
Multi-Agent Path Finding with Kinematic Constraints∗

Wolfgang Hönig, T. K. Satish Kumar, Liron Cohen,
Hang Ma, Hong Xu,Nora Ayanian, and Sven Koenig

Department of Computer Science
University of Southern California

whoenig@usc.edu, tkskwork@gmail.com, {lironcoh, hangma, hongx, ayanian, skoenig}@usc.edu

Abstract

Multi-Agent Path Finding (MAPF) is well studied in both AI
and robotics. Given a discretized environment and agents
with assigned start and goal locations, MAPF solvers from
AI find collision-free paths for hundreds of agents with user-
provided sub-optimality guarantees. However, they ignore
that actual robots are subject to kinematic constraints (such
as finite maximum velocity limits) and suffer from imperfect
plan-execution capabilities. We therefore introduce MAPF-
POST, a novel approach that makes use of a simple temporal
network to postprocess the output of a MAPF solver in poly-
nomial time to create a plan-execution schedule that can be
executed on robots. This schedule works on non-holonomic
robots, takes their maximum translational and rotational ve-
locities into account, provides a guaranteed safety distance
between them, and exploits slack to absorb imperfect plan ex-
ecutions and avoid time-intensive replanning in many cases.
We evaluate MAPF-POST in simulation and on differential-
drive robots, showcasing the practicality of our approach.

Introduction

The Multi-Agent Path Finding (MAPF) problem is the fol-
lowing NP-hard combinatorial optimization problem. Given
an environment and agents with assigned start and goal loca-
tions, find collision-free paths for the agents from their start
to their goal locations that minimize the makespan. Solv-
ing the MAPF problem has many applications, including im-
proving traffic at intersections, search and rescue, formation
control, warehouse applications, and assembly planning. A
comprehensive list of applications with references can be
found in (Yu and LaValle 2015) and (LaValle 2006). We
are motivated by designing autonomous aircraft towing ve-
hicles that tow aircraft all the way from the runways to their
gates (and vice versa), thereby reducing pollution, energy
consumption, congestion and human workload (Morris et al.
2016).

Our objective is to develop a MAPF solver that com-
bines the advantages of MAPF solvers from AI and robotics.

∗Our research was supported by ARL under grant number
W911NF-14-D-0005, ONR under grant numbers N00014-14-1-
0734 and N00014-09-1-1031, NASA via Stinger Ghaffarian Tech-
nologies, and NSF under grant numbers 1409987 and 1319966.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

MAPF solvers from AI typically work for agents without
kinematic constraints in discretized environments but per-
form well even in cluttered and tight environments. On
the other hand, MAPF solvers from robotics typically work
for robots with kinematic constraints in continuous environ-
ments but do not perform well in cluttered and tight envi-
ronments. We base our approach on MAPF solvers from AI
because they solve MAPF problems for hundreds of agents
in a reasonable amount of time. If even faster MAPF solvers
become available, we can use them. However, using the re-
sulting MAPF plans naively on actual robots has limitations.
First, robots are subject to kinematic constraints (such as fi-
nite maximum velocity limits), that need to be taken into ac-
count to allow them to execute a MAPF plan. Furthermore,
robots suffer from imperfect plan-execution capabilities that
need to be taken into account to avoid robot-robot collisions
or repeated replanning, which can be slow due to the NP-
hardness of the MAPF problem. We therefore introduce
MAPF-POST, a novel approach that makes use of a sim-
ple temporal network to postprocess a MAPF plan in poly-
nomial time to create a plan-execution schedule that works
on non-holonomic robots, takes their maximum translational
and rotational velocities into account, provides a guaranteed
safety distance between them, and exploits slack (defined as
the difference of the latest and earliest entry times of loca-
tions) to absorb imperfect plan executions and avoid time-
intensive replanning in many cases. We evaluate MAPF-
POST in simulation and on differential-drive robots, show-
casing the practicality of our approach.

A Motivating Example

We demonstrate our ideas with a simple running example
of two agents in a narrow corridor of a grid-world with
1m× 1m cells, see Figure 1a. The maximum velocity limit
of Agent 1 is 1/4m/s, and the maximum velocity limit of
Agent 2 is 1/16m/s. Agent 1 needs to pass Agent 2 to reach
its goal location, which requires Agent 2 to move into an
alcove temporarily, no matter what the maximum velocities
and plan-execution capabilities of the agents are. We can
thus use a MAPF solver from AI to discover such critical
intermediate configurations and then use a post-processing
step to create a plan-execution schedule that takes their
maximum velocities and plan-execution capabilities into ac-
count. In Step 1, we formulate a given navigation task as

Proceedings of the Twenty-Sixth International Conference on 
Automated Planning and Scheduling (ICAPS 2016)

477



(a) Example environment with two agents. The transparent agent
images on the right mark the goal locations of the agents with cor-
responding colors.

A

s1

B

s2

C D

g2

E

g1

F

(b) Graph representation of the example environment.
Agent t = 1 t = 2 t = 3 t = 4
1 A → B B → C C → D D → E
2 B → C C → F F → C C → D

(c) Optimal MAPF plan with makespan four.

Figure 1: Running example.

a MAPF problem on a graph of the environment, see Fig-
ure 1b. In Step 2, we use a MAPF solver from AI to
find a MAPF plan consisting of collision-free paths for all
agents, assuming uniform edge lengths and synchronized
agent movement from vertex to vertex at discrete timesteps,
see Figure 1c. However, this MAPF plan is nearly impossi-
ble to execute safely on actual robots due to their imperfect
plan-execution capabilities. It is communication-intensive
for the robots to remain perfectly synchronized as they fol-
low their paths and their individual progress will thus devi-
ate from the MAPF plan, for example, because the edges
have non-uniform lengths or velocity limits (due to kine-
matic constraints or safety concerns) or because the robots
cannot move at a uniform velocity (due to kinematic con-
straints, slip and other robot and environmental limitations).
For example, if Agent 2 is slightly slower than Agent 1 in
our running example, the agents can collide while they exe-
cute their first action. Controlling the velocities of the agents
and enforcing safety distances between them can avoid col-
lisions. In Step 3, we therefore use MAPF-POST to create
a plan-execution schedule that takes information about the
edge lengths and velocity limits into account to provide a
guaranteed safety distance between the agents and to exploit
slack to absorb imperfect plan executions and avoid time-
intensive replanning in many cases.

MAPF Problem

We assume from now on that the agents are holonomic and
thus able to move in all directions. We later relax this as-
sumption. The MAPF problem can be stated as follows.
Given a graph with vertices (that correspond to locations)
and unit-length edges connecting two different vertices each

(that correspond to passages between locations in which
agents cannot pass each other) and a set of agents with
assigned start and goal vertices, find collision-free paths
for the agents from their start to their goal vertices (where
the agents remain) that minimize the makespan. At each
timestep, an agent can either wait at its current vertex or tra-
verse a single edge. Two agents collide when they are at the
same vertex at the same timestep or traverse the same edge
at the same timestep in opposite directions.

We use the following definitions to formalize the MAPF
problem. The graph is G = (S,E), the set of K agents is
1, . . . ,K, the start vertex of agent j is sj ∈ S, and its goal
vertex is gj ∈ S. Let sjt be the vertex of agent j at timestep t.
A path pj = [sj0, . . . , s

j
T j , s

j
T j+1, . . .] for agent j is feasible

if and only if the following conditions hold.

1. Agent j starts at its start vertex, that is, sj0 = sj ;

2. Agent j ends at its goal vertex and remains there, that
is, there exists a minimum finite T j such that, for each
t ≥ T j , sjt = gj ; and

3. Every action is either a move action along an edge or
a wait action, that is, for all t ∈ {0, 1, . . . , T j − 1},
(sjt , s

j
t+1) ∈ E or sjt = sjt+1.

A MAPF plan consists of feasible paths for all agents that
are collision-free. A collision between agents j and k is
either a vertex collision (where sjt = skt for some timestep
t) or an edge collision (where sjt = skt+1 and sjt+1 = skt for
some timestep t). The T = maxj T

j of a MAPF plan is
the earliest timestep when all agents have reached their goal
vertices and remain there. A MAPF plan with the minimum
makespan is called optimal.

Figure 1c shows the optimal MAPF plan for our running
example. Approximating optimal MAPF plans within any
constant factor less than 4/3 is NP-hard (Ma et al. 2016) but
suboptimal MAPF plans (if they exist) can be found in poly-
nomial time (Röger and Helmert 2012; Kornhauser, Miller,
and Spirakis 1984). Bounded w-suboptimal MAPF solvers
from AI can approximate optimal MAPF plans with a fac-
tor of w for hundreds of agents in a reasonable amount of
time (Barer et al. 2014), although they often run faster when
trying to minimizing the flow time rather than the makespan.
If desired, our post-processing step could use a different
optimization criterion and different assumptions about the
lengths of the edges than the MAPF solver, which is why
we allow every edge in the following to have a finite posi-
tive length different from one.

Temporal Plan Graph

We now present an algorithm for converting a MAPF plan
to a data structure called the Temporal Plan Graph (TPG).
A TPG is a directed acyclic graph G = (V, E). Each vertex
v ∈ V represents an event, which corresponds to an agent
entering a location. Each edge (v, v′) ∈ E is a temporal
precedence between events v and v′ indicating that event v
must be scheduled before event v′. Basically, the TPG im-
poses two types of temporal precedences between events as

478



Algorithm 1: Algorithm for constructing the TPG.
Data: A MAPF plan with a makespan of T for K agents

consisting of path pj = [sj0, . . . , s
j
T ] for each agent j

Result: The temporal plan graph G for the MAPF plan
1 /* create vertices and Type 1 edges */
2 for j ← 1 to K do

3 Add vertex vj0 to G
4 v ← vj0
5 for t ← 1 to T do

6 if sjt �= sjt−1 then

7 Add vertex vjt to G
8 Add edge (v, vjt ) to G
9 v ← vjt

10 /* create Type 2 edges */
11 for j ← 1 to K do
12 for tj ← 0 to T do

13 if vjtj in G then

14 for k ← 1 to K do
15 if k �= j then
16 for tk ← tj + 1 to T do

17 if vktk in G and sjtj = sktk then

18 Add edge (vjtj , v
k
tk ) to G

19 break

A1
0 B1

1 C1
2 D1

3 E1
4

B2
0 C2

1 F 2
2 C2

3 D2
4

Figure 2: TPG for our running example.

dictated by the MAPF plan. Type 1: For each agent, prece-
dences enforce that it enters locations in the order given by
its path in the MAPF plan. Type 2: For each pair of agents
and each location that they both enter, precedences enforce
the order in which the two agents enter the location in the
MAPF plan. A plan-execution schedule assigns a time to
each event, corresponding to an entry time for each location.
Agents that execute a plan-execution schedule enter all lo-
cations at these entry times. We prove later that the agents
do not collide if they execute a plan-execution schedule that
is consistent with these precedences. The MAPF plan dis-
cretizes time and specifies a total order among the events.
The TPG, however, does not discretize time and specifies
only a partial order among the events, which provides it with
flexibility to take into account both maximum velocities and
imperfect plan-execution capabilities of actual robots.

Constructing the Temporal Plan Graph

The TPG can be constructed as follows for a given MAPF
plan consisting of the path pj = [sj0, . . . , s

j
T , s

j
T , . . .] or, for

short, pj = [sj0, . . . , s
j
T ] for each agent j, see Algorithm 1.

A1
0 B1

1 C1
2 D1

3 E1
4

B2
0 C2

1 F 2
2 C2

3 D2
4

Figure 3: Augmented TPG for our running example. The
small circles represent the safety markers.

For each agent j, we extract a route rj from path pj by keep-
ing only the first of several consecutive identical locations on
the path (which corresponds to removing the wait actions but
keeping the move actions). For each (kept) location sjt on
route rt, we create a location vertex vjt ∈ V (with associated
agent j and associated location sjt ). For each two consecu-
tive (kept) locations sjt and sjt′ on the same route, we create
a Type 1 edge (vjt , v

j
t′) ∈ E (with associated agent j and

associated length equal to the length of edge (sjt , s
j
t′) ∈ E).

This edge corresponds to a precedence of Type 1, indicating
that agent j enters location sjt directly before location sjt′
and thus enters locations in the order given by its path in the
MAPF plan. Type 1 edges thus correspond to actions. For
each two identical (kept) locations sjt = skt′ = s on differ-
ent routes (and thus j �= k) with t < t′, we create a Type 2
edge (vjt , v

k
t′) ∈ E . This edge corresponds to a precedence

of Type 2, indicating that agent j enters location s before a
different agent k enters the same location. Figure 2 shows
the TPG for our running example. In general, the TPG for
a MAPF plan with a makespan of T has O(KT ) location
vertices and O(K2T ) edges. Algorithm 1 constructs it in
O(K2T 2) time, avoiding to add some Type 2 edges that are
implied by transitivity.

Augmenting the Temporal Plan Graph

We now add additional vertices (called safety markers) to
the TPG to provide a guaranteed safety distance between
agents. The safety markers correspond to new locations and
allow us to relax the meaning of the edges in the TPG. Each
edge (v, v′) ∈ E can now be a precedence indicating that
event v must be scheduled no later than (rather than before)
event v′.

Each Type 1 edge e = (v, v′) ∈ E between location ver-
tices v and v′ of the TPG (with associated agent j and asso-
ciated length l(e)) is split into three Type 1 edges (all associ-
ated with agent j), namely from the first location vertex to a
new safety marker (with associated length δ), from there to
another new safety marker (with associated length l(e)−2δ),
and from there to the second location vertex (with associated
length δ). The user-provided parameter δ > 0 needs to be
chosen so that the length of every edge in E is greater than
2δ. Each Type 2 edge between two location vertices is now
changed to a Type 2 edge from the safety marker directly
after the first location vertex to the safety marker directly
before the second location vertex. We refer to the resulting
TPG as the augmented TPG G′ = (V ′, E ′). (The location
vertices could easily be removed from an augmented TPG
but we keep them for ease of exposition.) Figure 3 shows

479



the augmented TPG for our running example.

Encoding Kinematic Constraints

We now associate quantitative information with the edges
of the augmented TPG, transforming it into a Simple Tem-
poral Network (STN). STNs are widely used for tempo-
ral reasoning in AI. An STN is a directed acyclic graph
G′ = (V ′, E ′). Each vertex v ∈ V ′ represents an event.
Each edge e = (v, v′) ∈ E ′ annotated with the STN bounds
[LB(e), UB(e)] is a simple temporal constraint between
events v and v′ indicating that event v must be scheduled
between LB(e) and UB(e) time units before event v′. We
add two additional vertices. XS represents the start event
and therefore has edges annotated with the STN bounds
[0, 0] to all vertices without incoming edges. Similarly,
XF represents the finish event and therefore has edges an-
notated with the STN bounds [0,∞] to all vertices with-
out outgoing edges. One can calculate a schedule (that as-
signs a time t(v) to each event v with the convention that
t(XS) = 0) that satisfies all simple temporal constraints in
polynomial time using minimum-cost path computations on
the directed distance graph of the STN, typically done with
the Bellman-Ford algorithm. Every vertex of the STN is
translated into a vertex of the distance graph. Every edge
of the STN e = (v, v′) ∈ E ′ annotated with the STN
bounds [LB(e), UB(e)] is translated into two edges of the
distance graph, namely one edge (v, v′) of cost UB(e) and
one edge (v′, v) of cost −LB(e). The absence of negative
cost cycles in the distance graph is equivalent to the exis-
tence of a schedule that satisfies all simple temporal con-
straints (Dechter, Meiri, and Pearl 1991).

The STN bounds allow us to express non-uniform edge
lengths or velocity limits (due to kinematic constraints or
safety concerns). We now explain which STN bounds to as-
sociate with the edges of the augmented TPG to transform
it into an STN. Each edge (v, v′) ∈ E ′ is a precedence in-
dicating that event v must be scheduled no later than event
v′. Thus, we have to associate the STN bounds [0,∞] with
all edges. However, we can assign tighter STN bounds to
Type 1 edges. Consider any Type 1 edge e = (v, v′) with
associated agent j and associated length l(e). The lower
STN bound corresponds to the minimum time needed by
agent j for moving from the location associated with ver-
tex v to the location associated with vertex v′, and the upper
STN bound corresponds to the maximum time. From now
on, we assume that agent j has a finite maximum velocity
limit v∗max(e) for the move, for example, due to the kine-
matic constraints of agent j or safety concerns about travers-
ing edge e with high velocity. Then, agent j needs at least
l(e)/v∗max(e) time units to complete the move, meaning
that it enters the location associated with vertex v′ at least
l(e)/v∗max(e) time units after it enters the location associated
with vertex v, resulting in a tighter lower STN bound than 0.
Thus, we associate the STN bounds [l(e)/v∗max(e),∞] with
the edge. The upper STN bound remains infinity due to the
absence of a minimum velocity limit, although we can easily
impose one if necessary, for example, for robotic planes or
boats.

A1
0 B1

1 E1
4

B2
0 C2

1 D2
4

XS XF

[1,∞] [2,∞] [1,∞]

[4,∞] [8,∞] [4,∞]

[0
,∞

]

[0
, 0
]

[0, 0]

[0,∞
]

[0
,∞

]

. . .

Figure 4: STN for our running example.

A1
0 B1

1 E1
4

B2
0 C2

1 D2
4

XS XF

∞

−1

∞

−2

∞

−1

∞

−4

∞

−8

∞

−4

∞
0

0

0

0

0

0

∞

0

∞

. . .

Figure 5: Distance graph for our running example.

Figure 4 shows a part of the STN for our running exam-
ple, and Figure 5 shows its distance graph. Remember that
the length of all edges in E is 1m, the maximum velocity
limit of Agent 1 is 1/4m/s, and the maximum velocity limit
of Agent 2 is 1/16m/s. We use δ = 0.25m. The simple
temporal constraint between the safety marker after location
vertex B2

0 and the safety marker before location vertex B1
1

enforces that Agent 1 cannot move at maximum velocity un-
til it enters location B since it needs to let the slower Agent
2 exit location B before it enters the location.

Calculating a Plan-Execution Schedule

We now discuss how to calculate a plan-execution schedule
for a given MAPF plan depending on the desired optimiza-
tion criterion. If necessary, the optimization criterion used
for the plan-execution schedule could be different from the
one of the MAPF solver to adapt the plan-execution sched-
ule of the resulting MAPF plan to the desired optimization
criterion in case no MAPF solver is available for it.

Minimizing the Flow Time and the Makespan

A plan-execution schedule that is consistent with the sim-
ple temporal constraints and minimizes the flow time (the
sum of the earliest times when each agent has reached its
goal vertex and remains there) can be calculated in poly-
nomial time with both graph-based optimization and linear
programming approaches. Such a plan-execution schedule
also minimizes the makespan (the earliest time when all
agents have reached their goal vertices and remain there)
and assigns finite plan-executions times to all vertices in the
augmented TPG.

• Graph-Based Optimization: We can obtain a plan-
execution schedule that is consistent with the simple tem-
poral constraints and minimizes the flow time by calculat-
ing the earliest plan-execution time of any vertex v ∈ V’
that is consistent with the simple temporal constraints as
the negative of the cost of a shortest path from v to XS in
the distance graph.

480



• Linear Programming: We can also solve the follow-
ing linear program (LP) in polynomial time, whose ob-
jective function corresponds to minimizing the flow time
and whose constraints correspond to the simple temporal
constraints, where vj is the location vertex in the STN
with associated agent j (and associated goal vertex of the
agent) that is connected to vertex XF . (We could simply
use “Minimize t(XF )” to minimize the makespan.)

Minimize
∑K

j=1 t(v
j)

such that t(XS) = 0
and, for all e = (v, v′) ∈ E ′,
t(v′)− t(v) ≥ LB(e)
t(v′)− t(v) ≤ UB(e)

The optimization yields a plan-execution schedule that as-
signs a time t(v) to each event v, corresponding to the time
when the associated agent should enter the associated lo-
cation. In the following, we make an assumption (called
the uniform velocity model), namely that the velocity of an
agent is constant for each Type 1 edge in the STN, which
means that the agent might have to change its velocity in-
stantaneously at location vertices or safety markers and thus
needs infinite acceleration capabilities at these locations. It
is the task of the agent controllers to approximate this not
quite realistic assumption. The velocity of the agent while
traversing a Type 1 edge e = (v, v′) ∈ E ′ with associated
length l(e) then needs to be set to l(e)/(t(v′)− t(v)) to im-
plement the plan-execution schedule, which implies that the
agent always moves (albeit perhaps with small velocity) un-
til it reaches its goal vertex since the traversal of an edge
starts when the agent enters one of its vertices and ends when
it enters the other vertex.

Maximizing the Global Minimum Velocity Limit

For a given plan-execution schedule, assume that the mini-
mum and maximum velocities of any agent when traversing
any Type 1 edge are vmin and vmax, respectively, under the
uniform velocity model. The following theorem establishes
the existence of a plan-execution schedule that is consistent
with the simple temporal constraints and moves all agents
to their goal vertices. Every plan-execution schedule with
these properties can be executed under the minimum veloc-
ity model and results in vmin > 0 since otherwise some
agent would not reach its goal vertex.

Theorem 1. There always exists a plan-execution sched-
ule that is consistent with the simple temporal constraints of
the STN for a MAPF plan and assigns finite plan-execution
times to all vertices in the augmented TPG.

Proof. The distance graph of the STN does not have nega-
tive cost cycles (since the STN is a directed acyclic graph
and all upper STN bounds are infinity), which guarantees
that there exists a plan-execution schedule that satisfies all
simple temporal constraint (Dechter, Meiri, and Pearl 1991).
The earliest plan-execution time of any vertex v ∈ V ′ in the
augmented TPG is the negative of the cost of a shortest path
from v to XS in the distance graph and thus finite (since all
lower STN bounds are finite).

The following theorem establishes a lower bound on the
distance between any two agents at any time (called safety
distance) with respect to graph G (and not with respect to the
continuous environment). However, a weaker lower bound
for the safety distance in the continuous environment can be
obtained in a similar way for regular graph structures, such
as grids (not shown here). Having a large safety distance
is important because actual robots are not point agents and
suffer from imperfect plan-execution capabilities.
Theorem 2. Consider a plan-execution schedule that is con-
sistent with the simple temporal constraints of the STN for
a MAPF plan and assigns finite plan-execution times to all
vertices in the augmented TPG. Then, point agents always
maintain a safety distance of at least 2δvmin/vmax > 0
with respect to graph G (and thus do not collide) if they exe-
cute the plan-execution schedule under the uniform velocity
model.

We prove Theorem 2 in the appendix. The lower bound
on the safety distance provided by the theorem is not neces-
sarily tight because the minimum and maximum velocities
can occur in different parts of the graph. However, the the-
orem allows us to use “maximize v∗min” for a global mini-
mum velocity limit v∗min (that bounds the minimum veloc-
ity vmin from below) or, equivalently, “minimize (v∗min)

−1”
for the reciprocal of v∗min as objective function in the fol-
lowing LP to maximize the bound on the safety distance
provided by Theorem 2 in polynomial time. Consider any
Type 1 edge e = (v, v′) ∈ E ′ with associated agent j and
associated length l(e). The upper STN bound corresponds
to the maximum time needed by agent j for moving from
the location associated with vertex v to the location asso-
ciated with vertex v′ and is thus reduced from infinity to
l(e)/v∗min = l(e)(v∗min)

−1.
Minimize (v∗min)

−1

such that t(XS) = 0
and, for all e = (v, v′) ∈ E ′,
t(v′)− t(v) ≥ LB(e)
t(v′)− t(v) ≤ UB(e)
t(v′)− t(v) ≤ l(e)(v∗min)

−1 if e is a Type 1 edge

Executing the Plan
The plan-execution schedule determined by the chosen LP,
if it is solvable, is consistent with the simple temporal con-
straints of the STN for the MAPF plan. Thus, point agents
can execute the plan-execution schedule under the uniform
velocity model without colliding if they make sure that they
enter the location associated with vertex v ∈ V ′ at entry time
t(v). Unfortunately, this is unlikely going to happen due
to the imperfect plan-execution capabilities of the agents.
However, it is unnecessary to replan each time in these cases.
Rather, one can construct another STN for the remainder of
the MAPF plan and calculate a new plan-execution schedule
and replan only if no such plan-execution schedule exists,
which can significantly reduce the number of times replan-
ning is needed.

Non-Holonomic Agents
So far, we have assumed that the agents are holonomic
and thus able to move in all directions. However, many

481



robots, such as cars or differential-drive robots, are non-
holonomic. We make the following changes to accommo-
date differential-drive robots that operate on grid-worlds.
First, we change the definition of the MAPF problem and
adapt the MAPF solver appropriately. Vertices now are pairs
of locations (cells) and orientations (discretized into the four
compass directions) and actions either wait, move forward
to the next location or rotate in place 90 degrees clockwise
or counter-clockwise. Edges and collisions change accord-
ingly. Second, when we determine the routes from a MAPF
plan we remove the wait actions but keep the move and ro-
tate actions. Then, we merge several consecutive rotate ac-
tions into one rotate action whose rotation angle is the sum
of the merged rotations (and delete the rotate action if its
rotation angle is zero). Third, we adapt the placement of
Type 2 edges in the TPG since two consecutive vertices on a
route can now correspond to the same location (with differ-
ent orientations). Type 2 edges connect the last such vertex
on a route to the first such vertex on another route. Fourth,
we split those Type 1 edges (and introduce safety markers)
that correspond to move actions but not those Type 1 edges
that correspond to rotate actions. Fifth, we associate the
STN bounds [L(e)/V ∗

max(e),∞] with a Type 1 edge e ∈ E ′
that corresponds to a rotate action, where L(e) is the ab-
solute value of the rotation angle and V ∗

max(e) is the maxi-
mum rotational velocity limit. Sixth, the LP that maximizes
the global minimum velocity limit has constraints only for
Type 1 edges that correspond to move actions. Seventh,
Theorem 2—as stated in this paper—requires a non-zero
minimum translational velocity vmin to guarantee a positive
safety distance but we can simply assume for the purpose
of the theorem that non-holonomic agents do not rotate in
place in the locations associated with location vertices but
move slowly toward the locations of the next safety markers
on their paths while rotating.

Experimental Validation
We used the ECBS+HWY solver (Cohen, Uras, and Koenig
2015) as state-of-the-art bounded suboptimal MAPF solver
from AI, extended to support non-holonomic agents. We im-
plemented MAPF-POST in C++ using the boost graph li-
brary (Siek, Lee, and Lumsdaine 2001) for the STN creation
and GUROBI (Gurobi Optimization, Inc. 2015) as the LP
solver, all running on a PC with an i7-4600U 2.1GHz pro-
cessor and 12GB RAM. We validated our approach exper-
imentally in three different settings, namely using an agent
simulation (which implements the uniform velocity model
perfectly using holonomic agents), a robot simulation and
an implementation on actual robots, which all used grid-
worlds with 1m× 1m cells and δ = 0.4m. We varied the
size of the grid-world, placement of blocked cells, number
of agents, and the maximum translational and rotational ve-
locities of the agents. Figure 6 shows screenshots of our
running example for all three settings.

To ensure the similarity of the robot simulation and imple-
mentation on actual robots, we used the robot operation sys-
tem ROS as middleware by implementing a robot controller
directly in ROS that drives either virtual robots in V-REP or
actual robots. The controller controls the state [x, y, θ]T and

tries to meet the deadline specified by the plan-execution
schedule of MAPF-POST by setting the translational (or ro-
tational) velocity of a robot to the ratio of the remaining
time to reach the next location (or orientation) and the re-
maining translational (or rotational) distance, which approx-
imates the uniform velocity model well. A PID-controller
corrects for heading error and drift by driving the two mo-
tors independently and using the known location of the robot
from either the simulation or motion capture system.

The implementation on actual robots used five
differential-drive (and thus non-holonomic) Create2
robots from iRobot (iRobot 2015), which are refurbished
Roomba vacuum cleaners designed specifically for STEM
education and research. They have a cylindrical shape with
diameter 0.35m, height 0.1m, and weight 3.5 kg and can
reach a translational velocity of 0.5m/s and a rotational
velocity of 4.2 rad/s. A central PC used roscore to run
MAPF-POST and connected via WiFi to the robots. The
robots were equipped with single-board computers, such as
ODROID-XU4 and ODROID-C1+ (www.hardkernel.com).
These on-board computers used Ubuntu 14.04 with ROS
Jade to run all other software, and interfaced to their robot
via its serial port. We ran the experiments in a space
of approximately 5m× 4m equipped with a 12-camera
VICON MX motion capture system (www.vicon.com).
The robot simulation used a model of the Create2 robots
added to the robotics simulator V-REP (Rohmer, Singh,
and Freese 2013). The cell sizes are sufficiently large so
that we do not need to take the kinematic constraints of
the robots other than the maximum velocity limits into
account. Videos of sample experiments can be found at
youtu.be/mV3BqnelqDU. In the following, we report two
experimental results for the robot simulation.

Experiment 1: 10 robots had to move from the left room
to the right room, and 10 robots had to move from the right
room to the left room in the environment from Figure 7. A
narrow corridor connected the two rooms, potentially caus-
ing many robot collisions. The maximum translational and
rotational velocities of half of the robots in each room were
0.2m/s and 1 rad/s, and the maximum velocities of the
other half were 0.4m/s and 2 rad/s. We used highways
for the ECBS+HWY solver with ECBS suboptimality bound
1.5 and highway suboptimality bound 1.5. Whether we max-
imized the minimum velocity (and thus the safety distance
guaranteed by Theorem 2) or minimized the flow time, com-
puting a MAPF plan and running MAPF-POST took only a
few seconds and resulted in a makespan of 106 s. When we
minimized the flow time, the average flow time per robot
was 87 s. When we maximized the minimum velocity, our
simulation showed that the actual minimum safety distance
was 0.53m (with respect to the continuous environment)
and thus much higher than the safety distance of 0.4m guar-
anteed by Theorem 2 (with respect to the graph on which the
robots move). When we did not maximize the minimum ve-
locity, the actual minimum safety distance was smaller than
the diameter of the robots and thus insufficient.

Experiment 2: 100 robots had to navigate in a
warehouse-like environment similar to the one in (Wur-
man, D’Andrea, and Mountz 2008). The maximum transla-

482



(a) Agent simulation. (b) V-REP simulation. (c) Implementation on Create2 robots.

Figure 6: Screenshots of the three validation settings for our running example.

(a) Start (t = 0 s). (b) Middle (t = 53 s). (c) End (t = 106 s).

Figure 7: Environment where 10 robots had to move from the left room to the right room, and 10 robots had to move from the
right room to the left room. The tail of each robot in 7b shows its current direction of movement.

tional and rotational velocities of all robots were 1m/s and
2 rad/s. We used highways for the ECBS+HWY solver with
ECBS suboptimality bound 1.5 and highway suboptimality
bound 2.1. Whether we maximized the minimum velocity or
minimized the flow time, computing a MAPF plan and run-
ning MAPF-POST took about 6min (despite the large en-
vironment and many robots) and resulted in a makespan of
88 s. The majority of the runtime was spent on solving the
LP due to the large suboptimality bounds of ECBS+HWY.
We intend to decrease it in the future by using a graph-based
optimization approach rather than an LP. When we mini-
mized the flow time, the average flow time per robot was
69 s. When we maximized the minimum velocity, the actual
minimum safety distance again was 0.53m and thus much
higher than the safety distance of 0.4m guaranteed by The-
orem 2.

Related Work

The MAPF problem has been studied in artificial intelli-
gence, robotics, and theoretical computer science, see (Wag-
ner 2015) for an extensive overview. It can, for exam-
ple, be solved by reductions to other well-studied problems,
including satisfiability (Surynek 2015), integer linear pro-
gramming (Yu and LaValle 2013), and answer set program-
ming (Erdem et al. 2013). Optimal dedicated MAPF solvers
include Independence Detection with Operator Decompo-
sition (Standley and Korf 2011), Enhanced Partial Expan-
sion A* (Goldenberg et al. 2014), Increasing Cost Tree
Search (Sharon et al. 2013), Conflict-Based Search (Sharon
et al. 2015), M* (Wagner 2015), and their variants. Dedi-
cated suboptimal MAPF solvers include Push and Swap/Ro-
tate (Sajid, Luna, and Bekris 2012; de Wilde, ter Mors, and
Witteveen 2013), TASS (Khorshid, Holte, and Sturtevant
2011), BIBOX (Surynek 2009), and their variants. Other

approaches, such as Windowed-Hierarchical Cooperative
A* (Silver 2005; Sturtevant and Buro 2006), Flow Annota-
tion Replanning (Wang and Botea 2008) and MAPP (Wang
and Botea 2011), combine paths of individual agents.

The research reported in (Wagner 2015) and (Cirillo et al.
2014) uses a different approach than ours but shares many of
our objectives. Approaches that share individual properties
with our approach are, for example, the following ones.

• Probabilistic approaches, such as Dec-SIMDP (Melo and
Veloso 2011) and UM* (Wagner 2015), take into account
that robots have imperfect plan-execution capabilities but
do this during planning.

• An approach such as (Cirillo, Uras, and Koenig 2014)
uses lattice-based planning (Pivtoraiko and Kelly 2011)
to take the kinematic constraints of robots into account
but does this during planning.

• An approach such as (Peng and Akella 2005) is a post-
processing approach that determines velocity profiles for
given paths that obey the kinematic constraints of robots
and avoid collisions while minimizing makespan.

• An approach such as (LaValle and Hutchinson 1998)
avoids replanning in case of changes to the optimiza-
tion criterion under the assumption that robots are able
to change their velocities instantaneously.

Conclusions

In this paper, we introduced MAPF-POST, a novel approach
that makes use of a simple temporal network to postprocess
the output of a MAPF solver from AI in polynomial time
to create a plan-execution schedule that can be executed on
actual robots. Many interesting extensions of our approach
are possible. For example, we intend to make it work for

483



user-provided safety distances. We also intend to extend it
to take additional kinematic constraints into account, such
as the maximum accelerations important for heavy robots.
Finally, we intend to exploit slack for replanning (which has
not been implemented yet) and creating a hybrid between
online and offline planning. For example, it is especially
important to monitor progress toward locations that are as-
sociated with vertices in the simple temporal network whose
slacks are small. Robots could be alerted of the importance
of reaching these bottleneck locations in a timely manner. If
probabilistic models of delays and other deviations from the
nominal velocities are available, they can be used to deter-
mine the probability that each location will be reached be-
tween its earliest and latest entry time and trigger replanning
only if one of these probabilities become small.

Proof of Theorem 2

All distances in the following are with respect to graph G.
When we discuss the distances between vertices in the aug-
mented TPG, we mean the distances between the locations
associated with them. We define the protected cloud of ver-
tex s ∈ S to contain all points on edges adjacent to it in
graph G at distance less than δ from it. We use the following
properties that follow from the fact that δ is chosen so that
the lengths of all edges are larger than 2δ. Property 1: The
protected clouds of different vertices in S do not intersect.
Property 2: The distance between any two safety markers
at a positive distance of each other that are connected to the
same location vertex is 2δ.

Lemma 3. Consider a plan-execution schedule that is con-
sistent with the simple temporal constraints of the STN for
a MAPF plan and assigns finite plan-execution times to all
vertices in the augmented TPG. Then, no two point agents
can be in the same protected cloud at the same time if they
execute the plan-execution schedule under the uniform ve-
locity model.

Proof. The proof is by contradiction. Consider any event
where two different agents j and k are in the protected cloud
of some vertex s ∈ S at the same time. Consider the
timestep t when agent j visits vertex s and the timestep t′
when agent k visits vertex s in the given MAPF plan (that
both correspond to the event). Since the MAPF plan does
not have vertex collisions, timesteps t and t′ must be differ-
ent. Without loss of generality, let t < t′. The Type 2 edges
of the augmented TPG then enforce that agent j exits the
protected cloud of vertex s before agent k enters it, which is
a contradiction.

Lemma 4. Consider a plan-execution schedule that is con-
sistent with the simple temporal constraints of the STN for
a MAPF plan and assigns finite plan-execution times to all
vertices in the augmented TPG. Then, no two point agents
can traverse the same graph edge at the same time in op-
posite directions if they execute the plan-execution schedule
under the uniform velocity model.

Proof. The proof is by contradiction. Consider any event
where agent j moves from vertex s ∈ S to vertex s′ ∈ S

while agent k moves from vertex s′ to vertex s. Consider
the timestep t when agent j moves from vertex s to vertex
s′ and the timestep t′ when agent k moves from vertex s′
to vertex s in the given MAPF plan (that both correspond to
the event). Since the MAPF plan does not have edge colli-
sions, timesteps t and t′ must be different. Without loss of
generality, let t < t′. Thus, agent j is at vertex s′ at timestep
t + 1, and agent k is at vertex s′ at timestep t′. Since the
MAPF plan does not have vertex collisions, it must be that
t + 1 < t′. The Type 2 edges of the augmented TPG then
enforce that agent j exits the protected cloud of vertex s′
(which means that it finished moving from vertex s to ver-
tex s′) before agent k enters it (which means that it has not
yet started to move from vertex s′ to vertex s), which is a
contradiction.

To prove Theorem 2, we need to consider only two cases
where the distance of two different agents might not satisfy
the theorem. The other cases satisfy the theorem, result in
no smaller distances than one of the two cases, or are im-
possible due to Lemmata 3 and 4. Theorem 2 then follows
since the plan-execution schedule from Theorem 2 can be
executed under the minimum velocity model and results in
vmin > 0.

Case 1: Agents j and k move from location vertex v via
safety markers m and m′ to location vertex v′, and agent j
starts to leave the protected cloud of location vertex v first.
When both agents move from safety marker m to safety
marker m′, they both move at uniform velocities due to
the uniform velocity model. Thus, their distance is small-
est when agent k is at safety marker m (Subcase a) or agent
j is at safety marker m′ (Subcase b). Both of these subcases
are also of independent interest. Subcase a: Agent k can en-
ter the protected cloud of location vertex v only once agent
j leaves it. So, at the time when agent j is at safety marker
m, their distance is at least 2δ and thus satisfies the theorem.
Agent k now needs at least 2δ/vmax time units to be at safety
marker m. At that time, agent j is already a distance of at
least 2δvmin/vmax away. So, at the time when agent k is at
safety marker m, their distance satisfies the theorem. Sub-
case b: When agent j is at safety marker m′, it needs at least
2δ/vmax time units to leave the protected cloud of location
vertex v′. During that time, agent k must move a distance of
at least 2δvmin/vmax but cannot enter the protected cloud of
location vertex v′. So, at the time when agent j is at safety
marker m′, their distance satisfies the theorem.

Case 2: Agent j moves via safety marker m to location
vertex v and is still outside of the protected cloud of location
vertex v, and agent k moves from a safety marker different
from m via location vertex v to another safety marker differ-
ent from m. Due to the uniform velocity model, the distance
of the agents is smallest when agent k enters the protected
cloud of location vertex v (Subcase a), is at location vertex v
(Subcase b), or leaves the protected cloud of location vertex
v (Subcase c). Subcases a+c: When agent k enters or leaves
the protected cloud, then their distance is at least 2δ and thus
satisfies the theorem. Subcase b: When agent k is at loca-
tion vertex v, it needs at least δ/vmax time units to leave the
protected cloud of location vertex v. During that time, agent

484



j must move a distance of at least δvmin/vmax but cannot
enter the protected cloud of location vertex v. So, at the
time when agent k is at location vertex v, their distance is at
least δvmin/vmax + δ ≥ 2δvmin/vmax and thus satisfies the
theorem.

References
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Subopti-
mal variants of the conflict-based search algorithm for the multi-
agent pathfinding problem. In Annual Symposium on Combinato-
rial Search, 19–27.
Cirillo, M.; Pecora, F.; Andreasson, H.; Uras, T.; and Koenig, S.
2014. Integrated motion planning and coordination for industrial
vehicles. In International Conference on Automated Planning and
Scheduling.
Cirillo, M.; Uras, T.; and Koenig, S. 2014. A lattice-based ap-
proach to multi-robot motion planning for non-holonomic vehi-
cles. In International Conference on Intelligent Robots and Sys-
tems, 232–239.
Cohen, L.; Uras, T.; and Koenig, S. 2015. Feasibility study: Us-
ing highways for bounded-suboptimal multi-agent path finding. In
International Symposium on Combinatorial Search, 2–8.
de Wilde, B.; ter Mors, A. W.; and Witteveen, C. 2013. Push and
rotate: Cooperative multi-agent path planning. In International
Conference on Autonomous Agents and Multi-agent Systems, 87–
94.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence 49(1-3):61–95.
Erdem, E.; Kisa, D. G.; Oztok, U.; and Schüller, P. 2013. A general
formal framework for pathfinding problems with multiple agents.
In AAAI Conference on Artificial Intelligence, 290–296.
Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturtevant, N.;
Holte, R.; and Schaeffer, J. 2014. Enhanced partial expansion A.
Journal of Artificial Intelligence Research 50:141–187.
Gurobi Optimization, Inc. 2015. Gurobi optimizer reference man-
ual.
iRobot. 2015. iRobot Create2 Open Interface (OI) Specification
based on the iRobot Roomba 600.
Khorshid, M. M.; Holte, R. C.; and Sturtevant, N. 2011. A
polynomial-time algorithm for non-optimal multi-agent pathfind-
ing. In International Symposium on Combinatorial Search.
Kornhauser, D.; Miller, G.; and Spirakis, P. 1984. Coordinating
pebble motion on graphs, the diameter of permutation groups, and
applications. In Annual Symposium on Foundations of Computer
Science, 241–250.
LaValle, S. M., and Hutchinson, S. A. 1998. Optimal motion plan-
ning for multiple robots having independent goals. Transactions
on Robotics and Automation 14(6):912–925.
LaValle, S. M. 2006. Planning algorithms. Cambridge University
Press.
Ma, H.; Tovey, C.; Sharon, G.; Kumar, T. K. S.; and Koenig,
S. 2016. Multi-agent path finding with payload transfers and the
package-exchange robot-routing problem. In AAAI Conference on
Artificial Intelligence.
Melo, F. S., and Veloso, M. 2011. Decentralized MDPs with sparse
interactions. Artificial Intelligence 175(11):1757–1789.
Morris, R.; Păsăreanu, C. S.; Luckow, K.; Malik, W.; Ma, H.; Ku-
mar, T. K. S.; and Koenig, S. 2016. Planning, scheduling and
monitoring for airport surface operations. In AAAI-16 Workshop
on Planning for Hybrid Systems.

Peng, J., and Akella, S. 2005. Coordinating multiple robots with
kinodynamic constraints along specified paths. International Jour-
nal of Robotics Research 24(4):295–310.
Pivtoraiko, M., and Kelly, A. 2011. Kinodynamic motion planning
with state lattice motion primitives. In International Conference on
Intelligent Robots and Systems, 2172–2179.
Röger, G., and Helmert, M. 2012. Non-optimal multi-agent
pathfinding is solved (since 1984). In Annual Symposium on Com-
binatorial Search, 40–41.
Rohmer, E.; Singh, S. P. N.; and Freese, M. 2013. V-REP: A
versatile and scalable robot simulation framework. In International
Conference on Intelligent Robots and Systems, 1321–1326.
Sajid, Q.; Luna, R.; and Bekris, K. E. 2012. Multi-agent pathfind-
ing with simultaneous execution of single-agent primitives. In An-
nual Symposium on Combinatorial Search, 88–96.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013. The
increasing cost tree search for optimal multi-agent pathfinding. Ar-
tificial Intelligence 195:470–495.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding. Artifi-
cial Intelligence 219:40–66.
Siek, J. G.; Lee, L.-Q.; and Lumsdaine, A. 2001. The Boost Graph
Library: User Guide and Reference Manual. Addison-Wesley.
Silver, D. 2005. Cooperative pathfinding. In Artificial Intelligence
and Interactive Digital Entertainment, 117–122.
Standley, T., and Korf, R. 2011. Complete algorithms for cooper-
ative pathfinding problems. In International Joint Conference on
Artificial Intelligence, 668–673.
Sturtevant, N., and Buro, M. 2006. Improving collaborative
pathfinding using map abstraction. In Artificial Intelligence and
Interactive Digital Entertainment, 80–85.
Surynek, P. 2009. A novel approach to path planning for multi-
ple robots in bi-connected graphs. In International Conference on
Robotics and Automation, 3613–3619.
Surynek, P. 2015. Reduced time-expansion graphs and goal de-
composition for solving cooperative path finding sub-optimally.
In International Joint Conference on Artificial Intelligence, 1916–
1922.
Wagner, G. 2015. Subdimensional Expansion: A Framework for
Computationally Tractable Multirobot Path Planning. Ph.D. Dis-
sertation, Carnegie Mellon University.
Wang, K.-H. C., and Botea, A. 2008. Fast and memory-efficient
multi-agent pathfinding. In International Conference on Automated
Planning and Scheduling, 380–387.
Wang, K.-H. C., and Botea, A. 2011. MAPP: a scalable multi-
agent path planning algorithm with tractability and completeness
guarantees. Journal of Artificial Intelligence Research 42:55–90.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Coordinating
hundreds of cooperative, autonomous vehicles in warehouses. AI
Magazine 29(1):9–20.
Yu, J., and LaValle, S. M. 2013. Planning optimal paths for multi-
ple robots on graphs. In International Conference on Robotics and
Automation, 3612–3617.
Yu, J., and LaValle, S. M. 2015. Optimal multi-robot path
planning on graphs: Complete algorithms and effective heuristics.
arXiv:1507.03290.

485


