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Abstract: We consider model-based reinforcement learning (MBRL) in 2-agent,
high-fidelity continuous control problems – an important domain for robots inter-
acting with other agents in the same workspace. For non-trivial dynamical sys-
tems, MBRL typically suffers from accumulating errors. Several recent studies
have addressed this problem by learning latent variable models for trajectory seg-
ments and optimizing over behavior in the latent space. In this work, we investi-
gate whether this approach can be extended to 2-agent competitive and cooperative
settings. The fundamental challenge is how to learn models that capture interac-
tions between agents, yet are disentangled to allow for optimization of each agent
behavior separately. We propose such models based on a disentangled variational
auto-encoder, and demonstrate our approach on a simulated 2-robot manipulation
task, where one robot can either help or distract the other. We show that our ap-
proach has better sample efficiency than a strong model-free RL baseline, and can
learn both cooperative and adversarial behavior from the same data.

Keywords: Multi-agent systems, reinforcement learning, generative models

1 Introduction

Many real world problems involve multiple agents operating in the same environment, including
autonomous vehicles [1, 2, 3], navigation in presence of humans [4], learning communication [5],
and multiplayer games [6, 7]. In this work, we consider continuous control problems with two
agents, a setting relevant when robots interact with other robots or with humans in their workspace.

When the system dynamics are unknown or hard to model, reinforcement learning (RL) can be used
for learning control [8]. Research in RL can be classified into two main approaches: model-free
RL (MFRL) and model-based RL (MBRL). In MFRL, agents learn a policy – a mapping directly
from states to actions, tuned to solve a specific task [8]. In MBRL, agents first learn a model
of environment dynamics, and then plan optimal control using the learned model. An immediate
advantage of MBRL is enabling control in tasks for which agents were not specifically trained. In
addition, MBRL approaches are generally more sample-efficient and interpretable [9, 10].

The typical approach for model learning involves predicting a single next state conditioned on past
states and actions [11]. This method has some significant drawbacks, such as tending to accumulate
error when rolled out multiple time steps into the future. For single-agent MBRL, several recent
studies proposed to mitigate the error accumulation problem by learning deep generative models
of multi-step trajectory segments [12, 13, 14, 15]. Here, we collectively refer to these methods as
multi-step generative models. The idea behind these approaches is to learn a distribution of future
trajectory segments in an unsupervised manner, using a deep generative model (e.g. a variational
auto-encoder, VAE [16]), and perform planning by searching in the latent space of the model. In
essence, the latent space captures a compact ‘strategy space’ of the agent, and it has been shown that
optimization over this latent space is more effective than optimizing directly over actions [12].

When multiple agents are considered, game theory provides many guaranteed ways to solve multi-
agent problems [17], but has mostly been studied in a discrete strategy space formulation, where
single actions are played against other agents, e.g. in matrix games. The aim of our work is to
combine such strategic decision making with high-fidelity problems that can be captured by RL
formulations, such as continuous control domains.
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In particular, we investigate whether multi-step generative models can be extended to 2-agent do-
mains. Our main observation is that when optimizing over more than one agent, the generative
model needs to admit two properties: it has to capture the interaction between the agents in the
trajectory; and the latent space needs to be disentangled, such that the behavior of each agent can be
optimized separately (as each agent may have a different objective). We discuss how to learn such
models in various cases, and introduce a general algorithm for learning disentangled models using a
variational lower bound on the mutual information. Using this idea, we develop a MBRL approach
for either cooperative or competitive settings, based on Temporal Segment Models (TSMs) [12].

We demonstrate our approach in simulation on a continuous predator-prey domain, and on a 2-
robot manipulation task. We show that using multi-step models overcomes the accumulating error
problem of single-step MBRL, that our approach is more sample efficient than MFRL, and that we
can use the same data to learn both cooperative and adversarial behavior. Thus, when implemented
appropriately, multi-step latent variable models are a viable approach to multi-agent MBRL.

2 Related Work

Many approaches consider MBRL in domains with complex, stochastic dynamics. Our work is
inspired by the Temporal Segment Models (TSMs) developed by Mishra et al. [12] and more recent
approaches [13, 14] which use conditional VAE (CVAE) based dynamics models to predict multiple
time steps into the future, conditioned on a previous segment of states and actions. The dynamics
model is then used to optimize over agent trajectories for a specific task. A different approach is
taken by Nagabandi et al. [18], who use neural network dynamics models, combined with Model
Predictive Control (MPC) and MFRL fine tuning to achieve effective control and stable gaits in the
MuJoCo baseline environment. Williams et al. [19] also use MPC to learn from a trained dynamics
model, achieving high levels of performance on both simulated and actual hardware tasks. The
models used, however, are single-time-step, fully connected neural network models. Additionally,
all the approaches described above consider only a single agent.

Recently, MBRL approaches have also been successfully used to predict the behavior of multiple
agents in both cooperative and competitive environments. Most of these owe their success to ad-
vances in deep variational inference [16]. Lee et al. [1] predict vehicle trajectories in environments
with multiple counterparts, such as other vehicles and pedestrians. Ivanovic et al. [4] and Schmer-
ling et al. [3] use CVAEs to predict human behavior for human-robot interaction. Zheng et al. [20]
use deep RNN models to recreate trajectories of a team of basketball players. They provide the in-
teresting observation of interpreting a latent variable as a ‘macro-goal’, which controls the strategy
of an agent for a given period of time. This is similar to our interpretation of the latent space as a
‘strategy space’ for the agent to optimize in. To the best of our knowledge, our attempt to use deep
generative models and the prediction of agent behavior to optimize over trajectories for a given task
in a multi-agent environment is, as of yet, a novel contribution.

3 Background

A single-agent decision problem can be described as a Markov Decision Process (MDP, [8]). At
each time step of an MDP, the system is in some state xt ∈ X and agents can perform actions
ut ∈ U , where X and U are the sets of all possible states and actions, respectively. The dynamics
of the system are described by some function f such that xt+1 = f(xt, ut), or by some probability
distributionP(xt+1|xt, ut), governing the transitions from one state of the system to the next. Given
a reward function r(x), the typical goal is to maximize the expected sum of rewards E

[∑T
t=0 r(xt)

]
.

The Markov game [21] extends the MDP to incorporate multiple agents. For simplicity, we present
the case of two agents, but our results can easily be extended to more players (e.g. as described
by Littman [21]). Consider two agents x and y acting in a dynamic environment. At time-step t,
the states of the agents are denoted by xt and yt, respectively. The agents each select an action
ut ∈ U and wt ∈ W , out of their respective action sets. The dynamics of the environment are
then governed by the distribution (or function) P(xt+1, yt+1|xt, yt, ut, wt), and the agents obtain
rewards rx(xt, yt) and ry(xt, yt), respectively. This formulation can be used to define competitive
scenarios (e.g. by selecting zero sum rewards), cooperative scenarios (e.g. by selecting the same

2



reward function for both agents), or various combinations thereof. To simplify our presentation, in
this work we focus on the case of deterministic dynamics, given by xt+1, yt+1 = f(xt, yt, ut, wt).1

3.1 Multi-step Generative Models

The traditional approach for modelling dynamics attempts to approximate the transition function
f [22, 23]. Multi-step generative models [12, 15, 13] learn a more generalized form of the system
dynamics. Consider segments (or ”chunks”) of H past agent observations and actions X−, U− =
{xt−H+1, . . . , xt}, {ut−H+1, . . . , ut}, and segments of future observations and actions X+, U+ =
{xt+1, . . . , xt+H}, {ut+1, . . . , ut+H}. Multi-step models learn a distribution P (X+, U+|X−, U−)
to predict the future segment based on the past one, thus enabling consideration of delayed effects
of previous actions and capturing longer temporal relations between states than a single-step model.

In this work we focus on the TSMs of Mishra et al. [12], but the ideas presented here can be general-
ized to other latent variable models. TSMs use a CVAE architecture [16], where an encoder learns a
distribution over a latent variable Z conditioned on future observations and actions: Q(Z|X+, U+),
while a decoder reconstructs X+, U+: X̂+, Û+ = D(X−, U−, Z). The optimization objective is a
variational lower bound of the data log likelihood [16]:

L = EZ∼Q(Z|X+,U+)

[
logP (X+, U+|X−, U−, Z)

]
−DKL

[
Q(Z|X+, U+)||Pprior(Z)

]
, (1)

where Pprior(Z) = N (0, I), and P (X+, U+|X−, U−, Z) = N (D(X−, U−, Z), I). Each instance
of the latent variable describes a segment of observations and actions, and the decoder can be used
as a generative stochastic dynamics model, to create future segments using samples from the prior.

One of the motivations for learning a dynamics model is to later use this model to solve the MDP.
Assume that the total horizon of interest T can be segmented to k segments of length H . Then, the
learned model for future segment distribution can be sampled k times to produce a distribution for
a T -length trajectory, which we denote as P(x)(xt, ut|x0:t−1, u0:t−1, z(1:k)), where z(1:k) denotes
k samples of the latent variable Z corresponding to the k segments (i.e., each segment depends
on one instance of the latent variable and on the previous segment, such that a probability of the
full trajectory given the latent variables is well defined). Mishra et al. [12] suggest the following
trajectory optimization problem:2

max
z(1:k)

E

[
T∑

t=1

r(xt)

]
, s.t. xt, ut ∼ P(x)(xt, ut|x0:t−1, u0:t−1, z(1:k)). (2)

Note that the optimization is over the latent space Z of the agent trajectory. In this sense, we are
optimizing over the possible strategies that the agent can perform. Problem (2) can be solved using
gradient descent.3

4 Multi-Agent Temporal Segment Models

Our goal in this work is to extend the TSM (and generally, multi-step generative models) to the
Markov game setting. To simplify notation, we restrict our presentation to optimizing a single
segment. The extension to a full trajectory is done by rolling out several segments, as in Eq. 2. To
further reduce clutter, we drop the conditioning on past segments in our notation.

Similarly to the definitions of X+, U+, let Y +,W+ denote the segments of H future observations
and actions for agent y. For a two player game, we would like to learn a generative model for
the distribution P (X+, U+, Y +,W+) with two latent components, Zx and Zy , which correspond
to the sequences of actions in a segment for agent x, U+, and agent y, W+, respectively. Such
a representation would allow us to cast the trajectory optimization problem in a standard game
theoretic formulation, where the spaces of Zx and Zy denote the possible strategies for each agent.
Thus, for a competitive scenario we have the following optimization problem:

1An extension to stochastic dynamics can easily be attained; see explanation following Proposition 1.
2In Mishra et al. [12], the action and state sequences were explicit, X and U , and prediction consisted of

two CVAEs: P (u)(U+|U−, Z) and P (x)(X+|X−, U+, U−, Z). Here, we unify the models into one CVAE.
3The distribution P (X+|X−, Z) is typically represented as a neural network that encodes the mean of a

Gaussian, and the expectation in (2) is approximated with the deterministic prediction of the mean trajectory.
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Figure 1: Optimistic predictions of the conditional model. In this illustrative example, the agents
cannot pass through each other. Agent x’s goal is to enter the tunnel, and in the conditional model
(left), it will always choose a trajectory that enters the tunnel, while y would not be able to block it
as it chooses a trajectory conditioned on x having already entered the tunnel. In practice (right), y
can block x from entering at all.

max
Zx

min
Zy

E

[
H∑
t=1

r(xt, yt)

]
, s.t. xt, ut, yt, wt ∼ P (X+, U+, Y +,W+|Zx, Zy). (3)

Similarly, for the cooperative setting, the minZy
in Eq. 3 would be replaced with maxZy

. Note
that the competitive setting requires us to have a disentangled latent representation for the behaviors
of the two agents, since we need to maximize over x and minimize over y. This is an important
distinction from the single agent case, and in the following we explore latent variable models that
can accommodate such structure.

4.1 Conditional Multi-Step Generative Models

A straightforward disentangled model representation can be obtained by conditioning. Since
P (X+, U+, Y +,W+) = P (X+, U+)P (Y +,W+|X+, U+), we can learn two separate models:
one for P (X+, U+) with a latent variable Zx, and one for P (Y +,W+|X+, U+) with a latent vari-
able Zy . We term this a conditional model, and note that, as desired, the latent variables Zx and Zy

represent the strategies of x and y respectively, by definition.

While the conditional model is intuitive, our first insight in this paper is that it is not necessarily
compatible with the competitive optimization objective (3). To see this, note that since we are
optimizing over Zx, and P (X+, U+) does not depend on Zy , we are effectively letting agent x
‘play first’ and choose its trajectory, while agent y can only react to the trajectory of x that has
already been chosen.4 This advantage to player x is demonstrated in a simple blocking example in
Fig. 1, and verified in our experiments (see Fig. 4 in the appendix).

We note, however, that the conditional representation can still be appropriate under some conditions.
Consider a system where the dynamics of the agents are independent, i.e., can be written as xt+1 =
fx(xt, ut) and yt+1 = fy(yt, wt), while the coupling between the agents in the task is realized only
through the reward functions rx(xt, yt) and ry(xt, yt). In such cases, learning two independent
models for the agents is compatible with the competitive optimization.

4.2 Disentangled Multi-Step Generative Models

The asymmetry issue of the conditional model motivates to study alternative disentangled models for
the joint distribution P (X+, U+, Y +,W+). We start by formally defining the disentanglement we
desire in an idealized setting, and then propose two practical models to approximate this objective.

Consider the following max-min game, which represents the essence of our problem:

max
U

min
W

C(X,Y ), s.t. X, Y = F (U,W ). (4)

We view the multi-step generative model as some model for the action sequence with a parameters
zx, zy , that is, we can write U,W = G(zx, zy) for some G. Since the dynamics are assumed
deterministic, we can also writeX,Y = (F ◦G)(zx, zy), and the objective is equivalent toC◦F ◦G.

4Conversely, modelling the distribution as P (Y +,W+)P (X+, U+|Y +,W+) advantages player y.
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The next proposition shows a sufficient condition for optimization over the latent space as a substi-
tute for problem (4). The proof, based on a simple chain rule, is given in the appendix, along with
an extension to stochastic dynamics.

Proposition 1. Assume G satisfies ∂U
∂zy

= 0 and ∂W
∂zx

= 0 for all zx, zy , and consider a saddle point

z∗x, z
∗
y of C ◦ F ◦G. If ∂U

∂zx
6= 0 and ∂W

∂zy
6= 0, then u∗, w∗ = G(z∗x, z

∗
y) is a saddle point of C ◦ F .

Proposition 1 conveys an intuitive idea: if the latent variable for x is independent of the actions of
y, and vice versa, then we can safely optimize over the latent space in a max-min sense. Of course,
this result is for an idealized setting, where the mapping from latent space to actions is bijective,
while the whole point of the latent space is to represent only the most likely actions as seen in the
data. Still, Proposition 1 provides a form of disentanglement suitable for the max-min game. We
next ask how to learn deep generative models that satisfy such disentanglement, and propose two
approximations.

Disentanglement via Gradient Penalty

A simple approach to training a disentangled model based on Proposition 1 is to add to the generative
training loss a term of the form:

Lgradient = ‖∇zyU‖+ ‖∇zxW‖. (5)

The loss in (5) directly corresponds to Proposition 1. In practice, however, backpropagation through
the gradient leads to a slow training procedure. We found that a proxy based on mutual information
works well in practice and is much faster to train.

Disentanglement via Mutual Information

Recent studies in learning disentangled latent spaces for image generation proposed to induce disen-
tanglement by maximizing mutual information between latent and observation [24, 25]. We borrow
these ideas, and propose to use the notion of mutual information to induce dependency between
elements in the latent space and actions in the predicted trajectory.

The mutual information between random variables Q and V is: I(Q;V ) = H(Q) − H(Q|V ) =
H(V ) − H(V |Q), where H(Q) denotes the entropy of Q, and H(Q|V ) denotes the conditional
entropy [26]. Following the discussion above, we would like U to be independent of Zy , and W
to be independent of Zx. We propose to do this by maximizing the mutual information between Zx

and U , and between Zy and W . The intuition is that if Zx is maximally informative about U , then
U has to be independent of Zy , since any dependence on Zy cannot be explained by Zx, and vice
versa. We therefore propose the following loss term:

Linfo = −I(zx;U)− I(zy;W ) (6)

To optimize (6) in practice, we use the lower bound proposed by Chen et al. [24]. We describe the
full algorithm and architecture in the appendix. We observe that this disentangled model strikes a
balance between ease of training and performance, and verify that this model solves a problem in
which the conditional model fails (see appendix).

5 Experiments

We now present experiments in various environments, empirically showing that:

1. In the 2-agent setting, our multi-step approach improves over single-step dynamics models,
and produces more accurate dynamics predictions, realizable in the environment.

2. Our MBRL approach is more sample-efficient than MADDPG [27], a strong MFRL base-
line, and outperforms it on our tested tasks.

3. Agents using our trained models perform well in various scenarios, including competitive
and cooperative tasks, using the same data (collected while learning one specific task).

To test our models, we use simulators and data collected from two domains: Multi-Agent Particle
Environments [5] – a standard, versatile and configurable benchmark for multi-agent RL, and a more
complex, 2-robot simulation environment, built in Unity ML-Agents [28].
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(a) TSM (b) Single step baseline (c) Safe-Zone domain

Figure 2: Predator-Prey domain. Predictions drawn from (a) our multi-step model, and (b) the
single-step baseline. In both cases, the predator (blue) starts to the left of the wall obstacle, attempt-
ing to reach the prey (red), starting to the right. The trajectories are marked at every tenth time step
to enable temporal comparison, coinciding with the segment lengths for our model. Both models
predict a successful chase of the prey. However, our agent successfully circumvents the obstacle,
while the baseline exploits an error in the the single-step model and ignores the wall, which will fail
at execution. (c) Predator-Prey domain, with a ‘safe zone’ for prey. In this modified scenario, the
prey has a ‘safe zone’ (marked by the green box) where the predator gets no reward for capturing it.
Left shows a prediction for the worst case prey behavior, while right shows a best case prediction.

Table 1: Results (average distance to prey, lower is better) for predator-prey domain. Each row
represents a different initial position of predator and prey relative to the wall obstacle. The results
were obtained by averaging over 20 rollouts for each start position scenario. Our model outperforms
the single-step baseline and the original (semi-random) exploration policy from both locations, with
a larger advantage when the agents start on different sides of the wall (harder scenario).

Starting Positions (relative to wall) Ours (conditional TSM) Single Step Random
Same side 0.7204 0.9223 1.5512

Different sides 0.9486 1.2537 1.7213

5.1 Comparison to a Single-step Model

In the predator-prey environment, similar to the scenario created by Lowe et al. [27], a predator
agent chases an escaping target around an obstacle (see Fig. 2). Predator reward is negative distance
to the prey. In ‘safe zone’ predator-prey, the prey agent has a ‘safe zone’ at the bottom right corner
of the game (see Fig. 2c), where the distance rewards for the predator are nullified.

We train a multi-step conditional model based on the TSM architecture [12] on data collected from
a heuristic policy. We use our model to control the agent using an MPC-style approach [18]. Before
executing each segment, we perform trajectory optimization (3) for the next 5 segments, and then
execute the actions of the first segment of the optimal trajectory. For the other agent, we select the
worst case (competitive) or best case (cooperative) segment predicted by our model (see Fig. 2c).
We compare our model to a single-step MLP dynamics model, using the same control method.
Full details of our model architecture and training parameters, including the policy used for data
collection, can be found in the appendix.

Fig. 2a shows a sample from the vanilla predator-prey environment, where the predator starts to the
left of the obstacle, chasing the prey starting on the right. Even in this relatively simple example,
the shortfalls of the single-step model become apparent, as it exploits the model error to predict
impossible trajectories that ‘cut through’ the obstacle (see Fig. 2b). Table 1 shows the cost incurred
by the predator in the ‘safe zone’ predator prey domain, which is the sum of distances to the prey,
as long as the prey is not in the ‘safe zone’. Our model is more successful than the single-step
baseline, due to the baseline exploiting model errors in its optimization, and then failing to execute
its unrealistic predicted trajectories. For comparison, we present the reward collected by the semi-
random exploration policy used for data collection (described in the appendix).

These results confirm that the advantages of learning multi-step transition models, as established by
Mishra et al. [12] for the single agent case, also carry over to the multi-agent setting.
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5.2 Comparison to a Model-Free Approach

In both this subsection and the next, we use a simulated 2-robot manipulation task, where two
manipulators interact with a movable object placed on a rectangular platform (see Fig. 3). Each robot
has two joints, which are each limited to movement around a single axis, such that the robot itself is
limited to movement on a 2-D plain. This is an extension of the Reacher domain, as investigated in
[12], to the multi-agent case. We implement this domain in the Unity ML-Agents [28] environment.
We focus on two tasks: a cooperative game, where both agents try to push the object off the platform,
and a competitive one described in the next section.

In the cooperative game, the observation space for each agent is a continuous feature vector describ-
ing the location, orientation and velocity of both agents and the manipulated object. As actions, each
agent can apply continuous torques to both its joints. The reward is identical for both agents, and
is comprised of a small negative reward for each time step, and a larger positive reward when the
object is pushed off the platform, which also marks the end of a playing episode.

Our goal is to compare our MBRL approach with MFRL. To provide a fair comparison, we use data
for the MBRL method collected by running the MFRL algorithm. This guarantees that the results
do not depend on the exploration strategy, but only on making the best use of the available data. As
an MFRL algorithm, we chose MADDPG [27], a standard method for multi-agent environments.
While training the MADDPG model, we collect the data accumulated in the replay buffer, and use
pairs of past and future segments to train our disentangled multi-step model, described in Sec. 4.2.
Implementation details and parameters for both the MADDPG baseline and our model can be found
in the appendix.

We used the mutual-information based disentangled model for all our results, due to its faster training
time and suitability for both competitive and cooperative scenarios. Other disentangled models
produced comparable results on the cooperative task, as reported in the appendix. We compare our
model to the baseline at two points during its training, using the same collected data. The short
model was trained from approximately 650k steps of MADDPG gameplay, and it is compared to the
MADDPG model checkpoint saved at that time. The long model was trained using data from almost
3.3M time steps, and is compared to the appropriate, longer-trained baseline. As a MFRL approach,
MADDPG supplies us with policies for both agents to use during test time. To control agents with
our agents, we perform trajectory optimization (3) over the next 20 segments, and select the first
segment of the optimal trajectory to play in the environment, proceeding using MPC. Table 2 shows
the reward attained by each model. Our MBRL approach outperforms MADDPG, with a clearer
advantage when trained with less data.

(a) Cooperative: hitting together (b) Cooperative: successive pushing

(c) Competitive: object out of reach (d) Competitive: pushing back

Figure 3: Samples from the 2-robot Unity ML-Agents domain. (a) In the cooperative scenario, both
agents (using our disentangled model) pushing the object together. (b) Same agents using a different
strategy, of pushing the object successively. (c) In the competitive scenario, the left-hand MADDPG
agent moves out of the way, as the object is out of reach of the right agent, thus the object remains on
the platform indefinitely. (d) Left agent pushes back in the competitive scenario to prevent knocking
the object off the platform. We encourage the reader to view the videos corresponding to these image
samples, provided in the supplementary material.
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Table 2: Reward for the cooperative 2-robot scenario, averaged over 20 episodes. Our model reaches
better performance even with less training data, thus proving more sample-efficient. Best results are
marked by bold text (p < 0.05 using Student’s t-test).

Model MFRL (MADDPG) [27] MBRL (ours, disentangled)
Short (650k steps) -1.79 ± 0.76 -0.72 ± 0.44
Long (3.3M steps) -0.79 ± 0.12 -0.68 ± 0.42

Table 3: Reward for the competitive 2-robot scenario, averaged over 20 episodes. Left table: re-
ward for the agent in the pushing task against various adversaries. Right table: reward for the
keeping task. All MADDPG models were trained on the competitive scenario; the MBRL models
are the mutual information disentangled version, where co-op denotes the ‘short’ model described
in Sec. 5.2 (trained on data collected by MADDPG in the cooperative scenario), and comp is the
model trained on the same data as the baseline, collected in the competitive scenario. In both cases,
our models score better than the MFRL baseline, even when using data collected for a different task.
Best results in bold text (p < 0.05 using Student’s t-test).

”Push” Task ”Keep” Task
Agent Adversary Score Agent Adversary Score

MADDPG MADDPG -6.43 ± 3.97 MADDPG MADDPG 6.43 ± 3.97
MBRL (co-op) MADDPG -5.52 ± 3.41 MBRL (co-op) MADDPG 7.77 ± 3.12
MBRL (comp) MADDPG -3.03±3.54 MBRL (comp) MADDPG 8.26 ± 2.81

5.3 Different Tasks Using the Same Training Data

In the competitive scenario of the 2-robot environment, one agent tries to push the object off the
platform while the other attempts to obstruct the object and keep it on the platform for as long as
possible. Observation and action spaces for both agents are identical to the cooperative task, while
the reward for the agent keeping the object on the platform is set to be adversarial, as the negative of
the original reward described in the previous section. In essence, this scenario creates two distinct
tasks: a pushing task and a keeping task, both with an adversary attempting to prevent success.

We train the MADDPG baseline on this scenario with the same architecture and training configura-
tion used for the cooperative game (while one of the agents receives the adversarial reward). Using
the collected data, we train our disentangled multi-step model. Additionally, we use the multi-step
model trained on data from the cooperative task, optimizing for the adversarial reward. Results for
the various combinations of agents can bee seen in Table 3. Both our agents perform better than the
MADDPG baseline in both tasks. Note that to use the model-free MADDPG agents in this scenario,
we had to completely re-train them for a different task, while we can still use our model-based agent
trained on data from the cooperative scenario to outperform the baseline.

In addition to the quantitative results, Fig. 3 shows gameplay samples generated by our agents. The
various images show different snapshots of strategy from both scenarios (cooperative and competi-
tive), matching our observation that the latent variables encode some ‘strategy space’ for the agents.

6 Conclusion

We extended the idea of multi-step generative models to handle competitive and cooperative 2-agent
problems, showing its promise for complex, high-fidelity tasks relevant to real-world robotics envi-
ronments. Key to our method is a novel disentangled generative model for 2-agent dynamics, and
our results demonstrate improved performance and versatility over single-step and MFRL baselines.
In future work we intend to generalize these results to more than two agents, and apply these ideas
to a real-world domain of human-robot interaction.
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Appendix

Proof of Proposition 1

Proof. Let ` = C ◦ F ◦ G. A saddle point of ` satisfies ∂`
∂zx

= 0 and ∂`
∂zy

= 0, and (w.l.o.g.)
∂2`
∂z2

y
� 0, ∂2`

∂z2
x
� 0. We have that

∂`

∂zy
=
∂C ◦ F
∂U

∂U

∂zy
+
∂C ◦ F
∂W

∂W

∂zy
,

and therefore
∂C ◦ F
∂W

∂W

∂zy
= 0.

So long as zy is not redundant, i.e., ∂W
∂zy
6= 0, we have that ∂C◦F

∂W = 0. Following the same derivation

for zx, we obtain that if ∂U
∂zx
6= 0 then ∂C◦F

∂U = 0. We also have that

∂2`

∂z2y
=
∂2C ◦ F
∂U2

(
∂U

∂zy

)2

+
∂C ◦ F
∂U

∂2U

∂z2y
+
∂2C ◦ F
∂W 2

(
∂W

∂zy

)2

+
∂C ◦ F
∂W

∂2W

∂z2y
� 0,

and since ∂U
∂zy

= 0 for all zy , then ∂2U
∂z2

y
= 0, and we obtain (using our previous result ∂C◦F

∂W = 0)

∂2C ◦ F
∂W 2

(
∂W

∂zy

)2

� 0.

Since both matrices are symmetric and
(

∂W
∂zy

)2
� 0, we have that ∂2C◦F

∂W 2 � 0. Similarly, ∂2C◦F
∂U2 �

0, and thus u∗, w∗ = G(z∗x, z
∗
y) is a saddle point for C ◦ F .

Extension to Stochastic Dynamics

In the case of non-deterministic dynamics, we assume an independent variable Q ∼ P (Q) affects
the dynamics F , such that X,Y ;Q = F (U,W ;Q). The objective function may also depend on Q,
and becomes EQC(X,Y ;Q). Note, however, that given the random Q, both the dynamics F and
the cost C become deterministic functions of X,Y and the random sample of Q. We can therefore
denote the objective function `Q = EQ[C ◦ F ◦G]. The proof then continues along the same lines,
noting the fact that we can re-order expectation and differentiation in this case (since we assume
continuous dynamics). Noting also that G does not depend on Q, we have:

∂`Q
∂zy

= EQ
∂`

∂zy
=
∂U

∂zy
EQ

∂C ◦ F
∂U

+
∂W

∂zy
EQ

∂C ◦ F
∂W

,

and therefore
∂W

∂zy
EQ

∂C ◦ F
∂W

= 0.

Following the same as above, we have that EQ
∂C◦F
∂W = 0 and EQ

∂C◦F
∂U = 0. Plugging into the

second derivative, again re-ordering derivative and expectation, we obtain in the same manner:(
∂W

∂zy

)2

EQ
∂2C ◦ F
∂W 2

� 0.

Therefore, EQ
∂2C◦F
∂W 2 � 0 and similarly EQ

∂2C◦F
∂U2 � 0, resulting in u∗, w∗ = G(z∗x, z

∗
y) being a

saddle point forEQ[C◦F ], and our optimization in the latent space holding for the case of stochastic
dynamics as well.

Algorithmically, our CVAE architecture handles the stochastic dynamics by producing stochastic
trajectories, the empirical average of which we can use to optimize our model. We also add a
component to our latent space which is not limited by the mutual information or gradient losses,
thus accounting for stochastic elements in the dynamics which can affect either one of the agents. A
similar technique was used by Chen et al. [24] to account for noise in image generation.

11



Algorithm: Multi-Agent Model-Based Planning with Trajectory Optimization

Below is the pseudo code for the algorithm described in Sec. 4.2, explaining how to use our disen-
tangled models for trajectory optimization. We use multiple restarts of the optimized latent variable
as a way to batch the training and save some time – instead of initializing a single instance of the
random variable and optimizing over it for many iterations, we draw multiple instances, optimize
over all of them in parallel for less iterations, and then select the best result. This algorithm describes
the prediction and optimization of one segment; since we are using MPC [18], once we select a best
segment we play it in the environment and repeat the selection process.

Another thing to note is that this is the process for a single agent, considering the behavior of its
counterpart in the environment. When playing in an actual simulator, the other agent can use a
similar algorithm, reversing the roles of the optimized and sampled random variables. Additionally,
this algorithm can easily be extended to more than two players by use of a disentangled model
incorporating multiple additional agents.

Note that the N multiple restarts and m target trajectories are a proxy for full maxmin optimization
– instead of sampling one random variable for each agent and optimizing both the min and max
parts in the respective latent spaces, we sample multiple instances, optimize less and select the best
(or worst) outcome. This saves time during optimization, as it allows us to optimize over larger
batches of variables, for less time steps. In exchange, however, it may reduce the performance of
our method.

1: x0, y0 ← Initialize agents’ states
2: N,m, l, k ← initialize batch size (number of optimization restarts), non-controllable agent

trajectory samples, latent dimension of Z, segments per game
3: zx ← initialize latent variable (N × k × l) by sampling from Pprior(Zx)
4: zy ← sample latent variable (m× k × l) from Pprior(zy)
5: opt← initialize optimizer (Adam)
6: for all restarts i in N (this part can be paralleled) do
7: for all epochs do
8: for all samples j in m (this loop can be paralleled) do
9: for all game segments do

10: x+i,j = fx(x−i,j , y
−
i,j ; z

(i)
x )

11: y+i,j = fy(x−i,j , y
−
i,j , x

+
i,j ; z

(j)
y )

12: end for
13: lossi,j = −rx(xi,j , yi,j) summed over all segments
14: end for
15: end for
16: Backprop loss
17: opt.step()
18: end for
19: Return trajectory xi,j that corresponds to the lowest i in lossi and the highest j in lossi,j

Algorithm 1: Multi-Agent Trajectory Optimization

Note that in line 21, we take the lowest i in lossi and the highest j in lossi,j . This corresponds to the
minmax game, suitable for an adversarial opponent. When playing a cooperative game, we take
the lowest loss of both indices.

Implementation Details for Conditional Predator-Prey Model

The data we collected to train the world model consists of 30k trajectories of 50 steps each, where
the agent applies 5 steps in a random direction, then continues to move with inertia, selects a new
direction and repeats. This type of exploration provides trajectories which are relatively evenly
distributed around the playing field, along with a sizable percentage of collisions with the obstacle,
which are important for learning an accurate world model. We used an observation space reflecting
the fact that agents rarely interact with each other in this relatively simple domain, and are dependent
only in their reward. Each agent’s observation space included its location, its velocity and a vector
pointing to the middle of the obstacle. During training, we offset the agent location (but not the
obstacle vector) by the first location in the segment. In this manner, we trained the same models for
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both predator and prey agents. Similarly to Mishra et al. [12], we used an encoder with two layers
of dilated causal convolutions (32 channels each) and tanh activations, and a decoder with three
dilated causal convolution layers (32 channels) and an additional 1-dimensional convolution at the
output. The decoder activation functions are the same as suggested for this type of architecture [29]
and used by Mishra et al. [12]:

tanh(Wf,k ∗ s+ V T
f,kz)� σ(Wg,k ∗ s+ V T

g,kz) (7)

where ∗ denotes a convolution, � is element-wise multiplication, s is the output of the previous
layer, z is the latent variable and both V and W are learned weights. We found that a segment
length of 10 steps and latent spaces of dimension 8 or 12 were a good choice for accurately learning
the environment dynamics. We trained our model with Adam for 2000 epochs, using the standard
hyper-parameters. We weighted the KL element of the VAE loss with β = 0.005.

As described in Sec. 5.1, we also trained a single-step baseline for this scenario. After conducting
an architecture search, we concluded that a fully-connected, 3-layer MLP performed as well as any
of the other architectures, and used it as a baseline for its simplicity of implementation.

Implementation Details for MADDPG in the 2-Robot Environment

We train MADDPG [27] using 3 layer MLPs for both the Actor and Critic networks, using 64
neurons per layer. We use Adam with the standard hyperparameters to optimize both the Actor and
Critic networks, and train for 5000 episodes, each at most 2000 steps long (episodes can end earlier
when the object is pushed off the platform). We use batches of size 512 to update the actor and critic
networks every 100 steps. At each such update, we update the Actor and Critic networks 40 times,
and then update the target networks once. Other implementation details and hyperparameters are
similar to the ones in the original implementation, provided by Lowe et al. [27].

Implementation Details for the Disentangled Model in the 2-Robot Environment

In the 2-robot domain described in Sec. 5.2, the observation space for each agent is 21-dimensional,
describing the rotation, position and velocity (both linear and angular) of its two parts, as well as the
position of its hand and the hand of the second agent. The observation space also includes details
about the position, rotation and velocity of the pushable object. Actions taken by the agents are
torques applied to their joints, and are limited to [−1, 1]. This gives each agent a 2-dimensional,
continuous action space. Finally, we gave a reward of −0.005 for every time step, and a reward of
1.0 when the object falls off the platform. For the adversarial agent in the competitive scenario, the
reward is the negative of the regular one.

The 2-robot environment is somewhat more complex than the multi-agent particle environments
described above, and therefore we use a more expressive architecture for our models trained on
this domain. For the encoder we kept the same architecture, but added another layer, and used
wider layers – 64 channels each. For the decoder, we used a similar architecture to the TSM [12]
constructed of dilated causal convolutions. However, we used a deeper architecture, with residual
blocks of 2 convolutions, each with 64 channels, in place of each single convolution in the original
model. The decoder used three of these residual blocks, and an additional 1 × 1 convolutional
layer at the end, with 128 channels. Additionally, to maximize mutual information between parts of
the latent space and corresponding parts of the output (Sec. 4.2), we added two additional encoder
networks, encoding the output of the decoder back to match the latent space (as suggestetd by Chen
et al. [24]). These encoders have a similar convolutional architecture to the main encdoer, albeit
with 16-channel layers. This adds a third, mutual information component to the CVAE loss term.

For this task, we used 20-step segments, and a 16-dimensional latent space. We trained our models
for 2000 epochs using Adam with a learning rate of 0.0001. We weighted the KL term in the loss
with β = 0.002, and the mutual information term with γ = 0.001.

For trajectory optimization, we predicted 20 segments into the future, each 20 steps long. The
maximum episode length when training MADDPG was 2000 steps, so this type of prediction covers
1
5 of an episode. We used 10 multiple restarts for the latent variable (N in Alg. 1), 10 trajectories to
select from for the opposing agent (m in Alg. 1) and optimized for 30 iterations before selecting the
best segment.
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(a) Conditional model (b) Disentangled model

Figure 4: Comparison between disentangled and conditional models on box bumper domain. Blue
agent (x) attempts to reach the target location below the horizontal obstacle (green circle), possibly
being blocked by the red agent (y) in the narrow passage. Numbers indicate the segment order in
time. Fig. 4a shows a trajectory predicted by the conditional model. Since x is independent of y,
which only ‘responds’ to its actions, the optimization cannot imagine a trajectory for which x is
blocked by y en route to the goal, even in the worst case (risk-averse optimization). In Fig. 4b, a
sample is shown from the predictions of the disentangled model, where x chooses to go left, since it
assumes y will block it in the right passage.

Additional Visualizations of Predicted Trajectories

To test our hypothesis regarding the limits of the conditional model, we constructed a toy domain in
the multi-agent particle environment [27], in which two agents, which are relatively large compared
to the entire domain, move around a square playing area with a wall at the bottom part of it by
applying forces in one of the four cardinal directions. Due to the limited size of this domain, the
agents tend to collide often and block each other’s way. In this domain, we used the data collection
policy described for the predator-prey domain (see above in the appendix), modified such that the
random direction selection is weighted towards the location of the other agent to promote collisions
between the agents, which are an area of interest in the state space. The task of one agent in this
environment is to reach the goal location, which is located below the middle of the wall. The other
agent may attempt to block its path. The observation space includes the locations and velocities of
both agents.

The experiments in this domain are qualitative in nature, and serve as an example to the case where
the conditional multi-step generative model (Sec. 4.1) may not be suitable, and the disentangled
models (Sec. 4.2) may be necessary for a correct solution. We trained two models on this domain:
the first was trained in the conditional form, where one controlled agent attempts to reach the goal,
and the second agent plans trajectories conditioned on the path of the first; a second, disentangled
model was trained using the mutual information maximization technique. Fig. 4 presents the results
of trajectory prediction using both models.

Another experiment we conducted with this toy domain was designed to ensure that our disentangled
model learns representations where different parts of the latent space control different parts of the
output (i.e. different players). We run a simple experiment: we set one part of the latent space (z1)
to a constant value, and sample from the prior distribution to obtain values for the other part (z2).
We then use this latent variable construct, along with past segments, to predict future segments using
our decoder. We expect to produce trajectories where one agent acts in a deterministic manner (since
given Z, D(X−, Z) is a deterministic function) and the other agent producing a distribution over
possible trajectories. Fig. 5 shows example results of this experiment.

Additional Results and Ablation Testing

To complement the results of the cooperative 2-robot scenario presented in Sec. 5.2, we present here
results obtained with other types of models, and with ablation testing for some of the training pa-
rameters. The cooperative results obtained in Sec. 5.2 were obtained using 30 steps of optimization
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Figure 5: Two examples sampled from the disentangled model with one part of the latent space
‘frozen’ (set to a constant value), and the other part sampled from the prior. As expected, the
behavior displayed is deterministic for one player, and distributed for the other. Red marks the
distributed predictions for one agent, caused by sampling its latent variable from the prior. Blue
trajectories are the ones predicted when the latent variable is ’frozen’, thus causing deterministic
behavior. Magenta and cyan lines denote the original trajectories collected from data, for reference.

Table 4: Reward for the cooperative 2-robot scenario, averaged over 20 episodes, for various types
of models with some ablations.

Model Short (650k steps) Long (3.3M steps)
MADDPG (MFRL) -1.79 ± 0.76 0.79 ± 0.12
Mutual Information -0.72 ± 0.44 -0.68 ± 0.42
Conditional -0.73 ± 0.44 -1.35 ± 2.07
Gradient Based -0.85 ± 0.33 -1.11 ± 0.55
Mutual Information (no optimization) -0.71 ± 0.42 -0.97 ± 0.89
Conditional (no optimization) -0.83 ± 0.62 -1.75 ± 2.79
Gradient Based (no optimization) -0.94 ± 0.44 -1.06 ± 2.10
Mutual Information (no multiple restarts) -2.25 ± 3.29 -1.10 ± 0.76
Conditional (no multiple restarts) -1.24 ± 2.05 -1.14 ± 2.17

for each segment, 10 multiple restarts for the controlled agent and 10 samples for the other agent
when conducting optimization. The ’no optimization’ tests were run with 20 multiple restarts for the
controlled agent, but no optimization at all (only selecting the best case trajectory). The ‘no multiple
restarts’ tests were run for 30 optimization steps, but with just one trajectory sampled.

Additionally, we mentioned in Sec. 4.2 that other types of disentangled models, namely gradient-
based and conditional models, performed similarly to the mutual-information based model. Table 4
shows results for these other types of models, as well as the ablation tests described above. We
repeat, for comparison, the results from Table 2 in the top section of this table.

As mentioned in Sec. 4.2, we elected to use the mutual-information-based model for its ease of
training and suitability for the competitive model, even though results for the other models were
comparable. It is worth noting that the multiple restart scheme produces results on par with the
longer optimization setting, which may mean variety in the latent space could produce better strate-
gies leading to better performance. We leave further analysis of the latent space to future work.
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