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Abstract: Multi-Agent Systems (MAS) have been seen as an attractive area of research for civil
engineering professionals to subdivide complex issues. Based on the assignment’s history, nearby
agents, and objective, the agent intended to take the appropriate action to complete the task. MAS
models complex systems, smart grids, and computer networks. MAS has problems with agent
coordination, security, and work distribution despite its use. This paper reviews MAS definitions,
attributes, applications, issues, and communications. For this reason, MASs have drawn interest
from computer science and civil engineering experts to solve complex difficulties by subdividing
them into smaller assignments. Agents have individual responsibilities. Each agent selects the best
action based on its activity history, interactions with neighbors, and purpose. MAS uses the modeling
of complex systems, smart grids, and computer networks. Despite their extensive use, MAS still
confronts agent coordination, security, and work distribution challenges. This study examines MAS’s
definitions, characteristics, applications, issues, communications, and evaluation, as well as the
classification of MAS applications and difficulties, plus research references. This paper should be a
helpful resource for MAS researchers and practitioners. MAS in controlling smart grids, including
energy management, energy marketing, pricing, energy scheduling, reliability, network security, fault
handling capability, agent-to-agent communication, SG-electrical cars, SG-building energy systems,
and soft grids, have been examined. More than 100 MAS-based smart grid control publications have
been reviewed, categorized, and compiled.

Keywords: multi-agent systems; smart grid; distributed systems; residential buildings; commercial
buildings

1. Introduction

Energy is essential for human health and behavior since it powers transportation
infrastructure and daily amenities. Polluting and non-renewable fossil fuels are currently
the principal energy source for worldwide use. Investments and participation in comple-
mentary, clean, and renewable sources, such as wind and solar systems, have grown in
tandem with their environmental consequences [1]. However, present usage surpasses
natural regeneration, resulting in resource depletion unless more resources or alternatives
are utilized [2]. To address these problems, it is critical to understand clean, alternative,
and renewable energy sources and energy efficiency and sustainability. Traditionally, the
Supervisory Control and Data Acquisition (SCADA) system has been used to orchestrate
and communicate high-power directed systems that require a significant amount of an-
alytical power to make intelligent decisions for the entire system, placing a significant
burden on the central processor [3,4]. Because of its capacity to divide the whole system
into many distinct controllers, allowing each unit to monitor each component in real-time,
distributed control was deemed versatile, dependable, secure, and cost-effective [5]. Be-
cause the distributed controls attempt to tackle the problem locally, an outage in one system
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component does not instantly affect the others in this configuration. Many benefits of
distributed generation (DG) include better dependability, enhanced security, and lower fuel
costs. Solar, thermal, wind turbines, small bioenergy, and fuel cell systems are examples of
distributed energy resource (DER) systems that can be freestanding or hybrid systems with
various DERs [6]. As a result, less information must be sent to higher levels. As a result,
the old electric grid has been changed into a smart grid, becoming a highly dependable
and dazzling infrastructure, paving the way for the notion of “Smart Grids (SGs)” [7].

SGs employ sophisticated sensing, superior control, and communication. In this vein,
SGs combine digital and electrical technologies to analyze and transport data swiftly [8].
Based on services such as real-time flow management, network operators, network opera-
tion, and individual consumption regulation, digital technologies aim to target production,
transmission, distribution, and consumption [9]. SGs integrate power systems, networking,
and communication technologies to improve the electrical grid. More real-time monitoring
of SGs is required to enhance energy flow and facilitate conversation between providers
and customers. To decrease carbon emissions, SG enterprises are increasing their use of
renewable energy sources. A traditional distribution system allows efficient energy genera-
tion and storage [10]. Electric vehicles are an excellent method to store energy while also
reducing pollution. The first power strategy incorporates network and network layers [11].
While making local decisions, the I-Intelligent Energy Electronic Device (IED) may manage
power flow and equipment functioning [12].

I-Energy assures fair rates and a dependable electricity supply based on cost-benefit
analyses. As a result, a SG must obtain all of its investment capital from clients, which
has earned it a lot of negative feedback [13]. Numerous concerns regarding the economy
and security of the smart grid, as well as how to improve and safeguard it against external
and internal attacks, have been raised. The I-Energy technique has converted SGs in our
homes into intelligent installations. Smart metering improves energy monitoring and
regulation [14].

Multi-agent systems (MAS) can independently control power system operations. MAS
contains several files. Intelligent creatures work together to solve problems beyond their
capabilities [15]. MAS has been used in power market modeling, network protection [16],
troubleshooting, and network control in recent years. The IEEE Power Engineering MAS
Working Group reviewed MAS technology approaches, standards, tools, concepts, methods,
and challenges in 2007.

SG technology is changing due to technological advances, security concerns, regula-
tions, and environmental concerns. SG technology reduces the need for central generators.
Over the past two decades, the electrical industry has developed wholesale power markets
based on the decentralized decisions of generation companies. In addition to government
regulations, consumer demand for clean energy is driving it. Photovoltaics (PV), fuel cells,
and wind power are all standard in today’s electrical grids. After the Northeast power
outage of 2003, home power generation systems emerged as a significant competitor in
supplementing existing power infrastructure to bridge the gap [16]. In the aftermath of
Hurricane Sandy, several government agencies urged investment in vital energy resources.

The smart infrastructure allows bidirectional power and data transmission based
on energy, intelligence, and connection. T and D lines are used in traditional one-way
networks to transmit electricity to load locations [17].

A SG, on the other hand, allows clients to create their power. Bidirectional energy
flow is enabled via small-scale power generation. Microgrid and utility grid tiny auxil-
iary generators might be conventional or unconventional. The intelligent communication
subsystem tracks and measures SG production and consumption. Energy efficiency, de-
mand profile, energy loss prevention, cost and pricing, optimization, machine learning,
and control processes are all required for intelligent management systems [18]. These
involve management as well as infrastructure. Intelligent security addresses the issues of
dependability, prediction, translation, and security. These observations are required for
monitoring and measuring. They have predefined time windows for calculating depreci-
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ation and billing criteria. The changed measured data is transferred to the management
system through wired or wireless networks. AMI is an enhanced version of the traditional
AMR and AMM systems. Smart meters, home area networks, and broad networks are
among them [19]. The expertise of a SG includes dependability, forecasting, localization,
and offshore security. Intelligent protection systems troubleshoot, diagnose, self-heal, and
safeguard small networks. The SG’s dependability is dependent on the DG’s sustainability,
as intermittent RES and load-related oscillations should be minimized. Measurement and
control systems are critical to service dependability and quality. The architecture for Predict
and Prevent also aids in defending the SG [20].

The system or operator should rapidly diagnose and remedy the fault. Intelligent
protection is divided into two stages: pre-fault and post-fault. Continuous monitoring
of voltage, current, temperature variations, steady state, and transient attributes is used
to carry out the phase. This monitoring helps to avoid mistakes. Measurements are
used to discover and diagnose errors. The communication network comprises project
management units, AMI, AMR, and other sensor networks [21]. The authors in [22],
mentioned the intelligence network, including DG sources, traditional generators such
as CHP, fossil fuel-based power plants, RES, electric vehicles (EV), and smart and smart
buildings. Indeed, they reported that the communication between homes and data centers
and the SG system should provide quality service, dependability, coverage, sustainability,
security, and privacy. In [23] the authors cited that the communication infrastructure quality
determines transportation safety. On the other hand, a dependable communication system
with diverse designs connects numerous nodes and systems.

In this article, we make the following contributions:
This study examines smart grids and communication networks, considering relevant

technology, uses, and issues. The document describes the SG, smart grid communication
technologies, smart grid security concerns, smart energy infrastructure, and smart metering.
The current state of each system and probable future research directions are summarized in
the subsections. Electricity generation, transmission, distribution, and client facilities are
all included in the first section; SG and Smart Energy Infrastructure. Then, smart metering
and measuring applications are assessed using energy management and control systems
and reference standards. This article discusses smart metering systems’ communications
and security hardware and software infrastructure. We used the King Abdelaziz University
Database (KSA) to conduct this research and only used the literature published within the
last five years. A list of acronyms used throughout the paper is presented in Table 1.

Table 1. List of acronyms.

Scada Supervisory Control and Data Acquisition DG Distributed Generation

SGs Smart Grids DER Distributed Energy Resource

SSs Smart Sensors NILM Non-Intrusive Load Monitoring

IED Smart Electronic Device HEMS Home Energy Management Systems

IoT Internet of Things I-Energy Integrated-Energy

ToU Time to Use ACP Active Consumer Participation

VPP Virtual Power Plant Pros (φ) Prosumer Energy

VPSs Virtual Power Stations Erse Charging Stations

IoT Internet of Things HEMS Home Energy Management System

WCT Wireless-Communication-Technologies AWT Average Waiting Time

PAN Personal-Area-Network UC User Comfort

WAN Wide-Area-Network AMI Advanced Metering Infrastructure

HAN Home Area Network AMR Automatic Meter Reading
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Table 1. Cont.

Scada Supervisory Control and Data Acquisition DG Distributed Generation

UCS Uniform-Communication-Standard GUI Graphical User Interface

DNP Distributed Network Protocol SMDMS SM Data Management Systems

PMU Phasor Measurement unit PSP Power Scheduling Problem

PU Measurement unit ROM Reliable Optimization Method

SMCS Smart Meter Compression System AOM Approximate Optimization Method

DSM Demand-side Management ROAs Reliable Optimization algorithms

DR Demand Response ILP Integer-Linear-Programming

SSM Supply Side Management MILP Mixed Integer Linear Programming

SGSH SGs-Self-Healing BFOA Bacterial Foraging Optimization Algorithm

SGSM SG Self-Monitoring PSO Particle Swarm Optimization

AP Access Point ACO Ant Colony Optimization

NIST National Institute of Standards and Technology WDO Wind Driven Optimization

SGTD Smart Grid Transmission Domain GA Genetic Algorithm

SGMD Smart Grid Markets Domain TSA Tabu Search Algorithm

SGUD Smart Grid Utility Domain KPMM Knowledge Project Management Manual

SGDD Smart Grid Distribution Domain RAMM Risk Analysis and Management Manual

ALM Instrument Load Monitoring ILM Intrusive Load monitoring

HSS Hybrid Split System LM Load Monitoring

CHL Controlling Humidity Levels CACF Central Air Conditioner and Furnaces

HCSS Heating And Cooling Split Systems- NILM Non-Intrusive Load Monitoring

HVAC heating, Ventilation, and Air Conditioning LMS load monitoring systems

SGBGD Smart Grid Bulk Generation Domain MRM/IT Manual on Risk Management for IT systems

SGCD Smart Grid Consumer Domain IEEE/EIA Institute of Electrical and Electronics Engineers
and the Electronic Industries Association

SGOD Smart Grid Operation Domain NIST National Institute of Standards and Technology

PLCT/ICT Power Line: Communication and Technology
Information and Communication Technology SOA Service-Oriented Architecture

The rest of the paper is organized as follows: A comparison with related survey articles
is presented in Section 1. In Section 2, we provide Preliminaries: Detailed Analysis of the
Literature. In the next section, we highlight the motivation for employing Intelligent Agents
in SGs. Moreover, case studies on the use of Multi-Agent System Classifications are also
presented in this section. In the same section, we discuss the taxonomy of the Blockchain
Smart Grid concept. Section 4, the progress and development of smart home agents in
prediction algorithms are discussed and surveyed. Finally, Section 4 concludes the paper.
Figure 1 depicts and explains the various sections of the paper.
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2. Preliminaries: Detailed Analysis of the Literature

As additional distributed energy resources (DER) are added to the power grid, a
decentralized system for scheduling and allocating resources in an intelligent grid becomes
necessary. Economic Distribution (ED) and Unit Commitment (UC) are crucial factors when
distributing network resources for stability. The uncertainty around renewable energy
makes resource allocation more challenging for system operators. More renewable energy
sources and electric vehicles with bidirectional energy flow will be integrated into the future
grid. This complicated smart grid system requires decentralized resource allocation, inter-
node communication, and decision-making. Multi-agent systems (MAS) can decentralize
the smart grid’s central resource allocation [24,25]. The three essential components of an
intelligent grid are depicted in Figure 2: (a) the utilization of smart meters, devices, and
applications for usage monitoring and management, (b) distribution of power generation to
expedite the use of renewable energy sources, and (c) real-time control of the transmission
and distribution network.
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2.1. Energy Demand Side Management

Demand Side Management controls the network’s demand side and targets end users.
The authors posted in [26] that through continuous monitoring and appliance management,
these technologies cut energy usage in households, businesses, and industries. The work
of two residents in the building influences the electrical energy consumption. It includes
energy-efficient building systems, demand-driven control, demand response, intelligent
buildings with smart devices, and energy dashboards [27]. These methods help utility
providers and consumers to control electricity usage swings. End users will be more active
in network and building operations via demand-side management [28]. Demand response
(DR) is a growing demand side management strategy that changes energy use patterns.
When electricity supplies are limited, building users must reduce peak consumption [29].
This implies measures to encourage consumption. The demand response reduced the
commercial building’s peak power usage by 15 MW to 13 MW in 15 min and 11 MW in
two hours. Through a smart automated response to demand, a large office building can
reduce peak load by 25% [30].

2.1.1. DSM Architecture

DSM’s communication and market design contains five levels. It is a consumer colony
where each residence has solar panels or wind turbines [31]. All customers have the primary
intelligent grid management system, which includes load, car/battery, and supply agents.
The source agent delivers all source data in cooperation with the EPA and other climate
data [32]. DSM methods may be characterized based on timing and customer performance
(Appendix A):

(1) Energy Efficiency/Conservation Agent (EEA)
(2) Time-of-Use Agent (TOUA)
(3) Demand Response Agent (DRA) or Payload Transfer Agent (LSA)

EEA encourages energy-saving technology and improves building design and con-
struction. This category includes end-user comprehension and behavioral shifts toward
more energy-efficient equipment [33]. DRA can short- or long-term shift load to peak hours
for LSA. DR supports variations in power use in reaction to SG events, even as time-of-use
bills reorder energy at different rates.

2.1.2. An Overview of Leveraging Edge Computing in Smart Grid

To provide sophisticated communication and monitoring systems, the Internet of
Things (IoT) has created small objects for communication, accessibility, or access to the
Internet. In this vein, the productivity of infrastructures in various fields will be improved
thanks to intelligent embedded devices and intelligent decision-making capacities, in
particular, intelligent networks [34]. Like other areas of the IoT, the smart grid has been
chosen as a potential technology using a wide range of sensors and information sources that
gather data with higher resolution. One of the serious IoT issues is the processing of a large
volume of data [35]. To address this concern, Edge Computing seeks to manipulate data
to the integrated devices in which data is processed on the edge of the IoT infrastructure.
Figure 3 illustrates an advanced design that uses the smart home to process information
from the smart grid. The current electricity grid presents several challenges: unexpected
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disruptions and power outages, the theft of imperceptible customers, fixed electricity prices,
etc. Such challenges contribute to the cost of electricity and to the growing demand for
fossil energy [36]. The Smart Grid provides the following concepts to solve the conventional
network’s lack of efficiency and performance [37]:

• Distributed generation: Customers can generate electricity from renewables, including
solar or wind, in a smart grid. Surplus energy can always be supplied in the micro-grid
to the grid or to other customers.

• Micro-grid: Low voltage electrical grids interconnected under clusters are defined as the
micro-grid. This will improve the efficiency of local distribution through self-generated
and controlled structures. The micro-grid can be connected to the grid. Nevertheless, if
a malfunction, failure, or other risks occur on the grid, it differs from it.

• Smart meters: The deployment of smart meters allows the exchange of information
between consumers and companies in real-time. In fact, smart meters monitor and
track the additional use of smart devices in an apartment building.

• Dynamic pricing: This was chosen as the best tool for regulating electricity demand
during peak periods. Depending on the total required power consumption, Time to Use
(ToU), and real-time demand statistics, the total demand strategy can be determined.

• Proximity to prosumers: Data analysis was used to address automation issues closer to
consumers, increasing the decision-making cycle and enabling consumers to choose to
collaborate with a Virtual Power Plant (VPP) of any size or level.

The smart grid is expected to provide a sustainable energy infrastructure through
bi-directional data, energy flows through advanced knowledge, interaction, and commu-
nication infrastructure [38]. Prosumers are considered an attractive idea that will be an
integral part of this smart grid. In this context, consumers can be recognized simultaneously
as energy producers, energy sellers, and energy consumers. Prosumers not only consume
energy but also participate in the network and/or excessive energy at the community
level produced by renewable energy sources (such as solar, wind turbines, etc.) [39]. This
seeks to solve environmental, social, and economic issues associated with high fossil fuel
consumption. The smart grid encourages stakeholders to create communities based on
various criteria, including energy usage, in order to manipulate consumers in the energy
exchange system [40].

Consumers can choose from a wide range of electricity markets when using renewable
electricity, and setting an average megawatt-hour for a specific calculation. Alternatively,
power outages can be handled periodically to increase the battery capacity/storage system.
The SG network contains several power connectors. To evaluate actual weather data from
different regions, the prosumer runs the estimated energy profiles three times during the T
period (given by (1)). Dependent on this period, virtual power plants and market models
have been developed and have simulated actual production and consumption trends.

Pros(φ) = (g(Pφ(T), type = {PDEG, PEES, PFDA} )

Pφ(T) = (Pφ(j)
∣∣j ∈ {0 . . . T}, φ ∈

{
1 . . . Mφ

}
Mφ = NFEA + NEP + NESD

(1)

Pros (φ) represents the prosumer energy production; Pros (T) is the estimated power;
PDEG is the droplet-based electricity generator; PFDA is the provider energy, and PEES is the
energy storage.
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In order to provide standby power treatment facilities, the Virtual Power Station
(VPSs) integrates and coordinates domestic power generation sources with flexible storage
and assets with manageable loads [41]. The VPS is perhaps the most closely related to the
many innovations in the field of renewable energy over the past few years. Combining
technology from two separate energy sources, the VPS ensures a stable supply of electricity,
regardless of environmental or demand conditions. Both the positive and negative aspects
of the VPS are present during peak periods, as they can work well together. Thus, it allows
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better use of renewable energy technologies. However, the multi-source structure creates
difficulty for companies to track, organize, and maintain the health of the system. It also
requires better applications where different systems must be interconnected. This local
collaboration tends to allow the best use of distributed energy systems by utilizing local
resources and through the participation of consumers in energy management processes,
regardless of size. The aim of creating a sophisticated ideal consumer concept is to define a
group of current energy consumers [42]. The specific group tends to provide the highest
clear performance targets for a particular form of service that the VPS needs to access and
improve its income per energy user. The VPS’s alliances consist of the N-length chain,
which means that the value 0 at location k is not part of the alliance; whereas the value
1 indicates that the consumer has been incorporated (taken) into the alliance. The VPS is
expressed by (2) [43].

VPS =
{
(takenφ, Pros(φ)

∣∣φ ∈ [1, Mφ

]
, takenφ ∈ [0, 1]

takenφ =

 0, Pros(φ), Is not a part o f VPSs

1, Pros(φ), Is a part o f VPSs

(2)

To standardize energy management systems in the electrical grid and electric vehicles,
an accurate practical method of communication has been developed. For future charging
stations (Erse), the ISO/IEC 15118 standard and the IEC 61850 standard serve as inter-
working nodes between the wireless vehicle and the network control center [44]. Digital
vehicle charging specifications, automated loading times, and dynamic billing models
during and after charging are not only for charging but also for vehicle authentication
(Value-added IEC 15118 services) [45]. IEC 61850 focuses on reliable network connections.
Service providers and energy companies need to engage with a wide range of infrastructure
users, from diverse energy sources to different end-user groups, including private homes,
business parks, and electronic vehicle charging stations [46]. The connection is based on
standard protocols to date. Intelligent control and automation technologies enhance energy
consumption in electrical power networks. The SG also considers the use of unreliable
power supplies. Moreover, due to the current uncertainty of energy production, some
energy supplies face various challenges [47]. Modernizing the energy system also creates
new factors. Therefore, control systems usually generate complex systems. A variety of
strategies has been discussed to accomplish those targets. Whereas the recognition of
agents is not private, the Multi-Agent Systems (MASs) is a group of autonomous entities
that can evaluate and communicate. MASs will thus allow a realistic environment [48]. A
SG adapts power systems and increases their electricity consumption. The use of MASs
allows suppliers to operate individually to increase the device performance and reduce
demand in centralized power management [49]. Figure 3 shows the importance of the
real-time process for the system to connect all devices, sensors, and devices, and exchange
all information. For all connections, it seems that the real-time mechanism is absolutely
necessary for the network.

2.2. Blockchain in Smartgrid
2.2.1. Background

Distributed energy systems adapt to a variety of threats, involving high electricity
demand, increased cyberattacks, increasing renewable energy progress, and the migration
to a smart home for massive IoT applications [50]. These challenges have caused tremen-
dous pressure and require sustainable solutions and initiatives to achieve electrical system
security and performance. Consequently, blockchain has been used in a variety of areas,
such as the innovative and distributed smart grid [51], as a potential innovative technology
that has gained a lot of attention. Blockchain infrastructure was also created from a unique
data series.
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The main feature of this blockchain technology is that it monitors all the changes in
the chains it creates to avoid eliminating or replacing blocks [52]. This allows blockchain
technology a very secure way to transfer resources, assets, and contracts without the need
for a third-party authority, such as governments or institutions. Blockchain technology
can guarantee stability, and facilitate connectivity, and payment security. In addition,
blockchain guarantees the integrity of customer transaction data and the trust between
stakeholders [53].

As a result, the blockchain approach has gained popularity, especially in the Bitcoin
cryptocurrency sector. Indeed, blockchain smart grid technologies aimed to offer an
innovative range and inexpensive approach to the tackled issues by existing and potential
smart grids [54]. Numerous researchers have proposed certain technological solutions
and concerns in the field of blockchain technologies for the SGs, which shows how the
blockchain can be used as an SG cyber-physical layer [55]. This approach has encouraged
energy innovators to assess their simple electrical systems without influencing the main
energy system [56]. Many projects in the energy sector are approved to enforce a blockchain
safety case by loosening small-scale energy policy to ensure innovation. The sharing of data
between prosumers is, therefore, better than conventional methods of transmission [57].
Prosumers are viewed as both energy users and customers in the blockchain SG. A prosumer
is independent of other prosumers, who do not generate energy for companies but produce
electricity for their needs using a solar system chosen as an affordable and restricted usage
approach [58]. Therefore, larger providers can examine the demand of small prosumers.
According to the previous benefits, the blockchain allows remote settlers to generate and
exchange their electricity in a common community with other stakeholders [59]. This
allows the extra energy to be transferred to the grid. Customers in a specific neighborhood
will benefit from energy by using public services such as mobile platforms. Rural families
or isolated areas will produce their energy using renewable energy if they do not have
access to electricity [60].

2.2.2. Blockchain Technology in Home Energy Management

Managing energy demand and demand is becoming more and more challenging, espe-
cially as the need for renewable energy continues to increase. In this regard, DemandSide
Management (DSM) should be used to coordinate market forces, enhance network stability,
and expand existing network capabilities [61]. The current energy demand control project
focuses on the interaction between both the system and customers. In the community of
renewable energy production, centralized management of the demand side, and in the
real-time context, however, the previous methodology does not depend on currency trading.
There is a need for a demand-centric centralized control network for many households,
with the addition of a smart meter network and sustainability [62].

Emerging blockchain technology may include privacy through the utilization of a
digital network to enforce effective energy management approaches. It can execute a
deceptive database that continually increases by maintaining a collection of data blocks
deposited in a chain of the sequence. First seen in Bitcoins, this platform is often used
as a bitcoin-monetary system [63]. With both the new algorithms and software, several
activities may be performed automatically on the blockchain that communicate with data
on the internet or even in the physical world. Effective procedures of smart nodes may
be carried out on blockchains [64]. In a variety of scenarios, blockchain contributes to
the Internet of Things (IoT), such as digital infrastructure, payment analysis, and social
networks. So, these companies encouraged confidence, lowered prices, and improved safety.
It is exciting to publish the Brooklyn microgrid network alongside other groundbreaking
developments in chemistry and energy production from the blockchain. This gives it
a somewhat prominent place in the concentrated power industry. Some major energy
suppliers and start-up companies specifically seek to do this [65]. Most energy providers
enable their representatives to purchase renewable energy shares as well as exchange an
interest in ownership. Stakeholders will either sell or use the energy generated from their
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own property, and their assigned portfolios can be distributed simultaneously with their
stake in the company [66]. For a variety of potential energy management investments,
blockchain technology has many advantages in terms of business in the carbon market and
in improving energy management and storage [67].

• By separating the external stakeholders or mediators from the network, blockchain is
used to reduce the cost of energy exchanges.

• Blockchain is being used to modify and monetize application transfers with distributed
energy resources.

• Smart agreements were used to promote power exchanges at distributed energy re-
sources level among customers.

• Blockchain is a shared database that preserves the time chains of data. Such blocks are
not alterable or temperable.

• Blockchain facilitates multi-factor verification increasing distributed network blockchain.
• All activities carried out in a database that promotes transparency and accountability

are accessible to the public.
• Blockchain offers distributed grid operations [68].

2.3. Smart Sensors Interoperability in SG

SGs are electric power grids that use advanced information, networking, and real-
time monitoring and control technologies to save costs, conserve energy and enhance
security, interoperability, and reliability. Smart Sensors (SSs) can provide real-time network
monitoring, protection, and control information. Figure 4 illustrates the Smart Sensor
model for GSs. In fact, the graph shows that SG networks suffer from interoperability
and data interchange. According to the physical parameters, SSs transmit electrical pulses.
There are options for digital or analog output signals. Data processing, analog-to-digital
conversion, signal conditioning, and digital signal output are all features of digital sensors.
Smart digital sensors could exist. Intelligent sensors and transducers are required for
distribution network monitoring systems [69]. A communication format for power system
phase measurements is described in IEEE C37.118. Data from sensors should have a reliable
timestamp. Some of the standards for SG sensors are:

• Coordinated Universal Time Synchronization (UTC) and Exact Time. Fast data pro-
cessing and intelligent algorithms (e.g., phase and frequency estimation, ROCOF from
observed voltage, current, and time synchronization signals) [70].

• Precision and sensitivity detect voltage, current, and phase angle [71].
• Network and data transport with high speed, security, and dependability.
• Measurement accuracy and sensitivity to current, voltage, and phase angle [72].
• Fast, reliable, and secure network and data transmission.
• SS and Plug and Play interoperability require standardized testing methodologies

and interfaces.
• Large bandwidth/dynamic sensors for the measurement of medium voltage (MV) of

600 V at 69 kV, of amps at kiloamperes, and 50 Hz at 5 MHz [73].
• Various sensing capabilities include voltage, current, power flow, temperature, weather,

and climate.
• Sensors for self-identification, self-localization, self-diagnosis, and self-calibration

are available.

SSs are smart sensors placed in power grids, and sense temperature, pressure, humid-
ity, weather stations, and current and voltage. SSs may communicate with the outside world
using the IEEE 1451 Smart Power Adapter Interface standards, the IEEE 1815 Standard
for Electrical Power Systems Communications—Distributed Network Protocol (DNP3),
IEEE C37.238 PTP Power Profile, and others [73]. The following subsections describe
the sensing, applications, and networking capabilities of the Phasor Measurement unit
(PMU)/Measurement unit (MU)-based SS units. Table 2 compares and displays all Stan-
dards Specifications. There may be hundreds or thousands of SS units from various vendors
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in electric power systems. For electrical networks, SS interoperability is an issue. The first
table provides a list of typical communication SSs protocols for SGs [74].
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Table 2. SSs Standard Specifications.

Smart Sensors Norms/Standards Wired Wireless

Basic SSs
• IEEE 1815
• IEEE 1815.1
• IEEE 1451

TCP/IP

• UDP/IP
• RS232
• Optical

• 5G LTE Cellular
• WiFi-
• ZigBee
• WiMAX
• 6LowPAN

PMU
• -IEEE 1344-
• -IEEEC37.118.2-
• -IEC 61850–90-5-

TCP/IP

• UDP/IP
• RS232
• Optical

• 3G/4G/LTE Cellular
• WiFi
• WiMAX

MU
• IEC 60044–8
• IEC 61869–9
• IEC 61850–9-2

TCP/IP

• UDP/IP
• RS232
• Optical

• 3G/4G/LTE Cellular
• WiFi

3. Intelligent Agent
3.1. Intelligent Agent Concepts

An entity (software or gadget) that operates in a particular environment and can freely
interact with changes in that environment is referred to as an agent. Figure 5 compares
and displays the agent classifications and parameter specifications. As shown, MAS
employs task managers and communicators to acquire and regulate data. For example,
great evidence was presented to show that sustainable power grid control using intelligent
factors is locally determined to isolate the faulty part of the grid. The environment can
be physical (like the power system), controlled by detectors, or the network environment
(like data sources, computing resources, etc.), and it can be studied by making frame calls,
engaging in communication, and receiving notifications [75]. The agent communicates
with his surroundings physically or via recording diagnostic information for others in a
database that is accessible [76]. IA mainly consist of four characteristics:

• Communication system;
• Decision making;
• Input and output interfaces.
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The significance may theoretically apply to current technology and software. If the
interpretation mentioned above is correct, the privacy sequence might be considered an
“Agent”: the energy system is situated in its surroundings; it responds to environmental
changes, such as voltage and/or current changes, and denotes a level of uniqueness
(autonomy). In order to solve technological challenges, it is crucial to separate agents from
Multi-Agent Systems (MASs) [77]. This requires expanding the definition of “Agent” to
include “Intelligent Agent” (IA). The most precise definition of an agent is “an intelligent
decision-making process that is positioned in some contexts and may work efficiently and
independently for every transition” [63]. IAs were created by taking into account a variety
of factors. The Foundation for Intelligent Physical Agents (FIPA) stresses that all data
sharing between IAs occurs through the agent’s communication language [78]. Several
agent-creation tools that adhere to FIPA criteria have been suggested and developed (see
Table 3) [79]. In keeping with this, IAs exhibit flexibility and independence t comprising
three key traits:

(a) Interaction: Based on these modifications and the task of making them, IAs will reply
appropriately and adopt a precise approach.

(b) Pro-action: Putting IAs into practice fosters an analytical mindset that shows how the
agent continually modifies his behaviors to attain his objectives. For instance, the agent
may look for another agent who offers the same services if he loses touch with another
agent whose services depend on him accomplishing his objectives [80].

(c) Social aptitude: Intelligent agents can communicate with other intelligent entities.
Social ability involves more than data transmission between conventional software
and hardware. IAs have the capacity for cooperative and intelligent negotiation
and interaction. The agent’s calling language often supports this capacity, allowing
agents to converse and relay information [81]. To manage agents, many tools and
platforms have been developed. Table 3 displays and discusses all agents’ fees. Agents’
frameworks are shown below:

i. Java Agent Development Framework (JADE)
ii. Java-based Intelligent Agent Component ware (JIAC)
iii. Intelligent Agents SPRINGS (AgSpr)
iv. Intelligent Agents (JACK)
v. Intelligent Agents Tracy (AgTra)
vi. Intelligent Agents (JADEX)
vii. Intelligent Agent Service (AgServ)
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3.1.1. Reactive Agents

These variables are mainly interactive and have no real understanding of their envi-
ronment. It depends on the proposed first-use structure for Brooks. The layer hierarchy in
this structure is represented by a specific behavior. Each layer or behavior is independent
of the other layers in the system, but higher-level activity will remove the behavior at a
low level [82]. This type of anatomy indicates the reasons for which it does not need to be
proven, but it can be taken quickly if desired. The disadvantages of this form of anatomy
are that the variables cannot change or overcome uncertainties and that the agent’s role in
a particular situation may be difficult to anticipate [83].

3.1.2. Deliberative Agents

The symbolic model of an illustrated scientist clearly contains the deliberative agents
in which decisions are taken correctly. Agents of this type of anatomy develop plans to
achieve their goals and therefore are more appropriate to address ambiguities and respond
to unforeseen circumstances. Several models have been proposed with many BDI (Belief,
desire, and intention) models to create commercial agents [84]. In this paradigm, what
an agent feels towards himself and his world are his beliefs. The agent’s desires are his
motivations, this is what the agent wants to achieve, but if the agent has several desires,
then these desires collide. The agent’s intentions are the required action model to achieve
the agent’s goals (the agent’s plans).

3.1.3. Hybrid Agents

Throughout the action, most agents are a hybrid of reactivity and reflection, Turing
Machines and Internap being examples of hybrid anatomies [85].

3.2. Multi-Agent System

A Multi-Agent System (MAS) is basically a system that contains two or more imple-
menting IAs. There is no clear goal for a general system in a multi-agent system; instead,
this is accomplished by bringing together several independent agents with each of them
having a specific local target [86]. On the other hand, MAS has proven to be the most
intelligent management unit that distributes the essence of power. The decentralized na-
ture of the MAS method allows complex problems to be easily and cleverly divided into
sub-problems by conducting simultaneous processing in order to meet its final goal, thus
reducing the computation burden of a single device [87].

Table 3. Intelligent AGENTS’ Types.

Agent Features Agent Type Ref.

Java Agent DEvelopment
Framework (JADE)

It is a robust framework program. This
optimizes multi-agent application

deployment.
Agent Tools [88]

Java-based Intelligent Agent
Component ware (JIAC)

It is a structure of Java-based agents
and a framework for developing and
operating widely available software

and services.

Agent Tools [89]

Intelligent Agents
SPRINGS (AgSpr)

The development of mobile, deployed
and distributed computer applications
is an extremely interesting technology.

Agent platforms [90]

Intelligent Agents (JACK)

It consists of a set of independent
factors that take inputs from the

environment and communicate with
other agents.

Agent Tools [91]

Intelligent Agents
Tracy (AgTra) Used for mobile applications. Agent platforms [92]
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Table 3. Cont.

Agent Features Agent Type Ref.

Intelligent Agents (JADEX)

Jadex is the logical reasoning tool for
Belief Desire Intention (BDI), which

enables intelligent programming
agents in XML and Java.

Agent Tools [93]

Intelligent Agent
Service (AgServ)

Prepare receipts, updates, records,
applications or other documents

regarding the obligations of another
agent (customers/service providers).

Agent Tools [94,95]

3.3. Smart Grid Agents

MAS was seen as a potential solution in SGs due to its ability to manage and secure
operations in complex situations when operating as a centralized control system. MAS can
efficiently identify disturbances, restoration of the electricity, control the secondary voltage
and interpret the electric system [96]. Hierarchy would be preferable if the entire control
system were to be transformed into MAS in which agents and subagents are considered
separate objects. The SG agent model can essentially assess the impact of a hypothetical
dynamic on the network [97]. SG agents can include two different classes of agents, one
representing the problems related to the energy market, management of energy balance
sheets, energy pricing, and energy planning [98]. In order to better understand how SG
agents function, we should understand, firstly, the context of SG network management.
SG Network Management (SGNM) and the correlation between SGNM levels is shown in
Appendix B.

Second, we will concentrate on grid efficiency, security, and dependability problems.
The functions of SG agents, such as hardware agents, Distributed Energy Resources (DER)
agents, customer agents, intelligent control avoidance agents, smart response controls,
and Graphical User Interface (GUI) agents, may be modified [99]. Typically, a multi-
agent system serves as the coordinating and interactive layers. Based on predetermined
information, the response layer initiates self-healing procedures right away. Based on
the goals, the coordination layers confirm that the occurrence that prompts interactive
action is more urgently needed [100]. A significant event can only reach the top layer if
it goes above the predetermined limit. Information from the coordination layer is used
to evaluate consistency. Between lower and upper levels, the MAS intermediate level
maintains consistency with both agents. While the trading layer evaluates the system from
a comprehensive viewpoint and allows planning for a longer time frame, the interactive
layer has many agents that immediately impact the system’s behaviors and strategy.

In SGs, consumers are frequently referred to as “prosumers” since they consume
energy and create power, and trade it with other consumers and producers [101]. Prosumer
agents may combine the three critical functions of the seller, producer, and consumer. In
this vein, SG Prosumer Agent is selected as one of the engaging ways to connect prosumer
agents from various places. However, these prosumer groups, also known as Prosumer
Community Groups, alter the operating system’s behavior, making balance and demand
generation challenging to manage at all times [102]. Because of their comparable energy
consumption patterns and interconnectedness, Figure 6 shows the SG-based control layers
(PCGs) [103]. The interaction between distribution network agents (DSOAg) and transport
system operator agents (TSOAg) is anticipated to change during the next several years,
according to several upcoming technologies. Unpredictable generating units include
centralized power and communications network infrastructure, which function partly as
SGNM agents.
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The SGNM can be managed better if we accomplish this using clever application
agents. The network control and application management layers are the two functional
levels that make up network management [104]. The voltage control in SGNM attempts
to address various electrical network-related problems. In order to limit the quantity of
network voltage to a specific value while considering other relevant concerns, factor-based
systems must be deployed along with intelligent devices in place of traditional voltage
management techniques [105]. It has been demonstrated that any modification to the grid
impacts the entire system. The rising penetration of electric cars and heterogeneous genera-
tors into low-voltage networks also exacerbated voltage fluctuation. The network frequency
is significantly impacted by changes in energy demand or power supply, whether there is a
drop in demand or an increase in demand [106]. The frequency of presentations must be
controlled at all times to provide a constant level within 24 h. Frequency fluctuations are
lessened if a response to an agent-based request is included [107].

4. Application of Agents in SGs
4.1. Smart Home

Smart Home Agent (SHA) concepts are attractive because they serve residents reli-
ably. Smart homes use innovative technology to enhance safety, healthcare, and energy
consumption [108]. It is possible to remotely control and monitor home energy manage-
ment systems (HEMS). HEMS include hardware and software to control the energy use of
consumers (such as dealerships). Appliances offered home appliances ticking. The benefits
of HEMS engineering in terms of safety and healthcare have been investigated [109]. Many
prototypes improve energy use and improve the efficiency of energy systems. HEMS
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analyzes the energy demand in real-time using MAS devices. Household appliances and
energy use can be scheduled to save electricity costs for the consumer. Home-to-home
and car-to-home communications are new developments in smart home projects. During
peak demand, the electric vehicle is used to power the home using vehicle-to-home energy
storage technology [110]. Real-time smart home systems include sensing technologies,
home network technologies, and devices. Due to design complexity and repetitive super-
visor techniques without appropriate levels, the full potential of smart homes remains
untapped [111]. PESM is characterized by some consumers who use and generate energy.
Several studies indicate that central, and local governments can connect consumers to the
network and to each other. Renewable energy is used in smart homes. For some of these
customers, the typical energy loss is surplus energy at all times. The utilization of storage
in the optimization system might be a future development.

4.1.1. Prediction Algorithm in Smart Home

The smart house should include many Agent detectors to constantly perceive and
govern the room. These detectors may be utilized to streamline typical processes, provide
more services, and reduce outages. To deliver these services, smart homes should be able
to forecast occurrences based on their ideas. Prediction algorithms are helpful for smart
homes in this context.

4.1.2. Markov Model

To understand how predictive algorithms work, first understand the context and
ramifications. Understanding predictive theory and how a person communicates with
the environment is challenging [112]. Some mathematical models are used in prediction
algorithms to predict upcoming events [113] better. Algorithms simulate historical facts and
theoretical results. User behaviors provide the predicted data for the smart home prediction
system. These routines are called daily activities (ADLs) [114]. ADL is an activity that uses
an agent’s sensor network to gather information [115]. Probabilistic models perform better
than purely mathematical models because they require randomness, temporal uncertainty,
and other factors [116]. Markov and Bayes’s models predict future outcomes based on
previous iterations [117]. The Markov model believes that the system depends only on the
previous direct state [118]. A random number can be represented as a different structure at
a predetermined time to show how random variables differ over time.

4.1.3. Bayesian Network Model

The BNM model is an algorithmic network model. Using a vector diagram, BNM
displays random variables and their conditional dependency [118]. The structure and
parameters are made up of BN blocks. Each edge represents a direct function between
two BNM nodes [119]. Parameters are chosen using conditional probability tables or
complicated learning algorithms. BNM analyses a device’s or signal’s behavior, gathers
sensory data, and makes reasonable conclusions. They are categorized once enough data
has been obtained [120]. The BNM model (PBNM) includes the state variable, z, which is
considered as a fixed point, φ, which is determined by the gravity dynamics. BNM has
several fixed values (φi), each corresponding to the deep average range (µi). Finally, the
(µi) model is chosen with just the confidence standard and expressed by (14). PBNM= P(B|A)P(A)

P(B)

pBNM(z t = φi |X1:t > λ
(3)
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P(A) and P(B) are Bayesian Network model probabilities.

4.1.4. Prediction Algorithms in Smart Home Agents

SH agents have a four-layer structure, including the physical layer, which includes all
home appliances, electrical connections, and network devices [121]. The communication
layer maintains user agents and appliances internally and externally [122]. The specified
and processed information layer offers knowledge for decision-making. The decision layer
determines the operator’s actions based on prior information levels. Sensors monitor the
environment and feed data to the following agent [123]. The database modifies and informs
decisions by changing concepts and expectations in the data layer. They are executed
in decreasing order (See Appendix C). The decision layer describes verbs using one or
more prediction algorithms, assuming that generic behaviors are quite likely. Based on the
prediction algorithm’s results, the decision layer can perform one or more actions [124].
The intended activity is automatable. Another alternative is to send alerts if the intended
activity does not occur within a specific time [125]. Table 4 shows prediction algorithms
used in innovative environments.

Table 4. Prediction Algorithm Categories.

Prediction Algorithms Categories Structure Model

SPEED Episode Discovery Tree Markov

Flocking Clustering Cluster Rules

Apriori Artificial Intel AI Matrix Rules

H-learning Q-learning User Markov

Active Lezi LeZi Tree Markov

4.1.5. Sequence Prediction via Enhanced Episode Discovery

The Sequence Prediction via Enhanced Episode Discovery (SPEED) algorithm was cho-
sen as a potential algorithm to predict the interaction of inhabitants in a smart home [126].
The SPEED algorithm aims to recognize the natural trends of smart home users and try to
make the right decisions based on the collected data. SPEED develops the Markov model
with limited arrangements for describing the use PPM prediction algorithm. It is the speed
with which residents communicate with their smart homes to predict future events inside
the building [127]. Indeed, SPEED uses decision-making structures to construct a set of
data, to which it can access knowledge subsequently collected to make a proper choice.
SPEED immediately excludes any unnecessary information at any time during the meeting
with the decision tree, which contains the majority of the k-level, in turn, classifying the 13th
Markov Model. After a subsequent decrease in the full length of any specified sequence
in the algorithm, the SPEED algorithm constantly computes the measured probability
distribution [128].

4.1.6. Flocking Algorithm

In a smart home, flow algorithms are useful for ADL analysis, especially when some-
one with Alzheimer’s benefits from them. Any specified collection of ADLs can function
as a cluster, and a flocking algorithm can be used to effectively analyze large amounts of
data [129]. There are other cumulative algorithms, such as K-mean, that can be used [130].
However, the K-mean design is not quite suitable for smart homes, as it needs individual
approval and a preliminary combination [131]. This mostly includes the idea of using the
flow algorithm as a common solution for a smart home because it does not allow any set
of group numbers and separates the elements individually while giving the previously
collected information. In addition, the flow algorithm can easily be adapted to the setting
by introducing new connection points or by combining new data with suitable sections.
One of the most impressive qualities of animal behavior in a robotics community is that
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decisions are made based on local knowledge, including sensory perception. However, as
of today, most automated multi-agent systems focus on fully centralized position control or
wireless communications, either from the performance capture system or from the Global
Satellite Navigation System (GNSS) [132].

4.1.7. Apriori Algorithm

The mining rules Apriori algorithm is a classic data mining algorithm. As shown in
most research, a series of database standards are commonly used to determine repeated
trends. Apriori Algorithm output are the rules of the setting for the “fXg!FYg” format,
which includes “X” and “Y,” which is a section of all variable components [133]. No
legitimate outputs are a rule in which both “X” and “Y” are empty. The law is defined
as follows: in “X,” the frequency of the tests of the element’s “Y” [134]. This algorithm
is generally used when studying transaction data in the store. High-Frequency (HF)
differences can be found in this algorithm. HF patterns are directions for elements in a base
that are usually referred to as lower-frequency support [135]. This algorithm is divided into
several iterations, each repeating creating an HF chain. This is illustrated at every point of
the data elements created or extracted from the market data.

4.1.8. Nash H-Learning

Some learning algorithms can be useful in dealing with how smart homes adapt to
their environment. This algorithm has been chosen to be attractive because it looks more
efficient. Using this algorithm, a smart home can know the accuracy and rapidly of an
employer’s habits [136]. A way to predict certain activities in a smart home is one of the
learning algorithms seen as a potential solution. A significant amount of background
knowledge should be given first to recognize how a Nash algorithm or learning system
operates [137]. Nash H-Learning was created using the Q-Learning algorithm that deploys
the Markov series in order to make the best decision because it is better embedded in a
particular ecosystem. Hence, Markov is a well-established and useful process in the smart
home environment even though Q-Learning still has its drawbacks and limitations [138].
Q-Learning is an advanced approach, but it is not appropriate for MASs structures because
the environment is constantly changing due to external concerns.

4.1.9. Active LeZi

The prediction has been chosen as an important solution to create smart systems with
more intelligent and reliable decisions in a variety of areas within artificial intelligence and
machine learning [139]. Many disciplines need to predict events that can usually be based
on numerical methods and that are based on flows [140]. In this vein, Active LeZi is treated
according to data theory. Active LeZi is a hierarchical knowledge theory predictor based
on the well-known LZ78 family of compression data algorithms [141,142]. The efficiency
of this algorithm is illustrated by using this algorithm to estimate system consumption
in smart homes. The efficiency of this algorithm can be verified according to the data
environments and standard experiences between the environment and the smart home.
LZ79 has a decoder because it was designed as a compression algorithm. Coding is only
required to approximate the basic sequence data of the remote test structure similar to the
remote Markov model [143,144].

4.2. Microgrid Control

For distributed microgrid control, MAS can be developed in the microgrid [106]. As
the MAS becomes automated, it is difficult to adequately control the individual DG by
restricting the demand of the device operator; energy management must be restructured
(see Figure 7). Indeed, MAS monitoring is a low-cost hierarchical control method [107].
Management, execution, and coordinating agents are the three levels of the MAS con-
trol system. Several stages lead to decision-making and observation. Sensors and field
equipment are tracked from [145]. The coordination factor layer defines the execution



Sensors 2022, 22, 8099 20 of 40

points that satisfy the management layer’s policy. The management layer acts as protection
against system limitations [146]. The Microgrid Monitor oversees and manages each of the
following tasks based on three specific agents:

(a) Management Agents: Efficiency, Economic, and Stability.
(b) Coordination Agents: Generation, Negotiation, and Distribution.
(c) Implementation Agents: Automation and Substation Operations.
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The centralized control layer is the microgrid control Centre (MGC). This later became
known as the Policy Control Agent (PCA) in Microgrid. PCA centrally manages and
controls GMs, ES and loads at three levels (See Figure 8):

(a) Decision Control Agent—DCA
(b) Management Control Agent—MCA
(c) Scheduling Problem and Environment—SPE

4.2.1. Energy Balance Management Using AIs

SG’s energy management applications include Advanced Metering Infrastructure
(AMI) and Home Energy Management System (HEMS) [147]. AMI is two-way commu-
nication technology, while HEMS is used to increase home energy in several ways. AMI
and HEMS have been successfully used to control power consumption. Smart meter data
reveals how, when and where consumer agents (PAg) use energy. Different approaches
have been used to manage demand response (DR) programs, delivered at different times of
the day based on facility requirements [148]. Demand Side Management is a DR Systems
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Implementation Technology (DSM). The DSM is an essential tool to meet energy demand
and reduce energy expenditure for inverters of peak load and off-peak charging times. It
adds to the balance of energy production. DSM perfectly implements smart grids as it
prioritizes energy conservation and load balancing [149].
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4.2.2. Smart Meter Agents (SMA)

SMAs are chosen as possible devices for SGs. In this regard, SMA is an intelligent
instrument that strives to monitor energy consumption intelligently and assists users in
obtaining information about their energy usage [150]. SMA contains vital information that
may be utilized to enhance energy efficiency and provides SGs with the capacity to enhance
energy quality [151]. SMAs have been utilized for electrical load prediction, abnormality
detection in electrical power systems, and other applications. Forecasting electrical loads
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offers a mathematical approach to power production and the construction of a system for
managing production and demand for electrical power and is crucial to a cost-effective
and secure operation [152]. The process of electrical load forecasting is segmented into
long-term forward forecasting, medium-term load forecasting, and short-term forecasting.
Annual, monthly, and hourly predictions are provided.

Prediction approaches have been utilized, including regression analysis, exponential
smoothing, and weighted repetition [153]. Numerous complex techniques, such as neural
networks and genetic analysis, have been employed to anticipate electrical demands. High-
dimensional SMA presents several reliable pieces of evidence that are accumulating [154]
(Appendix D).

It is challenging to predict electrical loads using SMAs directly. Some problems with
assembly, such as high-dimensional data, were recorded. Significant data compression
has been used as an essential solution to dimensionality reduction. Smart meters collect
information about the electricity consumption used in real-time. Large amounts of data are
sent over the network after phase analysis [155]. Companies can accurately determine the
electrical load of customers. According to the analysis information step, it is possible.

4.3. Commercial Buildings

In most countries, the commercial building sector’s commercial office sub-sector
generates most of the floor space and energy use [156]. The commercial office sector has
grown steadily in most developed and emerging countries during the past decade [157].
In the past decade, the commercial office sector has been a target for improving energy
management procedures [158]. Below, we describe MAS-based technologies to improve a
building’s energy performance through a demand-driven response and control.

4.3.1. Utility Agents

The authors reported in [159] how easy it is to install a MAS to coordinate heating
systems in a workplace. One of the earliest practical applications of MAS has been as a
utility agent, with choices based on the computational market concept/transient active
control. In this case, cold air was provided to commercial representatives. Bidding agents
bid for more or less air based on room temperature. The authors in [160] repeated the study
and discovered improved results compared to the previous method. BECM systems must
handle many occupant-friendly features in large commercial office buildings. According
to [161], MAS has the potential to improve operating and energy efficiency. The authors
constructed the MAS using utility factors and cross-decision methods. Active MAS has been
used indirectly, through a decision-making process based on market value, to feed global
information (building occupancy and comfort demand) into local technical parameters
that change the behavior of individual systems over time. The system orchestrated the
operation of chillers to reduce energy waste, particularly in partial or vacant rooms, based
on on-demand global information based on building occupancy, which changes over time
in large commercial office buildings.

4.3.2. Simple-Reflex Agent

The authors in [162] developed a MAS framework based on inversion factors to govern
office building systems as part of a more considerable investigation. The improved MAS
system supports programmable agent limitations, which may be altered without having
to rewrite the entire system. The MAS architecture is scalable and open, allowing context
agents to be readily deployed and updated. Multi-agent systems may enhance building
control and management as building function and tenant usage change over time. In
addition, the authors [163] demonstrated that intelligent MAS control could save 20% more
energy than traditional thermal management.
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4.3.3. Memory Agent

As intelligent agent systems are based on artificial intelligence, the solutions and
concepts from this sector can increase building energy performance and comfort [164].
MAS provides learning and adaptive skills to govern building environments. The authors
showed that the created approach increased user comfort by limiting control options. Using
a MAS coordinate system with learning and memory states, the authors [158] showed that
buildings might save energy. The authors in [165] found that adding IA approaches to an
existing MAS-based building energy management system increased its performance. Using
MAS can enhance the operating efficiency of a geothermal heat pump system and reduce
gas usage by 23%.

4.4. Residential Buildings

According to the Residential Energy Consumption Survey (RECS), overall energy
consumption in US households remained stable for many years as better energy efficiency
has compensated for increases in the number and average size of dwelling units [166].
Indeed, residential renters are more price-sensitive to energy than commercial building oc-
cupants. MAS in residential buildings addresses the same challenge as MAS in commercial
buildings, improving user comfort while minimizing energy costs, but takes a somewhat
different approach owing to changes in the function of the building, type of device, and
occupancy pattern.

4.4.1. Utility Agent

With occupancy trends and charges, apartment buildings are a great target for meeting
demand. Moreover, commercial renters must be rewarded so as not to lose interest. MAS
systems in apartment complexes were reviewed to accommodate the demand [161]. Power
matcher is a product of Dutch programmers [166]. Depending on the network throughput
signal, the connected agents evaluated the energy efficiency. Ten CSPs were tested using
analysis factors in the pilot study to demonstrate the system’s potential. The maximum
load of the heating and electric units is half [160].

4.4.2. Simple-Reflex-Agent

According to certain studies, using a basic inversion factor model and local energy
management systems improves construction. In [162], the authors made similar obser-
vations to [160] while highlighting the benefits of MAS. According to the authors [163],
centralized systems outperformed MAS systems using the matched information set. Scal-
ability, openness, and adaptability were mentioned as advantages of one MAS over the
other. Indeed, the authors discussed several applications of distributed optimization. They
prove that the agent approach simplified regulation, coordination, and automation in
innovative home construction. The authors [167] also demonstrated the ability of MAS to
improve thermal comfort for building and management occupants, as well as its reusability
and flexibility.

4.4.3. Agents with Memory

Several authors have also demonstrated the use of IA concepts associated with MAS
to provide residents with improved comfort and energy performance. Using the adaptive
factor of the ability to learn the characteristics of the house, the authors demonstrated
in [168] energy savings between 7.0–14.5% were achievable at home. The authors in [169]
also demonstrated that agents with educational capabilities could, in addition to providing
residents with improved comfort, improve the home’s energy performance by delivering
wasted energy. In terms of improving the comfort index for building occupants, MAS has
been shown to be able to continually identify and learn user patterns over time and make
necessary adjustments to building controls without residents’ interference.



Sensors 2022, 22, 8099 24 of 40

4.5. Energy Trading and Stock Exchange in Smart Grid

The electrical grids of the next generation will be SGs. They will enable homes,
communities, and businesses to collect renewable energy and store it in a local battery,
which can function as a microgeneration unit [170]. Customers may also be provided
with dynamic electricity pricing, in which electricity prices fluctuate hourly in response to
fluctuating energy grid demand. In a manner akin to the stock market, the end user can gain
by exchanging energy with the grid. In [171], the authors investigated profit maximization
for the end user equipped with renewable energy collecting devices and a battery, allowing
the user to buy/sell energy from/to the grid by leveraging pricing and battery storage
capacity. The program was executed without the knowledge of future energy needs, energy
pricing, or renewable energy access—simulations based on tracking validated their findings.
In [172], the authors validate the daily closing prices of 70 renewable energy stocks from
13 October 2010, to 4 March 2015. Pearson’s correlation coefficient is used to analyze PCC
stock market communications. With simultaneous time series, the PCC determines the
logarithmic exchange rate returns of stocks I and j and their similarities. To examine the
topological properties of MST, three centrality scales are used: degree and centrality. Indeed,
they concluded that First Solar Inc. And General Cable Corporation, and Trina Solar are
more important within the network. These companies play a vital role in developing the
market value of renewable energy. The authors [173] used random forests to predict the
clean energy ETF stock values. Well-known technical indicators are among the features.
Logit models predict stock prices less accurately than filling in a decision tree and random
forest. For 20-day forecasts, random tree and forest packing yields an accuracy of 85%
to 90%, while logarithm models yield 55% to 60%. Bagging trees and random forests are
simple concepts to understand and estimate to predict the prices of clean energy stocks.

4.6. Non-Intrusive Load Monitoring

Non-Intrusive Load Monitoring (NILM) is a power demand monitoring and load
determination system that employs voltage and current sensors at the power supply entry
point. This approach minimizes sensor and installation costs compared to typical gas
monitoring systems. An unbalanced three-wire 220 V/110 V physical single-phase home
distribution system model was built and implemented in this study’s integrated Intel Atom
system utilizing LabView software [174].

In [175], the authors stated that improvements in SM technology had generated
massive volumes of data, enabling new opportunities for energy services and data-driven
business models. NILM analyzes data collected from a single place to determine energy
use at the device level. Deep learning is used in most modern approaches, resulting in
models with millions of criteria. Some approaches calculate power consumption based on
the target device’s brief work reaction, while others need the complete duty cycle. In the
latter case, the split is either late (in minutes) or early (in seconds). This research suggests
a real-time NILM system for rayon. The NILM algorithm identifies the target device’s
functioning by assessing the observed active force’s transient response and calculating its
consumption in real-time. The suggested system comprises three major components: event
detection, a convolutional neural network classifier, and power estimation. The suggested
system offers promising real-time results while being highly efficient in terms of processing
and memory.

In [176], the authors stated that NILM is considered a potential topic of interest for
universities and industry. By defining consumption by device or activity level, NILM
can be used to unlock many intelligent home services and capabilities. The solution is
deep learning. Most solutions focus on a selection of devices. In this vein, they have
created a multi-class NILM system that can quickly identify any number of devices in
this state. Transient feedback for active power measurements at 100 Hz is handled by
hardware identification. The NILM system consists of adaptive threshold event detection,
a convolutional neural network, and the nearest neighbor classifier. Future additions are
selected automatically; no need for modeling or retraining.
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4.7. Load Monitoring System and Applications
4.7.1. Load Monitoring Concept

An instrument Load Monitoring (ALM) system can be designed in one of two ways,
according to ILM and NILM. ILM is a traditional method for embedding sensors in each
gadget and tracking consumption. Because of this, implementing the system is expensive.
NILM needs one smart meter for each home. The smart meter’s data is divided for each
device based on electrical properties and comes from a single source. ALM can be replaced
by NILM, incorporating load identification and disaggregation techniques [177]. Energy
shortage and climate change encourage energy efficiency laws and initiatives, particularly
among consumers. Load Monitoring (LM) offers energy management solutions with
real-time feedback. The deployment of traditional LM technology is costly and time-
consuming. Indeed, LM is an Intrusive (ILM) and Non-Intrusive Load Monitoring (NILM)
option [178]. As a result, to create an energy-efficient smart grid, smart homes must have
Load Monitoring Systems (LMS). Software-based approaches and NILM are synonymous
with hardware-based methods and ILM. ILM uses cheap home appliance gauges, but
NILM requires only one sensor point. Although ILM solutions are more expensive than
NILM, they are more effective and reliable. With sockets and other smart devices, future
systems can incorporate NILM with a single energy sensor [179]. To design an efficient
HEMS, identify and monitor primary household loads. Figure 9 shows two categories of
operational management approaches: hardware and software.
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The authors stated in [180], that the sensor measurements are used only in software-
based (smart meter) methods. Because it requires only one detection site, NILM offers a
low-cost approach. Most studies on this topic over the past five years have focused on
these alternative solutions because, compared to hardware-based technologies, they have
shown lower accuracy and higher complexity of implementation in real-world settings.
To generate device profiles, NILM algorithms sample signals collected from smart meters
using event detection. The collected signal can be rather noisy and only detect a few
electrical devices depending on the sampling frequency.

The comparison between the two approaches is shown in Table 5. Unlike ILM, NILM
uses only one sensor point (smart meter). Thus, it is not necessary to have a communication
network that allows data exchange between the sensors and the home gateway. Although
the reliability of NILM techniques remains an issue, these characteristics have enhanced
their popularity.
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Table 5. NILM vs. ILM.

Concepts and Features ILM Method NILM Method

Gathering Sensing points Several sensors -Distributed Sensing Single -Sensing-Point

Tremendous deployment Hard deployment Easy-Peasy to install

Trustworthiness and integrity High Less than ILM

Communications Yes No

In [181], the authors report that NILM demand control saves 20% of the energy.
For this reason, several methodologies have investigated the basic steps of the NILM
framework and provided a classification of device models with device signatures. Indeed,
they highlight notable use cases and outline upcoming research issues, such as how to
integrate intelligent meters and cloud computing in NILM to provide new seamless services
for smart homes and creative grids. In [182], the authors stated that home automation and
energy management is one of the best approaches to addressing sustainability challenges
in the world. Common innovative home power grid scenarios have seen the use of
NILM, including flexible load management, targeted energy efficiency improvements,
and improved load modeling. They claimed that these technological advances might make
intelligent home energy management systems easier to use. As a result, it may increase
home energy efficiency and comfort levels while reducing energy waste and ensuring fair
use of the home’s energy load.

In [183], the authors emphasized that energy monitoring is a critical component of
energy management. Tracking a building’s energy use is required before creating technical
solutions to reduce consumption. The technological case of device power management
as it relates to ILM and NILM is covered in this study. ILM employs single-point sensing,
while NILM uses distributed sensing. ILM and NILM have been used to analyze and
rank various HEM systems to help academics in the region understand current energy
management trends. The contributions of researchers and their methods in reducing the
energy consumption of the building were also emphasized. According to the authors, more
accurate identification and monitoring systems that detect as many pregnancies as possible
are needed to monitor and treat pregnancy. More needs to be done by the NILM Energy
Department. Energy users in homes, offices, and institutions need to be encouraged to
manage their energy use. In [184], the authors note that LMS is necessary in light of current
economic and environmental developments. Machine learning is used in this game to track
energy usage, equipment performance, and even human activity. This article analyzes
ILM research. Whereas NILM uses a single, smart meter as a single point of measurement,
ILM uses low-end electrical meter devices built into the housing. ILM practices and ideas
contrast with NILM. Additionally, features and machine learning methods are highlighted.
In [185], the authors note that commercial building connection loads use a third of the
energy. Researchers use smart plugs to record high-resolution consumption data to measure
plug load usage. This data also helped create independent pregnancy detection algorithms
to improve pregnancy monitoring. By reviewing the literature, they discovered several
real-world implementation concerns, including limited publicly available datasets for
commercial buildings, models trained on high-frequency data for sampling over a long
period, and data leakage issues. They recommended calculating the plug-in load using
low-frequency (1/60 Hz) powerful data. In fact, they showed that the dataset is processed
by creating active component loading intervals before using dynamic time window feature
extraction. These qualities are evaluated using precision scales. Multiple tests identify
the best online and offline models, compare time window methods, and evaluate model
performance under different sampling frequencies. The best online model achieved 93%
accuracy, using a dynamic 5-min time window. Priority will be given to energy information
panels and personal control systems.
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4.7.2. HVAC Systems

In an enclosed space, HVAC (Heating, Ventilation, and Air Conditioning) regulates
the air’s temperature, humidity, and cleanliness. It offers good indoor air quality and
thermal comfort—a mechanical engineering branch focusing on fluid mechanics, heat
transfer, and thermodynamics. As in HACR (HACR-rated circuit breakers), “refrigeration”
is occasionally added to HVAC&R or HVACR, or “ventilation” is dropped [186]. HVAC
systems come in four different categories. Although each type of HVAC system operates
slightly differently, they all ultimately contribute to maintaining clean air, specifically [187]:

• Heating And Cooling Split Systems—HCSS

The heating, ventilation, and air conditioning system includes heating and cooling
systems. The system consists of a cooling unit and a heating unit. These are popular
HVAC systems because they can be installed in most residences. Its installation requires
no external needs or components. Installation may take a long time. Some companies
recommend professional installation of partitioned systems.

• Controlling Humidity Levels—CHL

Air purifiers and humidifiers with split systems are frequently used. This keeps your
home warm no matter the weather. Dehumidifiers and humidifiers control indoor humidity
levels. Users residing in dry or humid climates can benefit from these developments.
Uncontrollable humidifiers and dehumidifiers are found in air conditioners and stoves.
You can adjust the volume in your home using a different device.

• Central Air Conditioner and Furnaces—CACF

The most common type of cooling system is central air conditioning. These units have
indoor and outdoor components. Usually, these are split systems, but they can also be
packaged systems.

• Hybrid Split System—HSS

These are similar to heating and cooling systems. Their popularity is being increased
due to their energy efficiency. These use ducts and thermostats, just like a split system. The
alternative that saves energy is different—switching from conventional to hybrid heating
systems. Gas heat pumps are noisier than electric ones. A propane, oil, or gas furnace uses
gas power.

For example, in [188], the authors stated that HVAC accounts for 39.6% of the primary
energy used in commercial buildings in the United States, representing 19% of total energy
use. It is possible to save up to 42% on HVAC and energy costs by using wireless occupancy
sensors or cameras for occupancy-based operation. Most of the solutions require build-
ing, implementing, testing, and maintaining sensors and their already existing network
structures, which is costly. They report that Sentinel provides HVAC on an occupational
basis using existing commercial building Wi-Fi infrastructure and residents’ mobile Wi-Fi-
enabled smartphones. Sentinel is adaptable and works with existing building management
systems. 86% of the time, Sentinel effectively detects workplace occupancy, with a false
negative 6.2% rate. Powerful smartphone power management leads to inaccuracies. It was
reported that Sentinel is used for powering 23% of a commercial building’s HVAC system
for a day, and the electrical energy savings from the HVAC system is 17.8%.

In [189], the authors note that by monitoring and managing the load, conduction load
management systems reduce the energy consumption of component loads in commercial
buildings. Deplorability, power-saving capabilities, and system acceptance for real-world
applications are all limiting factors. With an automatic innovative plug-loading process,
Plug-Mate reduces load power consumption and human fatigue. The proposed system
automates component loading based on users’ high-accuracy occupancy data obtained
through a non-intrusive internal localization system, component load type data extracted
through an advanced component load determination feature, and various control prefer-
ences through a customized user interface. Six control measures were tested throughout a
five-month field study in a university office to demonstrate that the system was viable. To
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achieve the perfect balance between automation and human control, each control technol-
ogy consists of different levels of component loading automation (manual, pre-scheduled,
occupancy driven). Among the four component loads evaluated, the best control method
demonstrated an average energy savings of 51.7%, resulting in a 7.5% reduction in building
energy use and a 4.7 user satisfaction score. The feasibility of building-level implementation
for upcoming real-world applications is highlighted in this work.

In [190], the authors mentioned that artificial lighting accounts for 19% of energy use
in buildings. This requires energy-efficient lighting controls. WinLight is a revolutionary
occupancy-driven lighting control system that seeks to reduce energy use while maintaining
lighting comfort. WinLight calculates proper dimming instructions for each lamp using
non-intrusive Wi-Fi occupancy data. A central lighting management system assigns these
directions to the area gate, and occupancy-driven lighting is regulated by adjusting the
brightness of each lamp. WinLight allows users to customize lighting and control nearby
lights from their phones. Within 24 weeks, we implemented WinLight in a 1500 square
meter multifunctional office in Singapore. WinLight saved 93% and 80% energy compared
to a fixed-light control scheduling and a sensor-based lighting management system while
ensuring occupant comfort.

5. Discussion and Perspectives
5.1. MAS Values

The new design must provide more advantages and value than the alternatives to
be beneficial. The MAS system stands out for its scalability, manageability, and ease of
implementation. For adding and deleting agents, MAS provides a flexible and reusable
framework [27]. Because of MAS’s decentralized problem-solving features [28], smart
buildings and varied network systems may be controlled, managed, and coordinated more
easily [29,47]. As discussed in the articles, the MAS distributed nature and improved
building operations management have been significant components of MAS that have
raised energy performance and building comfort. This strategy is ineffective and unsus-
tainable [48]. Recent debates have focused on successfully incorporating occupants into
their comfort determination [49,79]. Providing occupants with enough adaptive skills
for personal control may make them more tolerant and prefer more extended settings,
hence improving energy consumption [83]. Giving construction users more control and
engagement in day-to-day operations might be harmful if they make rash and ineffective
decisions. This may lead to disagreements between users and administrators with compet-
ing goals (optimal convenience for users and optimum operating cost for managers). As
proven by the authors in [80,82], MAS can manage these correlations to optimize construct
performance (Table 6).

The scalability, modularity, universality, and ease of reconfiguration give MAS an
advantage over competing systems, particularly when synchronizing user behavior and
building activities. Advances in information and technology have made it easier to track
user presence and behavior in buildings [86,89]. The matching of the energy demand for
convenience by agents at the level of each building (workspace, room, building) was opti-
mized using this information [88,91]. Energy: Reducing energy consumption in buildings
is essential for two reasons:

o It reduces expenses for building owners
o It promotes energy sustainability and reduces greenhouse gas emissions.

The distributed nature of the agent allows for the optimization of construction methods
at any scale [92]. The balance between energy efficiency and occupant comfort in large
commercial office buildings can only be achieved at the room level [93]. The interconnected
structure of existing building control and management systems makes achieving balance
challenging. Agent scalability, decentralization, and collaboration, as described in [98,131],
facilitate the management of dependencies and interactions between systems, subsystems,
and users, thus enhancing system efficiency and energy performance in buildings.
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5.2. Setup and Operational Challenges

The objective of the MAS was to coordinate, organize and manage construction pro-
cesses and interactions. Several kinds of research [28,160,161] have been conducted on the
SG during the past two decades to confirm the ideas of MAS. However, it did not receive
the wide adoption that its supporters had expected. Developers face several significant
challenges in developing a compelling business case for MAS based on scalability, reusabil-
ity, and ease of design [29,162]. Open data platforms, for example, require a DSM that
includes interactions across multiple build systems and loads, which must operate as a
single, interconnected system for optimal performance. The MAS coordination system
must be aware of all these systems and be able to exchange information between agents
associated with the systems and devices [163].

Open platforms are being used to assess April, Able, and Jade [164]. April is no longer
maintained or updated, hence Jade is now the default platform. The practical deployment
of multi-agent systems and the requirement for an intelligent enterprise-based information
system are hampered by scope implementation issues [86,164]. DSM has issues as a result
of combining random building occupants, building attributes, regulatory requirements and
limits, power grid dynamics, operational demands, and market constraints. Due to cost, a
lack of system support, mature technology, and logistical challenges, these systems stay at
the theoretical framework level [59]. As a guide, only a few studies have been conducted
involving complete interactions with power grids for load control based on multifactor
systems (Table 6).

Hierarchical MAS systems for demand management entail assessing demand side
resources to participate in demand reduction schemes. For demand management sys-
tems to succeed, supply and demand must communicate accurate information. Having
many components from several suppliers and making time-sensitive decisions creates
information-sharing challenges. Interconnection over multi-protocol gateways or devices
necessitates independent configuration and, in some cases, vendor-specific tools [28]. First,
multiple systems from many manufacturers need an open platform for information sharing.
Many platforms are capable of supporting proxy-based infrastructure systems [164,165]. For
proxy control and communication modeling, “Creating Intelligent Physical Agents—Agent
Communication Language” and “Knowledge Query and Processing Language” are excel-
lent protocols [166,167]. These languages have effectively enabled the use of ontology and
collaboration between software agents in many sectors. Ontology is the general knowledge
about a field familiar to many individuals and systems [16,31]. Using ontology to describe
MAS design principles and what they signify provides a subtle semantic relationship
between building system agents [100,104]. This provides the perfect amount of data from
various sources in the construction process, for example, ontology, standardization, and
data integration. The authors of most investigations recognized the language and semantics
of inter-agent communication, which varied widely. A single ontology is required to unify
the different building systems. The process’s massive volume of generated information is
the second component of the information exchange load, which may prevent information
exchange and decision-making [61]. Existing research lacks well-defined criteria for gath-
ering sufficient information for demand side management systems, which require timely
release and feedback. The agent framework aims to enable connectivity, independence, and
mobility [28]. When choosing a platform for agent design, consider accessibility, modernity,
manageability, and lightweight [28,31,100]. In order to enhance interoperability with other
technologies and systems, agent design platforms must also comply with FIPA standards.
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Table 6. Reported research and the MAS framework.

Ref.
Agents Setup and

Operational Challenges Sector

Utility Simple-Reflex- With Memory Real-Time Virtual Commercial Residential

[27] τ τ τ τ τ

[29] τ τ τ τ τ

[98,131] τ τ τ

[98] τ τ

[28,160] τ τ τ

[161] τ τ τ

[164] τ τ τ

[47] τ τ τ

[28] τ τ

[61,68] τ τ

[31,103] τ τ τ

[105,131] τ τ τ

[41,51–190] τ τ τ τ

[2,39] τ τ τ τ

[40,65–189] τ τ τ

[40,69] τ τ τ

[40,120] τ τ τ

[99,123] τ τ

[107,135] τ

[16,91–187] τ

[50,71–186] τ τ τ

[66–185] τ τ τ τ

[67–184] τ τ τ τ

[107–180] τ τ τ

[116–178] τ τ τ τ

[19,108] τ τ τ τ τ τ

[13,43] τ τ τ τ τ τ

τ: This topic has been cited in this/these reference(s).

6. Conclusions and Future Works

This study focuses on the smart grid concept in consumer services, active distribution
networks, and most smart potential network applications. In this vein, the SG was chosen
as the potential power distribution system with major components. In fact, SGs were
chosen as integrated information technology to manage and maintain electrical network
data widely. SGs aim to develop real-time communications infrastructure to meet the
growing needs of the power grid, including consumer bills, power load management,
and network management across the entire network. It is also considered an advanced
information technology due to its ability to handle large amounts of smart grid data.

Following identifying the promising potential of coordinated MAS systems, more
work should be carried out to solve their weaknesses, such as defining a common ontology
to promote interoperability and integration of MAS designs with other current design
approaches. According to the reviewed papers, demand side management has many
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applications. Open platforms and complicated information exchanges hamper the adoption
of multifactor systems. Excellent information collection should encompass all levels of
abstraction creation to decrease the problems of diverse information interchange. The MAS
concept may be divided into two categories: (a) extending classical multi-agent planning,
and (b) economic model-based research. Whether you like it or not, the class employs
classical optimization. Agents work together to achieve common aims. The second group
based its selections on MAS market value. Both ways are valid. It is necessary and should
be utilized to improve study findings. This is a finished design.

The improvements of V2H and V2G vehicle technologies will be included in our oper-
ations in the future to increase their coverage. This relates to developing an underground
network and model for domestic electric cars. To do this, a challenging algorithm will be
created and tested. Modern technology addresses energy consumption and cost concerns
immediately. The focus of our effort in the upcoming phase will be on the creation and
placement of the entire IoT platform in a lab setting.

The first notable restriction (Limitation) of our study is the quantity and nature of the
source databases, even though the selected collections are generally reliable and represen-
tative. Second, the timely nature of the survey is constrained by the rapid evolution of this
field. Thirdly, a synopsis of research efforts on various Multi-Agent System (MAS)-based
intelligent home applications may not fully represent how the applications are utilized or
influence individuals. Based on its findings, this review seeks to establish how the research
community has responded to recent events.
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Table A1. SGNM Agents Directory.

SGNM-Level A
Code No. Abbreviations SGFH-Level A

SGFH SG Fault Handling Code No Abbreviations
SGCM SG Configuration Management FHSM FH Status Management
SGPM SG Perfermance Management FHEV FH Event Collection Real Time
SGSM SG Secuirty Management FHTM FH Threshold Management
SGDM SG Device Management FHTM FH Root Analysis
SGIC SG Integration capability FHAA FH Automatic Actuations

SGCM-Level B SGPM-Level C
Code No. Abbreviations Code No Abbreviations

CMAD CM Automatics discovery PMDC PM Data Collection
CMCA CM Configuration Audit PMSG PM Statics Generation
CMTS CM Task Schuduling PMFG PM Forecast Generation
CMTM CM Time Management PMTG PM Trend Generation

SGSM-Level D SGDM-Level E
Code No. Abbreviations Code No Abbreviations

SM SM Role-Based Policies DMDDAM Device Direct for Access Management
SMUC SM User Access Control DMSDU Smart Devices Upgarding
SMUA SM User Authentication DMTA Time Alignments

SMUAU SM User authorization No code No code
SGIC-Level F

Code No. Abbreviations Code No. Abbreviations
ICMPS Multi Protocol Support No code No code
ICMVS Multi Vendor Support No code No code
ICWSS Web Services Support No code No code
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