the agent
has spare cycles to devote to exploration of the schedul-
ing search space, the possibilities for anytime streaming of
higher quality or less disruptive options based on increas-
ing depths of local search may prove valuable. Finally, we
intend to place greater emphasis on schedule stability and
explore the applicability of schedule partitioning concepts
like temporal decoupling (Hunsberger 2002).

Acknowledgements
This paper is based on work supported by the Department of
Defense Advance Research Projects Agency (DARPA) un-
der Contract # FA8750-05-C-0033. Any opinions, findings

and conclusions, or recommendations expressed in this pa-
per are those of the authors and do not necessarily reflect the
views of DARPA.

References
Boddy, M.; Horling, B.; Phelps, J.; Goldman, R.; Vincent,
R.; Long, A.; and Kohout, B. 2005. C taems language
specification v. 1.06.
Cesta, A., and Oddi, A. 1996. Gaining efficiency and flex-
ibility in the simple temporal problem. In Proc. 3rd Int.
Workshop on Temporal Representation and Reasoning.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
Gallagher, A.; Zimmerman, T.; and Smith, S. 2006 (to
appear). Incremental scheduling to maximize quality in a
dynamic environment. In Proc. 2006 International Conf.
on Automated Planning and Scheduling.
Garvey, A., and Lesser, V. 1995. Design-to-time schedul-
ing and anytime algorithms. In Proc. IJCAI-95 Workshop
on Anytime Algorithms and Deliberation Scheduling.
Horling, B.; Lesser, V.; Vincent, R.; Wagner, T.; Raja, A.;
Zhang, S.; Decker, K.; and Garvey, A. 1999. The taems
white paper.
Hunsberger, L. 2002. Algorithms for a temporal decou-
pling problem in multi-agent planning. In Proc. 18th Na-
tional Conf. on AI (AAAI-02).
Lemai, S., and Ingrand, F. 2004. Interleaving temporal
planning and execution in robotics domains. In Proc. 19th
National Conf. on AI (AAAI-04).
Morris, P., and Muscettola, N. 2000. Execution of temporal
plans with uncertainty. In Proc. 17th National Conf. on AI.
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C.
1998. Remote agent: To boldly go where no AI system has
gone before. Artificial Intelligence 103(1–2):5–47.
Ruml, W., and Fromherz, M. 2004. On-line planning and
scheduling in a high-speed manufacturing domain. In Proc
ICAPS Workshop on Integrating Planning into Scheduling.
Shu, I.; Effinger, R.; and Williams, B. 2005. Enabling fast
flexible planning through incremental temporal reasoning
with conflict extraction. In Proc. 2005 International Conf.
On Automated Planning and Scheduling, 252–261.
Smith, S.; Becker, M.; and Kramer, L. 2004. Continuous
management of airlift and tanker resources: A constraint-
based approach. Mathematical and Computer Modeling
39(6–8):581–598.
Smith, S.; Hildum, D.; and Crimm, D. 2005. Comirem: An
intelligent form for scheduling. IEEE Intelligent Systems
20(2).
Wagner, T., and Lesser, V. 2000. Design-to-criteria
scheduling: Real-time agent control. In Proc. AAAI Spring
Symposium on Real-Time Autonomous Systems, 89–96.
Wehowsky, A. 2003. Safe distributed coordination of het-
erogeneous robots through dynamic simple temporal net-
works. Tech. report, Massachusetts Institute of Technol-
ogy.


