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network that can be trained in an end-to-end fashion to rep-

resent all the relevant information about the social and scene

context. The Multi-Agent Tensor representation, illustrated

in Fig. 1, spatially aligns an encoding of the scene with en-

codings of the past trajectory of every agent in the scene,

which maintains the spatial relationships between agents

and scene features. Next, a fused Multi-Agent Tensor en-

coding is formed via a fully convolutional mapping (see Fig.

2), which naturally learns to capture the spatial locality of

interactions between multiple agents and the environment,

as in agent-centric approaches, and preserves the spatial lay-

out of all agents within the fused Multi-Agent Tensor in a

spatial-centric manner.

Our model decodes the comprehensive social and con-

textual information encoded by the fused Multi-Agent Ten-

sor into predictions of the trajectories of all agents in the

scene simultaneously. Real-world behavior is not deter-

ministic – agents can perform multiple maneuvers from the

same context (e.g. follow lane or change lane), and the same

maneuver can vary in execution in terms of velocity and ori-

entation profile. We use conditional generative adversarial

training [12, 23] to capture this uncertainty over predicted

trajectories, representing the distribution over trajectories

with a finite set of samples.

We conduct experiments on both driving datasets and

pedestrian crowd datasets. Experimental results are re-

ported on the publicly available NGSIM driving dataset [7],

Stanford Drone pedestrian crowd dataset [25], ETH-UCY

crowd datasets [21, 27], and a private recently-collected

Massachusetts driving dataset. Quantitative and qualitative

ablative experiments are conducted to show the contribu-

tion of each part of the model, and quantitative comparisons

with recent approaches show that the proposed approach

achieves state-of-the-art accuracy in both highway driving

and pedestrian trajectory prediction.

2. Related Work

Traditional methods for predicting or classifying trajec-

tories model various kinds of interactions and constraints

by hand-crafted features or cost functions [3, 5, 6, 8, 15, 22,

32]. Early methods based on inverse optimal control also

use hand-crafted cost features, and learn linear weighting

functions to rationalize trajectories which are assumed to be

generated by optimal control [18]. Recent data-driven ap-

proaches based on deep networks [1, 4, 9, 10, 13, 19, 20, 24,

28, 29, 31] outperform traditional approaches. Most of this

work focuses either on modeling constraints from the scene

context [29] or on modeling social interactions among mul-

tiple agents [1, 9, 10, 13, 31]; a smaller fraction of work

considers both aspects [4, 20, 28].

Agent-centric NN-based approaches integrate informa-

tion from multiple agents by applying aggregation func-

tions on multiple agents’ feature vectors output from re-

current units. Social LSTM [1] runs max pooling over

state vectors of nearby agents within a predefined distance

range, but does not model social interaction with far-away

agents. Social GAN [13] contributes a new pooling mech-

anism over all the agents involved in a scene globally, and

by using adversarial training to learn a stochastic, genera-

tive model of human behavior [12]. Although these kinds

of max pooling aggregation functions handle varying num-

bers of agents well, permutation invariant functions may

discard information when input agents lose their unique-

ness [28]. In contrast, Social Attention [31] and Sophie [28]

address the heterogeneity of social interaction among dif-

ferent agents by attention mechanisms [2, 30], and spatial-

temporal graphs [17]. Attention mechanisms encode which

other agents are most important to focus on when predict-

ing the trajectory of a given agent. However, attention-

based approaches are very sensitive to the number of agents

included — predicting n agents has O(n2) computational

complexity. In contrast, our approach captures multiagent

interactions while maintaining O(n) computational com-

plexity.

The agent-centric approaches discussed above do not

make use of spatial relationships among agents directly. As

an alternative, spatial-centric approaches retain the spatial

structure of agents and the scene context throughout their

representations. Convolutional Social Pooling [9] partially

retains the spatial structure of agents’ locations by forming

a social tensor which is similar to our Multi-Agent Tensor

representation, but much of this spatial information is later

aggregated by several bottleneck layers. This approach does

not encode the scene context, and only a single agent’s tra-

jectory can be predicted with each forward pass — poten-

tially too slow for real-time trajectory prediction of multiple

agents. Chauffeur Net [4] proposes a novel method to retain

the spatial structure of agents and the scene by directly op-

erating on the spatial feature map of agents and the scene

context. In this approach, agents are represented as bound-

ing boxes and do not have independent recurrent encoding

units. In contrast, our model encodes multiple agents’ fea-

ture vectors via recurrent units while simultaneously retain-

ing the spatial structure of agents and the scene throughout

the reasoning process.

Many data-driven approaches learn to predict determin-

istic future trajectories of agents by minimizing recon-

struction loss [1, 29]. However, human behavior is inher-

ently stochastic. Recent approaches address this by pre-

dicting a distribution over future trajectories by combin-

ing Variational Auto-Encoders [11] and Inverse Optimal

Control [20], or with conditional Generative Adversarial

Nets [13, 28]. GAIL-GRU [19] uses generative adversar-

ial imitation learning [16] to learn a stochastic policy that

reproduces human expert driving behavior. R2P2 [24] pro-

poses a novel cost function to encourage enhancement in
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each agent {x′′

1 , x
′′

2 , .., x
′′

n} are sliced out according to their

coordinates from the fused Multi-Agent Tensor output c′′

(Fig. 2). These agent-specific representations are then

added as a residual [14] to the original encoded agent vec-

tors to form final agent encoding vectors {x′

1 + x′′

1 , x
′

2 +
x′′

2 , ..., x
′

n+x′′

n}, which encode all the information from the

past trajectories of the agents themselves, the static scene

context, and the interaction features among multiple agents.

In this way, our approach allows each agent to get a different

social and contextual embedding focused on itself. Impor-

tantly, the model gets these embeddings for multiple agents

using shared feature extractors instead of operating n times

for n agents.

Finally, for each agent in the scene, its final vector

x′

i + x′′

i is decoded to future trajectory prediction ŷi by

LSTM decoders. Similar to the encoders for each agent, pa-

rameters are shared to guarantee that the network can gen-

eralize well when the number of agents in the scene varies.

The whole architecture is fully differentiable and can

be trained end-to-end to minimize reconstruction loss

between predicted future trajectories {ŷ1, ŷ2, .., ŷn} and

observed ground-truth future trajectories {y1, y2, .., yn}:

LL2/L1(ŷi, yi) =
∑T ′

t=1
L2/L1(ŷit, yit), where L2/L1 in-

dicates that we can use either the L2 or L1 distance between

two positions for reconstruction error.

3.3. Adversarial Loss

We use conditional generative adversarial training [12,

23] to learn a stochastic generative model that captures the

multimodal uncertainty of our predictions. GANs consist of

two networks, a generator G and a discriminator D compet-

ing against each other. G learns the distribution of the data

and generates samples, while D learns to distinguish the

feasibility or infeasibility of the generated samples. These

networks are simultaneously trained in a two player min-

max game framework.

In our setting, we use a conditional G to generate fu-

ture trajectories of multiple agents, conditioning on all the

agents’ past trajectories, the static scene context, and ran-

dom noise input to create stochastic outputs. Simultane-

ously, we use D to distinguish whether the generated tra-

jectories are real (ground truth) or fake (generated). Both G
and D share exactly the same architecture in their encoding

parts with the deterministic model presented in Section 3.1,

to reason about static scene context and interaction among

multiple agents spatially. Both G and D are initialized with

parameters from the trained deterministic model introduced

in previous subsections. Detailed architectures and losses

are described below.

Generator (G) G observes past trajectories of all the

agents in a given scene {x1, x2, .., xn}, and the static scene

context c. It jointly outputs the predicted future trajec-

tories {ŷ1, ŷ2, .., ŷn} by decoding the final agent vectors

{x′

1 + x′′

1 , x
′

2 + x′′

2 , ..., x
′

n + x′′

n} described in Section 3.2,

concatenated with Gaussian white noise vector z. The ar-

chitecture is exactly the same as presented in previous sub-

sections, except that in the deterministic model, the final

encoding for a given agent x′

i + x′′

i is concatenated with

z = 0 vector to decode into its future trajectory; while in G,

z is sampled from a Gaussian distribution.

Discriminator (D) D observes the ground truth past

trajectories of all the agents in a given static scene con-

text, combined either with all generated future trajecto-

ries {x1, x2, .., xn, ŷ1, ŷ2, ..., ŷn} or all ground truth future

trajectories {x1, x2, .., xn, y1, y2, .., yn}. It outputs real or

fake labels for the future trajectory of each agent in the

scene, such that D(y) = 0 if trajectory y is fake, and

D(y) = 1 if trajectory y is real. D shares nearly the same

architecture as presented in previous subsections, except for

the following differences: (1) Its single agent LSTM en-

coders take in past and future trajectories as input instead of

just past trajectories; (2) As a classifier, it does not use an

LSTM to decode the final agent vector x′

i + x′′

i to a future

trajectory. Instead, final agent encodings are fed into fully

connected layers to be classified as real or a fake.

Losses The adversarial loss LGAN for a given scene is:

LGAN (scene) =

min
G

max
D

∑

i∈scene

logD(yi) + log(1−D(ŷi)), (1)

where {i|i ∈ scene} is the set of agents in a given scene, yi
and ŷi denote ground truth (real) and generated (fake) tra-

jectories, respectively, and G denotes the generative MATF

network which we are optimizing.

To train the MATF GAN, we use the following losses:

Θ∗ = argmax
Θ

Escene[LGAN (scene)

+ λ
∑

i∈scene
LL2/L1(ŷi, yi)], (2)

where Θ is the set of parameters of the model and λ weights

the contribution of reconstruction loss versus adversarial

loss.

4. Experiments

In the Experiments and Results sections, we evaluate our

model on both driving datasets [7] and pedestrian crowd

datasets [21, 27, 25]. We construct different baseline vari-

ants of our models for ablative studies, and compare with

state-of-the-art alternative methods quantitatively [1, 8, 9,

13, 15, 19, 20, 28]. Qualitative results are also presented for

further analysis.

4.1. Datasets

We use the publicly available NGSIM dataset [7], a re-

cently collected Massachusetts driving dataset, the pub-
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licly available ETH-UCY datasets [21, 27], and the publicly

available Stanford Drone dataset [25] for training and eval-

uation.

NGSIM. A driving dataset consisting of trajectories of

real freeway traffic over a time span of 45 minutes. Data

were recorded by fixed bird’s-eye view cameras placed over

a 640-meter span of US101. Trajectories of all the vehi-

cles traveling through the area within this 45 minutes are

annotated. The dataset consists of various traffic conditions

(mild, moderate and congested), and contains around 6k ve-

hicles in total.

ETH-UCY. A collection of relatively small benchmark

pedestrian crowd datasets. There are 5 datasets with 4 dif-

ferent scenes, including 1.5k pedestrian trajectories in total.

We use the same cross-validation training-test split metrics

as reported in previous work [13, 28].

Stanford Drone. A large-scale pedestrian crowd dataset

consisting of 20 unique scenes in which pedestrians, bicy-

clists, skateboarders, carts, cars, and buses navigate on a

university campus. Raw, static scene context images are

provided from bird’s-eye view, and coordinates of multi-

ple agents’ trajectories are provided in pixels. These scenes

contain rich human-human interactions, often taking place

within high density crowds, and diverse physical landmarks

such as buildings and roundabouts that must be avoided. We

use the standard test set for quantitative evaluation. Some

scenes from the standard training set are not used for our

training process, but left out for qualitative evaluation in-

stead.

4.2. Baseline Models

We construct a set of baseline variants of our model for

ablative studies.

LSTM: A simple deterministic LSTM encoder-decoder.

It shares exactly the same architecture as the single-agent

LSTM encoders and decoders introduced in Section 3 for

fair comparison.

Single Agent Scene: This deterministic model shares

exactly the same architecture as introduced in Section 3,

except that it only takes in one agent history xi with scene

representation c and outputs only ŷi each time, so the model

reasons about scene-agent interaction, but is completely un-

aware of multi-agent interaction.

Multi Agent: This deterministic model has the same

details as the model described in Section 3, except that

the scene representation c is not provided as input. The

model only reasons about multi-agent interactions absent

from scene context information.

Multi Agent Scene: The deterministic model introduced

in Section 3.

GAN: The stochastic model introduced in Section 3.3.

Similar to Social GAN [13], we sample N times and report

the best trajectory in the L2 sense for fair comparison with

stochastic models, with N = 3 in Section 5.1, and N = 20
as adopted by [13] in Section 5.2.

See Supplementary Materials for implementation de-

tails.

5. Results

5.1. Driving Datasets

NGSIM Dataset. We adopt the same experimen-

tal setting and directly report the presented results as

in [9]: We split the trajectories into segments of 8s,

and all agents appearing in the 640-meter span are con-

sidered in the reasoning and prediction process. We

use 3s of trajectory history and a 5s prediction hori-

zon. LSTMs operate at 0.2s. As in [9], we report the

Root Mean Square Error in meters with respect to each

timestep t within the prediction horizon: RMSE(t) =
√

1

n

∑

i=1,2,..,n((x̂it − xit)2 + (ŷit − yit)2) , where n is

the total number of agents in the validation set, xit de-

notes the x coordinate of the i-th car in the dataset at future

timestep t, and yit the y coordinate at t.

Method 1s 2s 3s 4s 5s

CV [9] 0.73 1.78 3.13 4.78 6.68

LSTM Baseline 0.66 1.62 2.94 4.63 6.63

C-VGMM + VIM [8] 0.66 1.56 2.75 4.24 5.99

MATF Multi Agent 0.67 1.51 2.51 3.71 5.12

GAIL-GRU [19] 0.69 1.51 2.55 3.65 4.71

Social Conv [9] 0.61 1.27 2.09 3.10 4.37

MATF GAN 0.66 1.34 2.08 2.97 4.13

Table 1. Quantitative results on NGSIM [7] dataset. RMSEs in

meters with respect to each future timestep in the prediction hori-

zon are reported.

Quantitative results are shown in Table 1. Our deter-

ministic model MATF Multi Agent outperforms the state-of-

the-art deterministic model C-VGMM + VIM [8], a recent

vehicle interaction approach based on variational Gaussian

mixture models with Markov random fields. We include a

comparison with GAIL-GRU [19]; however, note that this

model has access to the future ground-truth trajectories of

other agents when predicting a given agent, while MATF

and other models do not, so these results are not fully com-

parable. We compare our stochastic model, MATF GAN,

with Social Conv [9], an approach that captures the distri-

bution over future trajectories by representing maneuvers.

MATF GAN performs at the state-of-the-art level, with par-

ticularly improved performance at longer prediction hori-

zons (3-5s). Note that Social Conv has access to auxiliary

supervision from maneuver labels, while MATF does not

require this information. Multi Agent Scene does not outper-

form Multi Agent on NGSIM, because lanes in the NGSIM
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in [13], we report the Average Displacement Error and Final

Displacement Error in pixels with respect to each time-step

t within the prediction horizon:

ADE(i) =
1

T ′

∑

j=1,2,..,T ′

√

(x̂ij − xij)2 + (ŷij − yij)2

ADE =
1

n

∑

i=1,2,..,n

ADE(i)

FDE(i) =
√

(x̂iT ′ − xiT ′ )2 + (ŷiT ′ − yiT ′ )2

FDE =
1

n

∑

i=1,2,..,n

FDE(i),

where n is the total number of agents in the validation set,

xij and yij denote the coordinates of the i-th agent in the

dataset at future timestep j, and T ′ denotes the final future

timestep. Table 2 shows our results. MATF performs the

best both in deterministic and stochastic settings.

Dataset Deterministic Stochastic

S-LSTM MATF S-GAN MATF GAN

ETH 1.09 / 2.35 1.33 / 2.49 0.81 / 1.52 1.01 / 1.75
HOTEL 0.79 / 1.76 0.51 / 0.95 0.67 / 1.37 0.43 / 0.80

UNIV 0.67 / 1.40 0.56 / 1.19 0.60 / 1.26 0.44 / 0.91

ZARA1 0.47 / 1.00 0.44 / 0.93 0.34 / 0.68 0.26 / 0.45

ZARA2 0.56 / 1.17 0.34 / 0.73 0.42 / 0.84 0.26 / 0.57

AVG 0.72 / 1.54 0.64 / 1.26 0.57 / 1.13 0.48 / 0.90

Table 2. Quantitative results on ETH-UCY datasets. ADE / FDE

of world coordinates in meters at 4.8s prediction horizon are re-

ported. Our deterministic MATF model outperforms Social LSTM,

and our stochastic MATF GAN outperforms Social GAN. We di-

rectly report the Social LSTM and Social GAN results presented

in [13].

Stanford Drone Dataset. We adopt the same exper-

imental setting and directly report the results presented

in [28]: We split the trajectories into segments of 8s, and

all agents appearing in the scene are considered in the rea-

soning and prediction process. We use 3.2s of trajectory

history and a 4.8s prediction horizon. LSTMs operate at

0.4s per timestep. As in [25], we report ADE and FDE.

Fig. 5 shows qualitative ablative results using determin-

istic models; only the full MATF Multi Agent Scene model

captures the range of behaviors in the data. Quantitative re-

sults for deterministic and stochastic models are shown in

Table 3. MATF Multi Agent Scene outperforms other deter-

ministic models in ADE, and MATF GAN performs close

to the state-of-the-art level. Among the deterministic mod-

els, Social LSTM achieves the best performance in FDE.

Among the stochastic models, Desire gains strength from

using Variational Auto-Encoders [11] and Inverse Optimal

Control to generate and rank trajectories; Sophie performs

the best with its strong attention-based social and physi-

cal reasoning modules. However, the computational com-

plexity of these approaches is higher than that of other ap-

proaches due to the iterative process of IOC and O(n2)-
based attention mechanisms, respectively. In contrast, our

model is more efficient in computational complexity with

our shared convolution operations.

Method ADE FDE Complexity

D
et

er
m

in
is

ti
c LSTM Baseline 37.35 77.13 O(n)

Social Force [15] 36.38 58.14 O(n)

Social LSTM [1] 31.19 56.97 O(n)

MATF Multi Agent 30.75 65.90 O(n)

MATF Multi Agent Scene 27.82 59.31 O(n)

S
to

ch
as

ti
c Social GAN [13] 27.25 41.44 O(n)

Desire [20] 19.25 34.05 O(nK)

Sophie [28] 16.27 29.38 O(n2)
MATF GAN 22.59 33.53 O(n)

Table 3. Quantitative results on Stanford Drone [25] dataset. Av-

erage and Final Displacement Errors are reported. Computational

complexity w.r.t agents number n in a given scene is presented.

We also analyze the factors influencing performance in

our model—particularly the impact of the spatial resolu-

tion of the Multi-Agent Tensor. Table 4 shows that there

is a U-shaped performance curve due to under/overfitting at

low/high resolution, respectively, and that the ideal resolu-

tion is 32× 32, the setting we report.

Spatial Grid Resolution 42 82 162 322 642

Deterministic ADE 32.08 32.36 30.26 27.82 29.47
FDE 68.08 66.46 62.73 59.31 62.60

Stochastic ADE 24.57 23.55 22.69 22.59 23.50
FDE 39.44 36.46 33.45 33.53 35.72

Table 4. Effect of spatial grid resolution on prediction accuracy.

Results reported on Stanford Drone Dataset of 4.8s horizon.

6. Discussion

We proposed an architecture for trajectory prediction

which models scene context constraints and social interac-

tion while retaining the spatial structure of multiple agents

and the scene, unlike the purely agent-centric approaches

more commonly used in the literature. Our motivation was

that scene context constraints and social interaction patterns

are invariant to the absolute coordinates where they take

place; these patterns only depend on the relative positions

among agents and scenes. Convolutional layers are suited

to modeling these kinds of position-invariant spatial interac-

tions by sharing parameters across agents and space, while

recent approaches like Social Pooling [1, 13] or Attention

mechanisms [31] cannot explicitly reason about spatial rela-

tionships among agents and cannot reason about these rela-

tionships at multiple spatial scales. Our Multi-Agent tensor

fusion architecture models this naturally. To the best of our

knowledge, MATF is the first approach which fuses infor-

mation from a static scene context with multiple dynamic
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Figure 5. Ablative results on Stanford Drone dataset. From left to right are results from MATF Multi Agent Scene, MATF Multi Agent,

and LSTM, all deterministic models. Blue lines show past trajectories, red ground truth, and green predicted. All results come from the

qualitative validation dataset. All the agent trajectories shown in this figure are predicted jointly via one forward pass. The closer the green

predicted trajectory is to the red ground truth future trajectory, the more accurate the prediction. Our model predicts that (1) two agents

entering the roundabout from the top will exit to the left; (2) one agent coming from the left on the pathway above the roundabout is turning

left to move toward the top of the image; (3) one agent is decelerating at the door of the building above and to the right of the roundabout.

(4) In one interesting failure case, an agent on the top-right of the roundabout is turning right to move toward the top of the image; the

model predicts the turn, but not how sharp it will be. These and various other qualitative patterns are correctly predicted by our Multi Agent

Scene model, and some of them are approximated by our Multi Agent model, but most are not predicted by the baseline LSTM model.

agent states, while retaining their spatial structure through-

out the reasoning process to bridge the gap between agent-

centric and spatial-centric trajectory prediction paradigms.

We applied our model to two different trajectory predic-

tion tasks to demonstrate its flexibility and capacity to learn

different types of behaviors, agent types, and scenarios from

data. In the vehicle prediction domain, our model achieved

state-of-the-art results at long-range prediction of vehicle

trajectories in the NGSIM dataset. Our adversarially trained

stochastic prediction model performed best relative to the

maneuver-based approach of [9], suggesting that a repre-

sentation of the distribution over maneuvers was necessary

– whether explicit as in [9] or implicit as in our work. Our

ablative studies on a Massachusetts driving dataset showed

that representations of both the scene and multiagent in-

teractions were necessary for accurate trajectory prediction

in more complex scene contexts than NGSIM (greater lane

curvature, more entrances and exits, etc.).

Our application to a state-of-the-art pedestrian

dataset [25] demonstrated comparable performance

with previously published results. Although some recent

models achieved greater accuracy than ours [28, 20], all

used dramatically different architectures; it is interesting

to find that a novel spatial-centric architecture can also

achieve a high standard of performance. Future work

should examine the factors that influence performance, and

the advantages and disadvantages of different architectures.

In future work, we plan to integrate unsupervised learn-

ing of structured maneuver representations into our frame-

work. This will increase the interpretability of our model

predictions, while enabling our model to better capture mul-

timodal structure in the distribution over agent-scene and

agent-agent interactions.

Social trajectory prediction is a complex task, which de-

pends on the ability to extract structure from the scene and

the history of agents’ joint motions. Our central goal here

has been to combine the strengths of agent- and spatial-

centric approaches to this problem. Beyond achieving more

accurate multi-agent trajectory predictions, our belief is that

the work of engineering better models will continue to yield

further insights into the structure of human interaction.
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