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Abstract— Unmanned aerial vehicles (UAVs) are capable of
serving as aerial base stations (BSs) for providing both cost-
effective and on-demand wireless communications. This arti-
cle investigates dynamic resource allocation of multiple UAVs
enabled communication networks with the goal of maximizing
long-term rewards. More particularly, each UAV communicates
with a ground user by automatically selecting its communicat-
ing user, power level and subchannel without any information
exchange among UAVs. To model the dynamics and uncertainty
in environments, we formulate the long-term resource allocation
problem as a stochastic game for maximizing the expected
rewards, where each UAV becomes a learning agent and each
resource allocation solution corresponds to an action taken by
the UAVs. Afterwards, we develop a multi-agent reinforcement
learning (MARL) framework that each agent discovers its best
strategy according to its local observations using learning. More
specifically, we propose an agent-independent method, for which
all agents conduct a decision algorithm independently but share
a common structure based on Q-learning. Finally, simulation
results reveal that: 1) appropriate parameters for exploitation
and exploration are capable of enhancing the performance
of the proposed MARL based resource allocation algorithm;
2) the proposed MARL algorithm provides acceptable perfor-
mance compared to the case with complete information exchanges
among UAVs. By doing so, it strikes a good tradeoff between
performance gains and information exchange overheads.

Index Terms— Dynamic resource allocation, multi-agent
reinforcement learning (MARL), stochastic games, UAV
communications.

I. INTRODUCTION

A
ERIAL communication networks, encouraging new inno-

vative functions to deploy wireless infrastructure, have

recently attracted increasing interests for providing high net-

work capacity and enhancing coverage [2], [3]. Unmanned

aerial vehicles (UAVs), also known as remotely piloted aircraft
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systems (RPAS) or drones, are small pilotless aircraft that are

rapidly deployable for complementing terrestrial communica-

tions based on the 3rd Generation Partnership Project (3GPP)

LTE-A (Long term evolution-advanced) [4]. In contrast to

channel characteristics of terrestrial communications, the chan-

nels of UAV-to-ground communications are more probably

line-of-sight (LoS) links [5], which is beneficial for wireless

communications.

In particular, UAVs based different aerial platforms that for

providing wireless services have attracted extensive research

and industry efforts in terms of the issues of deployment,

navigation and control [6]–[8]. Nevertheless, resource alloca-

tion such as transmit power, serving users and subchannels,

as a key communication problem, is also essential to further

enhance the energy-efficiency and coverage for UAV-enabled

communication networks.

A. Prior Works

Compared to terrestrial BSs, UAVs are generally faster to

deploy and more flexible to configure. The deployment of

UAVs in terms of altitude and distance between UAVs was

investigated for UAV-enabled small cells in [9]. In [10], a

three-dimensional (3D) deployment algorithm based on circle

packing is developed for maximizing the downlink coverage

performance. Additionaly, a 3D deployment algorithm of a

single UAV is developed for maximizing the number of

covered users in [11]. By fixing the altitudes, a successive UAV

placement approach was proposed to minimize the number

of UAVs required while guaranteeing each ground user to be

covered by at least one UAV in [12]. Moreover, 3D drone-cell

deployments for mitigating congestion of cellular networks

was investigated in [13], where the 3D placement problem

was solved by designing the altitude and the two-dimensional

location, separately.

Despite the deployment optimization of UAVs, trajec-

tory designs of UAVs for optimizing the communication

performance have attracted tremendous attentions, such as

in [14]–[16]. In [14], the authors considered one UAV as a

mobile relay and investigated the throughput maximization

problem by optimizing power allocation and the UAV’s trajec-

tory. Then, a designing approach of the UAV’s trajectory based

on successive convex approximation (SCA) techniques was

proposed in [14]. By transforming the continuous trajectory

into a set of discrete waypoints, the authors in [15] investigated
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the UAV’s trajectory design with minimizing the mission com-

pletion time in a UAV-enabled multicasting system. Addition-

ally, multiple-UAV enabled wireless communication networks

(multi-UAV networks) were considered in [16], where a joint

design for optimizing trajectory and resource allocation was

studied with the goal of guaranteeing fairness by maximizing

the minimum throughput among users. In [17], the authors

proposed a joint of subchannel assignment and trajectory

design approach to strike a tradeoff between the sum rate and

the delay of sensing tasks for a multi-UAV aided uplink single

cell network.

Due to the versatility and manoeuvrability of UAVs, human

intervention becomes restricted for UAVs’ control design.

Therefore, machine learning based intelligent control of UAVs

is desired for enhancing the performance for UAV-enabled

communication networks. Neural networks based trajectory

designs were considered from the perspective of UAVs’ manu-

factured structures in [18] and [19]. Furthermore, an UAV rout-

ing designing approach based on reinforcement learning was

developed in [20]. Regarding UAVs enabled communication

networks, a weighted expectation based predictive on-demand

deployment approach of UAVs was proposed to minimize the

transmit power in [21], where Gaussian mixture model was

used for building data distributions. In [22], the authors studied

the autonomous path planning of UAVs by jointly taking

energy efficiency, latency and interference into consideration,

in which an echo state networks based deep reinforcement

learning algorithm was proposed. In [23], the authors pro-

posed a liquid state machine (LSM) based resource allocation

algorithm for cache enabled UAVs over LTE licensed and

unlicensed bands. Additionally, a log-linear learning based

joint channel-slot selection algorithm was developed for multi-

UAV networks in [24].

B. Motivation and Contributions

As discussed above, machine learning is a promising and

power tool to provide autonomous and effective solutions

in an intelligent manner to enhance the UAV-enabled com-

munication networks. However, most research contributions

focus on the deployment and trajectory designs of UAVs in

communication networks, such as [21]–[23]. Though resource

allocation schemes such as transmit power and subchannels

were considered for UAV-enabled communication networks

in [16] and [17], the prior studies focused on time-independent

scenarios. That is the optimization design is independent for

each time slot. Moreover, for time-dependent scenarios, [23]

and [24] investigated the potentials of machine learning based

resource allocation algorithms. However, most of the proposed

machine learning algorithms mainly focused on single UAV

scenarios or multi-UAV scenarios by assuming the availability

of complete network information for each UAV. In practice,

it is non-trivial to obtain perfect knowledge of dynamic envi-

ronments due to the high movement speed of UAVs [25], [26],

which imposes formidable challenges on the design of reliable

UAV-enabled wireless communications. Besides, most existing

research contributions focus on centralized approaches, which

makes modeling and computational tasks become challenging

as the network size continues to increase. Multi-agent rein-

forcement learning (MARL) is capable of providing a distrib-

uted perspective on the intelligent resource management for

UAV-enabled communication networks especially when these

UAVs only have individual local information.

The main benefits of MARL are: 1) agents consider indi-

vidual application-specific nature and environment; 2) local

interactions between agents can be modeled and investigated;

3) difficulties in modelling and computation can be handled in

distributed manners. The applications of MARL for cognitive

radio networks were studied in [27] and [28]. Specifically,

in [27], the authors focused on the feasibilities of MARL

based channel selection algorithms for a specific scenario

with two secondary users. A real-time aggregated interference

scheme based on MARL was investigated in [28] for wireless

regional area networks (WRANs). Moreover, in [29], the

authors proposed a MARL based channel and power level

selection algorithm for device-to-device (D2D) pairs in hetero-

geneous cellular networks. The potential of machine learning

based user clustering for mmWave-NOMA networks was

presented in [30]. Therefore, invoking MARL to UAV-enabled

communication networks provides a promising solution for

intelligent resource management. Due to the high mobility and

adaptive altitude, to the best of our knowledge, multi-UAV

networks are not well-investigated, especially for the resource

allocation from the perspective of MARL. However, it is

challenging for MARL based multi-UAV networks to spec-

ify a suitable objective and strike a exploration-exploitation

tradeoff.

Motivated by the features of MARL and UAVs, this article

aims to develop a MARL framework for multi-UAV networks.

In [1], we introduced a basic MARL inspired resource alloca-

tion framework for UAV networks and presented some initial

results under a specific system set-up. The work of this article

is an improvement and an extension on the studies in [1], we

provide a detailed description and analysis on the benefits and

limits on modeling resource allocation of the considered multi-

UAV network. More specifically, we consider a multi-UAV

enabled downlink wireless network, in which multiple UAVs

try to communicate with ground users simultaneously. Each

UAV flies according to the predefined trajectory. It is assumed

that all UAVs communicate with ground users without the

assistance of a central controller. Hence, each UAV can only

observe its local information. Based on the proposed frame-

work, our major contributions are summarized as follows:

1) We investigate the optimization problem of maximizing

long-term rewards of multi-UAV downlink networks

by jointly designing user, power level and subchannel

selection strategies. Specifically, we formulate a quality

of service (QoS) constrained energy efficiency function

as the reward function for providing a reliable com-

munication. Because of the time-dependent nature and

environment uncertainties, the formulated optimization

problem is non-trivial. To solve the challenging problem,

we propose a learning based dynamic resource allocation

algorithm.

2) We propose a novel framework based on stochastic game

theory [31] to model the dynamic resource allocation
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Fig. 1. Illustration of multi-UAV communication networks.

problem of multi-UAV networks, in which each UAV

becomes a learning agent and each resource allocation

solution corresponds to an action taken by the UAVs.

Particularly, in the formulated stochastic game, the

actions for each UAV satisfy the properties of Markov

chain [32], that is the reward of a UAV is only depen-

dant on the current state and action. Furthermore, this

framework can be also applied to model the resource

allocation problem for a wide range of dynamic multi-

UAV systems.

3) We develop a MARL based resource allocation algo-

rithm for solving the formulated stochastic game of

multi-UAV networks. Specifically, each UAV as an

independent learning agent runs a standard Q-learning

algorithm by ignoring the other UAVs, and hence infor-

mation exchanges between UAVs and computational

burdens on each UAV are substantially reduced. Addi-

tionally, we also provide a convergence proof of the

proposed MARL based resource allocation algorithm.

4) Simulation results are provided to derive parameters

for exploitation and exploration in the ǫ-greedy method

over different network setups. Moreover, simulation

results also demonstrate that the proposed MARL based

resource allocation framework for multi-UAV networks

strikes a good tradeoff between performance gains and

information exchange overheads.

C. Organization

The rest of this article is organized as follows. In Section II,

the system model for downlink multi-UAV networks is pre-

sented. The problem of resource allocation is formulated

and a stochastic game framework for the considered multi-

UAV network is presented in Section III. In Section IV, a

Q-learning based MARL algorithm for resource allocation is

designed. Simulation results are presented in Section V, which

is followed by the conclusions in Section VI.

II. SYSTEM MODEL

Consider a multi-UAV downlink communication network as

illustrated in Fig. 1 operating in a discrete-time axis, which

consists of M single-antenna UAVs and L single-antenna

users, denoted by M = {1, · · · , M} and L = {1, · · · , L},

respectively. The ground users are randomly distributed in the

considered disk with radius rd. As shown in Fig. 1, multiple

UAVs fly over this region and communicate with ground

users by providing direct communication connectivity from

the sky [2]. The total bandwidth W that the UAVs can operate

is divided into K orthogonal subchannels, denoted by K =
{1, · · · , K}. Note that the subchannels occupied by UAVs

may overlap with each other. Moreover, it is assumed that

UAVs fly autonomously without human intervention based on

pre-programmed flight plans as in [33]. That is the trajectories

of UAVs are predefined based on the pre-programmed flight

plans. As shown in Fig. 1, there are three UAVs flying on

the considered region based on the pre-defined trajectories,

respectively. This article focuses on the dynamic design of

resource allocation for multi-UAV networks in term of user,

power level and subchannel selections. Additionally, assuming

that all UAVs communicate without the assistance of a central

controller and have no global knowledge of wireless com-

munication environments. In other words, the channel state

information (CSI) between a UAV and users are known locally.

This assumption is reasonable in practical due to the mobilities

of UAVs, which is similar to the research contributions such

as in [25], [26].

A. UAV-to-Ground Channel Model

In contrast to the propagation of terrestrial communications,

the air-to-ground (A2G) channel is highly dependent on the

altitude, elevation angle and the type of the propagation

environment [4], [5], [7]. In this article, we investigate the

dynamic resource allocation problem for multi-UAV networks

under two types of UAV-to-ground channel models:

1) Probabilistic Model: As discussed in [4], [5], UAV-to-

ground communication links can be modeled by a probabilistic

path loss model, in which the LoS and non-LoS (NLoS) links

can be considered separately with different probabilities of

occurrences. According to [5], at time slot t, the probability

of having a LoS connection between UAV m and a ground

user l is given by

PLoS(t) =
1

1 + a exp(−b sin−1( H
dm,l(t)

) − a)
, (1)

where a and b are constants that depend on the environment.

dm,l denotes the distance between UAV m and user l and H

denotes the altitude of UAV m. Furthermore, the probability

of have NLoS links is PNLoS(t) = 1 − PLoS(t).
Accordingly, in time slot t, the LoS and NLoS pathloss from

UAV m to the ground user l can be expressed as

PLLoS
m,l = LFS

m,l(t) + ηLoS, (2a)

PLNLoS
m,l = LFS

m,l(t) + ηNLoS, (2b)

where LFS
m,l(t) denotes the free space pathloss with LFS

m,l(t) =

20 log(dm,l(t)) + 20 log(f) + 20 log(4π
c

), and f is the car-

rier frequency. Furthermore, ηLoS and ηNLoS are the mean

additional losses for LoS and NLoS, respectively. Therefore,
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at time slot t, the average pathloss between UAV m and user

l can be expressed as

Lm,l(t) = PLoS(t) · PLLoS
m,l (t) + PNLoS(t) · PLNLoS

m,l (t).

(3)

2) LoS Model: As discussed in [14], the LoS model

provides a good approximation for practical UAV-to-ground

communications. In the LoS model, the path loss between a

UAV and a ground user relies on the locations of the UAV and

the ground user as well as the type of propagation. Specifically,

under the LoS model, the channel gains between the UAVs

and the users follow the free space path loss model, which

is determined by the distance between the UAV and the user.

Therefore, at time slot t, the LoS channel power gain from

the m-th UAV to the l-th ground user can be expressed as

gm,l(t) = β0d
−α
m,l(t) =

β0
(

‖vl − um(t)‖2 + H2
m

)
α
2

, (4)

where um(t) = (xm(t), ym(t)), and (xm(t), ym(t)) denotes

the location of UAV m in the horizontal dimension at time

slot t. Correspondingly, vl = (xl, yl) denotes the location of

user l. Furthermore, β0 denotes the channel power gain at the

reference distance of d0 = 1 m, and α ≥ 2 is the path loss

exponent.

B. Signal Model

In the UAV-to-ground transmission, the interference to each

UAV-to-ground user pair is created by other UAVs operating

on the same subchannel. Let ck
m(t) denote the indicator of

subchannel, where ck
m(t) = 1 if subchannel k occupied by

UAV m at time slot t; ck
m(t) = 0, otherwise. It satisfies

∑

k∈K

ck
m(t) ≤ 1. (5)

That is each UAV can only occupy a single subchannel

for each time slot. Note that the number of states and

actions would becomes huge with no limits on subchannel

allocations, which results in extremely heavy complexities in

learning and storage. In this case, modeling of the cooperation

between the UAVs and the approximation approaches for the

learning process are required to be introduced and treated

carefully. Integrating more sophisticated subchannel allocation

approaches into the learning process may be considered in

future. Let al
m(t) be the indicator of users. al

m(t) = 1 if user

l served by UAV m in time slot t; al
m(t) = 0, otherwise.

Therefore, the observed signal-to-interference-plus-noise ratio

(SINR) for a UAV-to-ground user communication between

UAV m and user l over subchannel k at time slot t is given

by

γk
m,l(t) =

Gk
m,l(t)a

l
m(t)ck

m(t)Pm(t)

Ik
m,l(t) + σ2

, (6)

where Gk
m,l(t) denotes the channel gain between UAV

m and user l over subchannel k at time slot t. Pm(t)
denotes the transmit power selected by UAV m at time

slot t. Ik
m,l(t) is the interference to UAV m with

Ik
m,l(t) =

∑

j∈M,j �=m Gk
j,l(t)c

k
m(t)Pj(t). Therefore, at any

time slot t, the SINR for UAV m can be expressed as

γm(t) =
∑

l∈L

∑

k∈K

γk
m,l(t). (7)

In this article, discrete transmit power control is adopted

at UAVs [34]. The transmit power values by each UAV

to communicate with its respective connected user can be

expressed as a vector P = {P1, · · · , PJ}. For each UAV m,

we define a binary variable pj
m(t), j ∈ J = {1, · · · , J}.

pj
m(t) = 1, if UAV m selects to transmit at a power level Pj

at time slot t; and pj
m(t) = 0, otherwise. Note that only one

power level can be selected at each time slot t by UAV m,

we have

∑

j∈J

pj
m(t) ≤ 1, ∀m ∈ M. (8)

As a result, we can define a finite set of possible power

level selection decisions made by UAV m, as follows.

Pm = {pm(t) ∈ P|
∑

j∈J

pj
m(t) ≤ 1}, ∀m ∈ M. (9)

Similarly, we also define finite sets of all possible subchannel

selection and user selection by UAV m, respectively, which

are given as follows:

Cm = {cm(t) ∈ K|
∑

k∈K

ck
m(t) ≤ 1}, ∀m ∈ M, (10)

Am = {am(t) ∈ L|
∑

l∈L

al
m(t) ≤ 1}, ∀m ∈ M. (11)

To proceed further, we assume that the considered multi-

UAV network operates on a discrete-time basis where the

time axis is partitioned into equal non-overlapping time inter-

vals (slots). Furthermore, the communication parameters are

assumed to remain constant during each time slot. Let t

denote an integer valued time slot index. Particularly, each

UAV holds the CSI of all ground users and decisions for

a fixed time interval Ts ≥ 1 slots, which is called decision

period. We consider the following scheduling strategy for the

transmissions of UAVs: Any UAV is assigned a time slot t

to start its transmission and must finish its transmission and

select the new strategy or reselect the old strategy by the end

of its decision period, i.e., at slot t + Ts. We also assume

that the UAVs do not know the accurate duration of their stay

in the network. This feature motivates us to design an on-

line learning algorithm for optimizing the long-term energy-

efficiency performance of multi-UAV networks.

III. STOCHASTIC GAME FRAMEWORK FOR

MULTI-UAV NETWORKS

In this section, we first describe the optimization problem

investigated in this article. Then, to model the uncertainty of

stochastic environments, we formulate the problem of joint

user, power level and subchannel selections by UAVs to be a

stochastic game.
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A. Problem Formulation

Note that from (6) to achieve the maximal throughput, each

UAV transmits at a maximal power level, which, in turn,

results in increasing interference to other UAVs. Therefore,

it is reasonable to consider the tradeoff between the achieved

throughput and the consumed power as in [29]. Moreover,

as discussed in [35], the reward function defines the goal

of the learning problem, which indicates what are the good

and bad events for the agent. Hence, it is rational for the

UAVs to model the reward function in terms of throughput and

the power consumption. To provide reliable communications

of UAVs, the main goal of the dynamic design for joint

user, power level and subchannel selection is to ensure that

the SINRs provided by the UAVs no less than the prede-

fined thresholds. Specifically, the mathematical form can be

expressed as

γm(t) ≥ γ̄, ∀m ∈ M, (12)

where γ̄ denotes the targeted QoS threshold of users served

by UAVs.

At time slot t, if the constraint (12) is satisfied, then the UAV

obtains a reward Rm(t), defined as the difference between

the throughput and the cost of power consumption achieved

by the selected user, subchannel and power level. Otherwise,

it receives a zero reward. That is the reward would be zero

when the communications cannot happen successfully between

the UAV and the ground users. Therefore, we can express the

reward function Rm(t) of UAV m at time slot t, as follows:

Rm(t)=

{

W
K

log2(1 + γm(t))−ωmPm(t), if γm(t)≥ γ̄m,

0, o.w.,

(13)

for all m ∈ M and the corresponding immediate reward is

denoted as Rm(t). In (13), ωm is the cost per unit level of

power. Note that at any time slot t, the instantaneous reward

of UAV m in (13) relies on: 1) the observed information:

the individual user, subchannel and power level decisions of

UAV m, i.e., am(t), cm(t) and pm(t). In addition, it also

relates with the current channel gain Gk
m,l(t); 2) unobserved

information: the subchannels and power levels selected by

other UAVs and the channel gains. It should be pointed out that

we omitted the fixed power consumption for UAVs, such as the

power consumed by controller units and data processing [36].

As UAVs’ trajectories are pre-defined and fixed during its

flight, we assume that the UAVs can always find at least one

user that would be satisfied with the QoS requirements at each

time slot. It’s reasonable such as in some UAV aided user-

intensive networks and cellular hotspots. Note that if some

of the UAVs cannot find an user with satisfying the QoS

requirements, these UAV would be non-functional from the

network’s point of view resulting in the problem related to

“isolation of network components”. In this case, more complex

reward functions are required to be modeled for ensuring the

effectiveness of the UAVs in the network, which we may

include in our future work.

Next, we consider to maximize the long-term reward

vm(t) by selecting the served user, subchannel and transmit

power level at each time slot. Particularly, we adopt a future

discounted reward [37] as the measurement for each UAV.

Specifically, at a certain time slot of the process, the discounted

reward is the sum of its payoff in the present time slot, plus

the sum of future rewards discounted by a constant factor.

Therefore, the considered long-term reward of UAV m is given

by

vm(t) =

+∞
∑

τ=0

δτRm(t + τ + 1), (14)

where δ denotes the discount factor with 0 ≤ δ < 1.

Specifically, values of δ reflect the effect of future rewards

on the optimal decisions: if δ is close to 0, it means that the

decision emphasizes the near-term gain; By contrast, if δ is

close to 1, it gives more weights to future rewards and we say

the decisions are farsighted.

Next we introduce the set of all possible user, subchannel

and power level decisions made by UAV m, m ∈ M, which

can be denoted as Θm = Am⊗Cm⊗Pm with ⊗ denoting the

Cartesian product. Consequently, the objective of each UAV

m is to make a selection θ∗m(t) = (a∗
m(t), c∗m(t), p∗m(t)) ∈

Θm, which maximizes its long-term reward in (14). Hence the

optimization problem for UAV m, m ∈ M, can be formulated

as

θ∗m(t) = argmaxθm∈Θm
Rm(t). (15)

Note that the optimization design for the considered multi-

UAV network consists of M subproblems, which corresponds

to M different UAVs. Moreover, each UAV has no information

about other UAVs such as their rewards, hence one cannot

solve problem (15) accurately. To solve the optimization prob-

lem (15) in stochastic environments, we try to formulate the

problem of joint user, subchannel and power level selections

by UAVs to a stochastic non-cooperative game in the following

subsection.

B. Stochastic Game Formulation

In this subsection, we consider to model the formulated

problem (15) by adopting a stochastic game (also called

Markov game) framework [31], since it is the generalization

of the Markov decision processes to the multi-agent case.

In the considered network, M UAVs communicate to users

with having no information about the operating environment. It

is assumed that all UAVs are selfish and rational. Hence, at any

time slot t, all UAVs select their actions non-cooperatively

to maximize the long-term rewards in (15). Note that the

action for each UAV m is selected from its action space Θm.

The action conducted by UAV m at time slot t, is a triple

θm(t) = (am(t), cm(t), pm(t)) ∈ Θm, where am(t), cm(t)
and pm(t) represent the selected user, subchannel and power

level respectively, for UAV m at time slot t. For each UAV m,

denote by θ−m(t) the actions conducted by the other M − 1
UAVs at time slot t, i.e., θ−m(t) ∈ Θ \ Θm.
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As a result, the observed SINR of (7) for UAV m at time

slot t can be rewritten as

γm(t)[θm(t), θ−m(t),Gm(t)]

=
∑

l∈L

∑

k∈K

Sk
m,l(t)[θm(t), θ−m(t),Gm,l(t)]

Ik
m,l(t)[θm(t), θ−m(t),Gm,l(t)] + σ2

,
(16)

where Sk
m,l(t) = Gk

m,l(t)a
l
m(t)ck

m(t)Pm(t), and Ik
m,l(t)(·)

is given in (6). Furthermore, Gm,l(t) denotes the matrix of

instantaneous channel responses between UAV m and user l

at time slot t, which can be expressed as

Gm,l(t) =

⎡

⎢

⎣

G1
1,l(t) · · · GK

1,l(t)
...

. . .
...

G1
M,l(t) · · · GK

M,l(t)

⎤

⎥

⎦
, (17)

with Gm,l(t) ∈ R
M×K , for all l ∈ L and m ∈ M.

Specifically, Gm,l(t) includes the channel responses between

UAV m and user l and the interference channel responses from

the other M −1 UAV. Note that Gm,l(t) and σ2 in (16) result

in the dynamics and uncertainty in communications between

UAV m and user l.

At any time slot t, each UAV m can measure its current

SINR level γm(t). Hence, the state sm(t) for each UAV m,

m ∈ M, is fully observed, which can be defined as

sm(t) =

{

1, if γm(t) ≥ γ̄,

0, o.w..
(18)

Let s = (s1, · · · , sM ) be a state vector for all UAVs. In this

article, UAV m does not know the states for other UAVs as

UAV cannot cooperate with each other.

We assume that the actions for each UAV satisfy the

properties of Markov chain, that is the reward of a UAV is only

dependant on the current state and action. As discussed in [32],

Markov chain is used to describes the dynamics of the states

of a stochastic game where each player has a single action in

each state. Specifically, the formal definition of Markov chains

is given as follows.

Definition 1: A finite state Markov chain is a discrete

stochastic process, which can be described as follows: Let

a finite set of states S = {s1, · · · , sq} and a q × q transition

matrix F with each entry 0 ≤ Fi,j ≤ 1 and
∑q

j=1 Fi,j = 1
for any 1 ≤ i ≤ q. The process starts in one of the states and

moves to another state successively. Assume that the chain is

currently in state si. The probability of moving to the next

state sj is

Pr{s(t + 1) = sj |s(t) = si} = Fi,j , (19)

which depends only on the present state and not on the

previous states and is also called Markov property.

Therefore, the reward function of UAV m in (13), m ∈ M,

can be expressed as

rt
m = Rm(θt

m, θt
−m, st

m)

= st
m

(

Ct
m[θt

m, θt
−m,Gt

m] − ωmPm[θt
m]

)

. (20)

Here we put the time slot index t in the superscript for notation

compactness and it is adopted in the following of this article

for notational simplicity. In (20), the instantaneous transmit

power is a function of the action θt
m and the instantaneous

rate of UAV m is given by

Ct
m(θt

m, θt
−m,Gt

m) =
W

K
log2

(

1 + γm(θt
m, θt

−m,Gt
m)

)

,

(21)

Notice that from (20), at any time slot t, the reward rt
m

received by UAV m depends on the current state st
m, which

is fully observed, and partially-observed actions (θt
m, θt

−m).
At the next time slot t + 1, UAV m moves to a new random

state st+1
m whose possibilities are only based on the previous

state sm(t) and the selected actions (θt
m, θt

−m). This proce-

dure repeats for the indefinite number of slots. Specifically,

at any time slot t, UAV m can observe its state st
m and the

corresponding action θt
m, but it does not know the actions

of other players, θt
−m, and the precise values G

t
m. The state

transition probabilities are also unknown to each player UAV

m. Therefore, the considered UAV system can be formulated

as a stochastic game [38].

Definition 2: A stochastic game can be defined as a tuple

Φ = (S,M, Θ, F,R) where:

• S denotes the state set with S = S1 × · · · × SM , Sm ∈
{0, 1} being the state set of UAV m, for all m ∈ M;

• M is the set of players;

• Θ denotes the joint action set and Θm is the action set

of player UAV m;

• F is the state transition probability function which

depends on the actions of all players. Specifically,

F (st
m, θ, st+1

m ) = Pr{st+1
m |st

m, θ}, denotes the probabil-

ity of transitioning to the next state st+1
m from the state st

m

by executing the joint action θ with θ = {θ1, · · · , θM} ∈
Θ;

• R = {R1, · · · , RM}, where Rm : Θ × S → R is a real

valued reward function for player m.

In a stochastic game, a mixed strategy πm: Sm → Θm,

denoting the mapping from the state set to the action set,

is a collection of probability distribution over the available

actions. Specifically, for UAV m in the state sm, its mixed

strategy is πm(sm) = {πm(sm, θm)|θm ∈ Θm}, where each

element πm(sm, θm) of πm(sm) is the probability with UAV

m selecting an action θm in state sm and πm(sm, θm) ∈ [0, 1].
A joint strategy π = {π1(s1), · · · , πM (sM )} is a vector of

strategies for M players with one strategy for each player.

Let π−m = {π1, · · · , πm−1, πm+1, · · · , πM (sM )} denote the

same strategy profile but without the strategy πm of player

UAV m. Based on the above discussions, the optimization

goal of each player UAV m in the formulated stochastic game

is to maximize its expected reward over time. Therefore, for

player UAV m under a joint strategy π = (π1, · · · , πm)
with assigning a strategy πi to each UAV i, the optimization

objective in (14) can be reformulated as

Vm(s, π) = E

{ +∞
∑

τ=0

δτ rt+τ+1
m | st = s, π

}

, (22)

where rt+τ+1
m represents the immediate reward received by

UAV m at time t + τ + 1. E{·} denotes the expectation

operations and the expectation here is taken over the prob-

abilistic state transitions under strategy π from state s. In the
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Fig. 2. Illustration of MARL framework for multi-UAV networks.

formulated stochastic game, players (UAVs) have individual

expected reward which depends on the joint strategy and not

on the individual strategies of the players. Hence one cannot

simply expect players to maximize their expected rewards as

it may not be possible for all players to achieve this goal at

the same time. Next, we describe a solution for the stochastic

game by Nash equilibrium [39].

Definition 3: A Nash equilibrium is a collection of strate-

gies, one for each player, so that each individual strategy

is a best-response to the others. That is if a solution π∗ =
{π∗

1 , · · · , π∗
M} is a Nash equilibrium, then for each UAV m,

the strategy π∗
m such that

Vm(π∗
m, π−m) ≥ Vm(π′

m, π−m), ∀π′
m, (23)

where π′
m ∈ [0, 1] denotes all possible strategies taken by

UAV m.

It means that in a Nash equilibrium, each UAV’s action is

the best response to other UAVs’ choice. Thus, in a Nash

equilibrium solution, no UAV can benefit by changing its

strategy as long as all the other UAVs keep their strategies

constant. Note that the presence of imperfect information

in the formulated non-cooperative stochastic game provides

opportunities for the players to learn their optimal strategies

through repeated interactions with the stochastic environment.

Hence, each player UAV m is regarded as a learning agent

whose task is to find a Nash equilibrium strategy for any state

sm. In next section, we propose a multi-agent reinforcement-

learning framework for maximizing the sum expected reward

in (22) with partial observations.

IV. PROPOSED MULTI-AGENT REINFORCEMENT-

LEARNING ALGORITHM

In this section, we first describe the proposed MARL

framework for multi-UAV networks. Then a Q-Learning based

resource allocation algorithm will be proposed for maximizing

the expected long-term reward of the considered for multi-

UAV network.

A. MARL Framework for Multi-UAV Networks

Fig. 2 describes the key components of MARL studied in

this article. Specifically, for each UAV m, the left-hand side

of the box is the locally observed information at time slot

t–state st
m and reward rt

m; the right-hand side of the box is

the action for UAV m at time slot t. The decision problem

faced by a player in a stochastic game when all other players

choose a fixed strategy profile is equivalent to an Markov

decision processes (MDP) [32]. An agent-independent method

is proposed, for which all agents conduct a decision algo-

rithm independently but share a common structure based on

Q-learning.

Since Markov property is used to model the dynamics

of the environment, the rewards of UAVs are based only

on the current state and action. MDP for agent (UAV) m

consists of: 1) a discrete set of environment state Sm, 2) a

discrete set of possible actions Θm, 3) a one-slot dynamics

of the environment given by the state transition probabilities

Fst
m→s

t+1
m

= F (st
m, θ, st+1

m ) for all θm ∈ Θm and st
m, st+1

m ∈
Sm; 4) a reward function Rm denoting the expected value of

the next reward for UAV m. For instance, given the current

state sm, action θm and the next state s′m: Rm(sm, θm, s′m) =
E{rt+1

m |st
m = sm, θt

m = θm, st+1
m = s′m}, where rt+1

m

denotes the immediate reward of the environment to UAV m

at time t + 1. Notice that UAVs cannot interact with each

other, hence each UAV knows imperfect information of its

operating stochastic environment. In this article, Q-learning

is used to solve MDPs, for which a learning agent operates

in an unknown stochastic environment and does not know

the reward and transition functions [35]. Next we describe

the Q-learning algorithm for solving the MDP for one UAV.

Without loss of generalities, UAV m is considered for sim-

plicity. Two fundamental concepts of algorithms for solving

the above MDP is the state value function and action value

function (Q-function) [40]. Specifically, the former in fact is

the expected reward for some state in (22) giving the agent in

following some policy. Similarly, the Q-function for UAV m

is the expected reward starting from the state sm, taking the

action θm and following policy π, which can be expressed as

Qm(sm, θm, π) = E

{ +∞
∑

τ=0

δτrt+τ+1
m | st = s, θt

m = θm

}

,

(24)

where the corresponding values of (24) are called action values

(Q-values).

Proposition 1: A recursive relationship for the state value

function can be derived from the established return. Specif-

ically, for any strategy π and any state sm, the following

condition holds between two consistency states st
m = sm and

st+1
m = s′m, with sm, s′m ∈ Sm:

Vm(sm, π) = E

{

+∞
∑

τ=0

δτ rt+τ+1
m |st

m = sm

}

=
∑

s′

m∈Sm

F (sm, θ, s′m)
∑

θ∈Θ

∏

j∈M

πj(sj , θj)

× [Rm(sm, θ, s′m) + δV (s′m, π)] , (25)

where πj(sj , θj) is the probability of choosing action θj in

state sj for UAV m.

Proof: See Appendix A. �
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Note that the state value function Vm(sm, π) is the expected

return when starting in state sm and following a strategy

π thereafter. Based on Proposition 1, we can rewrite the

Q-function in (24) also into a recursive from, which is given by

Qm(sm, θm, π)

= E

{

rt+1
m + δ

+∞
∑

τ=0

δτ rt+τ+2
m |st

m = sm, θt
m = θ, st+1

m = s′m

}

=
∑

s′

m∈Sm

F (sm, θ, s′m)
∑

θ−m∈Θ−m

∏

j∈M\{m}

πj(sj , θj)

× [R(sm, θ, s′m) + δVm(s′m, π)] . (26)

Note that from (26), Q-values depend on the actions of all the

UAVs. It should be pointed out that (25) and (26) are the basic

equations for the Q-learning based reinforcement learning

algorithm for solving the MDP of each UAV. From (25)

and (26), we also can derive the following relationship

between state values and Q-values:

Vm(sm, π) =
∑

θm∈Θm

πm(sm, θm)Qm(sm, θm, π). (27)

As discussed above, the goal of solving a MDP is to find

an optimal strategy to obtain a maximal reward. An optimal

strategy for UAV m at state sm, can be defined, from the

perspective of state value function, as

V ∗
m = max

πm

Vm(sm, π), sm ∈ Sm. (28)

For the optimal Q-values, we also have

Q∗
m(sm, θm) = max

πm

Qm(sm, θm, π), sm ∈ Sm, θm ∈ Θm.

(29)

Substituting (27) to (28), the optimal state value equation

in (28) can be reformulated as

V ∗
m(sm) = max

θm

Q∗
m(sm, θm), (30)

where the fact that
∑

θm
π(sm, θm)Q∗

m(sm, θm) ≤
maxθm

Q∗
m(sm, θm) was applied to obtain (30). Note that

in (30), the optimal state value equation is a maximization

over the action space instead of the strategy space.

Next by combining (30) with (25) and (26), one can obtain

the Bellman optimality equations, for state values and for

Q-values, respectively:

V ∗
m(sm)

=
∑

θ−m∈Θ−m

∏

j∈M\{m}

πj(sj , θj)

×max
θm

∑

s′

m

F (sm, θ, s′m)
[

R(sm, θm, s′m) + δV ∗
m(s′m)

]

,

(31)

and

Q∗
m(sm, θm)

=
∑

θ−m∈Θ−m

∏

j∈M\{m}

πj(sj , θj)

×
∑

s′

m

F (sm, θ, s′m)

[

R(sm, θm, s′m)+δ max
θ′

m

Q∗
m(s′m, θ′m)

]

.

(32)

Note that (32) indicates that the optimal strategy will always

choose an action that maximizes the Q-function for the current

state. In the multi-agent case, the Q-function of each agent

depends on the joint action and is conditioned on the joint

policy, which makes it complex to find an optimal joint

strategy [40]. To overcome these challenges, we consider UAV

are independent learners (ILs), that is UAVs do not observe

the rewards and actions of the other UAVs, they interact

with the environment as if no other UAUs exist1. As for the

UAVs with partial observability and limited communication,

a belief planing approach was proposed in [42], by casting

the partially observable problem as a fully observable under-

actuated stochastic control problem in belief space. Further-

more, evolutionary Bayesian coalition formation game was

proposed in [43] to model the distributed resource allocation

for multi-cell device-to-device networks. As observability of

joint actions is a strong assumption in partially observable

domains, ILs are more practical [44]. More complicated par-

tially observable network would be considered in our future

work.

B. Q-Learning Based Resource Allocation for Multi-UAV

Networks

In this subsection, an ILs [41] based MARL algorithm

is proposed to solve the resource allocation among UAVs.

Specifically, each UAV runs a standard Q-learning algorithm

to learn its optimal Q-value and simultaneously determines an

optimal strategy for the MDP. Specifically, the selection of an

action in each iteration depends on the Q-function in terms

of two states-sm and its successors. Hence Q-values provide

insights on the future quality of the actions in the successor

state. The update rule for Q-learning [35] is given by

Qt+1
m (sm, θm) = Qt

m(sm, θm)

+αt

{

rt
m + δ max

θ′

m∈Θm

Qt
m(s′m, θ′m) − Qt

m(sm, θm)

}

, (33)

with st
m = sm, θt

m = θm, where s′m and θ′m correspond to

st+1
m and θt+1

m , respectively. Note that an optimal action-value

function can be obtained recursively from the correspond-

ing action-values. Specifically, each agent learns the optimal

action-values based on the updating rule in (33), where αt

denotes the learning rate and Qt
m is the action-value of UAV

m at time slot t.

Another important component of Q-learning is action selec-

tion mechanisms, which are used to select the actions that the

agent will perform during the learning process. Its purpose

is to strike a balance between exploration and exploitation

that the agent can reinforce the evaluation it already knows

to be good but also explore new actions [35]. In this article,

we consider ǫ-greedy exploration. In ǫ-greedy selection, the

agent selects a random action with probability ǫ and selects

the best action, which corresponds to the highest Q-value at

1Note that in comparison with the joint learning with cooperation,
IL approach needs less storage and computational overhead in the action-
space as the size of the state-action space is linear with the number of agents
in IL [41].
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Algorithm 1 Q-learning Based MARL Algorithm for UAVs

1: Initialization:

2: Set t = 0 and the parameters δ, cα

3: for all m ∈ M do

4: Initialize the action-value Qt
m(sm, θm) = 0, strategy

πm(sm, θm) = 1
|Θm| = 1

MKJ
;

5: Initialize the state sm = st
m = 0;

6: end for

7: Main Loop:

8: while t < T do

9: for all UAV m, m ∈ M do

10: Update the learning rate αt according to (35).

11: Select an action θm according to the strategy πm(sm).
12: Measure the achieved SINR at the receiver according

to (16);

13: if γm(t) ≥ γ̄m then

14: Set st
m = 1.

15: else

16: Set st
m = 0.

17: end if

18: Update the instantaneous reward rt
m according to (20).

19: Update the action-value Qt+1
m (sm, θm) according

to (33).

20: Update the strategy πm(sm, θm) according to (34).

21: Update t = t + 1 and the state sm = st
m.

22: end for

23: end while

the moment, with probability 1 − ǫ. As such, the probability

of selecting action θm at state sm is given by

πm(sm, θm) =

{

1 − ǫ, if Qm of θmis the highest,

ǫ, otherwise.
(34)

where ǫ ∈ (0, 1). To ensure the convergence of Q-learning,

the learning rate αt are set as in [45], which is given by

αt =
1

(t + cα)ϕα
, (35)

where cα > 0, ϕα ∈ (1
2 , 1].

Note that each UAV runs the Q-learning procedure indepen-

dently in the proposed ILs based MARL algorithm. Hence,

for each UAV m, m ∈ M, the Q-learning procedure is con-

cluded in Algorithm 1. In Algorithm 1, the initial Q-values

are set to zero, therefore, it is also called zero-initialized

Q-learning [46]. Since UAVs have no prior information on the

initial state, a UAV takes a strategy with equal probabilities,

i.e., πm(sm, θm) = 1
|Θm| . Note that though no coordination

problems are addressed explicitly in independent learners (ILs)

based MARL, IL based MARL has been applied in some

applications by choosing the proper exploration strategy such

as in [27], [47]. More sophisticated joint learning algorithms

with cooperation between the UAVs as well as modelings of

cooperation quantifications would be considered in our future

work.

C. Analysis of the Proposed MARL Algorithm

In this subsection, we investigate the convergence of the

proposed MARL based resource allocation algorithm. Notice

that the proposed MARL algorithm can be treated as an

independent multi-agent Q-learning algorithm, in which each

UAV as a learning agent makes a decision based on the

Q-learning algorithm. Therefore, the convergence is concluded

in the following proposition.

Proposition 2: In the proposed MARL algorithm of Algo-

rithm 1, the Q-learning procedure for each UAV is always

converged to the Q-value for individual optimal strategy.

The proof of Proposition 2 depends on the following obser-

vations. Due to the non-cooperative property of UAVs, the

convergence of the proposed MARL algorithm is dependent

on the convergence of Q-learning algorithm [41]. Therefore,

we focus on the proof of convergence for the Q-learning

algorithm in Algorithm 1.

Theorem 1: The Q-learning algorithm in Algorithm 1 with

the update rule in (33) converges with probability one (w.p.1)

to the optimal Q∗
m(sm, θm) value if

1) The state and action spaces are finite;

2)
∑+∞

t=0 αt = ∞,
∑+∞

t=0 (αt)2 < ∞ uniformly w.p. 1;

3) Var{rt
m} is bounded;

Proof: See Appendix B. �

V. SIMULATION RESULTS

In this section, we verify the effectiveness of the proposed

MARL based resource allocation algorithm for multi-UAV

networks by simulations. The deployment and parameters

setup of the multi-UAV network are mainly based on the

investigations in [6], [11], [29]. Specifically, we consider the

multi-UAV network deployed in a disc area with a radius rd =
500 m, where the ground users are randomly and uniformly

distributed inside the disk and all UAVs are assumed to fly at

a fixed altitude H = 100 m [2], [16]. In the simulations,

the noise power is assumed to be σ2 = −80 dBm, the

subchannel bandwidth is W
K

= 75 KHz and Ts = 0.1 s [6].

For the probabilistic model, the channel parameters in the

simulations follow [11], where a = 9.61 and b = 0.16.

Moreover, the carrier frequency is f = 2 GHz, ηLoS = 1 and

ηNLoS = 20. For the LoS channel model, the channel power

gain at reference distance d0 = 1 m is set as β0 = −60 dB

and the path loss coefficient is set as α = 2 [16]. In the

simulations, the maximal power level number is J = 3, the

maximal power for each UAV is Pm = P = 23 dBm, where

the maximal power is equally divided into J discrete power

values. The cost per unit level of power is ωm = ω = 100 [29]

and the minimum SINR for the users is set as γ0 = 3 dB.

Moreover, cα = 0.5, ρα = 0.8 and δ = 1.

In Fig. 3, we consider a random realization of a multi-

UAV network in horizontal plane, where L = 100 users are

uniformly distributed in a disk with radius r = 500 m and two

UAVs are initially located at the edge of the disk with the angle

φ = π
4 . For illustrative purposes, Fig. 4 shows the average

reward and the average reward per time slot of the UAVs

under the setup of Fig. 3, where the speed of the UAVs are

set as 40 m/s. Fig. 4(a) shows average rewards with different
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Fig. 3. Illustration of UAVs based networks with M = 2 and L = 100.

ǫ, which is calculated as vt = 1
M

∑

m∈M vt
m. As it can be

observed from Fig. 4(a), the average reward increases with the

algorithm iterations. This is because the long-term reward can

be improved by the proposed MARL algorithm. However, the

curves of the average reward become flat when t is higher than

250 time slots. In fact, the UAVs will fly outside the disk when

t > 250. As a result, the average reward will not increase.

Correspondingly, Fig. 4(b) illustrates the average instantaneous

reward per time slot rt =
∑

m∈M rt
m. As it can be observed

from Fig. 4(b), the average reward per time slot decreases

with algorithm iterations. This is because the learning rate

αt in the adopted Q-learning procedure is a function of t

in (35), where αt decreases with time slots increasing. Notice

that from (35), αt will decrease with algorithm iterations,

which means that the update rate of the Q-values becomes

slow with increasing t. Moreover, Fig. 4 also investigates

the average reward with different ǫ = {0, 0.2, 0.5, 0.9}.

If ǫ = 0, each UAV will choose a greedy action which is

also called exploit strategy. If ǫ goes to 1, each UAV will

choose a random action with higher probabilities. Notice that

from Fig. 4, ǫ = 0.5 is a good choice in the considered

setup.

In Fig. 5 and Fig. 6, we investigate the average reward

under different system configurations. Fig. 5 illustrates the

average reward with LoS channel model given in (4) over

different ǫ. Moreover, Fig. 6 illustrates the average reward

under probabilistic model with M = 4, K = 3 and L =
200. Specifically, the UAVs randomly distributed in the cell

edge. In the iteration procedure, each UAV flies over the cell

followed by a straight line over the cell center, that is the

center of the disk. As can be observed from Fig. 5 and Fig. 6,

the curves of the average reward have the similar trends with

that of Fig. 4 under different ǫ. Besides, the considered multi-

UAV network attains the optimal average reward when ǫ = 0.5
under different network configurations.

In Fig. 7, we investigate the average reward of the pro-

posed MARL algorithm by comparing it to the matching

theory based resource allocation algorithm (Mach). In Fig. 7,

Fig. 4. Comparisons for average rewards with different ǫ, where M = 2

and L = 100.

we consider the same setup as in Fig. 4 but with J = 1 for

the simplicity of algorithm implementation, which indicates

that the UAV’s action only contains the user selection for

each time slot. Furthermore, we consider complete information

exchanges among UAVs are performed in the matching theory

based user selection algorithm, that is each UAV knows other

UAVs’ action before making its own decision. For compar-

isons, in the matching theory based user selection procedure,

we adopt the Gale-Shapley (GS) algorithm [48] at each time

slot. Moreover, we also consider the performance of the

randomly user selection algorithm (Rand) as a baseline scheme

in Fig. 7. As can be observed that from Fig. 7, the achieved

average reward of the matching based user selection algorithm

outperforms that of the proposed MARL algorithm. This is

because there is not information exchanges in the proposed

MARL algorithm. In this case, each UAV cannot observe the

other UAVs’ information such as rewards and decisions, and

thus it makes its decision independently. Moreover, it can be

observed from Fig. 7, the average reward for the randomly

user selection algorithm is lower than that of the proposed

MARL algorithm. This is because of the randomness of

user selections, it cannot exploit the observed information
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Fig. 5. LoS channel model with different ǫ, where M = 2 and L = 100.

Fig. 6. Illustration of multi-UAV networks with M = 4, K = 3 and
L = 200.

effectively. As a result, the proposed MARL algorithm can

achieve a tradeoff between reducing the information exchange

overhead and improving the system performance.

Fig. 7. Comparisons of average rewards among different algorithms, where
M = 2, K = 1, J = 1 and L = 100.

Fig. 8. Average rewards with different time slots and speeds.

In Fig. 8, we investigate the average reward as a function of

algorithm iterations and the UAV’s speed, where a UAU from

a random initial location in the disc edge, flies over the disc

along a direct line across the disc center with different speeds.

The setup in Fig. 8 is the same as that in Fig. 6 but with M = 1
and K = 1 for illustrative purposes. As can be observed that

for a fixed speed, the average reward increases monotonically

with increasing the algorithm iterations. Besides, for a fixed

time slot, the average reward of larger speeds increases faster

than that with smaller speeds when t is smaller than 150. This

is due to the randomness of the locations for users and the

UAV, at the start point the UAV may not find an appropriate

user satisfying its QoS requirement. Fig. 8 also shows that the

achieved average reward decreases when the speed increases

at the end of algorithm iterations. This is because if the UAV

flies with a high speed, it will take less time to fly out the
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disc. As a result, the UAV with higher speeds has less serving

time than that of slower speeds.

VI. CONCLUSION

In this article, we investigated the real-time designs of

resource allocation for multi-UAV downlink networks to max-

imize the long-term rewards. Motivated by the uncertainty of

environments, we proposed a stochastic game formulation for

the dynamic resource allocation problem of the considered

multi-UAV networks, in which the goal of each UAV was to

find a strategy of the resource allocation for maximizing its

expected reward. To overcome the overhead of the informa-

tion exchange and computation, we developed an ILs based

MARL algorithm to solve the formulated stochastic game,

where all UAVs conducted a decision independently based

on Q-learning. Simulation results revealed that the proposed

MARL based resource allocation algorithm for the multi-

UAV networks can attain a tradeoff between the information

exchange overhead and the system performance. One promis-

ing extension of this work is to consider more complicated

joint learning algorithms for multi-UAV networks with the

partial information exchanges, that is the need of cooperation.

Moreover, incorporating the optimization of deployment and

trajectories of UAVs into multi-UAV networks is capable of

further improving energy efficiency of multi-UAV networks,

which is another promising future research direction.

APPENDIX A: PROOF OF PROPOSITION 1

Here, we show that the state values for one UAV m over

time in (25). For one UAV m with state sm ∈ Sm at time step

t, its state value function can be expressed as

V (sm, π)

= E

{

+∞
∑

τ=0

δτ rt+τ+1
m |st

m = sm

}

= E

{

rt+1
m + δ

+∞
∑

τ=0

δτ rt+τ+2
m |st

m = sm

}

= E
{

rt+1
m |st

m = sm

}

+ δE

{

+∞
∑

τ=0

δτ rt+τ+2
m |st

m = sm

}

,

(A.1)

where the first part and the second part represent the expected

value and the state value function, respectively, at time t +
1 over the state space and the action space. Next we show

the relationship between the first part and the reward function

R(sm, θ, s′m) with st
m = sm, θt

m = θ and st+1
m = s′m.

E
{

rt+1
m |st

m = sm

}

=
∑

s′

m∈Sm

F (sm, θ, s′m)
∑

θ∈Θ

∏

j∈M

πj(sj , θj)

×E
{

rt+1|st
m = sm, θt

m = θm, st+1
m = s′m

}

=
∑

s′

m∈Sm

F (sm, θ, s′m)
∑

θ∈Θ

∏

j∈M

πj(sj , θj)Rm(sm, θ, s′m),

(A.2)

where the definition of Rm(sm, θ, s′m) has been used to obtain

the final step. Similarly, the second part can be transformed

into

E

{

+∞
∑

τ=0

δτ rt+τ+2
m |st

m = sm

}

=
∑

s′

m∈Sm

F (sm, θ, s′m)
∑

θ∈Θ

∏

j∈M

πj(sj , θj)

×E

{

+∞
∑

τ=0

δτ rt+τ+2
m |st

m = sm, θt
m = θm, st+1

m = s′m

}

=
∑

s′

m∈Sm

F (sm, θ, s′m)
∑

θ∈Θ

∏

j∈M

πj(sj , θj)V (s′m, π). (A.3)

Substituting (A.2) and (A.3) into (A.1), we get

V (sm, π) =
∑

s′

m∈Sm

F (sm, θ, s′m)
∑

θ∈Θ

∏

j∈M

πj(sj , θj)

× [Rm(sm, θ, s′m) + δV (s′m, π)] . (A.4)

Thus, Proposition 1 is proved.

APPENDIX B: PROOF OF THEOREM 1

The proof of Theorem 1 follows from the idea in [45],

[49]. Here we give a more general procedure for Algorithm

1. Note that the Q-learning algorithm is a stochastic form of

value iteration [45], which can be observed from (26) and (32).

That is to perform a step of value iteration requires knowing

the expected reward and the transition probabilities. Therefore,

to prove the convergence of the Q-learning algorithm, stochas-

tic approximation theory is applied. We first introduce a result

of stochastic approcximation given in [45].

Lemma 1: A random iterative process △t+1(x), which is

defined as

△t+1(x) = (1 − αt(x)) △t (x) + βt(x)Ψt(x), (B.1)

converges to zero w.p.1 if and only if the following conditions

are satisfied.

1) The state space is finite;

2)
∑+∞

t=0 αt = ∞,
∑+∞

t=0 (αt)2 < ∞,
∑+∞

t=0 βt = ∞,
∑+∞

t=0 (βt)2 < ∞, and E{βt(x)|Λt} ≤ E{αt(x)|Λt}
uniformly w.p. 1;

3) ‖E{Ψt(x)|Λt}‖W ≤ ̺‖ △t ‖W , where ̺ ∈ (0, 1);
4) Var{Ψt(x)|Λt} ≤ C(1 + ‖ △t ‖W )2, where C > 0 is a

constant.

Note that Λt = {△t,△t−1, · · · , Ψt−1, · · · , αt−1, · · · , βt−1}
denotes the past at time slot t. ‖ · ‖W denotes some weighted

maximum norm.

Based on the results given in Lemma 1, we now prove

Theorem 1 as follows.

Note that the Q-learning update equation in (33) can be

rearranged as

Qt+1
m (sm, θm) = (1 − αt)Qt

m(sm, θm)

+αt
{

rt
m + δ max

θ′

m∈Θm

Qt
m(s′m, θ′m)

}

. (B.2)

By subtracting Q∗
m(sm, θm) from both side of (B.2), we have

△t+1
m (sm, θm)

= (1 − αt) △t
m (sm, θm) + αtδΨt(sm, θm), (B.3)
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‖Hq1(sm, θm) − Hq2(sm, θm)‖∞
(a)
= max

sm,θm

δ

∣

∣

∣

∣

∑

s′

m

F (sm, θm, s′m)
[

max
θ′

m

q1(s
′
m, θ′m) − max

θ′

m

q2(s
′
m, θ′m)

]

∣

∣

∣

∣

(b)

≤ max
sm,θm

δ
∑

s′

m

F (sm, θm, s′m)

∣

∣

∣

∣

max
θ′

m

q1(s
′
m, θ′m) − max

θ′

m

q2(s
′
m, θ′m)

∣

∣

∣

∣

(c)

≤ max
sm,θm

δ
∑

s′

m

F (sm, θ, s′m)max
θ′

m

∣

∣

∣

∣

q1(s
′
m, θ′m) − q2(s

′
m, θ′m)

∣

∣

∣

∣

(d)
= max

sm,θm

δ
∑

s′

m

F (sm, θ, s′m)‖q1(s
′
m, θ′m)−q2(s

′
m, θ′m)‖∞

(e)
= δ‖q1(s

′
m, θ′m) − q2(s

′
m, θ′m)‖∞

(B.10)

where

△t
m(sm, θm) = Qt

m(sm, θm) − Q∗
m(sm, θm), (B.4)

Ψt
m(sm, θm) = rt

m + δ max
θ′

m∈Θm

Qt
m(s′m, θ′m) − Q∗

m(sm, θm).

(B.5)

Therefore, the Q-learning algorithm can be seen as the random

process of Lemma 1 with βt = αt.

Next we prove that the Ψt(sm, θm) has the properties of 3)

and 4) in Lemma 1. We start by showing that Ψt(sm, θm) is

a contraction mapping with respect to some maximum norm.

Definition 4: For a set X , a mapping H : X → X is a

contraction mapping, or contraction, if there exists a constant

δ, with delta ∈ (0, 1), such that

‖Hx1 − Hx2‖ ≤ δ‖x1 − x2‖, (B.6)

for any x1, x2 ∈ X .

Proposition 3: There exists a contraction mapping H for

the function q with the form of the optimal Q-function in (B.8).

That is

‖Hq1(sm, θm) − Hq2(sm, θm)‖∞

≤ δ‖q1(sm, θm) − q2(sm, θm)‖∞, (B.7)

Proof: From (32), the optimal Q-function for Algorithm

1 can be expressed as

Q∗
m(sm, θm) =

∑

s′

m

F (sm, θm, s′m)

×
[

R(sm, θm, s′m) + δ max
θ′

m

Q∗
m(s′m, θ′m)

]

.

(B.8)

Hence, we have

Hq(sm, θm) =
∑

s′

m

F (sm, θm, s′m)

×
[

R(sm, θm, s′m) +δ max
θ′

m

q(s′m, θ′m)
]

. (B.9)

To obtain (B.7), we make the following calculations in (B.10),

shown at the top of the this page. Note that the defini-

tion of q is used in (a), (b) and (c) follows properties of

absolute value inequalities. Moreover, (d) comes from the

definition of infinity norm and (e) is based on the maximum

calculation. �

Based on (B.5) and (B.9),

E{Ψt(sm, θm)}

=
∑

s′

m

F (sm, θ, s′m)

×
[

rt
m + δ max

θ′

m∈Θm

Qt
m(s′m, θ′m) − Q∗

m(sm, θm)
]

= HQt
m(sm, θm) − Q∗

m(sm, θm)

= HQt
m(sm, θm) − HQ∗

m(sm, θm). (B.11)

where we have used the fact that Q∗
m(sm, θm) =

HQ∗
m(sm, θm) since Q∗

m(sm, θm) is a some constant value.

As a result, we can obtain from Proposition 3 and (B.4) that

‖E{Ψt(sm, θm)}‖∞ ≤ δ‖Qt
m(sm, θm) − Q∗

m(sm, θm)‖∞

= δ‖ △t
m (sm, θm)‖∞, (B.12)

Note that (B.12) corresponds to condition 3) of Lemma 1 in

the form of infinity norm.

Finally, we verify the condition in 4) of Lemma 1 is

satisfied.

Var{Ψt(sm, θm)}

= E{rt
m + δ max

θ′

m∈Θm

Qt
m(s′m, θ′m) − Q∗

m(sm, θm)

−HQt
m(sm, θm) + Q∗

m(sm, θm)}

= E{rt
m + δ max

θ′

m∈Θm

Qt
m(s′m, θ′m) − HQt

m(sm, θm)}

= Var{rt
m + δ max

θ′

m∈Θm

Qt
m(s′m, θ′m)}

≤ C(1 + ‖ △t
m (sm, θm)‖2

W ), (B.13)

where C is some constant. The final step is based on the fact

that the variance of rt
m is bounded and Qt

m(s′m, θ′m) at most

linearly.

Therefore, ‖ △t
m (sm, θm)‖ converges to zero w.p.1

in Lemma 1, which indicates Qt
m(sm, θm) converges to

Q∗
m(sm, θm) w.p.1 in Theorem 1.
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