
Articles
https://doi.org/10.1038/s41592-022-01443-0

1Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. 2Rowland Institute at Harvard, Harvard
University, Cambridge, MA, USA. 3Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of
Technology, Cambridge, MA, USA. 4Department for Molecular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA. 5Howard
Hughes Medical Institute (HHMI), Chevy Chase, MD, USA. 6Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA,
USA. 7Department of Zoology, Stockholm University, Stockholm, Sweden. 8These authors jointly supervised this work: Mackenzie Weygandt Mathis,
Alexander Mathis. ✉e-mail: mackenzie@post.harvard.edu; alexander.mathis@epfl.ch

Advances in sensor and transmitter technology, data mining
and computational analysis herald a golden age of animal
tracking across the globe1. Computer vision is a crucial tool

for identifying, counting, as well as annotating animal behavior2–4.
For the computational analysis of fine-grained behavior, pose esti-
mation is often a crucial step and deep-learning based tools have
quickly affected neuroscience, ethology and medicine5–8.

Many experiments in biology—from parenting mice to fish
schooling—require measuring interactions among multiple indi-
viduals. Multi-animal pose estimation raises several challenges that
can leverage advances in machine vision research, and yet others
that need new solutions. In general, the process requires three steps:
pose estimation (that is, keypoint localization), assembly (that is,
the task of grouping keypoints into distinct animals) and tracking.
Each step presents different challenges.

To make pose estimation robust to interacting and occluded
animals, one should annotate frames with closely interacting
animals. To associate detected keypoints to particular individu-
als (assembly) several solutions have been proposed, such as part
affinity fields (PAFs)9, associative embeddings10,11, transformers12
and other mechanisms13,14. Tracking animals between frames
can be difficult because of appearance similarity, nonstationary
behaviors and possible occlusions. Building on human pose esti-
mation research, some packages for multi-animal pose estimation
have emerged15–17. Here, we developed top-performing network
architectures, a data-driven assembly method, engineered tai-
lored tracking methods and compared the current state-of-the-art
networks on COCO (common objects in context)18 on four
animal datasets.

Specifically, we expanded DeepLabCut19–21, an open-source tool-
box for animal pose estimation. Our contributions are as follows:

 (1) Four datasets of varying difficulty for benchmarking multi-
animal pose estimation networks.

 (2) Multi-task architecture that predicts multiple conditional ran-
dom fields and therefore can predict keypoints, limbs, as well as
animal identity.

 (3) A data-driven method for animal assembly that finds the op-
timal skeleton without user input, and that is state of the art
(compared to top-models from COCO, a standard computer
vision benchmark).

 (4) A module that casts tracking as a network flow optimization
problem, which aims to find globally optimal solutions.

 (5) Unsupervised animal ID tracking: we can predict the identity
of animals and reidentify them; this is particularly useful to link
animals across time when temporally based tracking fails (due
to intermittent occlusions).

 (6) Graphical user interfaces (GUIs) for keypoint annotation, re-
finement and semiautomatic trajectory verification.

Results
Multi-animal pose estimation can be cast as a data assignment
problem in the spatial and temporal domains. To tackle the generic
multi-animal pose-tracking scenario, we designed a practical,
almost entirely data-driven solution that breaks down the larger goal
into the smaller subtasks of: keypoint estimation, animal assembly
(spatially grouping keypoints into individuals), local (temporal)
tracking and global ‘tracklet’ stitching (Extended Data Fig. 1). We
evaluate our pipeline on four new datasets that we release with this
paper as a benchmark at https://benchmark.deeplabcut.org/.

Four diverse multi-animal datasets. We considered four
multi-animal experiments to broadly validate our approach: three

Multi-animal pose estimation, identification and
tracking with DeepLabCut
Jessy Lauer1,2, Mu Zhou1, Shaokai Ye1, William Menegas3, Steffen Schneider1, Tanmay Nath   2,
Mohammed Mostafizur Rahman4,5, Valentina Di Santo6,7, Daniel Soberanes   2, Guoping Feng   3,
Venkatesh N. Murthy   4, George Lauder6, Catherine Dulac4,5, Mackenzie Weygandt Mathis   1,2,8 ✉
and Alexander Mathis   1,2,4,8 ✉

Estimating the pose of multiple animals is a challenging computer vision problem: frequent interactions cause occlusions and
complicate the association of detected keypoints to the correct individuals, as well as having highly similar looking animals that
interact more closely than in typical multi-human scenarios. To take up this challenge, we build on DeepLabCut, an open-source
pose estimation toolbox, and provide high-performance animal assembly and tracking—features required for multi-animal sce-
narios. Furthermore, we integrate the ability to predict an animal’s identity to assist tracking (in case of occlusions). We illus-
trate the power of this framework with four datasets varying in complexity, which we release to serve as a benchmark for future
algorithm development.

NATuRe MeThoDS | VOL 19 | APRIL 2022 | 496–504 | www.nature.com/naturemethods496

mailto:mackenzie@post.harvard.edu
mailto:alexander.mathis@epfl.ch
https://benchmark.deeplabcut.org/
http://orcid.org/0000-0002-2092-7159
http://orcid.org/0000-0001-9099-7294
http://orcid.org/0000-0002-8021-277X
http://orcid.org/0000-0003-2443-4252
http://orcid.org/0000-0001-7368-4456
http://orcid.org/0000-0002-3777-2202
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-022-01443-0&domain=pdf
http://www.nature.com/naturemethods

ArticlesNaTurE METhoDS

mice in an open field, home-cage parenting in mice, pairs of mar-
mosets housed in a large enclosure and 14 fish in a flow tank.
These datasets encompass a wide range of behaviors, presenting
difficult and unique computational challenges to pose estimation
and tracking (Fig. 1a and Extended Data Fig. 2). The three mice
frequently contact and occlude one another. The parenting data-
set contained a single adult mouse with unique keypoints in close
interaction with two pups hardly distinguishable from the back-
ground or the cotton nest, which also leads to occlusions. The mar-
moset dataset comprises periods of occlusion, close interactions,

nonstationary behavior, motion blur and changes in scale.
Likewise, the fish school along all dimensions of the tank, hid-
ing each other in cluttered scenes, and occasionally leaving the
camera’s field of view. We annotated 5–15 body parts of inter-
est depending on the dataset (Fig. 1a and Extended Data Fig. 1),
in multiple frames for cross-validating the pose estimation and
assembly performance, as well as semiautomatically annotated
several videos for evaluating the tracking performance (Table 1).
For analyses, we created a random split of images plus annotations
into 70% train and 30% test sets.

Mice (n = 3, 12 bpts)a

b

c

Input

Architecture details: DLCRNet

Conv1

M
ul

ti-
fu

si
on

 a
rc

hi
te

ct
ur

e
M

ul
ti-

st
ag

e
de

co
de

r

Conv2 Conv3

Stage 1

Score map

PAF

F

Feature

Stage 2 Stage 3

F

Conv4 Conv5

Architecture

Score map Location refinement PAF Identity

Right hand Right shoulder Right limb ID 1, ID 2

3 × 3, stride = 2 conv

3 × 3, stride = 2 deconv

3 × 3, stride = 2 deconv

3 × 3, stride = 1 conv

Shortcut connection

1 × 1, stride = 1 conv

Outputs

Mouse and pups (n = 2, 5 bpts) Marmosets (n = 2, 15 bpts) Fish (n = 14, 5 bpts)

Fig. 1 | Multi-animal DeepLabCut architecture and benchmarking datasets. a, Example (cropped) images with (manual) annotations for the four
datasets: mice in an open field arena, parenting mice, pairs of marmosets and schooling fish. bpts, body parts. Scale bars, 20 pixels. b, A schematic of the
general pose estimation module. The architecture is trained to predict the keypoint locations, PAFs and animal identity. Three output layers per keypoint
predict the probability that a joint is in a particular pixel (score map) as well as shifts in relation to the discretized output map (location refinement
field). Furthermore, PAFs predict vector fields encoding the orientation of a connection between two keypoints. Example predictions are overlaid on
the corresponding (cropped) marmoset frame. The PAF for the right limb helps linking the right hand and shoulder keypoints to the correct individual.
c, Our architecture contains a multi-fusion module and a multi-stage decoder. In the multi-fusion module, we add the high-resolution representation
(conv2, conv3) to low-resolution representation (conv5). The features from conv2 and conv3 are downsampled by two and one 3 × 3 convolution layer,
respectively to match the resolution of conv5. Before concatenation the features are downsampled by a 1 × 1 convolution layer to reduce computational
costs and (spatially) upsampled by two stacked 3 × 3 deconvolution layers with stride 2. The multi-stage decoder predicts score maps and PAFs. At the
first stage, the feature map from the multi-fusion module are upsampled by a 3 × 3 deconvolution layer with stride 2, to get the score map, PAF and the
upsampled feature. In the latter stages, the predictions from the two branches (score maps and PAFs), along with the upsampled feature are concatenated
for the next stage. We applied a shortcut connection between the consecutive stage of the score map. The shown variant of DLCRNet has overall stride 2
(in general, this can be modulated from 2 to 8).

NATuRe MeThoDS | VOL 19 | APRIL 2022 | 496–504 | www.nature.com/naturemethods 497

http://www.nature.com/naturemethods

Articles NaTurE METhoDS

Multi-task convolutional architectures. We developed multi-task
convolutional neural networks (CNNs) that perform pose estima-
tion by localizing keypoints in images. This is achieved by predict-
ing score maps, which encode the probability that a keypoint occurs
at a particular location, as well as location refinement fields that
predict offsets to mitigate quantization errors due to downsampled
score maps13,19,20. Then, to assemble keypoints into the grouping that
defines an animal, we designed the networks to also predict ‘limbs’,
that is, PAFs. This task, which is achieved via additional deconvolu-
tion layers, is inspired by OpenPose9. The intuition is that in sce-
narios where multiple animals are present in the scene, learning to
predict the location and orientation of limbs will help group pairs of
keypoints belonging to an individual. Moreover, we also introduce
an output that allows for animal reidentification (reID) from visual
input directly. This is important in the event of animals that are
untrackable using temporal information alone, for example, when
exiting or re-entering the scene (Fig. 1b).

Specifically, we adapted ImageNet-pretrained ResNets22,
EfficientNets21,23, as well as developed a multi-scale architecture
(which we call DLCRNet_ms5, Fig. 1c). We then use customized
multiple parallel deconvolution layers to predict the location of
keypoints as well as what keypoints are connected in a given ani-
mal (Fig. 1b). Ground truth data of annotated keypoints are used
to calculate target score maps, location refinement maps, PAFs and
to train the network to predict those outputs for a given input image
(Fig. 1b,c) with augmentation.

Keypoint detection and part affinity performance. After an
extensive architecture search (http://maDLCopt.deeplabcut.org
and Extended Data Fig. 3), we demonstrate that the new DLCRNet

performs very well for localizing keypoints (Fig. 2a). Specifically,
we trained independent networks for each dataset, and each split,
and evaluated their performance. For each frame and keypoint, we
calculated the root-mean squared error (r.m.s.e.) between the detec-
tions and their closest ground truth neighbors. All the keypoint
detectors performed well (DLCRNet_ms5, median test errors of
2.65, 5.25, 4.59 and 2.72 pixels for the tri-mouse, parenting, marmo-
set and fish datasets, respectively, Fig. 2a). The scales of these data
are shown in Fig. 1a). To ease interpretation, errors were also nor-
malized to 33% of the tip–gill distance for the fish dataset and 33%
of the left-to-right ear distance for the remaining ones (Methods).
We found that 93.6 ± 6.9% of the predictions on the test images were
within those ranges (Fig. 2a).

After detection, keypoints need to be assigned to individuals.
We evaluated whether the learned PAFs helped decide whether two
body parts belong to the same or different animals. For example, 66
different edges can be formed from the 12 mouse body parts and
many provide high discriminability (Extended Data Fig. 4). We
indeed found that predicted limbs were powerful at distinguishing
a pair of keypoints belonging to an animal from other (incorrect)
pairs linking different mice, as measured by a high auROC (area
under the receiver operating characteristic) score (mean ± s.d.
0.99 ± 0.02).

Data-driven individual assembly performance. Any limb-based
assembly approach requires a ‘skeleton’, that is, a list of keypoint
connections that allows the algorithm to computationally infer
which body parts belong together. Naturally, there has to be a path
within this skeleton connecting any two body parts, otherwise the
body parts cannot be grouped into one animal. Given the combina-
torial nature of skeletons, how should they be designed? We circum-
vented the need for arbitrary, hand-crafted skeletons by developing
a method that is agnostic to an animal’s morphology and does not
require any user input.

We devised a data-driven method where the network is first
trained to predict all graph edges and the least discriminative edges
(for deciding body part ownership) are not used at test time to deter-
mine the optimal skeleton. We found that this approach yields skel-
etons with fewer errors (unconnected body parts and with higher
purity, Fig. 2b,c) and it improves performance. Crucially, it means
users do not need to design any skeletons. Our data-driven method
(with DLCRNet_ms5) outperforms the naive (baseline) method,
enhances ‘purity of the assembly’: that is, the fraction of key-
points that were grouped correctly per individual (Supplementary
Table 1), and reduces the number of missing keypoints
(Supplementary Table 2). Comparisons revealed significantly
higher assembly purity with automatic skeleton pruning versus a
naive skeleton definition at most graph sizes, with respective gains
of up to 3.0, 2.0 and 2.4 percentage points in the tri-mouse (two-way

Table 1 | Multi-animal pose estimation dataset characteristics

Feature Mouse Pups Marmosets Fish

Labeled frames 161 542 7,600 100

Keypoints 12 5 (+12) 15 5

Individuals 3 2 (+1) 2 14

GT identity No No Yes No

Annotated video
frames

11,645 2,670 15,000 1,100

Total duration (s) 385 180 600 36

Number of labeled training frames, keypoints and individuals. Keypoint number in brackets relate
to the unique animal in the frame, and unique individual in brackets is noted, that is, one parenting
mouse. Animal identity was only annotated for the marmosets. For tracking, separate videos are
used and the total number of densely human-annotated video frames (and their combined duration
in seconds) is also indicated.

Fig. 2 | Multi-animal DeepLabCut keypoint detection and whole-body assembly performance. a, Distribution of keypoint prediction error for DLCRNet_
ms5 with stride 8 (70% train and 30% test split). Violin plots display train (top) and test (bottom) errors. Vertical dotted lines are the first, second and
third quartiles. Median test errors were 2.69, 5.62, 4.65 and 2.80 pixels for the illustrated datasets, in order. Gray numbers indicate PCK. Only the first
five keypoints of the parenting dataset belong to the pups; the 12 others are keypoints of the adult mouse. b, Illustration of our data-driven skeleton
selection algorithm. Mouse cartoon adapted with permission from ref. 29 under a Creative Commons licence (https://creativecommons.org/licenses/
by/4.0/). c, Animal assembly quality as a function of part affinity graph (skeleton) size for baseline (user-defined) versus data-driven skeleton definitions.
The top row displays the fraction of keypoints left unconnected after assembly, whereas the bottom row designates the accuracy of their grouping into
distinct animals. The colored dots mark statistically significant interactions (two-way, repeated-measures ANOVA; see Supplementary Tables 1–4 for full
statistics). Light red vertical bars highlight the graph automatically selected. d, mAP as a function of graph size. Shown on test data held out from 70%
train and 30% test splits. The associative embedding method does not rely on a graph. The performance of MMPose’s implementation of ResNet-AE and
HRNet-AE bottom-up variants is shown for comparison against our multi-stage architecture DLCRNet_ms5, here called Baseline. Data-driven is Baseline
plus calibration method (one-way ANOVA show significant effects of the model: P values, tri-mouse 8.8 × 10−8, pups 6.5 × 10−13, marmosets 3.8 × 10−11, fish
4.0 × 10−12). e, Marmoset ID–Example test image together with overlaid animal identity prediction accuracy per keypoint averaged over all test images and
test splits. With ResNet50_stride8, accuracy peaks at 99.2% for keypoints near the head and drops to only 95.1% for more distal parts. In the lower panel,
plus signs denote individual splits, circles show the averages.

NATuRe MeThoDS | VOL 19 | APRIL 2022 | 496–504 | www.nature.com/naturemethods498

http://maDLCopt.deeplabcut.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturemethods

ArticlesNaTurE METhoDS

a b

c

d

e

Snout

Snout

Leftear

Leftear

Rightear

Rightear

Shoulder

Shoulder

Spine1

Spine1

Spine4

Spine4

Spine2

Spine2

Spine3

Spine3

Tailbase

Tailbase

Tail1

Tail1

Tail2

Tail2

Tailend

0.4

0.6

U
nc

on
ne

ct
ed

 b
od

y
pa

rt
s

(%
)

P
ur

ity
 (

%
)

m
A

P

92

94

96

98

10

8

6

4

2

0

100

0.8

Tailend
Bottom = test
Top = train

0 0 20 20 100010

r.m.s.e. (pixels) r.m.s.e. (pixels) r.m.s.e. (pixels) r.m.s.e. (pixels)

0.904 5 6 7 8 9 1014 34 54 74 94

14 34 54 74 9411 23 35 47 59

11 23 35 47 59 4 5 6 7 8 9 10
Graph sizeGraph size

4 5 6 7 8 9 10
Graph sizeGraph sizeGraph size

4 5 6 7 8 9 10

Baseline

Baseline

mAP perfomance of DLCRNet versus HNRet, ResNet-AE

Animal assembly performance with DLCRNet

Data-driven

Data-driven
With calibration

ResNet-AE
HRNet-AE

Graph size

Graph size Graph size
0.95 1.00

Accuracy

End1

Interm2

Interm1

Interm3

1.00 1.00 1.00 1.00

Automatic
skeleton selection

Naive skeleton

Fully connected

Data-driven
pruning

Individual identification performance

Camera

H
om

e
ca

ge

1.00
1.00

1.00

1.00

1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00

1.00

0.99

0.99

0.99

0.99

0.98

0.98

0.97

0.99

1.00

A
ccuracy0.97

0.96

0.95

Train
Test

Front
Right
Middle
Left
fl1
bl1
fr1
br1

Body1
Body2
Body3

fl2
fl2
br2
bl2

0.98

0.97

0.97

0.98

0.92

1.00

1.00
1.00
1.00

1.00

1.00

1.00

1.00

1.00
0.97

1.00

1.00

1.00 1.00
1.00

1.00
1.00

1.00

1.00
1.00

1.00

1.00

1.00

1.00
0.97

0.94

0.94

0.94

0.97

0.97

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.98

0.98

0.98

0.98

0.96

0.96

0.96

0.96

0.97 0.97

0.91

1.00

1.00
1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.84
1.00

1.00

1.00

1.00
0.95

0.95

0.92

1.00

B
od

y
pa

rt
 d

et
ec

to
r

pe
rf

or
m

an
ce

End2

Front Tip

Gill

Peduncle

Caudaltip

Dfintip

Right

Middle

Left

fl1

fr1

bl1

br1

bl2

br2

fl2

fr2

Body1

Body2

Body3

fr2

fl2

fl1

fr1

Middle

Body2

bl2

Body3

br2br1

bl1

Body1

Front

Left

Right

NATuRe MeThoDS | VOL 19 | APRIL 2022 | 496–504 | www.nature.com/naturemethods 499

http://www.nature.com/naturemethods

Articles NaTurE METhoDS

repeated measure analyses of variance (ANOVA): graph size 23;
P < 0.001), marmosets (graph size 34, P = 0.002) and fish datasets
(graph size 6, P < 0.001) (Fig. 2b,c). Furthermore, to accommo-
date diverse body plans and annotated keypoints for different ani-
mals and experiments, our inference algorithm works for arbitrary
graphs. Animal assembly achieves at least 400 frames per second in
scenes with 14 animals, and up to 2,000 for small skeletons in two or
three animals (Extended Data Fig. 5).

To additionally benchmark our network and assembly contribu-
tions, we compared them to methods that achieve state-of-the art
performance on COCO18, a challenging, large-scale multi-human
pose estimation benchmark. Specifically, we considered HRNet-AE
and ResNet-AE. Our models performed significantly better than
these state-of-the-art methods (one-way ANOVA: P values,
tri-mouse 8.8 × 10−08, pups 6.5 × 10−13, marmosets 3.8 × 10−11, fish
4.0 × 10−12, Fig. 2d) on all four animal benchmark datasets. Last,
while the datasets themselves contain diverse animal behaviors, and
only 70% is used to train, as an additional test of generalization we
used ten held-out marmoset videos that came from different cages
(Extended Data Fig. 6). We find in this challenging test there is a
roughly 0.25 drop in mean average precision (mAP). It is known
that simply adding (a fraction of the new) data into the training
set alleviates such drops (reviewed in ref. 7).

We reasoned the strong multi-animal performance is due to the
assembly algorithm based on PAFs. Therefore, we tested the perfor-
mance of the network in a top-down setting with and without PAFs,
that is, by considering images that are cropped around each animal
(bounding boxes, Extended Data Fig. 7a). We found that our assem-
bly algorithm significantly improves mAP performance (PAF ver-
sus without PAF one-way ANOVA P, tri-mouse 4.656 × 10−11, pups
3.62 × 10−12, marmosets 1.33 × 10−28, fish 1.645 × 10−6, Extended
Data Fig. 7b,c). Collectively, the direct assembly to tracking (that
is, the bottom-up method) is likely the optimal approach for most
users as it reasons over the whole image.

Predicting animal identity from images. Animals sometimes dif-
fer visually, for example due to distinct coat patterns, because they
are marked, or carry different instruments (such as an integrated
microscope24). To allow our method to take advantage of such sce-
narios and improve tracking later on, we developed a network head
that learns the identity (ID) of animals with the same CNN back-
bone. To benchmark the ID output, we focused on the marmoset
data, where (for each pair) one marmoset had light blue dye applied
to its tufts. ID prediction accuracy on the test images ranged from
>0.99 for the keypoints closest to the marmoset’s head to 0.95 for
more distal keypoints (Fig. 2e and Extended Data Fig. 3c). Thus,
DeepLabCut can reID the animal on a per-body-part basis (Fig. 2e).

Tracking of individuals. Once keypoints are assembled into indi-
vidual animals, the next step is to link them temporally. To measure
performance in the next steps, entire videos (one from each dataset)
are manually refined to form ground truth sequences (Fig. 3a and
Table 1). Reasoning over the whole video for tracking individuals is
not only computationally costly, but also unnecessary. For instance,

when animals are far apart, it is straightforward to link each one cor-
rectly across time. Thus, we devised a divide-and-conquer strategy.
We use a simple, online tracking approach to form reliable ‘tracklets’
from detected animals in adjacent frames. Difficult cases (for exam-
ple, when animals are closely interacting or after occlusion) often
interrupt the tracklets, causing ambiguous fragments that cannot
be easily temporally linked. We address this crucial issue post hoc
by optimally stitching tracklets using multiple spatio-temporal cues.

Assembled animals are linked across frames to form tracklets,
that is, fragments of continuous trajectories. This task entails the
propagation of an animal’s identity in time by finding the optimal
association between an animal and its predicted location in the
adjacent frame (Fig. 3b–d). The prediction is made by a lightweight
‘tracker’. In particular, we implemented a box and an ellipse tracker.
Whereas the former is standard in the object tracking literature (for
example, refs. 25,26), we recognized the sensitivity of its formulation
to outlier detections (as it is mostly used for pedestrian tracking).
Thus, the ellipse tracker was developed to provide a finer parametri-
zation of an animal’s geometry. Overall, the ellipse tracker behaves
better than the box tracker, reaching near-perfect multi-object
tracking accuracy (MOTA) (0.78 versus 0.97) and producing on
average 92% less false negatives; no differences in the switch rate
was observed (Fig. 3e).

Because of occlusions, dissimilarity between an animal and its
predicted state, or other challenging yet common multi-animal
tracking issues, tracklets can be interrupted and therefore rarely
form complete tracks across a video. The remaining challenge
therefore is to stitch these sparse tracklets so as to guarantee con-
tinuity and kinematic consistency. Our approach is to cast this task
as a global minimization problem, where connecting two candidate
tracklets incurs a cost inversely proportional to the likelihood that
they belong to the same track. Advantageously, the problem can
now be elegantly solved using optimization techniques on graph
and affinity models (Fig. 3c,d).

Compared to only local tracking, we find that our stitching
method reduces switches, even in the challenging fish and mar-
mosets datasets (average reduction compared to local ellipse track-
ing, 63%; Fig. 3e). To handle a wide range of scenarios, multiple
cost functions are devised to model the affinity between a pair of
tracklets based on their shape, proximity, motion, dynamics and/or
appearance (below and Supplementary Videos 1–4). Last, to allow
users to understand the error rate and correct errors, we developed
a Refine Tracklets GUI. Here, we leverage confidence of the tracking
to flag sequences of frames that might need attention, namely when
swaps might occur (Extended Data Fig. 1b).

Other recent methods for tracking animals have been proposed,
such as idtracker.ai27. While this tool does not perform pose estima-
tion, we wanted to specifically compare tracking performance. We
attempted to use the easiest (tri-mouse) and marked-animal (mar-
moset) datasets with idtracker.ai. After an extensive grid search for
hyperparameters, only the tri-mouse mice dataset could be reliably
tracked, yet the performance of our method was significantly better
(one-sided, one-sample t-tests indicated that idtracker performed
significantly worse than DeepLabCut in both datasets (tri-mouse

Fig. 3 | Linking whole-body assemblies across time. a, Ground truth and reconstructed animal tracks (with DLCRNet and ellipse tracking), together
with video frames illustrating representative scene challenges. b, The identities of animals detected in a frame are propagated across frames using local
matching between detections and trackers (with costs, ‘motion’ for all datsets and ‘distance’ for fish). c, Tracklets are represented as nodes of a graph,
whose edges encode the likelihood that the connected pair of tracklet belongs to the same track. d, Four cost functions modeling the affinity between
tracklets are implemented: shape similarity using the undirected Hausdorff distance between finite sets of keypoints (i); spatial proximity in Euclidean
space (ii); motion affinity using bidirectional prediction of a tracklet’s location (iii); and dynamic similarity via Hankelets and time-delay embedding of
a tracklet’s centroid (iv). e, Tracklet stitching performance versus box and ellipse tracker baselines (arrows indicate if higher or lower number is better),
using MOTA, as well as rates of false negative (FN), false positives (FP) and identity switch expressed in events per animal and per sequence of 100
frames. Inset shows that incorporating appearance/identity prediction in the stitching further reduces the number of switches and improves full track
reconstruction. Total number of frames: tri-mouse, 2,330; parenting, 2,670; marmosets, 15,000 and fish, 601.

NATuRe MeThoDS | VOL 19 | APRIL 2022 | 496–504 | www.nature.com/naturemethods500

http://www.nature.com/naturemethods

ArticlesNaTurE METhoDS
G

ro
un

d
tr

ut
h

D
LC

R
N

et

1,000
1,500

2,000

Time500

a

b

c

e

d

0

1,000
1,500

2,000

Time500
0

x

y

x

y y y

x x

y

1,000
1,500

2,000
2,500

Time
Time Time500

0

1,000
1,500

2,000
2,500

Time500
0

0 0
100

200
300

400
500

600

2,000
4,000

6,000
8,000

10,000
12,000

14,000

Time
0

2,000
4,000

6,000
8,000

10,000
12,000

14,000

y

x

y

x x

Time

0
100

200
300

400
500

600

y

x

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

0.052.0
1.0

0.1

0

0.05

0

0.1

0

2

1

0

2

1

0

5

0

15
10

2

0

40

20
5

0

0.05

0

0.4

0.2

0

1.0

0.5

0

–0.05

0

Creation
if detections for
min hits frames

Disappearance
if no detections for
max age frames

Box/ellipse trackers
association

if overlap > threshold

Tracker

Unit capacity

Source

MOTA False positives False negatives()

Unit
demand

Unit
supply

Sink Head

u, ω

Tail

i

iii

ii

iv

x1 x2

x2 x3

xm xm + 1

xn

xn + 1

xm + n – 1

Cost c
Undirected Hausdorff distance

Euclidean distance

Head

Hankelets

Tail

Detection

Tracklet-based global stitching

Online, local
identity propagation

Base trackers

Affinity costs

Box

Shape
Distance
Motion
Dynamics

Ellipse

0.2

With ID

0.1

0

E
ve

nt
s

pe
r

an
im

al
pe

r
10

0
fr

am
es

E
ve

nt
s

pe
r

an
im

al
pe

r
10

0
fr

am
es

E
ve

nt
s

pe
r

an
im

al
pe

r
10

0
fr

am
es

Fr
ac

tio
n

() () Switches ()

NATuRe MeThoDS | VOL 19 | APRIL 2022 | 496–504 | www.nature.com/naturemethods 501

http://www.nature.com/naturemethods

Articles NaTurE METhoDS

t = −11.03, P = 0.0008, d = 5.52; marmosets t = −8.43, P = 0.0018,
d = 4.22: Supplementary Video 5 and Extended Data Fig. 8).

Note, for keypoint selection we remain fully agnostic to the
user-defined inputs, giving the user freedom over what keypoints ulti-
mately serve their research, but we do guide the user by showing them
how such decisions could affect performance (Extended Data Fig. 9).

Leveraging animal ID and reID in tracking. When animals can
disappear from the field of view, they cannot be tracked by temporal
association alone and appearance cues are necessary. Indeed, for the
marmosets, incorporating visual appearance learned in a supervised
fashion, further reduced the number of switches by 26% (Fig. 3e).
Additionally, we next considered the case with animals that are not
clearly distinguishable to the human annotator, thus no ground
truth can be easily provided. To tackle this challenge, we introduce
an unsupervised method way based on transformers to learn animal
ID via metric learning (Fig. 4a–c and Methods). This provides up
to a 10% boost in MOTA performance in the very challenging fish
data, particularly in difficult sequences (Fig. 4d).

Social marmosets. Finally, we demonstrate a use-case of
multi-animal DeepLabCut by analyzing 9 h (824,568 frames) of
home-cage behavior of pairs of marmosets (Fig. 5a,b). We tracked
by ReID on a frame-by-frame basis versus only using tracklet infor-
mation. We found that the marmosets display diverse postures that
are captured by principal component analysis on egocentrically
aligned poses (Fig. 5c,d). Furthermore, we found that when the ani-
mals are close, their bodies tend to be aligned and they tend to look
in similar directions (Fig. 5e,f). Finally, we related the posture and
the spatial relationship between the animals and found a nonran-
dom distribution. For instance, marmosets tended to face the other
animal when apart (Fig. 5g,h). Thus, DeepLabCut can be used to
study complex social interactions over long timescales.

Discussion
Here we introduced a multi-animal pose estimation and tracking
system thereby extending DeepLabCut19–21. We developed and lev-
eraged more powerful CNNs (DLCRNet) that we show have strong
performance for animal pose estimation. Due to the variable body

b

d
c

a RelDTransformer: transformer-based metric learning for re ID of animals:

Tracklets

Transformer layers

Raw features
extracted

(3 keypoints, 2,048)

(Self-attention)

Anchor, positive,
negative

MLP

RelDTransformerDLCRNet + baseline tracking

Baseline TransID Baseline

y

0 100 1000
x

y

200 200
300 300400 400500 500600 600

Time Timex

Example tracking with RelDTransformer on fish:

(128 --> Triplet loss)

Trained DLC
backbone output

TransID

ReIDTransformer performance

100

95

90

85

80

Triplet accuracy (ground truth)

P
er

ce
nt

ag
e

Tra
in acc

.

Test
acc

.

Tra
in acc

.

Test
acc

.

Tra
in acc

.

Test
acc

.

Tra
in acc

.

Test
acc

.

Tra
in acc

.

Test
acc

.

Tra
in acc

.

Test
acc

.

100

95

90

P
er

ce
nt

ag
e

85

80

Triplet accuracy (local tracks)

RelDTransformerRelDTransformer

Baseline
Tracking metrics, across fish marmoset videos:

MOTA False negatives Switches

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

1.0

C
ou

un
t

C
ou

un
t

C
ou

un
t

C
ou

un
t

C
ou

un
t

C
ou

un
t

0

5

100100
95
9090

85

5
10

0 0
5

1510

50

080

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

Base
lin

e

Tra
nslD

10

0.5

0.0

False positives

Baseline

Precision GT MT FM

IDF1 IDP IDR Recall

100

50

0

100

100

95

95
90

85
80

85
80

75

50

25

100

0

5

10

0

50

0

Fig. 4 | unsupervised reID of animals. a, Schematic of the transformer architecture we adapted to take pose-tensor outputs of the DeepLabCut backbone.
We trained it with triplets sampled from tracklets and tracks. b, Performance of the ReIDTransformer method on unmarked fish, mice and marked
marmosets. Triplet accuracy (acc.) is reported for triplets sampled from ground truth (GT) tracks and local tracklets only. We used only the top 5% of the
most crowded frames, as those are the most challenging. c, Example performance on the challenging fish data. Top: fish-identity-colored tracks. Time is
given in frame number. Bottom: example frames (early versus later) from baseline or ReIDTransformer. Arrows highlight performance with ReIDTransformer:
pink arrows show misses; orange shows correct ID across frames in ReIDTransformer versus blue to orange in baseline. d, Tracking metrics on the most
crowded 5% of frames (30 frames for fish, 744 for marmosets, giving 420 fish targets and 1,488 marmoset targets); computed as described in Methods.
IDF1, ID measure, global min-cost F1 score; IDP, ID measure, global min-cost precision; IDR, ID measures: global min-cost recall; Recall, number of
detections over number of objects; Precision, number of detected objects over sum of detected and false positives; GT, number of unique objects; MT,
mostly tracked and FM, number of fragmentations.

NATuRe MeThoDS | VOL 19 | APRIL 2022 | 496–504 | www.nature.com/naturemethods502

http://www.nature.com/naturemethods

ArticlesNaTurE METhoDS

shapes of animals, we developed a data-driven way to automatically
find the best skeleton for animal assembly, and we designed fast
trackers that also reason over long timescales and are more robust
to the body plan, and outperform tailored animal tracking methods
such as idTracker.ai. Our method is flexible and not only deals with
multiple animals (with the same body plan), but also with one agent
dealing with multiple others (as with the parenting mouse, where
there are identical looking pups, but a unique adult mouse).

For animal pose and tracking, leveraging identity can be an
important tool4. We introduce ways to allow both marked ani-
mals (supervised) and unsupervised animal identity tracking. For
marked animals this means if users consistently label a known

feature across the dataset (such as the blue tufts of the 40 pairs
of marmosets included in labeled data, or consistent marker on
a mouse’s tail), they can simply input the identity ‘true’ (or check
the box in the GUI) in DeepLabCut and this trains an ID head. If
they are not marked, users could use the reID tracking method that
performs unsupervised identity estimation. Thereby, our frame-
work integrates various costs related to movement statistics and the
learned animal identity.

Open-access benchmark datasets are critical to collectively
advance tools7. Here, we open-source four datasets that pose dif-
ferent challenges. As we show, there is little room for improve-
ment on the tri-mouse data, but the schooling fish is not a solved

Turn

Extend body

a

PC1

0

0

–2

–4

2

4

6

–2 2

+0

+1

+2

Score
(std)

h.u.

h.
u.

E
xp

la
in

ed
 (

%
)

10

0

20

30

Component

20101

Egocentric postures

PCA

x

y

Time (min)

0 5 10

Upright

Extend limb

PC2

0

0

–2

–4

2

4

6

–2 2

+0

+1

+2

Score
(std)

h.
u.

h.u.

PC3

0

0

–2

–4

2

4

6

–2 2

+0

+1

+2

Score
(std)

h.u.

h.
u.

PC4

0

0

–2

–4

2

4

6

–2 2

+0

+1

+2

Score
(std)

h.u.

h.
u.

Camera

H
om

e
ca

ge

To
p-

do
w

n
vi

ew

Marmoset 1

To
p-

do
w

n
vi

ew

Marmoset 2

Posture PC1 Posture PC2 Posture PC3 Posture PC4

Side

Front

Behind

Other
animal
position

c d

b

g h

Fr
ac

tio
n

log(distance)
10010.01

Front

Behind

Near Apart

O
bs

er
va

tio
ns

∆(body angle)
π0–π

Near Apart Apart

∆(body angle)
π0–π

Head angle Head angle

π0–π

Near

π0–π

e f

Fig. 5 | Application to multi-marmoset social behaviors. a, Schematic of the marmoset recording setup. b, Example tracks, 30 min plotted from each
marmoset. Scale bars, 0.2 m. c, Example egocentric posture data, where the ‘Body2’ point is (0,0) and the angle formed by ‘Body1’ and ‘Body3’ is rotated to
0°. We performed principal component analysis on the pooled data of both marmosets for all data. d, Average postures along each principal component;
note that only one side of the distribution is represented in the image (that is, 0 to 2 instead of −2 to 2). e, Histogram of log-distance between a pair of
marmosets normalized to ear-center distance. f, Computed body angle versus observation count. g, Density plot of where another marmoset is located
relative to marmoset 1. h, Postural principal components (from d) as a function of the relative location of the other marmoset. Thereby, each point
represents the average postural component score for marmoset 1 when marmoset 2 is at that point. h.u., head units.

NATuRe MeThoDS | VOL 19 | APRIL 2022 | 496–504 | www.nature.com/naturemethods 503

http://www.nature.com/naturemethods

Articles NaTurE METhoDS

problem. Thus, while our method is fast, generally robust, and can
leverage identity of animals to enhance pose-tracking performance,
we believe the benchmark can also spur progress on how to improve
performance for occluded, similar looking animals.

We developed both bottom-up and top-down variants for
multi-animal DeepLabCut (maDLC), allowing the user an extended
selection of methods (Supplementary Note 1). While our results
suggest that the bottom-up pipeline should be the default, depend-
ing on the application, top-down approaches might be better suited.
Both classes have limitations and features (reviewed in ref. 7).

In this work, we strive to develop high-performance code that
requires limited user input yet flexibility. In the code, we provide 3D
support for multi-animal pose estimation (via multi-camera use),
plus this multi-animal variant can be integrated with our real-time
software, DeepLabCut-Live!28. Another important user input is
at the stage of tracking, where users can input how many animals
should be identified in a given video. In this paper, we test up to
14 animals, but this is not a hard upper limit. One ‘upper limit’ is
ultimately the camera resolution, as one needs to be able to localize
keypoints of animals. Thus, if animals are very small, other tracking
tools might be better suited. From pose, to optimal skeleton selec-
tion, to tracking: all of the outlined steps can be run in ten lines
of code or all from a GUI such that zero programming is required
(https://deeplabcut.github.io/DeepLabCut).

online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
s41592-022-01443-0.

Received: 23 April 2021; Accepted: 4 March 2022;
Published online: 12 April 2022

References
 1. Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking

as an eye on life and planet. Science 348, aaa2478 (2015).
 2. Schofield, D. et al. Chimpanzee face recognition from videos in the wild

using deep learning. Sci. Adv. 5, eaaw0736 (2019).
 3. Norouzzadeh, M. S. et al. Automatically identifying, counting, and describing

wild animals in camera-trap images with deep learning. Proc. Natl Acad. Sci.
USA 115, E5716–E5725 (2018).

 4. Vidal, M., Wolf, N., Rosenberg, B., Harris, B. P. & Mathis, A. Perspectives on
individual animal identification from biology and computer vision. Integr.
Comp. Biol. 61, 900–916 (2021).

 5. Datta, S. R., Anderson, D. J., Branson, K., Perona, P. & Leifer, A.
Computational neuroethology: a call to action. Neuron 104, 11–24 (2019).

 6. Mathis, M. W. & Mathis, A. Deep learning tools for the measurement
of animal behavior in neuroscience. Curr. Opin. Neurobiol. 60,
1–11 (2020).

 7. Mathis, A., Schneider, S., Lauer, J. & Mathis, M. W. A primer on motion
capture with deep learning: principles, pitfalls, and perspectives. Neuron 108,
44–65 (2020).

 8. Pereira, T. D., Shaevitz, J. W. & Murthy, M. Quantifying behavior to
understand the brain. Nat. Neurosci. 23, 1537–1549 (2020).

 9. Cao, Z., Simon, T., Wei, S.-E. & Sheikh, Y. Realtime multi-person 2D pose
estimation using part affinity fields. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition 7291–7299 (IEEE, 2017).

 10. Newell, A., Huang, Z. & Deng, J. Associative embedding: end-to-end learning
for joint detection and grouping. In Proc. 31st Conference on Neural
Information Processing Systems (eds Guyon, I. et al.) 2277–2287 (NIPS, 2017).

 11. Cheng, B. et al. Higherhrnet: scale-aware representation learning for
bottom-up human pose estimation. In Proc. IEEE/CVF Conference on
Computer Vision and Pattern Recognition 5386–5395 (IEEE, 2020).

 12. Stoffl, L., Vidal, M. & Mathis, A. End-to-end trainable multi-instance pose
estimation with transformers. Preprint at https://arxiv.org/abs/2103.12115
(2021).

 13. Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M. & Schiele, B.
DeeperCut: a deeper, stronger, and faster multi-person pose estimation model.
In Proc. European Conference on Computer Vision 34–50 (Springer, 2016).

 14. Kreiss, S., Bertoni, L. & Alahi, A. Pifpaf: composite fields for human pose
estimation. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition 11977–11986 (IEEE, 2019).

 15. Segalin, C. et al. The mouse action recognition system (MARS) software
pipeline for automated analysis of social behaviors in mice. eLife 10,
e63720 (2021).

 16. Pereira, T. D. et al. SLEAP: multi-animal pose tracking. Preprint at bioRxiv
https://doi.org/10.1101/2020.08.31.276246 (2020).

 17. Chen, Z. et al. AlphaTracker: a multi-animal tracking and behavioral analysis
tool. Preprint at bioRxiv https://doi.org/10.1101/2020.12.04.405159 (2020).

 18. Lin, T.-Y. et al. Microsoft COCO: common objects in context. In Proc.
European Conference on Computer Vision 740–755 (Springer, 2014).

 19. Mathis, A. et al. Deeplabcut: markerless pose estimation of user-defined body
parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

 20. Nath, T. et al. Using deeplabcut for 3D markerless pose estimation across
species and behaviors. Nat. Protoc. 14, 2152–2176 (2019).

 21. Mathis, A. et al. Pretraining boosts out-of-domain robustness for pose
estimation. In Proc. IEEE/CVF Winter Conference on Applications of Computer
Vision 1859–1868 (IEEE, 2021).

 22. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition 770–778 (IEEE, 2016).

 23. Tan, M. & Le, Q. EfficientNet: rethinking model scaling for convolutional
neural networks. In Proc. International Conference on Machine Learning
6105–6114 (PMLR, 2019).

 24. Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope.
Nat. Methods 8, 871–878 (2011).

 25. Bewley, A., Ge, Z., Ott, L., Ramos, F. & Upcroft, B. Simple online and
realtime tracking. In Proc. 2016 IEEE International Conference on Image
Processing (ICIP) 3464–3468 (IEEE, 2016).

 26. Bertozzi, M. et al. Pedestrian localization and tracking system with Kalman
filtering. In Proc. IEEE Intelligent Vehicles Symposium, 2004 584–589
(IEEE, 2004).

 27. Romero-Ferrero, F., Bergomi, M. G., Hinz, R. C., Heras, F. J. & de Polavieja,
G. G. idtracker.ai: tracking all individuals in small or large collectives of
unmarked animals. Nat. Methods 16, 179–182 (2019).

 28. Kane, G. A., Lopes, G., Saunders, J. L., Mathis, A. & Mathis, M. W. Real-time,
low-latency closed-loop feedback using markerless posture tracking. eLife 9,
e61909 (2020).

 29. Claudi, F. Mouse top detailed. Zenodo https://doi.org/10.5281/zenodo.3925997
(2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons license and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
© The Author(s) 2022

NATuRe MeThoDS | VOL 19 | APRIL 2022 | 496–504 | www.nature.com/naturemethods504

https://deeplabcut.github.io/DeepLabCut
https://doi.org/10.1038/s41592-022-01443-0
https://doi.org/10.1038/s41592-022-01443-0
https://arxiv.org/abs/2103.12115
https://doi.org/10.1101/2020.08.31.276246
https://doi.org/10.1101/2020.12.04.405159
https://doi.org/10.5281/zenodo.3925997
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturemethods

ArticlesNaTurE METhoDS

Methods
Tri-mouse dataset. Three wild-type (C57BL/6J) male mice ran on a paper spool
following odor trails19. These experiments were carried out in the laboratory
of V.N. Murthy at Harvard University (temperature of housing was 20–25 °C,
humidity 20–50%). Data were recorded at 30 Hz with 640 × 480 pixels resolution
acquired with a Point Grey Firefly FMVU-03MTM-CS. One human annotator
was instructed to localize the 12 keypoints (snout, left ear, right ear, shoulder, four
spine points, tail base and three tail points) across 161 frames sampled from within
DeepLabCut using the k-means clustering approach (across eight videos). All
surgical and experimental procedures for mice were in accordance with the NIH
Guide for the Care and Use of Laboratory Animals and approved by the Harvard
Institutional Animal Care and Use Committee (IACUC).

Parenting behavior. Parenting behavior is a pup-directed behavior observed in
adult mice involving complex motor actions directed toward the benefit of the
offspring30,31. These experiments were carried out in the laboratory of C. Dulac at
Harvard University (temperature of housing was 20–25 °C, humidity 20–50%).

The behavioral assay was performed in the home-cage of single-housed adult
(age was less than 180 d old) female C57Bl6/J Mus musculus in dark (red light only)
conditions. For these videos, the adult mouse was monitored for several minutes in
the cage followed by the introduction of pup (4 d old, sex unknown) in one corner
of the cage. The behavior of the adult and pup was monitored for a duration of
15min. A video was recorded at 30 Hz using a Microsoft LifeCam camera (part no.
6CH-00001) with a resolution of 1,280 × 720 pixels or a Geovision camera (model
no. GV-BX4700-3V) also acquired at 30 frames per second (fps) at a resolution of
704 × 480 pixels. A human annotator labeled on the adult animal the same 12 body
points as in the tri-mouse dataset and five body points on the pup along its spine.
Initially only the two ends were labeled, and intermediate points were added by
interpolation and their positions was manually adjusted if necessary. Frames were
generated from across 25 videos.

Marmoset home-cage behavior. Videos of common marmosets (Callithrix
jacchus) were made in the laboratory of G. Feng at MIT. Male and female
marmoset pairs housed here (n = 50, 30 pairs, age range of 2 to 12 years) were
recorded using Kinect V2 cameras (Microsoft) with a resolution of 1,080 pixels
and frame rate of 30 Hz. After acquisition, images to be used for training the
network were manually cropped to 1,000 × 1,000 pixels or smaller. For our analysis,
we used 7,600 labeled frames from 40 different marmosets collected from three
different colonies (in different facilities, thus over 20 videos were used for dataset
generation). Each cage contains a pair of marmosets, where one marmoset had
light blue dye applied to its tufts. One human annotator labeled the 15 body points
on each animal present in the frame (frames contained either one or two animals).
All animal procedures were overseen by veterinary staff of the MIT and Broad
Institute Department of Comparative Medicine, in compliance with the National
Institutes of Health guide for the care and use of laboratory animals and approved
by the MIT and Broad Institute animal care and use committees. As a test of
out-of-domain generalization, we additionally labeled 300 frames from ten new
cages and animals. See Fig. 5 for example images and results.

We also analyzed two long-term recording sessions from a pairs of marmosets
with the DLCRNet_ms5 model, by reidentifying each marmoset in each frame with
the ID head. Overall we considered about 9 h (824,568 frames) from two different
home cages. We computed the principal components for egocentric postures as
well as illustrated their relative head and body orientations (Fig. 5). For Fig. 5e, the
distances are normalized based on the running average distance between each ear
tuft to center of head, over a second. This measurement does correlate well with
depth values in videos recorded with a depth channel (which was not done for
the example sessions). To make the postural data egocentric, we first centered the
data around ‘Body2’ (x = 0, y = 0) and then rotated it such that the line formed by
‘Body1’, ‘Body2’ and ‘Body3’ was as close to the line ‘x = 0’ as possible.

Fish schooling behavior. Schools of inland silversides (Menidia beryllina,
n = 14 individuals per school, sex unknown but likely to be equal females and
males, aged approximately 9 months) were recorded in the Lauder Laboratory
at Harvard University while swimming at 15 speeds (0.5 to 8 body lengths per
s at 0.5 body lengths per s intervals) in a flow tank with a total working section
of 28 × 28 × 40 cm as described in previous work32, at a constant temperature
(18 ± 1∘C) and salinity (33 parts per thousand), at a Reynolds number of
approximately 10,000 (based on body length). Dorsal views of steady swimming
across these speeds were recorded by high-speed video cameras (FASTCAM Mini
AX50, Photron) at 60–125 fps (feeding videos at 60 fps, swimming alone 125 fps).
The dorsal view was recorded above the swim tunnel and a floating Plexiglas panel
at the water surface prevented surface ripples from interfering with dorsal view
videos. Five keypoints were labeled (tip, gill, peduncle, dorsal fin tip, caudal tip)
and taken from five videos.

Dataset properties. All frames were labeled with the annotation GUI; depending
on the dataset, between 100 and 7,600 frames were labeled (Table 1). We illustrated
the diversity of the postures by clustering (Extended Data Fig. 2). To assess the
level of interactions, we evaluate a Proximity Index (Extended Data Fig. 2m),

whose idea is inspired by ref. 33 but its computation was adapted to keypoints. For
each individual, instead of delineating bounding boxes to determine the vicinity
of an animal we rather define a disk centered on the individual’s centroid and of
sufficiently large radius such that all of that individual’s keypoints are inscribed
within the disk; this is a less static description of the immediate space an animal
can reach. The index is then taken as the ratio between the number of keypoints
within that region that belong to other individuals and the number of keypoints of
the individual of interest (Extended Data Fig. 2m).

For each dataset we created one random split with 70% of the data used for
training and the rest for testing (unless otherwise noted). Note that identity
prediction accuracy (Fig. 2d) and tracking performance (Fig. 3e) are reported on
all three splits, and all show little variability. The data are available as a benchmark
challenge at https://benchmark.deeplabcut.org/.

Multi-task deep-learning architecture. DeepLabCut consists of keypoint
detectors, comprising a deep CNN pretrained on ImageNet as a backbone
together with multiple deconvolutional layers13,19,21. Here, as backbones we
considered Residual Networks (ResNet)22 and EfficientNets21,23. Other backbones
are integrated in the toolbox21,28 such as MobileNetV2 (ref. 34). We use a stride
of 16 for the ResNets (achieved by atrous convolution) and then upsample the
filter banks by a factor of two to predict the score maps and location refinement
fields with an overall stride of eight. Furthermore, we developed a multi-scale
architecture that upsamples from conv5 and fuses those filters with filters learned
as 1 × 1 convolutions from conv3. This bank is then upsampled by a factor of two
via deconvolution layers. This architecture thus learns from multiple scales with an
overall stride of four (including the upsampling in the decoder). We implemented
a similar architecture for EfficientNets. These architectures are called ResNet50_
strideX and (EfficientNet) bY_strideX for strides four to eight; we used ResNet50
as well as EfficientNets B0 and B7 for experiments (Extended Data Fig. 3).

We further developed a multi-scale architecture (DLCRNet_ms5) that fuses
high-resolution feature map to lower resolution feature map (Fig. 1c)—we
concatenated the feature map from conv5, the feature map learned as a 3 × 3
convolutions followed by a 1 × 1 convolutions from conv3 and the feature map
learned as 2 stacked 3 × 3 convolutions and a 1 × 1 convolutions from conv2. This
bank is then upsampled via (up to) two deconvolution layers. Depending on how
many deconvolution layers are used this architecture learns from multiple scales
with an overall stride of 2–8 (including the upsampling in the decoder). Note,
during our development phase we used 95% train and 5% test splits of the data; this
testing is reported at http://maDLCopt.deeplabcut.org and in our preprint35.

DeepLabCut creates three output layers per keypoint that encode an intensity
and a vector field. The purpose of the deconvolution layers is to upsample the
spatial information (Fig. 1b,c). Consider an input image I(x,y) with ground truth
keypoint (xk,yk) for index k. One of the output layers encodes the confidence of a
keypoint k being in a particular location (Sk(p,q)), and the other two layers encode
the (x-) and (y-) difference (in pixels of the full-sized) image between the original
location and the corresponding location in the downsampled (by the overall
stride) location (Lkx(p, q) and Lky(p, q)). For each training image the architecture is
trained end-to-end to predict those outputs. Thereby, the ground truth keypoint is
mapped into a target score map, which is 1 for pixels closer to the target (this can
be subpixel location) than radius r and 0 otherwise. We minimize the cross-entropy
loss for the score map (Sk) and the location refinement loss was calculated as a
Huber loss13,19.

To link specific keypoints within one animal, we use PAFs, which were
proposed by Cao et al.9. Each (ground truth) PAF Plx(p, q) and Ply(p, q) for limb
l connecting keypoint ki and kj places a directional unit vector at every pixel
vector within a predefined distance from the ideal line connecting two keypoints
(modulated by pafwidth). We trained DeepLabCut to also minimize the L1-loss
between the predicted and true PAFs, which is added to the other losses.

Inspired by Cao et al.9, we refine the score maps and PAFs in multiple stages.
As can be seen from Fig. 1b, at the first stage, the original image feature from the
backbone is fed into the network to predict the score map, PAF and the feature
map. The output of each branch, concatenated with the feature map is fed into the
subsequent stages. However, unlike Cao et al., we observed that simply adding
more stages can cause performance degradation. To overcome that, we introduced
shortcut connections between two consequence stages on the score map branch to
improve multiple stage prediction.

Examples for score maps, location refinement and PAFs are shown in Fig. 1b.
For training, we used the Adam optimizer36 with learning schedule (0.0001
for first 7,500 iterations then 5 × 10−5 until 12,000 iterations and then 1 × 10−5)
unless otherwise noted. We trained for 60,000–200,000 (for the marmosets)
iterations with batch size 8; this was enough to reach good performance (Fig. 2a
and Extended Data Fig. 3). During training we also augmented images by using
techniques including rotation, covering with random boxes and motion blur.
We also developed a keypoint-aware image cropping technique to occasionally
augment regions of the image that are dense in keypoints. Crop centers are
sampled applying at random one of the following two strategies: uniform sampling
over the whole image; or sampling based on keypoint density, where the probability
of a point being sampled increases in proportion to its number of neighbors
(within a radius equal to 10% of the smallest image side). Crop centers are further

NATuRe MeThoDS | www.nature.com/naturemethods

https://benchmark.deeplabcut.org/
http://maDLCopt.deeplabcut.org
http://www.nature.com/naturemethods

Articles NaTurE METhoDS

shifted along both dimensions by random amounts no greater than 40% of the crop
size—the hyperparameters can be changed by the user.

CNN-based identity prediction. For animal identification we used a classification
approach4, while also considering spatial information. To have a monolithic
solution (with just a single CNN), we simply predict in parallel the identity of
each animal from the image. For this purpose, n deconvolution layers are added
for n individuals. The network is trained to predict the summed score map for
all keypoints of that individual. At test time, we then look up which of the output
classes has the highest likelihood (for a given keypoint) and assign that identity
to the keypoint. This output is trained jointly in a multi-task configuration. We
evaluate the performance for identity prediction on the marmoset dataset (Fig. 2e).

Identity prediction can be leveraged by DeepLabCut in three different ways:
(1) for assembly, by grouping keypoints based on their predicted identity; (2) for
local, frame-by-frame tracking, using a soft-voting scheme where body parts are
regarded as individual classifiers providing an identity probability and (3) for
global stitching, by weighing down the cost of edges connecting two tracklets of
similar appearance (as in Figs. 3 and 4). These three sequential stages can thus be
made reliant on visual appearance features alone, as done with the long recordings
of marmoset behavior (Fig. 5).

Multi-animal inference. Any number of keypoints can be defined and labeled
with the toolbox; additional ones can be added later on. Based on our experience
and testing, we recommend labeling more keypoints than a subsequent analysis
might require, since it improves the part detectors19 and, more importantly, animal
assembly (Extended Data Fig. 9a).

Before decoding, score maps are smoothed with a Gaussian kernel of spread
σ = 1 to make peaks more salient37. For each keypoint one obtains the most likely
keypoint location (x*,y*) by taking the maximum: (p*,q*) = argmax(p,q)Sk(p,q) and
computing:

x∗ = p∗ · λ + λ/2 + Lkx(p∗, q∗)

y∗ = q∗ · λ + λ/2 + Lky(p∗, q∗)
(1)

with overall stride λ. If there are multiple keypoints k present then one can naturally
take the local maxima of Sk to obtain the corresponding detections. Local maxima
are identified via nonmaximum suppression with 2D max pooling of the score
maps.

Thus, one obtains putative keypoint proposals from the score maps and
location refinement fields. We then use the PAFs to assign the cost for linking two
keypoints (within a putative animal). For any pair of keypoint proposals (that are
connected via a limb as defined by the part affinity graph) we evaluate the affinity
cost by integrating along line γ connecting two proposals, normalized by the length
of γ:

∫

∥ Plx,y ∥ dγ/
∫

dγ (2)

This integral is computed by sampling. Thus, for a given part affinity graph, one
gets a (possibly) large number of detections and costs. The next step is to assemble
those detections into animals.

Data-driven PAF graph selection. To relieve the user from manually defining
connections between keypoints, we developed an entirely data-driven procedure.
Models are trained on a complete graph to learn all possible body part connections.
We tested whether randomly pruning the complete marmoset skeleton (to 25,
50 and 75% of its original size: that is, 26, 52, 78 edges or 52, 104, 156 PAFs) to
alleviate memory demands could still yield acceptable results. We found that
pruning a large graph before training to a fourth of its original size was harmful
(mAP loss of 15–20 points; Extended Data Fig. 9); at half and 75% of its size, a
performance equivalent to that of the full graph was reached at 24 edges, although
it remained about 1.5 mAP point under the maximal mAP score observed overall.
Consequently, for large skeletons, a random subgraph is expected to yield only
slightly inferior performance at a lesser computational cost.

The graph is then pruned based on edge discriminability power on the training
set. For this purpose, within- and between-animal part affinity cost distributions
(bin width 0.01) are evaluated (see Extended Data Fig. 4 for the mouse dataset).
Edges are then ranked in decreasing order of their ability to separate both
distributions—evaluated from the auROC curve. The smallest, data-driven graph
is taken as the maximum spanning tree (that is, a subgraph covering all keypoints
with the minimum possible number of edges that also maximizes part affinity
costs). For graph search following a network’s evaluation, up to nine increasingly
redundant graphs are formed by extending the minimal skeleton progressively
with strongly discriminating edges in the order determined above. By contrast,
baseline graphs are grown from a skeleton a user would naively draw, with edges
iteratively added in reversed order (that is, from least to most discriminative). The
graph jointly maximizing purity and the fraction of connected keypoints is the one
retained to carry out the animal assemblies.

Animal assembly. Animal assembly refers to the problem of assigning keypoints
to individuals. Yet, reconstructing the full pose of multiple individuals from a set of
detections is NP hard, as it amounts to solving a k-dimensional matching problem
(a generalization of bipartite matching from 2 to k disjoint subsets)9,38. To make the
task more tractable, we break the problem down into smaller matching tasks, in a
manner akin to Cao et al.9.

For each edge type in the data-driven graph defined earlier, we first pick
strong connections based on affinity costs alone. Following the identification of
all optimal pairs of keypoints, we seek unambiguous individuals by searching
this set of pairs for connected components—in graph theory, these are subsets of
keypoints all reachable from one another but that do not share connection with any
additional keypoint; consequently, only connectivity, but not spatial information, is
taken into account. Breadth-first search runs in linear time complexity, which thus
allows the rapid predetermination of unique individuals. Note that, unlike
ref. 9, redundant connections are seamlessly handled and do not require changes in
the formulation of the animal assembly. Then, remaining connections are sorted in
descending order of their affinity costs (equation (2)) and greedily linked.

 To further improve the assembly’s robustness to ambiguous connections (that
is, a connection attempting to either link keypoints belonging to two distinct
individuals or overwrite existing ones), the assembly procedure can be calibrated
by determining the prior probability of an animal’s pose as a multivariate normal
distribution over the distances between all pairs of keypoints. Mean and covariance
are estimated from the labeled data via density estimation with Gaussian kernel
and bandwidth automatically chosen according to Scott’s Rule. A skeleton is then
only grown if the candidate connection reduces the Mahalanobis distance between
the resulting configuration and the prior (referred to as with calibration in Fig. 2c).
Last, our assembly’s implementation is fully parallelized to benefit greatly from
multiple processors (Extended Data Fig. 5).

Optionally (and only when analyzing videos), affinity costs between body parts
can be weighted so as to prioritize strong connections that were preferentially
selected in the past frames. To this end, and inspired by ref. 39, we compute a
temporal coherence cost as follows: 1j

∑j
i=1 e−γΔt∥c−cn∥2

, where γ controls the
influence of distant frames (and is set to 0.01 by default), c and cn are the current
connection and its closest neighbor in the relevant past frame and Δt is the
temporal gap separating these frames.

Top-down pose estimation. In general, top-down pose estimation is characterized
by two stages that require an object detector and a single animal pose estimation
model7. This pipeline requires bounding box annotations (which can come from
many different algorithms). Here, bounding boxes were determined from ground
truth keypoint coordinates. If a box’s aspect ratio was lower than 4:1, its smallest
side was extended by 10 pixels. Box bounds were further enlarged by 25 pixels
to make sure the bounding boxes covered an animal’s entire body. We pad the
cropped images to a square and then resize them to the original size (400 × 400) to
keep the aspect ratio constant. Second, we retrain a model (either with or without
PAFs) on training images cropped by these bounding boxes. For inference, we
retain the best prediction per bounding box, as decided by detection confidence
for the model without PAFs and with highest assembly score for the model with
PAF. Finally, for evaluation, we map coordinates of our final predictions back to the
original images.

Detection performance and evaluation. To compare the human annotations
with the model predictions we used the Euclidean distance to the closest predicted
keypoint (r.m.s.e.) calculated per keypoint. Depending on the context, this metric
is shown for a specific keypoint, averaged over all keypoints or averaged over
a set of train or test images (Fig. 2a and Extended Data Fig. 3). Nonetheless,
unnormalized pixel errors may be difficult to interpret in certain scenarios; for
example, marmosets dramatically vary in size as they leap from the top to the
bottom of the cage. Thus, we also calculated the percentage of correct keypoints
(PCK) metric21,40; that is, the fraction of predicted keypoints that fall within a
threshold distance from the location of the ground truth detection. PCK was
computed in relation to a third of the tip–gill distance for the fish dataset, and a
third of the left-right ear distance for the remaining ones.

Animal assembly quality was evaluated in terms of mAP computed over object
keypoint similarity thresholds ranging from 0.50 to 0.95 in steps of 0.05, as is
standard in human pose literature and COCO challenges18. Keypoint standard
deviation was set to 0.1. As interpretable metrics, we also computed the number
of ground truth keypoints left unconnected (after assembly) and purity—an
additional criterion for quality that can be understood as the accuracy of the
assignment of all keypoints of a putative subset to the most frequent ground truth
animal identity within that subset41. Since pups are very hard to label consistently
(see Extended Data Fig. 7 for examples), we allow flips between symmetric pairs of
keypoints (end1 versus end2 or interm1 versus interm3, Extended Data Fig. 1) to
be acceptable detection errors when evaluating keypoint similarity.

Statistics for assessing data-driven method. Two-way, repeated-measures
ANOVA were performed using Pinetwork flow minimizationngouin (v.0.5.0)42 to
test whether graph size and assembling method (naive versus data-driven versus
calibrated assembly) had an impact on the fraction of unconnected body parts and

NATuRe MeThoDS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

ArticlesNaTurE METhoDS

assembly purity. Since sphericity was violated, the Greenhouse–Geisser correction
was applied. Provided a main effect was found, we conducted multiple post hoc
(paired, two-sided) tests adjusted with Benjamini–Hochberg false discovery rate
correction to locate pairwise differences. The Hedges’ g was calculated to report
effect sizes between sets of observations.

Comparison to state-of-the-art pose estimation models. For benchmarking, we
compared our architectures to current state-of-the-art architectures on COCO18, a
challenging, large-scale multi-human pose estimation benchmark. Specifically, we
considered HRNet11,43 as well as ResNet backbones22 with Associative Embedding10
as implemented in the MMPose toolbox (https://github.com/open-mmlab/
mmpose). We chose them as control group for their simplicity (ResNet) and
performance (HRNet). We used the bottom-up variants of both models. The
bottom-up variants leverage associative embedding as the grouping algorithms10.
In particular, the bottom-up variant of HRNet we used has mAP that is comparable
to the state-of-the-art model HigherHRNet11 in COCO (69.8 versus 70.6) for a
multiple scale test and (65.4 versus 67.7) for a single scale test.

To fairly compare, we used the same train and test split. The total training
epochs are set such that models from two groups see roughly same number of
images. The hyperparameters search was manually performed to find the optimal
hyperparameters. For a small dataset such as the tri-mouse and (largest) marmoset,
we found that the default settings for excellent performance on COCO gave
optimal accuracy except that we needed to modify the total training steps to match
DeepLabCut’s. For both the marmoset and tri-mouse datasets, the initial learning
rate was 0.0015. For the three mouse dataset, the total epochs is 3,000 epochs
and the learning rate decayed by a factor of 10 at 600 and 1,000 epochs. For the
marmoset dataset, we trained for 50 epochs and the learning rate decayed after
20 and 40 epochs. The batch size was 32 and 16 for ResNet-AE and HRNet-AE,
respectively. For smaller datasets such as tri-mouse, fish and parenting, we found
that a smaller learning rate and a smaller batch size gave better results; a total of
3,000 epochs were used. After hyper-parameter search, we set batch size to four
and initial learning rate a 0.0001, which then decayed at 1,000 and 2,000 epochs.
As within DeepLabCut, multiple scale test and flip test were not performed
(which is, however, common for COCO evaluation). For the parenting dataset,
MMPose models can only be trained on one dataset (simultaneously), which is
why these models are not trained to predict the mouse, and we only compare the
performance on the pups. Full results are shown in Fig. 2.

Benchmarking idtacker.ai. We used version idtracker.ai27 v.3, taken from commit
6b89601b; we tested it on tri-mouse and marmoset data. We report the MOTA
results in Extended Data Fig. 8. For marmoset data, reasonable parameters to
segment individual animals with the GUI could not be found (likely due to the
complex background), thus we performed a grid search for the valid minimum
intensity threshold and maximum intensity threshold, the two critical parameters,
by step 2 from range 0 to 255. Even with these efforts, we still could not get
reasonable results (Supplementary Video 5); that is, MOTA was negative.

DeepLabCut Tracking modules. Having seen that DeepLabCut provides a strong
predictor for individuals and their keypoints, detections are linked across frames
using a tracking-by-detection approach (for example, ref. 44). Thereby, we follow a
divide-and-conquer strategy for (local) tracklet generation and tracklet stitching
(Extended Data Fig. 4b,c). Specifically, we build on the Simple Online and Realtime
Tracking framework (SORT25) to generate tracklets. The inter-frame displacement
of assembled individuals is estimated via Kalman filter-based trackers. The task of
associating these location estimates to the model detections is then formulated as a
bipartite graph matching problem solved with the Hungarian algorithm, therefore
guaranteeing a one-to-one correspondence across adjacent frames. Note that the
trackers are agnostic to the type of skeleton (animal body plan), which render them
robust and computationally efficient.

Box tracker. Bounding boxes are a common and well-established representation
for object tracking. Here they are computed from the keypoint coordinates of each
assembled individual, and expanded by a margin optionally set by the user. The state
s of an individual is parametrized as s = [x, y, A, r, ẋ, ẏ, Ȧ], where x and y are the
2D coordinates of the center of the bounding box; A, its area and r, its aspect ratio,
together with their first time derivatives. Association between detected animals and
tracker hypotheses is based on the intersection-over-union measure of overlap.

Ellipse tracker. A 2σ covariance error ellipse is fitted to an individual’s detected
keypoints. The state is modeled as s = [x, y, h, w, θ, ẋ, ẏ, ḣ, ẇ, θ̇], where x and
y are the 2D coordinates of the center of the ellipse; h and w, the lengths of its
semi-axes and θ, its inclination relative to the horizontal. We anticipated that this
parametrization would better capture subtle changes in body conformation, most
apparent through changes in ellipse width and height and orientation. Moreover,
an error ellipse confers robustness to outlier keypoints (for example, a prediction
assigned to the wrong individual, which would cause the erroneous delineation
of an animal’s boundary under the above-mentioned box tracking). In place of
the ellipse overlap, the similarity cost c between detected and predicted ellipses is
efficiently computed as: c = 0.8(1 − d) + 0.2(1 − d)(cos(θd − θp)), where d is

the Euclidean distance separating the ellipse centroids normalized by the length of
the longest semi-axis.

The existence of untracked individuals in the scene is signaled by assembled
detections with a similarity cost lower than iou_threshold (set to 0.6 in our
experiments). In other words, the higher the similarity threshold, the more
conservative and accurate the frame-by-frame assignment, at the expense of shorter
and more numerous tracklets. On creation, a tracker is initialized with the required
parameters described above, and all (unobservable) velocities are set to 0. To avoid
tracking sporadic, spurious detections, a tracker is required to live for a minimum of
min_hits consecutive frames, or is otherwise deleted. Occlusions and reidentification
of individuals are handled with the free parameter max_age—the maximal number
of consecutive frames tracks can remain undetected before the tracker is considered
lost. We set both to 1 to delegate the tasks of tracklet reidentification and false
positive filtering to our TrackletStitcher, as we shall see below.

Tracklet stitching. Greedily linking individuals across frames is locally, but
not globally, optimal. An elegant and efficient approach to reconstructing full
trajectories (or tracks) from sparse tracklets is to cast the stitching task as a network
flow minimization problem45,46. Each fully reconstructed track is equivalent to
finding a flow through the graph from a source to a sink, subject to capacity
constraints and whose overall linking cost is minimal (Extended Data Fig. 4c).

Formulation. The tracklets collected after animal tracking are denoted as
{T1, ..., Tn}, and each contains a (temporally) ordered sequence of observations
and time indices. Thereby, the observations are given as vectors of body part
coordinates in pixels and likelihoods. In contrast to most approaches described
in the literature, the proposed approach requires solely spatial and temporal
information natively, while leveraging visual information (for example, animals’
identities predicted beforehand) is optional (see Fig. 3e for marmosets). This way,
tracklet stitching is agnostic to the framework poses were estimated with, and
works readily on previously collected kinematic data.

We construct a directed acyclic graph G = (V,E) using NetworkX47 to describe
the affinity between multiple tracklets, where the ith node Vi corresponds to the
ith tracklet Ti , and E is the set of edges encoding the cost entailed by linking the
two corresponding tracklets (or, in other words, the likelihood that they belong
to the same track). In our experiments, tracklets shorter than five frames were
flagged as residuals: they do not contribute to the construction of the graph and
are incorporated only after stitching. This minimal tracklet length can be changed
by a user. To drastically reduce the number of possible associations and make our
approach scale efficiently to large videos, edge construction is limited to those
tracklets that do not overlap in time (since an animal cannot occupy multiple spatial
locations at any one instant) and temporally separated by no more than a certain
number of frames. By default, this threshold is automatically taken as 1.5 × τ, where
τ is the smallest temporal gap guaranteeing that all pairs of consecutive tracklets
are connected. Alternatively, the maximal gap to consider can be programmatically
specified. The source and the sink are two auxiliary nodes that supply and demand
an amount of flow k equal to the number of tracks to form. Each node is virtually
split in half: an input with unit demand and an output with unit supply, connected
by a weightless edge. All other edges have unit capacity and a weight w calculated
from the affinity models described in the next subsection. Altogether, these
constraints ensure that all nodes are visited exactly once, which thus amounts to
a problem similar to covering G with k node-disjoint paths at the lowest cost. We
considered different affinities for linking tracklets (Fig. 4d).

Affinity models. Motion affinity. Let us consider two nonoverlapping tracklets
T1 and T2 consecutive in time. Their motion affinity is measured from the error
between the true locations of their centroids (that is, unweighted average keypoint)
and predictions made from their linear velocities. Specifically, we calculate a
tracklet’s tail and head velocities by averaging instantaneous velocities over its
three first and last data points (Fig. 4d). Assuming uniform, rectilinear motion,
the centroid location of T1 at the starting frame of T2 is estimated, and we note df
the distance between the forward prediction and the actual centroid coordinates.
The same procedure is repeated backward in time, predicting the centroid location
of T2 at the last frame of T1 knowing its tail velocity, yielding db. Motion affinity is
then taken as the average error distance.

Spatial proximity. If a pair of tracklets overlaps in time, we calculate the Euclidean
distance between their centroids averaged over their overlapping portion.
Otherwise, we evaluate the distance between a tracklet’s tail and the other’s head.

Shape similarity. Shape similarity between two tracklets is taken as the undirected
Hausdorff distance between the two sets of keypoints. Although this measure
provides only a crude approximation of the mismatch between two animals’ skeletons,
it is defined for finite sets of points of unequal size; for example, it advantageously
allows the comparison of skeletons with a different number of visible keypoints.

Dynamic similarity. To further disambiguate tracklets in the rare event that
they are spatially and temporally close, and similar in shape, we propose to use
motion dynamics in a manner akin to ref. 48. The procedure is fully data-driven,

NATuRe MeThoDS | www.nature.com/naturemethods

https://github.com/open-mmlab/mmpose
https://github.com/open-mmlab/mmpose
http://www.nature.com/naturemethods

Articles NaTurE METhoDS

and requires no a priori knowledge of the animals’ behavior. In the absence of
noise, the rank of the Hankel matrix—a matrix constructed by stacking delayed
measurements of a tracklet’s centroid—theoretically determines the dimension
of state space models; that is, it is a proxy for the complexity of the underlying
dynamics49. If two tracklets originate from the same dynamical system, a single,
low-order regressor should suffice to approximate them both. On the other hand,
tracklets belonging to different tracks would require a higher-order (that is, more
complex) model to explain their spatial evolution48. Low rank approximation of a
noisy matrix, however, is a complex problem, as the matrix then tends to be full
rank (that is, all its singular values are nonzero). For computational efficiency, we
approximate the rank of a large numbers of potentially long tracklets using singular
value decomposition via interpolative decomposition. Optimal low rank was
chosen as the rank after which eigenvalues drop by less than 1%.

Problem solution for stitching. The optimal flow solution can be found using
a min-cost flow algorithm. We use NetworkX’s capacity scaling variant of the
successive shortest augmenting path algorithm, which requires polynomial time
for the assignment problem (that is, when all nodes have unit demands and
supplies, ref. 50). Residual tracklets are then greedily added back to the newly
stitched tracks at locations that guarantee time continuity and, when there are
multiple candidates, minimize the distances to the neighboring tracklets. Note
that although residuals are typically very short, making the assignment decisions
error-prone. To improve robustness and simultaneously reduce complexity,
association hypotheses between temporally close residual tracklets are stored in
the form of small directed acyclic graphs during a preliminary forward screening
pass. An hypothesis likelihood is then scored based on pairwise tracklet spatial
overlap, and weighted longest paths are ultimately kept to locally grow longer,
more confident residuals.

This tracklet stitching process is implemented in DeepLabCut and
automatically carried out after assembly and tracking. The tracks can then also be
manually refined in a dedicated GUI (Extended Data Fig. 1).

Transformer for unsupervised ID tracking. To track unidentified animals we
turn to metric learning4 with transformers, which are state-of-the-art for reID
of humans and vehicles51. However, in contrast to ref. 51, we created a tracking
approach and wanted to make use of the task-trained CNNs, and thus require
fewer training data.

Specifically, we used the predicted coordinates of each tracklet (individual
with temporal continuality) and extract features of 2,048 dimensions from the last
layer of our (multi-task-trained) backbone network to form so called ‘keypoint
embedding’, which contains embedding of each detected keypoint for every
individual (and encode high-level visual features around the keypoint). Then we
feed this keypoint embedding to a transformer that processes these embeddings
and aggregates information globally. The transformer layers have four heads and
four blocks with dimension of 768 and residual connections between blocks. The
output of transformer layers are then followed by a multi-layer perceptron that
outputs a vector of dimension 128 (more layers, as in ref. 51, actually gave a worse
performance). We then use the output of the multi-layer perceptron to minimize
triplet loss where we treat within tracklet embedding as anchor-positive pairs
while tracklets from different individuals as anchor-negative pairs. For each test
video, we extracted 10,000 triplets from the local-tracking approach (ellipse,
to evaluate the capacity based on tracklets) and from the ground truth data (to
evaluate the capacity of the approach; as triplets from ground truth tracks already
are split into the correct number of animals). We then trained the transformer
on 90% of the triplets, and evaluated it on the rest (Fig. 4). Thus, the transformer
learns to recognize identities of each tracklet and we then use the cosine similarity
as an additional cost to our graph. For this purpose, we used the transformer to
extract 128 dimensional feature vectors (appearance embeddings) per keypoint
embedding, which we then used for tracking (below).

Tracking performance evaluation. Tracking performance was assessed with
the field standard MOTA metrics52. Namely, we used https://github.com/
cheind/py-motmetrics to compute MOTA, which evaluates a tracker’s overall
performance at detecting and tracking individuals (all possible sources of errors
considered: number of misses, of false positives and of mismatches (switches)
respectively) independently of its ability to predict an individual’s location. MOTA
is thereby the sum of three errors: the ratio of misses in the sequence, computed
over the total number of objects present in all frames, the ratio of false positives
and the ratio of mismatches52. The number of misses counts actual detections for
which there are no matching trackers. The number of fragments indicates the
number of times tracking was interrupted. The number of switches, occurring
most often when two animals pass very close to one another or if tracking
resumes with a different ID after an occlusion. In our software, remaining ID
swaps are automatically flagged in the Refine Tracklets GUI (Extended Data Fig.
1) by identifying instants at which the x and y coordinates of a pair of keypoints
simultaneously intersect each other53.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
For this study, we established four differently challenging multi-animal datasets
from ecology and neuroscience. Data collection was institutionally approved:
tri-mouse, parenting behavior, fish schooling from Harvard University IACUC and
marmosets from MIT and Broad Institute IACUC. They are available to download,
minus a small amount (30%) held out as benchmark competition data, at https://
benchmark.deeplabcut.org/, and on Zenodo54–57. Findings in this paper can be
replicated using the downloadable data and supplied code.

Code availability
Code to use this package is found at https://github.com/DeepLabCut/DeepLabCut
with a LGPL-3.0 License. Code to reproduce the figures from this work is found at
https://github.com/DeepLabCut/maDLC_NatureMethods2022.

References
 30. Wu, Z., Autry, A. E., Bergan, J. F., Watabe-Uchida, M. & Dulac, C. G. Galanin

neurons in the medial preoptic area govern parental behaviour. Nature 509,
325–330 (2014).

 31. Kohl, J. et al. Functional circuit architecture underlying parental behaviour.
Nature 556, 326–331 (2018).

 32. Di Santo, V., Blevins, E. L. & Lauder, G. V. Batoid locomotion: effects of
speed on pectoral fin deformation in the little skate, Eucoraja erinacea. J. Exp.
Biol. 220, 705–712 (2017).

 33. Li, J. et al. CrowdPose: efficient crowded scenes pose estimation and a new
benchmark. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition 10863–10872 (IEEE, 2019).

 34. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C.
MobileNetV2: inverted residuals and linear bottlenecks. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition 4510–4520
(IEEE, 2018).

 35. Lauer, J. et al. Multi-animal pose estimation and tracking with
DeepLabCut. Preprint at bioRxiv https://doi.org/10.1101/2021.04.30.442096
(2021).

 36. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint
at https://arxiv.org/abs/1412.6980 (2014).

 37. Huang, J., Zhu, Z., Guo, F. & Huang, G. The devil is in the details: delving
into unbiased data processing for human pose estimation. In Proc. IEEE/
CVF Conference on Computer Vision and Pattern Recognition 5700–5709
(IEEE, 2020).

 38. Insafutdinov, E. et al. ArtTrack: articulated multi-person tracking in the wild.
In Proc. IEEE Conference on Computer Vision and Pattern Recognition
6457–6465 (IEEE, 2017).

 39. Biggs, B., Roddick, T., Fitzgibbon, A. & Cipolla, R. Creatures great and small:
recovering the shape and motion of animals from video. In Proc. Asian
Conference on Computer Vision 3–19 (Springer, 2018).

 40. Yang, Y. & Ramanan, D. Articulated human detection with flexible
mixtures of parts. IEEE Trans. Pattern Anal. Mach. Intell. 35,
2878–2890 (2012).

 41. Huang, A. Similarity measures for text document clustering. In Proc. Sixth
New Zealand Computer Science Research Student Conference (NZCSRSC2008)
Vol. 4, 9–56 (2008).

 42. Vallat, R. Pingouin: statistics in Python. J. Open Source Softw. 3,
1026 (2018).

 43. Sun, K., Xiao, B., Liu, D. & Wang, J. Deep high-resolution representation
learning for human pose estimation. In Proc. IEEE/CVF Conference on
Computer Vision and Pattern Recognition 5693–5703 (IEEE, 2019).

 44. Girdhar, R., Gkioxari, G., Torresani, L., Paluri, M. & Tran, D. Detect-
and-track: efficient pose estimation in videos. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition 350–359 (IEEE, 2018).

 45. Emami, P., Pardalos, P. M., Elefteriadou, L. & Ranka, S. Machine learning
methods for data association in multi-object tracking. Preprint at
https://arxiv.org/abs/1802.06897 (2018).

 46. Zhang, L., Li, Y. & Nevatia, R. Global data association for multi-object
tracking using network flows. In Proc. 2008 IEEE Conference on Computer
Vision and Pattern Recognition 1–8 (IEEE, 2008).

 47. Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure,
dynamics, and function using NetworkX. In Proc. 7th Python in Science
Conference (eds Varoquaux, G. et al.) 11–15 (2008).

 48. Dicle, C., Camps, O. I. & Sznaier, M. The way they move: tracking multiple
targets with similar appearance. In Proc. IEEE International Conference on
Computer Vision 2304–2311 (IEEE, 2013).

 49. Yin, H., Zhu, Z. & Ding, F. Model order determination using the Hankel
matrix of impulse responses. Appl. Math. Lett. 24, 797–802 (2011).

 50. Ahuja, R. K., Magnanti, T. L. & Orlin, J. B. Network Flows: Theory, Algorithms,
and Applications (Prentice-Hall, 1993).

 51. He, S. et al. TransReID: transformer-based object re-identification. In Proc.
IEEE/CVF International Conference on Computer Vision (ICCV) 15013–15022
(IEEE, 2021).

NATuRe MeThoDS | www.nature.com/naturemethods

https://github.com/cheind/py-motmetrics
https://github.com/cheind/py-motmetrics
https://benchmark.deeplabcut.org/
https://benchmark.deeplabcut.org/
https://github.com/DeepLabCut/DeepLabCut
https://github.com/DeepLabCut/maDLC_NatureMethods2022
https://doi.org/10.1101/2021.04.30.442096
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1802.06897
http://www.nature.com/naturemethods

ArticlesNaTurE METhoDS

 52. Bernardin, K. & Stiefelhagen, R. Evaluating multiple object tracking
performance: the clear mot metrics. EURASIP J. Image Video Proc. 2008,
1–10 (2008).

 53. Tenenbaum, J. B., De Silva, V. & Langford, J. C. A global geometric
framework for nonlinear dimensionality reduction. Science 290,
2319–2323 (2000).

 54. Lauer, J. et al. madlc marmoset benchmark dataset—training. Zenodo
https://doi.org/10.5281/zenodo.5849371 (2022).

 55. Lauer, J. et al. madlc fish benchmark dataset—training. Zenodo
https://doi.org/10.5281/zenodo.5849286 (2022).

 56. Lauer, J. et al. madlc parenting benchmark dataset—training. Zenodo
https://doi.org/10.5281/zenodo.5851109 (2022).

 57. Lauer, J. et al. madlc tri-mouse benchmark dataset—training. Zenodo
https://doi.org/10.5281/zenodo.5851157 (2022).

Acknowledgements
Funding was provided by the Rowland Institute at Harvard University (M.W.M., T.N.,
A.M. and J.L.), the Chan Zuckerberg Initiative DAF (M.W.M., A.M. and J.L.), SNSF
(M.W.M.) and EPFL (M.W.M., A.M., S.Y., S.S. and M.Z.). Dataset collection was
funded by: Office of Naval Research grant nos. N000141410533 and N00014-15-1-
2234 (G.L.), HHMI and NIH grant no. 2R01HD082131 (M.M.R. and C.D.); NIH grant
no. 1R01NS116593-01 (M.M.R., C.D. and V.N.M.). We are grateful to M. Vidal for
converting datasets. We thank the DLC community for feedback and testing. M.W.M. is
the Bertarelli Foundation Chair of Integrative Neuroscience. The funders had no role in
the conceptualization, design, data collection, analysis, decision to publish or preparation
of the manuscript.

Author contributions
Conceptualization was done by A.M. and M.W.M. Formal analysis and code were done
by J.L., A.M. and M.W.M. New deep architectures were designed by M.Z., S.Y. and A.M.
GUIs were done by J.L., M.W.M. and T.N. Benchmark was set by S.S., M.W.M., A.M. and
J.L. Marmoset data were gathered by W.M. and G.F. Marmoset behavioral analysis was
carried out by W.M. Parenting data were gathered by M.M.R., A.M. and C.D. Tri-mouse
data were gathered by D.S., A.M. and V.N.M. Fish data were gathered by V.D.S. and G.L.
The article was written by A.M., M.W.M. and J.L. with input from all authors. M.W.M.
and A.M. co-supervised the project.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41592-022-01443-0.

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41592-022-01443-0.

Correspondence and requests for materials should be addressed to
Mackenzie Weygandt Mathis or Alexander Mathis.

Peer review information Nature Methods thanks the anonymous reviewers for their
contribution to the peer review of this work. Nina Vogt was the primary editor on this
article and managed its editorial process and peer review in collaboration with the rest of
the editorial team.

Reprints and permissions information is available at www.nature.com/reprints.

NATuRe MeThoDS | www.nature.com/naturemethods

https://doi.org/10.5281/zenodo.5849371
https://doi.org/10.5281/zenodo.5849286
https://doi.org/10.5281/zenodo.5849286
https://doi.org/10.5281/zenodo.5851109
https://doi.org/10.5281/zenodo.5851109
https://doi.org/10.5281/zenodo.5851157
https://doi.org/10.1038/s41592-022-01443-0
https://doi.org/10.1038/s41592-022-01443-0
http://www.nature.com/reprints
http://www.nature.com/naturemethods

Articles NaTurE METhoDS

Extended Data Fig. 1 | DeepLabCut 2.2 workflow. (a) Multi-animal DeepLabCut2.2+ workflow. (b) An example screenshot of the Refine Tracklet GUI. We
show the ellipse similarity score (black line), hand-noted GT switches in ID (blue), and additional frames in orange where the selected keypoint requires
further examination. (c) Body part keypoint diagrams with names on the animal skeletons (see also Extended Data Figure 2).

NATuRe MeThoDS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

ArticlesNaTurE METhoDS

Extended Data Fig. 2 | Dataset characteristics and statistics. For each datasets, normalized animal poses were clustered using K-means adapted for
missing elements, and embedded non-linearly in 2D space via Isometric mapping (Tenenbaum et al. 2000). Embeedings as well as representative poses
are shown for the tri-mouse dataset (a). Counts of labeled keypoints (b) and distribution of bounding box diagonal lengths (c). (d-l) show the same for the
other three datsets. The Proximity Index (m) reflects the crowdedness of the various dataset scenes. Statistics were computed from the ground truth test
video annotations. The mice and fish datasets are more cluttered on average than the pups and marmosets.

NATuRe MeThoDS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

Articles NaTurE METhoDS

Extended Data Fig. 3 | Performance of various DeepLabCut network architectures. (a) Overall keypoint prediction errors of ResNets-50 and the
EfficientNets backbones (B0/B7), DLCRNet at stride 4 and 8. Distribution of train and test errors are displayed as light and dark box plots, respectively.
Box plots show median, first and third quartiles, with whiskers extending past the low and high quartiles to ± 1.5 times the interquartile range. All models
were trained for 60k iterations. n=independent image samples as follows: for train∣test per dataset: 112∣49 (tri-mouse); 379∣163 (pups); 5316∣2278
(marmosets); 70∣30 (fish). (b): Images on held-out test data, where plus indicates human ground truth, and the circle indicates the model prediction
(shown for ResNet50 with stride 8). (c): Marmoset identification train-test accuracy for various backbones.

NATuRe MeThoDS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

ArticlesNaTurE METhoDS

Extended Data Fig. 4 | Discriminability of part affinity fields. Within- (pink) and between-animal (blue) affinity cost distributions for all edges of the
mouse skeleton with DLCRNet_ms5. The saturated subplots highlight the 11 edges kept to form the smallest, optimal part affinity graph (see Fig. 2b). This
is based on the separability power of an edge, that is, its ability to discriminate a connection between two keypoints effectively belonging to the same
animal from the wrong ones, and reflected by the corresponding AUC scores (listed at the top of the subplots).

NATuRe MeThoDS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

Articles NaTurE METhoDS

Extended Data Fig. 5 | Average animal assembly speed in frames per second as a function of graph size. Assembly rates vs. graphs size for the four
datasets. Improving the assembly robustness via calibration with labeled data in large graphs incurs no extra computational cost at best, and a slowdown
by 25% at worst; remarkably, it is found to accelerate assembly speed in small graphs. Relying exclusively on keypoint identity prediction results in average
speeds of around 5600 frames per second, independent of graph size. Three timing experiments were run per graph size (lighter colored dots) and
averages are shown. Note that assembling rates exclude CNN processing times. Speed benchmark was run on a workstation with an Intel(R) Core(TM)
i9-10900X CPU 3.70GHz.

NATuRe MeThoDS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

ArticlesNaTurE METhoDS

Extended Data Fig. 6 | Performance on out of domain marmoset data. (a) Example images from original dataset, and example generalization test images.
(b) Median RMSE and PCK (gray numbers) for data and network (DLCRNet) as shown in Fig. 2a. (c) same, but on the generalization test images (n=300)
(d) same but per cage as shown in a (n=30 test images per marmoset). Box plots show median, first and third quartiles, with whiskers extending past the
low and high quartiles to ± 1.5 times the interquartile range.

NATuRe MeThoDS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

Articles NaTurE METhoDS

Extended Data Fig. 7 | See next page for caption.

NATuRe MeThoDS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

ArticlesNaTurE METhoDS

Extended Data Fig. 7 | Comparison of top-down methods with and without assembly. (a) Schematics of top-down method with example images from
the pup dataset, which consists of first detecting individuals and then performing pose prediction on each bounding box (plus is human ground truth, and
the circle is bottom-up model (DLCRNet, stride 8, data-driven) predictions. (b) Performance mAP computed for top-down method with and without PAFs
and bottom-up method (baseline, data-driven) as also shown in Fig. 2d. PAF vs. w/o PAF one-way ANOVA p-values, tri-mouse: 4.656e-11, pups: 3.62e-12,
marmosets: 1.33e-28, fish: 1.645e-06). There were significant model effects across all datasets: one-way ANOVA p-values– tri-mouse: 4.13e-11, pups:
4.59e-25, marmosets: 3.04e-40, fish: 1.18e-14. (c) Example predictions within the smaller images (that is, bounded crops) from the top-down model (that
is, w/PAF), and bottom-up predictions (full images, as noted).

NATuRe MeThoDS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

Articles NaTurE METhoDS

Extended Data Fig. 8 | Performance of idtracker.ai. (a) Segmented regions (red) overlaid on example image in idtracker.ai GUI. Example how idtracker.ai
fails to segment only the mice in the full data frame for tri-mouse and (b) in marmoset dataset. (c) Using the ROI selection feature, we could find mostly
just mice. However, due to the inhomogeneous lighting, the segmentation is not error-free. (d) Result of a grid search to find optimal parameters for
idtracker with MOTA scores on the same videos as shown in Fig. 3a,e; one-sided, one-sample T-tests indicated that idtracker.ai performed significantly
worse than DeepLabCut in both datasets (tri-mouse: T=-11.03, p=0.0008, d=5.52; marmosets: T=-8.43, p=0.0018, d=4.22).

NATuRe MeThoDS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

ArticlesNaTurE METhoDS

Extended Data Fig. 9 | Parameter sensitivity: evaluation of number of body parts, frames, and PAF sizes. (a) The number of keypoints affects mAP;
evaluated with ResNet50 stride8 on the two datasets with the most keypoints originally labeled by subsampling the keypoints. [Mouse: snout/tailbase (2)
+ leftear/rightear (4) + shoulder/spine1/spine2/spine3 (8) vs. full (12); Marmoset: Middle/Body2 (2) + FL1/BL1 /FR1/BR1/Left/Right (8) + front/body1/
body3 (11) vs. full (15)] (b) Identity prediction is not strongly affected by the number of keypoints used (same experiments as in a, but for identity). (c)
Impact of graph size, and randomly dropping edges on performance. (d) Test performance on 30% of the data vs. training set size (as fraction of 70%) for
all four datasets.

NATuRe MeThoDS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

	Multi-animal pose estimation, identification and tracking with DeepLabCut
	Results
	Four diverse multi-animal datasets.
	Multi-task convolutional architectures.
	Keypoint detection and part affinity performance.
	Data-driven individual assembly performance.
	Predicting animal identity from images.
	Tracking of individuals.
	Leveraging animal ID and reID in tracking.
	Social marmosets.

	Discussion
	Online content
	Fig. 1 Multi-animal DeepLabCut architecture and benchmarking datasets.
	Fig. 2 Multi-animal DeepLabCut keypoint detection and whole-body assembly performance.
	Fig. 3 Linking whole-body assemblies across time.
	Fig. 4 Unsupervised reID of animals.
	Fig. 5 Application to multi-marmoset social behaviors.
	Extended Data Fig. 1 DeepLabCut 2.
	Extended Data Fig. 2 Dataset characteristics and statistics.
	Extended Data Fig. 3 Performance of various DeepLabCut network architectures.
	Extended Data Fig. 4 Discriminability of part affinity fields.
	Extended Data Fig. 5 Average animal assembly speed in frames per second as a function of graph size.
	Extended Data Fig. 6 Performance on out of domain marmoset data.
	Extended Data Fig. 7 Comparison of top-down methods with and without assembly.
	Extended Data Fig. 8 Performance of idtracker.
	Extended Data Fig. 9 Parameter sensitivity: Evaluation of number of body parts, frames, and PAF sizes.
	Table 1 Multi-animal pose estimation dataset characteristics.

