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Abstract—The rapid production of mobile devices along with
the wireless applications boom is continuing to evolve daily. This
motivates the exploitation of wireless spectrum using multiple
Radio Access Technologies (multi-RAT) and developing innova-
tive network selection techniques to cope with such intensive
demand while improving Quality of Service (QoS). Thus, we
propose a distributed framework for dynamic network selec-
tion at the edge level, and resource allocation at the Radio
Access Network (RAN) level, while taking into consideration
diverse applications’ characteristics. In particular, our frame-
work employs a deep Multi-Agent Reinforcement Learning
(DMARL) algorithm, that aims to maximize the edge nodes’
quality of experience while extending the battery lifetime of the
nodes and leveraging adaptive compression schemes. Indeed, our
framework enables data transfer from the network’s edge nodes,
with multi-RAT capabilities, to the cloud in a cost and energy-
efficient manner, while maintaining QoS requirements of different
supported applications. Our results depict that our solution out-
performs state-of-the-art techniques of network selection in terms
of energy consumption, latency, and cost.

Index Terms—Heterogeneous networks, edge computing, wire-
less healthcare systems, multi-RAT architecture, deep reinforce-
ment learning.
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I. INTRODUCTION

W ITH the emerging of the Internet of Mobile Things
(IoMT) and unprecedented 5G applications, several

strict communication requirements have arisen. Such require-
ments demand wireless networks to be responsive while
adapting to different applications’ requirements. Specifically,
for e-health applications, the ability of the healthcare systems
to predict and instantly react to emergency situations is manda-
tory to reduce the risks of chronic diseases and the mortality
rate [1]. However, the strict latency requirements for emer-
gency conditions along with the enormous amount of gener-
ated data are still major challenges for e-health systems. Such
demand for ultra-low latency and other Quality of Service
(QoS) requirements has motivated us to leverage the evolu-
tion of the 5G network toward dense Heterogeneous networks
(HetNets) [2]. 5G HetNets are expected to enhance users’ QoS,
enable diverse performance improvements, and fulfill vari-
ous service requirements through increasing the opportunity
of spatial resource reuse [3], [4]. Indeed, leveraging multi-
Radio Access Technology (RAT) will enable a device/edge
(e.g., mobile phones, edge gateways) to utilize the avail-
able radio resources across various spectral bands to connect
with the network infrastructure. Hence, the edge devices that
are equipped with multiple interfaces (e.g., Wi-Fi, 3G, 4G,
Bluetooth) will be able to simultaneously access the available
networks with different RATs. However, this calls for design-
ing innovative and scalable networks selection schemes that
consider e-health QoS requirements while maintaining high
spectrum efficiency across diverse networks.

Artificial Intelligence (AI) has been a key feature in 5G
networks recently, where introducing AI into HetNets can
help in developing and executing efficient and intelligent
network selection schemes [5]. Moreover, in AI-based user-
centric network selection, different users can have customized
and dynamic selection behaviors based on their own needs
and requirements for different applications [6]. Specifically,
the most efficient dynamic network selection techniques are
based on Reinforcement Learning (RL). RL is an emerging
field in AI that studies optimal sequential decision making
for an agent in non-deterministic environments [7]. In single-
agent RL, the agent tries to learn the optimal policy from
the interactions with the environment, aiming to maximize its
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reward. Nevertheless, in many environments of the real world,
including self-driving cars, packet delivery, and others, there
are multiple agents acting simultaneously on the environment,
based on their own observation, with the aim of maximizing
their own utility, which does not necessarily align with others.
Single-agent RL modeling of such large-scale environments
is not efficient, where the agent if deployed in a centralized
manner (i.e., at the core network) it will lack the scalability,
since it has to have complete knowledge about the environment
including users’ actions.

As such, the modeling framework that captures such
complex interactions between multi-agents is game theory.
However, due to the difficulty of classical solution methods
for games, especially for environments with many agents,
data-driven solutions based on reinforcement learning have
been emerging as a promising solution known as Multi-Agent
RL (MARL). MARL extends the RL framework to explicitly
model the existence of multiple agents and the effect of their
joint action on the environment. In this framework, the solution
concept is to reach a set of policies (a policy for each agent)
that form an equilibrium with the maximum reward (i.e., set of
dominant policies). Of course, reaching this equilibrium, if it
exists, is more challenging compared to single-agent RL. This
is primarily due to the non-stationarity nature of the envi-
ronment (i.e., for an agent, the same policy might result in
a different performance according to what other agents are
doing, which is not necessarily known by that agent).

MARL includes different sub-problems ranging from learn-
ing the cooperation between agents [8], [9], to learning the
communication between different types of agents [10]. The
recent advancements in deep learning along with its inte-
gration with the MARL lead to the new Deep Multi-agent
Reinforcement Learning (DMARL) concept [11], [12], where
DMARL has been widely utilized for various tasks in 5G
networks such as distributed resource allocation [13], [14]
and interference management [15]. Moreover, in edge com-
puting, DMARL is being employed for numerous tasks such
as computation offloading [16], resource allocation and cash-
ing [17], [18] and control of network traffic [19]. Overall,
there has been impressive progress at the algorithmic level
in the DMARL community, which is yet to be customized,
adapted, and utilized in practical scenarios. In this work, we
utilize and adapt state-of-the-art DMARL algorithms to jointly
tackle a practical and important issue of network selection and
resource allocation.

II. RELATED WORK

The related work in the literature exploits different method-
ologies for solving the network selection problem, including:
game theory, Markov decision processes (MDPs), multi-
attribute decision making, and optimization techniques [20].
Game theory approaches for network selection assume that
the users aims to increase their rewards, while networks
operators are trying to increase their revenues by increas-
ing their number of users. However, it cannot be always
guaranteed that the networks operators will act in a rational
manner and the users will get the targeted QoS [21], [22].

Moreover, the proposed solutions, using game theory, are
typically complexity-prohibitive, and their convergence to
the optimal solution is not guaranteed. Even if they con-
verge, it is not always guaranteed that they can converge
to an optimal solution [20]. In other works, the network
selection problem has been formulated as an MDP to inves-
tigate network switching between different RATs [23], [24].
However, obtaining an optimal solution using such approaches
is again computationally intensive, especially in the case of
large networks [25].

Network selection has been also studied using multi-
attribute decision making. Such approaches assigned different
weights for different factors affecting the network selection
decision. Then, various techniques such as simple additive
weighting [26], multiplicative exponent weighting [27], [28],
and grey relational analysis [29], [30], have been considered
for selecting the appropriate network. However, it is usually
hard to prove that such approaches can obtain an optimal
solution. Optimization techniques have been also investigated
for solving network selection problem. Despite the guaranty
of optimality using such approaches, typically, formulating
the network selection problem as an optimization problem
with reasonable complexity (to be run at the edge) is not an
easy task. Obtaining the optimal solution, subject to differ-
ent networks, applications, and power constraints may lead to
an NP-hard problem [31]. Moreover, since network resources
and characteristics can vary with time, as well as the edge
resources, classical optimization approaches can be computa-
tionally expensive, where online optimization approaches such
RL can be more appropriate.

RL-driven network selection has been used and studied
in [32], [33], [34], where the authors showed that RL can
achieve faster convergence and optimal behaviors. However,
the existence of multiple users that employ network selec-
tion schemes along with resource-constrained RANs calls for
the need for MARL and distributed optimization to decen-
tralize the individual policies for individual users and RANs,
which would scale efficiently in large scale systems. The
authors in [35] have proposed a strategy for multi-RAT access
based on MARL with the aim of maximizing the average
system throughput while satisfying the users’ QoS prefer-
ences. However, the authors did not address the mobile
devices characteristics (e.g., energy budget) and the applica-
tion requirements (e.g., the quality of the transmitted medical
data).

Different from the aforementioned work in the literature,
we aim to leverage the intelligence at the edge for optimiz-
ing networks selection decisions in the ultra-dense heteroge-
neous networks, and at the network side for optimizing the
resource allocation for the edges. Specifically, we propose an
approach that explicitly models the existence of two interacting
groups of heterogeneous agents, to simultaneously learn and
optimize the overall system performance. Namely, a group
of autonomous end-users that aim to perform network selec-
tion and a group of autonomous RANs that seek to solve the
problem of resource allocation. Note that this contrasts the
previous studies cited in the paper as those focus on optimiz-
ing the task of one group only, while considering the other
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as static respondents or assume a centralized control that opti-
mizes the performance of the two groups. Our paper is the first
to explicitly model the adaptive and decentralized behavior of
these two groups, where each one is learning simultaneously
and independently from the others. Moreover, the proposed
framework is supported by a practical and essential applica-
tion in smart health systems, which are perfect candidates to
leverage the advantages brought by the framework. The enti-
ties of these systems dynamically change, e.g., the patients’
health state, the wireless channel characteristics, and dynam-
ics, the battery level of the mobile device· · · etc. Our main
contributions can be summarized as follows.

1) We formulate a multi-objective optimization problem
that describes the whole system and aims at obtaining,
for each user/patient edge node (PEN): (i) the optimal
data compression ratio, (ii) the selected Radio Access
Networks (RANs) for data transmission, and (iii) the
allocated bandwidth at each selected RAN(s).

2) The problem is reformulated in terms of Multi-Agent
theory, where the agents for each interacting group in the
system (i.e., RANs and PENs) will be defined along with
their observations, actions and their reward functions.

3) We propose a distributed DMARL algorithm, namely,
Team-Based Multi-Agent Deep Deterministic Policy
Gradient (TB-MADDPG), which handles the hetero-
geneity of the agents in the system, and looks for the
optimal joint policy that maximizes the rewards for all
agents.

The rest of the paper is organized as follows. Section III
introduces the system model and the main Performance met-
rics considered in this study. Section IV presents the formu-
lated optimization problem, along with the re-formulation in
terms of multi-agent theory. In Section V, we present the
proposed approach to solve the reformulated problem and
learn the optimal policy. Section VI presents the performance
evaluation of our approach and the comparisons against the
state-of-the-art techniques, while Section VII presents the
complexity analysis of the proposed method before concluding
in Section VIII.

III. SYSTEM MODEL AND PERFORMANCE METRICS

This section introduces the system model under study. Then,
it presents the main application and network requirements that
will be considered in the proposed framework.

A. System Model

In this work, we consider a mobile-health (m-health)
network with ultra-dense heterogeneous network architecture,
where multiple end-users can access multiple RANs as in
Fig. 1. In the considered scenario, a combination of sen-
sor nodes attached to the patients is used for monitoring the
patient’s health state (e.g., implantable or wearable sensors
that measure various biosignals and vital signs). The acquired
data from such sensors are forwarded to a patient edge node
(PEN) that represents the data processing unit between the
data sources and the RANs. Specifically, the PEN collects the
medical data from various sources and applies an adaptive

Fig. 1. System model under study.

compression scheme to control the data size, while consider-
ing the high-level application’s requirements. Then, the PEN
can forward the collected data to the m-health cloud (MHC)
via the available RANs. Each RAN has different character-
istics, such as data rate, energy consumption, monetary cost
(i.e., requested payment for using network services), and trans-
mission delay. Moreover, due to patient mobility, the level of
quality of service offered by the available RANs may vary
over time.

The PENs are considered to be battery-operated devices,
where a PEN can be any mobile node (e.g., smartphone).
However, it can collect an immense amount of data due
to the continuous monitoring of diverse patient’s conditions.
Hence, it is important to transmit the collected data efficiently
through the RANs without draining the PEN’s battery, such
that the PEN can be used for a long time without charging or
replacement.

Lastly, we consider that the patient’s conditions might
change at any point in time in order to simulate a real-life
scenario. More specifically, the patients in our system model
can have abnormal conditions (such as seizure) for a period of
time, and then their conditions can go back to normal after a
certain time period. Such abnormal conditions influence how
the vital signs should be processed locally at the edge on one
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side, and what RANs will be selected to address the emergency
case with ultra-low latency on the other side.

B. Performance Metrics

In the following, we assume on a time period T, each PEN
i (i = 1, . . . ,N ) has to transfer Bi bits of data towards
the MHC, through M RANs. Moreover, each RAN j (j =
1, . . . ,M ) has to allocate resources in terms of bandwidth to
N PENs.

Adaptive Compression: The adaptive data compression at
the PEN, is implemented using the discrete wavelet transform
(DWT) compression scheme [36]. Hence, the generated data
length, after compression, at PEN i is expressed as follows:

bi = Bi (1− κi ) (1)

where Bi being the length of the raw data sent by PEN i
before compression, and κi is the compression ratio at that
PEN. However, using lossy data compression, prior to the
transmission, comes at the cost of introducing data distortion
at the receiver side. In the proposed framework, we adopt
the compression scheme in [37] for electroencephalogram
(EEG) data compression, as an example of intensive medical
data compression. Nevertheless, without loss of generality, the
proposed framework can be easily extended to consider differ-
ent compression schemes, medical or non-medical data (e.g.,
video) [38]. Using the obtained results in [37], the introduced
distortion can be expressed as:

Di =
c1. exp(1− κi ) + c2.(1− κi )−c3 + c4.F

−c5 − c6
100

,

(2)

where F is the wavelet filter length of the adopted DWT com-
pression scheme, and c1− c6 are the estimated parameters by
the statistics of the EEG compression model.

Energy Consumption: First, the available data rate from
RAN j to PEN i is given by:

rij = Wij log2

(
1 +

Pt gij
N0Wij

)
(3)

where Pt is the PEN transmission power, Wij is the allocated
bandwidth, and is given by Wij = θij .Wj , with θij being
the fraction of the RAN bandwidth Wj [39]. In (3), N0 is the
noise spectral density, while the channel gain gij is defined as:

gij = K . σ .
∣∣hij ∣∣2 (4)

where K = −1.5/(log(5BER)), σ is the path loss attenuation,
and |hij | is the fading channel magnitude for PEN i over RAN
j. Then, the estimated energy consumption at PEN i to send
bi bits over RAN j, as defined in [40], is given by:

Eij = ψj .

(
biN0Wij

rij gij

(
2

rij
Wij − 1

))
+ cj , (5)

where ψj and cj are specific parameters that differ for each
network interface [41].

Latency: The expected latency to send bi bits from PEN i
through RAN j can be defined as:

Lij =
bi
rij

+ ξj (6)

where ξj is the access channel delay over RAN j. More specif-
ically, the expected latency represents the end-to-end delay
when using a given technology [42]. Nonetheless, the data
rate equation in (3) is generic and interference-free, and any
other data rate model with interference can be simply inte-
grated along with the data transmission energy consumption
model.

Monetary Cost: the cost resulting from using RAN j by PEN
i to send bi bits is expressed in Euro’s and can be defined as:

Cij = biεj (7)

where εj is the monetary cost per sent bit over RAN j. This
monetary cost can be acquired through the use of, e.g., the
IEEE 802.21 standard [43], which allows a user device to
gather information about the available wireless networks. Such
value can also be stored in the PENs in advance and updated
if there are any changes in pricing.

IV. PROBLEM FORMULATION

In this section, firstly, we formulate our problem for
optimal Network selection and resource allocation as a multi-
objective optimization problem under certain network con-
straints. Secondly, we motivate and introduce a necessary
reformulation as a MARL framework by expressing the
problem as a discrete time-variant system.

A. Multi-Objective Optimization Problem Formulation

The goal of the optimization problem is to minimize the
transmission energy consumption, along with the data delivery
latency and monetary cost, while meeting the medical data
QoS requirements in terms of distortion. Therefore, we define
an objective function that is a weighted sum aggregate of the
aforementioned objectives.

Given N PENs with M available RANs, the objective of
our optimization problem is to minimize the PENs’ transmis-
sion energy consumption Eij , monetary cost Cij , latency Lij ,
and distortion Di . This can be achieved through: (i) assigning
the PENs to the optimal RAN(s), (ii) obtaining the optimal
bandwidth allocation over different RANs, and (iii) setting
the PENs’ optimal compression ratio. Thus, the proposed
optimization problem is formulated as:

P1: min
θ,P,κ

E

⎡
⎣∑

i

∑
j

PijUij + δiDi

⎤
⎦ (8)

s .t
∑
i

θij = 1, ∀j ∈ M (9)

∑
j

Pij = 1, ∀i ∈ N (10)

biPij

rij
≤ Tij , ∀i ∈ N , ∀j ∈ M (11)

0 ≤ θij ,Pij ≤ 1, ∀i ∈ N , ∀j ∈ M (12)

0 ≤ κi < 1, ∀i ∈ N (13)

where Uij = αiEij + βiCij + λiLij is the utility function of
PEN i over RAN j. The weighting coefficients α, β, λ, and
δ represent the relative significance of the four metrics in the
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problem; where αi + βi + λi + δi = 1. Moreover, we denote
the patient status as ζi , where:

P(ζi = 1) = υi , ∀i ∈ N (14)

where the equation conveys that a patient i can have a seizure
at any point in time with a probability of υi . The weight-
ing coefficients α, β, λ, and δ are functions of ζi , where
they can have different values according to the patient status,
which allows us to optimize the RAN(s) selection and PENs’
parameters based on the patient status. Since the weighting
coefficients are a function of the random variable ζi , and
hence, the objective function is stochastic, we optimize the
expected value of the objective function. Moreover, It is worth
noting that the metrics are normalized between 0 and 1 in order
to sum the unitless values in the objective function (8).

In (8), we consider a network utilization indicator Pij

that represents the fraction of data that should be transmitted
through RAN j by PEN i. We assume that the PENs have all
information to compute the energy consumption and cost. The
constraint in (9) ensures the full utilization of RANs’ band-
width by the PENs, while the constraint in (10) ensures that
all the data that each PEN has to transfer to the MHC is actu-
ally sent through the RANs. The network capacity constraint
is represented by (11), where Tij is the maximum fraction
of the time period T that can be used by PEN i over RAN
j (i.e., resource share). Tij depends on the number of PENs
accessing the RAN, and we assume that it is notified by the
RANs.

The decision variables in this problems are the θij ’s, Pij ’s
and the κi , i.e., each RAN needs to determine the allocated
bandwidth for each PEN, and each PEN needs to determine
its compression ratio and the amount of data it should transfer
through different RANs. However, the problem P1 in (8) in its
current form is not convex [44], since the second derivatives
matrix of the utility function, i.e., the Hessian matrix, is not
positive semi-definite. Moreover, an approach like transform-
ing the problem into a Geometric Program (GP) would not
work in this case due to the existence of the non-linearity of
the distortion in the objective. However, the problem can be
solved in a distributed manner where it can be divided into
sub-problems and the variables can be separated, which the
authors in [45] have done. Nevertheless, the obtained solution
does not take into accounts the time variance in the system, and
solving the problem P1 by classical optimization approaches
as in the previous work is computationally expensive, since
the system parameters change dynamically with time (e.g.,
channel gain of each RAN, patients’ conditions, PENs bat-
tery status· · · etc.). Also, with changing the environment, the
objective function has to be re-optimized again considering
the new changes. Thus, in what follows, we opt to reformu-
lating the problem, leveraging multi-agent systems theory, to
be solved using deep MARL (DMARL)-based approach.

B. Multi-Agent Reinforcement Learning Formulation

As mentioned earlier, we want to solve the problem in an
online manner, adapting to the changes in real-time. However,
since the problem is non-convex, solving it repeatedly at every

variation of the system parameters is inefficient. Hence, we opt
for learning-based optimization such as reinforcement learn-
ing (RL) to achieve this adaptation. To solve the problem
through RL, a Partially-Observable Markov Decision Process
(POMDPs) representation of the system has to be designed. In
fact, due to the existence of more than one independent PEN
in the system along with multiple RANs calls for the need
of the multi-agent extension of POMDPs. In our new formu-
lation, we consider multiple heterogeneous agents interacting
simultaneously with a partially observable environment V in
discrete time steps. The formulation is to be described by a
partially observable Markov game (POMG) [46], which is a
multi-agent extension for POMDPs. POMGs are usually rep-
resented by the tuple (N ,S,A,O, T ,R, γ), where N is the
set of all agents, st ∈ S is a single possible configuration of
all the agents at time t, at ∈ A is a possible action for the
agents where A = A1×A2×· · ·×AN , ot ∈ O is a possible
observation of the agents where O = O1 × O2 × · · · × ON ,
T is the state transition probability T : O×A �→ O, R is the
set of rewards for all the agents r : O×A �→ R, and γ is the
reward discount factor. In what follows, we define each set in
the tuple in the context of our network selection and resource
allocation problem.

1) System Agents and Environment: In this work, we con-
sider two types of agents, namely, the PEN agents and the
RAN agents. The PEN agents are deployed at the PENs and
can control the data transmission and compression, while the
RAN agents are deployed in the RAN controller in order to
optimize the RANs’ bandwidth allocation to the PENs. Each
agent i receives from the environment an observation, and
take actions according to the joint policy π : O �→ A, where
π : π1 × π2 × · · · × πN , and it transits the agent to its next
state according to the state transition probability T , and the
agent receives an immediate reward ri . The environment V
will be episodic, i.e., it has finite horizon, and it terminates
when all the PENs run out of power. During an episode, the
total cumulative discounted reward for an agent i is denoted by
Ri =

∑t ′
t=0 γ

tr ti , where γ ∈ [0, 1) and t ′ is the episode time
horizon. The state-action value function of a joint policy π for
an agent i is expressed as Qπ

i (s , a) = E[Rt
i |st = s , at = a].

The goal of the agents is to find an optimal joint policy π∗ that
yields the optimal Q-function Qπ∗

i (s , a) = maxπ Qi (s , a)
for each agent through direct interactions with the environ-
ment, without having an explicit pre-knowledge about it (the
transition probability T ).

2) Agents Observations and Actions: In our system, we
consider two types of agents, namely, the RAN agent type and
the PEN agent type. Each type of agents has different observa-
tions and actions, and each agent from each type has his own
observations and actions. We assume that agents from the same
type are independent from each other, and they do not share
any observation or any kind of information. In fact, this is
the case in real-world scenarios, where PENs as actors do not
share any information with each other in order to preserve their
privacy, and each RAN does not have any information about
other RANs and how much data have been flowed through
them. However, agents from different type have to share some
information between each other, including whether PENs are
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willing to send any data to a RAN or not, and how much
bandwidth is each RAN allocating to each PEN. We denote
the RAN agent j observation and action at time t by otρj and
atρj respectively, and the PEN agent i observation and action
at time t by otϕi

and atϕi
respectively. The RAN agent j obser-

vation at time t is the status of the PENs if they have sent any
data or not to RAN j, and given by:

otρj =
{
nt
ij

}
, ∀i ∈ N (15)

where,

nt
ij =

{
1 P t

ij > 0

0 P t
ij = 0,

(16)

whereas the RAN agent action is how much bandwidth it allo-
cates to each PEN, or the fraction of the RAN bandwidth that
each PEN is getting at time t, and given by:

atρj =
{
θtij

}
, ∀i ∈ N (17)

As for a PEN agent i, its observation at time t consists
of the PEN energy consumption, latency, monetary cost and
the channel state for each RAN that the PEN has sent any
data through. Moreover, the PEN agent observes the patient
seizure status if it is active or not, along with the medical
data distortion and the PEN battery level. The full PEN agent
observation can be expressed as the following:

otϕi
=

{
Ē t
ij , C̄

t
ij , L̄

t
ij , D̄

t
i , ζ

t
i , Γ̄

t
i

}
, ∀j ∈ M (18)

where Ē t
ij , C̄

t
ij , L̄

t
ij , D̄

t
i and Γ̄t

i are the normalized energy con-
sumption, monetary cost, latency, distortion and battery level
respectively, by max normalization (i.e., they fall in the range
of [0 − 1]). Moreover, Ē t

ij , C̄ t
ij and L̄t

ij at time t can be

evaluated by plugging P t−1
ij and θt−1

ij in (5), (6) and (7)

respectively, whereas D̄ t
i by plugging κt−1

i in (2), and finally,
Γ̄ti is evaluated as follows:

Γ̄t
i =

Γt−1
i −

∑
j E

t
ij

Γ0
i

(19)

It is worth pointing out that the transitions of Ē t
ij , L̄t

ij and Γ̄t
i

are stochastic, due to the fact that these observations mainly
depend on the channel gain estimation, which introduces the
randomness in the system. Also, the patient status is not deter-
ministic, as the patient is prone to abnormal conditions (i.e.,
seizures) at any point in time.

Lastly, the PEN agent i actions at time t are the amount
of data that the PEN is sending to each RAN, along with the
compression ratio, and can be expressed as:

atϕi
=

{
P t
ij , κi

}
, ∀j ∈ M . (20)

3) Agents Reward Functions: The reward functions have to
be designed such that they describe the original optimization
problem along with maximizing the PENs battery lifetime.
The PEN agents aim is to minimize the energy consumption in

order to guarantee a longer battery lifetime, while jointly min-
imizing the cost, latency and distortion. Therefore, the PEN
agent reward function is defined as the following:

r tϕi
=

⎧
⎪⎪⎨

⎪⎪⎩

(
1−∑

j P
t
ij Ū

t
ij

)
+ δi

(
1− D̄ t

i

)
+ Γ̄t

i ζti = 0

λi

(
1−∑

j L̄
t
ij

)
+ δi

(
0.1− D̄ t

i

)
+ Γ̄t

i ζti = 1

−1 violated constraints

(21)

where Ū t
ij is the normalized utility function (i.e., the sum

of the normalized energy consumption, monetary cost and
latency). The first and the second term represents the objective
function (8), while the third term addressed the battery energy
level, and it forces the agent to minimize the energy consump-
tion in order to maintain a slow decrease in the reward over
time, rather than a sharp decrease. However, when the patient
has a seizure, the data has to be delivered with the minimum
distortion and delay possible. Hence, the reward will disregard
the cost factor, and care less about the energy consumption,
and give more significance to the latency and distortion terms.
Lastly, if the agent violates any constraints, it will receive a
penalty of −1.

The RAN agents’ main goal is to maximize the connected
users QoE, which can be done by maximizing their rewards.
Hence, the reward for the RAN agents is defined as the
following:

r tρj =

⎧⎨
⎩

∑
i n

t
ij r

t
ϕi∑

i n
t
ij

(9), (11) hold

−1 otherwise
(22)

where nt
ij is the status of PEN i if it has sent any data to

RAN j at time t and r tϕi
is the reward of the PEN agent i.

The aforementioned reward function represents the average
rewards of the connected PENs to the RAN j. The agents at
each RAN will try to maximize the rewards of its connected
PENs by allocating the optimal bandwidth for each one, in
order to guarantee the best QoE for the connected users.

V. TEAM-BASED MADDPG SOLUTION FOR NETWORK

SELECTION AND RESOURCE ALLOCATION

MADDPG [47] is the multi-agent extension of the
DDPG [48] algorithm, where each agent learns a policy based
on its local observation only, and each agent has his own
Q-function, which works as an indicator of how good is the
agent policy. The MADDPG algorithm adopts the centralized
training with decentralized execution framework. In the train-
ing phase, which is depicted in Fig. 2, each agent utilizes
a Q-function (critic), and a policy function (actor), where
the critics have access to the joint observations and actions
(hence the name “centralized”), and guides the training of
the actors. In the testing (execution) phase, shown in Fig. 3,
the critic is discarded (i.e., the global observation/actions are
not needed any more) and only the actor, which depends
only on local observations, is utilized. The centralized train-
ing allows the policies to make use of additional information
to ease and stabilize training, so long as this information
is not used at execution time. This adopted framework in
MADDPG leads to learned joint optimal policies that only
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Fig. 2. TB-MADDPG training architecture.

Fig. 3. TB-MADDPG execution architecture.

use local information (i.e., their own observation only) at exe-
cution time. Moreover, MADDPG is not only limited to a
single type of interaction between the agents, but can use any
type of interaction including cooperative, competitive, mixed
or neither of these types.

However, the MADDPG assumes the agents are homoge-
neous (i.e., they have the same structure of observation and
actions), which is not the case in our environment, where
we have two types of agents, with different structure of
observations and actions. Moreover, having heterogeneous
agents in the environment makes the environment even less
stationary, which hardens the agents-learning process from
the environment interactions. Hence, we propose the Team-
Based MADDPG (TB-MADDPG), which is essentially a dual
MADDPG frameworks interacting with each other, and groups

each type of agents in a team, and each team has a different
joint policy, and therefore, a different Q-function to assess
each joint policy. The first MADDPG has the PENs as its
agents, and considers the other team as part of the environ-
ment. Similarly, the second MADDPG has the RANs as its
agents, and considers the PENs as part of its environment.
Furthermore, each team make use of a shared replay buffer
that stores all the agents’ experiences. An agent experience
can be represented by the tuple (o, a, o′, r , d), where d rep-
resents the done flag (i.e., when the agent stops interacting
with the environment). The agents from the same team are
not allowed to observe other agents experiences in the shared
replay buffer. However, the critic networks make full use of
that buffer in order to assess the joint actions given a joint
observation, and hence, assessing the joint policy. Such modi-
fication makes the environment more stationary, and make the
learning in each team as a normal homogeneous MADDPG
training.

As mentioned before, there will be two teams in our solution
design, namely, the RANs and the PENs teams. We denote
the joint observation and joint action for the RAN team by
oρ and aρ respectively, where a single action for an agent
aρj = μρj (oρj ;ϑρj ), with μρj (.) denoting the output of the
RAN actor network j, and ϑρj is the set of parameters of
the actor network. Similarly for the PENs team, we denote the
joint observation and joint action by oϕ and aϕ respectively,
and single action for the PEN agent i is aϕi = μϕi (oϕi ;ϑϕi ).
Also, the joint policy for the RANs team and the PENs team
are denoted by πρ and πϕ . Finally, a single Q-function in the
RANs team and the PENs team is denoted by Qρj (oρ ,aρ ;φρj )
and Qϕi (oϕ ,aϕ ;φϕi ), where φρj and φϕi are the set of
parameters for the critic network j and i in the RANs and
the PENs team respectively.
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Learning in TB-MADDPG consists of Q-learning for the
critics, and policy learning for the actors. The concept of
Q-learning is that if the optimal Q-function is known, then
the optimal action to take is the one which maximizes the
Q-function. Since each critic parameterize the Q-function, the
goal of the critic is to be as close as possible to the optimal
Q-function. Therefore, for each critic, we can set up an indica-
tor of how close the critic to the optimal Q-function is, which
is the Mean-Squared Bellman Error (MSBE), and defined as
the following:

L(φx ,Bx ) = E
Bx∼Dx

[
(Qx (ox ,ax ;φx )− yx (o

′
x , rx , dx ))

2
]

(23)

where x ∈ {ρ, ϕ}, D is the shared replay buffer in the team,
and B is a sampled batch of joint experiences from the buffer.
The term yx (.) is known as the Temporal Difference (TD)-
target, and is given by:

yx
(
o ′

x , rx , dx
)
=

(
rx + γ(1− dx )Qx

(
o ′

x ,a
′
x ;φx

))
(24)

where a ′ is the joint action from the actors given the next state
o ′. The aim of each critic is to minimize the MSBE, which
can be done by gradient descent on its parameters φ:

φx ← φx − ηφx
∇φx
L(φx ,Dx ) (25)

where ηφ is the learning rate of the critic network.
Each actor in TB-MADDPG learns independently, relying

on its local observations and its critic only, where the actor
tries to learn an optimal policy that maximizes the Q-function.
Hence, the objective of each actor from both teams can be
expressed as:

max
ϑx

E
ox∼Dx

[Qx (ox , μx (ox ;ϑx );φx )] (26)

which can be maximized by simple performing gradient ascent
on the actor parameters ϕ as follows:

ϑx ← ϑx + ηϑx
∇ϑx

E
ox∼Dx

[Qx (ox , μx (ox ;ϑx );φx )] (27)

where ηϑ is the learning rate of the actor network. Moreover,
to stabilize the learning process [49], each actor and critic
network have a time-delayed copy of itself, and are called
the target networks. The parameters of the target networks are
updated as follows:

φtarg ← (1− ε)φtarg + εφ (28)

ϑtarg ← (1− ε)ϑtarg + εϑ (29)

where ε is the soft update parameters, and ε << 1. The TB-
MADDPG algorithm is summarized in Algorithm 1.

Lastly, it is worth recalling that the TB-MADDPG algorithm
is done with centralized training (Fig. 2) and decentralized
execution (Fig. 3). In other words, during training, the agents’
critics can make use of extra knowledge about other agents’
interaction with the environment in order to help the actors to
learn the optimal joint policy. However, at inference time, the
actors only receive their local observation and do not share or
exchange any private information with other agents. The online
training can be held in a trusted virtualized environment, where
the replay buffers of each team can be stored and can receive

Algorithm 1: Team-Based-Multi Agent DDPG
Initialize actors and critics networks parameters
Initialize a random process N for action exploration
for episode e=1 : Episodes do

Receive initial states for both teams oρ,oϕ

for time step t=1 : Steps do
At the PENs side:
for PEN agent i = 1 : N do

Select and execute action
aϕj = μϕj (oϕj ) +N following policy πϕ

end
Observe PENs next states o ′

ϕ and rewards rϕ
Store (oϕ,aϕ,o

′
ϕ, rϕ) in PENs team buffer Dϕ

At the RANs side:
for RAN agent j = 1 : M do

Select and execute action
aρj = μρj (oρj ) +N following policy πρ

end
Observe RANs next states o ′

ρ and rewards rρ
Store (oρ,aρ,o

′
ρ, rρ) in RANs team buffer Dρ

At both sides:
if time to train then

Sample a mini-batch Bx from each Dx

for each agent do
Compute targets yx (o

′
x , rx , dx )

according to (24)
Compute loss function L(φx ,Bx )
according to (23)
Update critic parameters:
φx ← φx − ηφx

∇φx
L(φx ,Bx )

Update actor parameters:
ϑx ← ϑx +

ηϑx
∇ϑx

E
ox∼Dx

[
Qx

(
ox , μx (ox ;ϑx );φx

)]

Update target networks parameters
according to (28), (29)

end
end

end
end

the experiences from the agents, and deploy the models on the
PENs and the RANs every once in a while.

VI. SIMULATION RESULTS

In this section, we first present the environmental setup.
Second, we evaluate the agents’ behavior in terms conver-
gence and the learned policy. Lastly, we compare our proposed
approach to existing state-of-art techniques for network selec-
tion and resource allocation.

A. Environmental Setup

The simulations were conducted using the parameters as in
Table I. Moreover, to adjust the trade-off between the metrics
according to the patient status, the hyperparameters α, β, λ and
δ will have similar values when the patient has no seizure.
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TABLE I
SIMULATION PARAMETERS

However, λ and δ, which indicate the significance of the
latency and distortion respectively, will have higher values than
the others when the patient has a seizure. As for the seizure,
we assume that the seizure can happen at any point in time
with a probability υi , where P(ζti = 1) = υi .

B. Rewards Convergence and Policy Evaluation

In the training process of the agents, we ran Algorithm 1
for 6000 episodes, where in the first 500 episodes the agents’
actions are fully exploratory. After that, the exploration starts
decaying until the agents actions become fully exploitary.
Fig. 4 shows the achieved rewards for the agents during train-
ing. In Fig. 4(a), it can be seen that the RAN agents obtained
the convergence around episode 4000. Similarly, in Fig. 4(b),
most of the PEN agents obtained the convergence at episode
4000, except for PEN 2 agent, it converged around episode
5200.

We show the learned policy for the agents from both teams,
the PEN and the RAN teams during one episode of evalu-
ation. The learned policy for the RAN team after training is
depicted in Fig. 5. Firstly, in Fig. 5(a), we can see that RAN 1,
has the highest data rate and has allocated equal share of the
bandwidth for PENs 1, 4 and 5 and a smaller bandwidth for
PEN 3, while PEN 2 got neglected completely and has not
been allocated anything by RAN 1. Secondly, the RAN 2 band-
width allocation is shown in Fig. 5(b). It can be seen that
PENs 1, 2, 3 have been allocated equal share of the band-
width, while PEN 5 has a slightly larger bandwidth, and PEN 4
got neglected completely. Lastly, the bandwidth allocation for
RAN 3, which has the smallest data rate, is shown in Fig. 5(c).
In fact, RAN 3 could only allocate for only two PENs, which
are PEN 2 and 4, where allocating to more PENs will make
the data rate for each one very low, and will not be sufficient
to deliver the data on time.

The PENs agents learned policy is depicted in Fig. 6. The
policy is represented by the network utilization indicators (i.e.,
Pij ’s) and the compression ratio. In Fig. 6(a), we can see that

Fig. 4. The achieved rewards during training for agents from (a) RAN team
and (b) PEN team.

PEN 1 has utilized RAN 1 the most, along with RAN 2, while
it did not send any data to RAN 3 since it has no allocated
bandwidth on it. As for PEN 2, which its allocation is shown
in Fig. 6(b), it had utilized RAN 2 and 3 and ignored RAN 1 as
it has no bandwidth share on it. Similar to PEN 1, PENs 3, and
5 have the same behavior as they utilize RAN 1 and 2, while
not sending any data to RAN 3. Lastly, PEN 4 had utilized
RAN 1 along with RAN 3, and ignored RAN 2. However, a
noticeable pattern in the PENs policies exist, which is when
the seizure happens, the PENs tend to utilize the RANs more
on which the PENs have more available bandwidth. Finally,
the compression ratio for all the PENs is shown in Fig. 6(f).
Interestingly, all the PENs maintain a high compression ratio,
while at the seizure time, the compression drops down sharply
to a very low value so that the medical data have the minimal
possible distortion.

C. Performance Comparison

In order to illustrate our proposed algorithm’s performance,
we compare it to multiple techniques, namely, a heuristic,
Autonomous and adaptive Network Selection (AANSC) [51]
and the Optimal Network Selection and Resource Allocation
(ONSRA) algorithms [45]. The heuristic algorithm will be
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Fig. 5. The learned policy for (a) RAN 1 , (b) RAN 2 and (c) RAN 3 agents.

Fig. 6. The learned policy for PEN agents in terms of (a)-(e) network utilization, and (f) compression ratio.

the naive approach, which is the RANs allocate equal shares
of the bandwidth to all the PENs, and the PENs to utilize
all the RANs available equally, while setting the compres-
sion ratio to the minimum possible according to (11). The
AANSC algorithm assumes that all the PENs have equal
shares of the bandwidth on all the RANs, while tries to
optimize the energy consumption, monetary cost, latency and
distortion at the PEN side. As for the ONSRA algorithm, it
simplifies the problem P1 by sub-dividing it into two sub-
problems. The first sub-problem is to optimize the resource
allocation at the RANs side, given the network utilization
indicators as constants from the PENs. Whereas the second
sub-problem is the optimization of the energy consumption,
monetary cost, latency and distortion at the PEN side after
receiving the allocated bandwidth from the RANs, and it keeps
exchanging the solutions of the two sub-problems between
the RANs and the PENs until convergence. The heuristic
approach will be the baseline, while the ONSRA will be
the benchmark of the comparison. We show a sample for
the comparison for one PEN in a setting, where we keep
the PEN running for hours until the PEN runs out of bat-
tery. The comparison will be in terms of the average rewards
achieved during the PEN lifetime according to 21, the bat-
tery lifetime, average energy consumption, latency, monetary

cost and distortion, where Fig. 7 depicts all the compar-
isons between our proposed approach and the aforementioned
algorithms.

In Fig. 7(a), we can see the average obtained rewards dur-
ing the PEN lifetime. The reward at first declines slowly as
the battery level decreases over time. However, our proposed
algorithm has a slower decline than the other approaches,
and the heuristic has the fastest decline since it is the naive
approach and does not take into consideration any optimization
perspective. After two hours approximately, we can see the
sharp drop in the rewards. This is due to the fact that the
patient had a seizure at that time, and the reward function
changed to signify the latency and the distortion importance
while disregarding the energy consumption and the mon-
etary cost. Moreover, the proposed approach had a lower
drop than the other two approaches, the AANSC and the
ONSRA, where the heuristic drained the battery before the
seizure. The battery lifetime achieved by the algorithms is
shown in Fig. 7(b). The heuristic approach has the worst bat-
tery lifetime, which is around 1.8 hours, while the AANSC
and the ONSRA had achieved better PEN lifetimes with
2.5 and 2.8 hours respectively. Indeed, our proposed algo-
rithm achieved the highest battery lifetime with 3.8 hours,
where it achieved a lifetime which is better by 100% more
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Fig. 7. Comparison between our proposed and other algorithms in terms of average (a) obtained rewards, (b) battery lifetime, (c) energy consumption,
(d) latency, (e) monetary cost and (f) distortion.

than the heuristic, and by 45% and 30% more than the
AANSC and the ONSRA respectively. In fact, the energy
consumption of the algorithms, which is shown in 7(c) justi-
fies the aforementioned results, where our proposed approach
had the lowest energy consumption on average. Moreover,
when the patient had a seizure, we can notice a spike
in the energy consumption, where it resulted in increasing
the declining slop in the battery lifetime in the previous
figure.

As for the latency, which is depicted in Fig. 7(d), the
algorithms achieved similar results, with a slight advantage
to the ONSRA algorithm. However, at seizure time, our
algorithm achieves a slightly better latency than the other algo-
rithms. Afterwards, the cumulative monetary cost is shown
in Fig. 7(e). While the heuristic had the highest cost, the
other algorithms had similar overall cost. However, during
the seizure, our algorithm had the highest overall cost. In
fact, as mentioned before, the proposed algorithm disregards
the trade-off between energy consumption, latency, cost and
distortion, and focuses only on the latency and the distor-
tion in order to minimize the medical data transmission time
along with the minimum distortion possible. Finally, the dis-
tortion is shown Fig. 7(f). When the patient is not having
a seizure, we can notice that the algorithms other than the
heuristic allow some levels of distortion in order to minimize
the energy consumption, latency and cost. Nevertheless, all
the algorithms tend to have negligible distortion at seizure
time.

VII. TB-MADDPG COMPLEXITY ANALYSIS

The TB-MADDPG algorithm employs neural networks to
facilitate the agents’ and critics’ training, specifically, the
multi-layer perceptron architecture (MLP). First, for a single-
agent RL that employs the MLP architecture with three layers,
it has been shown in [52] that the training complexity is given
by O(e × t(S × η + η × A)), where e is the number of
episodes of training, t can be either the number of iteration
per episode or the lifetime of a PEN. The S denotes the input
layer size, which also represents the agent’s observations set
size, η is the hidden layer size, and A denotes the output layer,
which also represents the agent’s actions set size. As for the
critic, recall that in our algorithm, each critic in each team
evaluate the joint actions and observations of the whole team
with a single value. Thus, its training complexity is given by
O(e× t((N × (A+S ))× η+ η×1)), where N is the number
of agents in the team. Hence, the training complexity of one
agent with its critic can be expressed as O(Ω), where Ω is
given by:

Ω = e × t((S × η + η × A) + (N × (A+ S))× η + η × 1).

(30)

Consequently, the training complexity of one team with N
agents can by given by O(NΩ). Finally, since we have two
teams, namely, the RANs and the PENs teams, with M and N
agents in each team respectively, the TB-MADDPG training
complexity is given by O(Ω (N + M )). As for the execu-
tion complexity, since each agents acts on its own without the
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need for critic and other agents interactions, the complexity
for taking one action at any given time step for each agent
is the complexity of a single feed forward pass in a neural
network, which is given by O(S × η + η × A).

VIII. CONCLUSION

In this paper, we presented a novel approach for network
selection along with adaptive compression at the PEN side,
and resource allocation for the PENs at the RANs side. More
precisely, we have proposed a DMARL algorithm, namely,
the TB-MADDPG, which accounts for the heterogeneity of
the agents. The TB-MADDPG groups each type of the agents
in each team, and tries to find the optimal joint policy for
the PENs team in terms of network utilization and adap-
tive compression, while finding the optimal policy for the
RANs team in terms of bandwidth allocation to maximize
the PENs QoE. The presented results in this paper shows
that our proposed approach significantly outperforms the exist-
ing state-of-art techniques for network selection and resource
allocation.
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