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Advances in sensor and transmitter technology, data mining 
and computational analysis herald a golden age of animal 
tracking across the globe1. Computer vision is a crucial tool 

for identifying, counting, as well as annotating animal behavior2–4. 
For the computational analysis of fine-grained behavior, pose esti-
mation is often a crucial step and deep-learning based tools have 
quickly affected neuroscience, ethology and medicine5–8.

Many experiments in biology—from parenting mice to fish 
schooling—require measuring interactions among multiple indi-
viduals. Multi-animal pose estimation raises several challenges that 
can leverage advances in machine vision research, and yet others 
that need new solutions. In general, the process requires three steps: 
pose estimation (that is, keypoint localization), assembly (that is, 
the task of grouping keypoints into distinct animals) and tracking. 
Each step presents different challenges.

To make pose estimation robust to interacting and occluded 
animals, one should annotate frames with closely interacting 
animals. To associate detected keypoints to particular individu-
als (assembly) several solutions have been proposed, such as part 
affinity fields (PAFs)9, associative embeddings10,11, transformers12 
and other mechanisms13,14. Tracking animals between frames 
can be difficult because of appearance similarity, nonstationary 
behaviors and possible occlusions. Building on human pose esti-
mation research, some packages for multi-animal pose estimation 
have emerged15–17. Here, we developed top-performing network 
architectures, a data-driven assembly method, engineered tai-
lored tracking methods and compared the current state-of-the-art 
networks on COCO (common objects in context)18 on four  
animal datasets.

Specifically, we expanded DeepLabCut19–21, an open-source tool-
box for animal pose estimation. Our contributions are as follows:

 (1) Four datasets of varying difficulty for benchmarking multi- 
animal pose estimation networks.

 (2) Multi-task architecture that predicts multiple conditional ran-
dom fields and therefore can predict keypoints, limbs, as well as 
animal identity.

 (3) A data-driven method for animal assembly that finds the op-
timal skeleton without user input, and that is state of the art 
(compared to top-models from COCO, a standard computer 
vision benchmark).

 (4) A module that casts tracking as a network flow optimization 
problem, which aims to find globally optimal solutions.

 (5) Unsupervised animal ID tracking: we can predict the identity 
of animals and reidentify them; this is particularly useful to link 
animals across time when temporally based tracking fails (due 
to intermittent occlusions).

 (6) Graphical user interfaces (GUIs) for keypoint annotation, re-
finement and semiautomatic trajectory verification.

Results
Multi-animal pose estimation can be cast as a data assignment 
problem in the spatial and temporal domains. To tackle the generic 
multi-animal pose-tracking scenario, we designed a practical, 
almost entirely data-driven solution that breaks down the larger goal 
into the smaller subtasks of: keypoint estimation, animal assembly 
(spatially grouping keypoints into individuals), local (temporal) 
tracking and global ‘tracklet’ stitching (Extended Data Fig. 1). We 
evaluate our pipeline on four new datasets that we release with this 
paper as a benchmark at https://benchmark.deeplabcut.org/.

Four diverse multi-animal datasets. We considered four 
multi-animal experiments to broadly validate our approach: three 
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mice in an open field, home-cage parenting in mice, pairs of mar-
mosets housed in a large enclosure and 14 fish in a flow tank. 
These datasets encompass a wide range of behaviors, presenting 
difficult and unique computational challenges to pose estimation 
and tracking (Fig. 1a and Extended Data Fig. 2). The three mice 
frequently contact and occlude one another. The parenting data-
set contained a single adult mouse with unique keypoints in close 
interaction with two pups hardly distinguishable from the back-
ground or the cotton nest, which also leads to occlusions. The mar-
moset dataset comprises periods of occlusion, close interactions,  

nonstationary behavior, motion blur and changes in scale. 
Likewise, the fish school along all dimensions of the tank, hid-
ing each other in cluttered scenes, and occasionally leaving the 
camera’s field of view. We annotated 5–15 body parts of inter-
est depending on the dataset (Fig. 1a and Extended Data Fig. 1), 
in multiple frames for cross-validating the pose estimation and 
assembly performance, as well as semiautomatically annotated 
several videos for evaluating the tracking performance (Table 1). 
For analyses, we created a random split of images plus annotations 
into 70% train and 30% test sets.
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Fig. 1 | Multi-animal DeepLabCut architecture and benchmarking datasets. a, Example (cropped) images with (manual) annotations for the four 
datasets: mice in an open field arena, parenting mice, pairs of marmosets and schooling fish. bpts, body parts. Scale bars, 20 pixels. b, A schematic of the 
general pose estimation module. The architecture is trained to predict the keypoint locations, PAFs and animal identity. Three output layers per keypoint 
predict the probability that a joint is in a particular pixel (score map) as well as shifts in relation to the discretized output map (location refinement 
field). Furthermore, PAFs predict vector fields encoding the orientation of a connection between two keypoints. Example predictions are overlaid on 
the corresponding (cropped) marmoset frame. The PAF for the right limb helps linking the right hand and shoulder keypoints to the correct individual. 
c, Our architecture contains a multi-fusion module and a multi-stage decoder. In the multi-fusion module, we add the high-resolution representation 
(conv2, conv3) to low-resolution representation (conv5). The features from conv2 and conv3 are downsampled by two and one 3 × 3 convolution layer, 
respectively to match the resolution of conv5. Before concatenation the features are downsampled by a 1 × 1 convolution layer to reduce computational 
costs and (spatially) upsampled by two stacked 3 × 3 deconvolution layers with stride 2. The multi-stage decoder predicts score maps and PAFs. At the 
first stage, the feature map from the multi-fusion module are upsampled by a 3 × 3 deconvolution layer with stride 2, to get the score map, PAF and the 
upsampled feature. In the latter stages, the predictions from the two branches (score maps and PAFs), along with the upsampled feature are concatenated 
for the next stage. We applied a shortcut connection between the consecutive stage of the score map. The shown variant of DLCRNet has overall stride 2 
(in general, this can be modulated from 2 to 8).
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Multi-task convolutional architectures. We developed multi-task 
convolutional neural networks (CNNs) that perform pose estima-
tion by localizing keypoints in images. This is achieved by predict-
ing score maps, which encode the probability that a keypoint occurs 
at a particular location, as well as location refinement fields that 
predict offsets to mitigate quantization errors due to downsampled 
score maps13,19,20. Then, to assemble keypoints into the grouping that 
defines an animal, we designed the networks to also predict ‘limbs’, 
that is, PAFs. This task, which is achieved via additional deconvolu-
tion layers, is inspired by OpenPose9. The intuition is that in sce-
narios where multiple animals are present in the scene, learning to 
predict the location and orientation of limbs will help group pairs of 
keypoints belonging to an individual. Moreover, we also introduce 
an output that allows for animal reidentification (reID) from visual 
input directly. This is important in the event of animals that are 
untrackable using temporal information alone, for example, when 
exiting or re-entering the scene (Fig. 1b).

Specifically, we adapted ImageNet-pretrained ResNets22, 
EfficientNets21,23, as well as developed a multi-scale architecture 
(which we call DLCRNet_ms5, Fig. 1c). We then use customized 
multiple parallel deconvolution layers to predict the location of 
keypoints as well as what keypoints are connected in a given ani-
mal (Fig. 1b). Ground truth data of annotated keypoints are used 
to calculate target score maps, location refinement maps, PAFs and 
to train the network to predict those outputs for a given input image 
(Fig. 1b,c) with augmentation.

Keypoint detection and part affinity performance. After an 
extensive architecture search (http://maDLCopt.deeplabcut.org 
and Extended Data Fig. 3), we demonstrate that the new DLCRNet 

performs very well for localizing keypoints (Fig. 2a). Specifically, 
we trained independent networks for each dataset, and each split, 
and evaluated their performance. For each frame and keypoint, we 
calculated the root-mean squared error (r.m.s.e.) between the detec-
tions and their closest ground truth neighbors. All the keypoint 
detectors performed well (DLCRNet_ms5, median test errors of 
2.65, 5.25, 4.59 and 2.72 pixels for the tri-mouse, parenting, marmo-
set and fish datasets, respectively, Fig. 2a). The scales of these data 
are shown in Fig. 1a). To ease interpretation, errors were also nor-
malized to 33% of the tip–gill distance for the fish dataset and 33% 
of the left-to-right ear distance for the remaining ones (Methods). 
We found that 93.6 ± 6.9% of the predictions on the test images were 
within those ranges (Fig. 2a).

After detection, keypoints need to be assigned to individuals. 
We evaluated whether the learned PAFs helped decide whether two 
body parts belong to the same or different animals. For example, 66 
different edges can be formed from the 12 mouse body parts and 
many provide high discriminability (Extended Data Fig. 4). We 
indeed found that predicted limbs were powerful at distinguishing 
a pair of keypoints belonging to an animal from other (incorrect) 
pairs linking different mice, as measured by a high auROC (area 
under the receiver operating characteristic) score (mean ± s.d. 
0.99 ± 0.02).

Data-driven individual assembly performance. Any limb-based 
assembly approach requires a ‘skeleton’, that is, a list of keypoint 
connections that allows the algorithm to computationally infer 
which body parts belong together. Naturally, there has to be a path 
within this skeleton connecting any two body parts, otherwise the 
body parts cannot be grouped into one animal. Given the combina-
torial nature of skeletons, how should they be designed? We circum-
vented the need for arbitrary, hand-crafted skeletons by developing 
a method that is agnostic to an animal’s morphology and does not 
require any user input.

We devised a data-driven method where the network is first 
trained to predict all graph edges and the least discriminative edges 
(for deciding body part ownership) are not used at test time to deter-
mine the optimal skeleton. We found that this approach yields skel-
etons with fewer errors (unconnected body parts and with higher 
purity, Fig. 2b,c) and it improves performance. Crucially, it means 
users do not need to design any skeletons. Our data-driven method 
(with DLCRNet_ms5) outperforms the naive (baseline) method, 
enhances ‘purity of the assembly’: that is, the fraction of key-
points that were grouped correctly per individual (Supplementary  
Table 1), and reduces the number of missing keypoints 
(Supplementary Table 2). Comparisons revealed significantly 
higher assembly purity with automatic skeleton pruning versus a 
naive skeleton definition at most graph sizes, with respective gains 
of up to 3.0, 2.0 and 2.4 percentage points in the tri-mouse (two-way 

Table 1 | Multi-animal pose estimation dataset characteristics

Feature Mouse Pups Marmosets Fish

Labeled frames 161 542 7,600 100

Keypoints 12 5 (+12) 15 5

Individuals 3 2 (+1) 2 14

GT identity No No Yes No

Annotated video 
frames

11,645 2,670 15,000 1,100

Total duration (s) 385 180 600 36

Number of labeled training frames, keypoints and individuals. Keypoint number in brackets relate 
to the unique animal in the frame, and unique individual in brackets is noted, that is, one parenting 
mouse. Animal identity was only annotated for the marmosets. For tracking, separate videos are 
used and the total number of densely human-annotated video frames (and their combined duration 
in seconds) is also indicated.

Fig. 2 | Multi-animal DeepLabCut keypoint detection and whole-body assembly performance. a, Distribution of keypoint prediction error for DLCRNet_
ms5 with stride 8 (70% train and 30% test split). Violin plots display train (top) and test (bottom) errors. Vertical dotted lines are the first, second and 
third quartiles. Median test errors were 2.69, 5.62, 4.65 and 2.80 pixels for the illustrated datasets, in order. Gray numbers indicate PCK. Only the first 
five keypoints of the parenting dataset belong to the pups; the 12 others are keypoints of the adult mouse. b, Illustration of our data-driven skeleton 
selection algorithm. Mouse cartoon adapted with permission from ref. 29 under a Creative Commons licence (https://creativecommons.org/licenses/
by/4.0/). c, Animal assembly quality as a function of part affinity graph (skeleton) size for baseline (user-defined) versus data-driven skeleton definitions. 
The top row displays the fraction of keypoints left unconnected after assembly, whereas the bottom row designates the accuracy of their grouping into 
distinct animals. The colored dots mark statistically significant interactions (two-way, repeated-measures ANOVA; see Supplementary Tables 1–4 for full 
statistics). Light red vertical bars highlight the graph automatically selected. d, mAP as a function of graph size. Shown on test data held out from 70% 
train and 30% test splits. The associative embedding method does not rely on a graph. The performance of MMPose’s implementation of ResNet-AE and 
HRNet-AE bottom-up variants is shown for comparison against our multi-stage architecture DLCRNet_ms5, here called Baseline. Data-driven is Baseline 
plus calibration method (one-way ANOVA show significant effects of the model: P values, tri-mouse 8.8 × 10−8, pups 6.5 × 10−13, marmosets 3.8 × 10−11, fish 
4.0 × 10−12). e, Marmoset ID–Example test image together with overlaid animal identity prediction accuracy per keypoint averaged over all test images and 
test splits. With ResNet50_stride8, accuracy peaks at 99.2% for keypoints near the head and drops to only 95.1% for more distal parts. In the lower panel, 
plus signs denote individual splits, circles show the averages.
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repeated measure analyses of variance (ANOVA): graph size 23; 
P < 0.001), marmosets (graph size 34, P = 0.002) and fish datasets 
(graph size 6, P < 0.001) (Fig. 2b,c). Furthermore, to accommo-
date diverse body plans and annotated keypoints for different ani-
mals and experiments, our inference algorithm works for arbitrary 
graphs. Animal assembly achieves at least 400 frames per second in 
scenes with 14 animals, and up to 2,000 for small skeletons in two or 
three animals (Extended Data Fig. 5).

To additionally benchmark our network and assembly contribu-
tions, we compared them to methods that achieve state-of-the art 
performance on COCO18, a challenging, large-scale multi-human 
pose estimation benchmark. Specifically, we considered HRNet-AE 
and ResNet-AE. Our models performed significantly better than 
these state-of-the-art methods (one-way ANOVA: P values, 
tri-mouse 8.8 × 10−08, pups 6.5 × 10−13, marmosets 3.8 × 10−11, fish 
4.0 × 10−12, Fig. 2d) on all four animal benchmark datasets. Last, 
while the datasets themselves contain diverse animal behaviors, and 
only 70% is used to train, as an additional test of generalization we 
used ten held-out marmoset videos that came from different cages 
(Extended Data Fig. 6). We find in this challenging test there is a 
roughly 0.25 drop in mean average precision (mAP). It is known 
that simply adding (a fraction of the new) data into the training 
set alleviates such drops (reviewed in ref. 7).

We reasoned the strong multi-animal performance is due to the 
assembly algorithm based on PAFs. Therefore, we tested the perfor-
mance of the network in a top-down setting with and without PAFs, 
that is, by considering images that are cropped around each animal 
(bounding boxes, Extended Data Fig. 7a). We found that our assem-
bly algorithm significantly improves mAP performance (PAF ver-
sus without PAF one-way ANOVA P, tri-mouse 4.656 × 10−11, pups 
3.62 × 10−12, marmosets 1.33 × 10−28, fish 1.645 × 10−6, Extended 
Data Fig. 7b,c). Collectively, the direct assembly to tracking (that 
is, the bottom-up method) is likely the optimal approach for most 
users as it reasons over the whole image.

Predicting animal identity from images. Animals sometimes dif-
fer visually, for example due to distinct coat patterns, because they 
are marked, or carry different instruments (such as an integrated 
microscope24). To allow our method to take advantage of such sce-
narios and improve tracking later on, we developed a network head 
that learns the identity (ID) of animals with the same CNN back-
bone. To benchmark the ID output, we focused on the marmoset 
data, where (for each pair) one marmoset had light blue dye applied 
to its tufts. ID prediction accuracy on the test images ranged from 
>0.99 for the keypoints closest to the marmoset’s head to 0.95 for 
more distal keypoints (Fig. 2e and Extended Data Fig. 3c). Thus, 
DeepLabCut can reID the animal on a per-body-part basis (Fig. 2e).

Tracking of individuals. Once keypoints are assembled into indi-
vidual animals, the next step is to link them temporally. To measure 
performance in the next steps, entire videos (one from each dataset) 
are manually refined to form ground truth sequences (Fig. 3a and 
Table 1). Reasoning over the whole video for tracking individuals is 
not only computationally costly, but also unnecessary. For instance, 

when animals are far apart, it is straightforward to link each one cor-
rectly across time. Thus, we devised a divide-and-conquer strategy. 
We use a simple, online tracking approach to form reliable ‘tracklets’ 
from detected animals in adjacent frames. Difficult cases (for exam-
ple, when animals are closely interacting or after occlusion) often 
interrupt the tracklets, causing ambiguous fragments that cannot 
be easily temporally linked. We address this crucial issue post hoc 
by optimally stitching tracklets using multiple spatio-temporal cues.

Assembled animals are linked across frames to form tracklets, 
that is, fragments of continuous trajectories. This task entails the 
propagation of an animal’s identity in time by finding the optimal 
association between an animal and its predicted location in the 
adjacent frame (Fig. 3b–d). The prediction is made by a lightweight 
‘tracker’. In particular, we implemented a box and an ellipse tracker. 
Whereas the former is standard in the object tracking literature (for 
example, refs. 25,26), we recognized the sensitivity of its formulation 
to outlier detections (as it is mostly used for pedestrian tracking). 
Thus, the ellipse tracker was developed to provide a finer parametri-
zation of an animal’s geometry. Overall, the ellipse tracker behaves 
better than the box tracker, reaching near-perfect multi-object 
tracking accuracy (MOTA) (0.78 versus 0.97) and producing on 
average 92% less false negatives; no differences in the switch rate 
was observed (Fig. 3e).

Because of occlusions, dissimilarity between an animal and its 
predicted state, or other challenging yet common multi-animal 
tracking issues, tracklets can be interrupted and therefore rarely 
form complete tracks across a video. The remaining challenge 
therefore is to stitch these sparse tracklets so as to guarantee con-
tinuity and kinematic consistency. Our approach is to cast this task 
as a global minimization problem, where connecting two candidate 
tracklets incurs a cost inversely proportional to the likelihood that 
they belong to the same track. Advantageously, the problem can 
now be elegantly solved using optimization techniques on graph 
and affinity models (Fig. 3c,d).

Compared to only local tracking, we find that our stitching 
method reduces switches, even in the challenging fish and mar-
mosets datasets (average reduction compared to local ellipse track-
ing, 63%; Fig. 3e). To handle a wide range of scenarios, multiple 
cost functions are devised to model the affinity between a pair of 
tracklets based on their shape, proximity, motion, dynamics and/or 
appearance (below and Supplementary Videos 1–4). Last, to allow 
users to understand the error rate and correct errors, we developed 
a Refine Tracklets GUI. Here, we leverage confidence of the tracking 
to flag sequences of frames that might need attention, namely when 
swaps might occur (Extended Data Fig. 1b).

Other recent methods for tracking animals have been proposed, 
such as idtracker.ai27. While this tool does not perform pose estima-
tion, we wanted to specifically compare tracking performance. We 
attempted to use the easiest (tri-mouse) and marked-animal (mar-
moset) datasets with idtracker.ai. After an extensive grid search for 
hyperparameters, only the tri-mouse mice dataset could be reliably 
tracked, yet the performance of our method was significantly better 
(one-sided, one-sample t-tests indicated that idtracker performed 
significantly worse than DeepLabCut in both datasets (tri-mouse 

Fig. 3 | Linking whole-body assemblies across time. a, Ground truth and reconstructed animal tracks (with DLCRNet and ellipse tracking), together 
with video frames illustrating representative scene challenges. b, The identities of animals detected in a frame are propagated across frames using local 
matching between detections and trackers (with costs, ‘motion’ for all datsets and ‘distance’ for fish). c, Tracklets are represented as nodes of a graph, 
whose edges encode the likelihood that the connected pair of tracklet belongs to the same track. d, Four cost functions modeling the affinity between 
tracklets are implemented: shape similarity using the undirected Hausdorff distance between finite sets of keypoints (i); spatial proximity in Euclidean 
space (ii); motion affinity using bidirectional prediction of a tracklet’s location (iii); and dynamic similarity via Hankelets and time-delay embedding of 
a tracklet’s centroid (iv). e, Tracklet stitching performance versus box and ellipse tracker baselines (arrows indicate if higher or lower number is better), 
using MOTA, as well as rates of false negative (FN), false positives (FP) and identity switch expressed in events per animal and per sequence of 100 
frames. Inset shows that incorporating appearance/identity prediction in the stitching further reduces the number of switches and improves full track 
reconstruction. Total number of frames: tri-mouse, 2,330; parenting, 2,670; marmosets, 15,000 and fish, 601.
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t = −11.03, P = 0.0008, d = 5.52; marmosets t = −8.43, P = 0.0018, 
d = 4.22: Supplementary Video 5 and Extended Data Fig. 8).

Note, for keypoint selection we remain fully agnostic to the 
user-defined inputs, giving the user freedom over what keypoints ulti-
mately serve their research, but we do guide the user by showing them 
how such decisions could affect performance (Extended Data Fig. 9).

Leveraging animal ID and reID in tracking. When animals can 
disappear from the field of view, they cannot be tracked by temporal 
association alone and appearance cues are necessary. Indeed, for the 
marmosets, incorporating visual appearance learned in a supervised 
fashion, further reduced the number of switches by 26% (Fig. 3e).  
Additionally, we next considered the case with animals that are not 
clearly distinguishable to the human annotator, thus no ground 
truth can be easily provided. To tackle this challenge, we introduce 
an unsupervised method way based on transformers to learn animal 
ID via metric learning (Fig. 4a–c and Methods). This provides up 
to a 10% boost in MOTA performance in the very challenging fish 
data, particularly in difficult sequences (Fig. 4d).

Social marmosets. Finally, we demonstrate a use-case of 
multi-animal DeepLabCut by analyzing 9 h (824,568 frames) of 
home-cage behavior of pairs of marmosets (Fig. 5a,b). We tracked 
by ReID on a frame-by-frame basis versus only using tracklet infor-
mation. We found that the marmosets display diverse postures that 
are captured by principal component analysis on egocentrically 
aligned poses (Fig. 5c,d). Furthermore, we found that when the ani-
mals are close, their bodies tend to be aligned and they tend to look 
in similar directions (Fig. 5e,f). Finally, we related the posture and 
the spatial relationship between the animals and found a nonran-
dom distribution. For instance, marmosets tended to face the other 
animal when apart (Fig. 5g,h). Thus, DeepLabCut can be used to 
study complex social interactions over long timescales.

Discussion
Here we introduced a multi-animal pose estimation and tracking 
system thereby extending DeepLabCut19–21. We developed and lev-
eraged more powerful CNNs (DLCRNet) that we show have strong 
performance for animal pose estimation. Due to the variable body 
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shapes of animals, we developed a data-driven way to automatically 
find the best skeleton for animal assembly, and we designed fast 
trackers that also reason over long timescales and are more robust 
to the body plan, and outperform tailored animal tracking methods 
such as idTracker.ai. Our method is flexible and not only deals with 
multiple animals (with the same body plan), but also with one agent 
dealing with multiple others (as with the parenting mouse, where 
there are identical looking pups, but a unique adult mouse).

For animal pose and tracking, leveraging identity can be an 
important tool4. We introduce ways to allow both marked ani-
mals (supervised) and unsupervised animal identity tracking. For 
marked animals this means if users consistently label a known  

feature across the dataset (such as the blue tufts of the 40 pairs 
of marmosets included in labeled data, or consistent marker on 
a mouse’s tail), they can simply input the identity ‘true’ (or check 
the box in the GUI) in DeepLabCut and this trains an ID head. If 
they are not marked, users could use the reID tracking method that 
performs unsupervised identity estimation. Thereby, our frame-
work integrates various costs related to movement statistics and the 
learned animal identity.

Open-access benchmark datasets are critical to collectively 
advance tools7. Here, we open-source four datasets that pose dif-
ferent challenges. As we show, there is little room for improve-
ment on the tri-mouse data, but the schooling fish is not a solved  
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problem. Thus, while our method is fast, generally robust, and can 
leverage identity of animals to enhance pose-tracking performance, 
we believe the benchmark can also spur progress on how to improve 
performance for occluded, similar looking animals.

We developed both bottom-up and top-down variants for 
multi-animal DeepLabCut (maDLC), allowing the user an extended 
selection of methods (Supplementary Note 1). While our results 
suggest that the bottom-up pipeline should be the default, depend-
ing on the application, top-down approaches might be better suited. 
Both classes have limitations and features (reviewed in ref. 7).

In this work, we strive to develop high-performance code that 
requires limited user input yet flexibility. In the code, we provide 3D 
support for multi-animal pose estimation (via multi-camera use), 
plus this multi-animal variant can be integrated with our real-time 
software, DeepLabCut-Live!28. Another important user input is 
at the stage of tracking, where users can input how many animals 
should be identified in a given video. In this paper, we test up to 
14 animals, but this is not a hard upper limit. One ‘upper limit’ is 
ultimately the camera resolution, as one needs to be able to localize 
keypoints of animals. Thus, if animals are very small, other tracking 
tools might be better suited. From pose, to optimal skeleton selec-
tion, to tracking: all of the outlined steps can be run in ten lines 
of code or all from a GUI such that zero programming is required 
(https://deeplabcut.github.io/DeepLabCut).
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Methods
Tri-mouse dataset. Three wild-type (C57BL/6J) male mice ran on a paper spool 
following odor trails19. These experiments were carried out in the laboratory 
of V.N. Murthy at Harvard University (temperature of housing was 20–25 °C, 
humidity 20–50%). Data were recorded at 30 Hz with 640 × 480 pixels resolution 
acquired with a Point Grey Firefly FMVU-03MTM-CS. One human annotator 
was instructed to localize the 12 keypoints (snout, left ear, right ear, shoulder, four 
spine points, tail base and three tail points) across 161 frames sampled from within 
DeepLabCut using the k-means clustering approach (across eight videos). All 
surgical and experimental procedures for mice were in accordance with the NIH 
Guide for the Care and Use of Laboratory Animals and approved by the Harvard 
Institutional Animal Care and Use Committee (IACUC).

Parenting behavior. Parenting behavior is a pup-directed behavior observed in 
adult mice involving complex motor actions directed toward the benefit of the 
offspring30,31. These experiments were carried out in the laboratory of C. Dulac at 
Harvard University (temperature of housing was 20–25 °C, humidity 20–50%).

The behavioral assay was performed in the home-cage of single-housed adult 
(age was less than 180 d old) female C57Bl6/J Mus musculus in dark (red light only) 
conditions. For these videos, the adult mouse was monitored for several minutes in 
the cage followed by the introduction of pup (4 d old, sex unknown) in one corner 
of the cage. The behavior of the adult and pup was monitored for a duration of 
15min. A video was recorded at 30 Hz using a Microsoft LifeCam camera (part no. 
6CH-00001) with a resolution of 1,280 × 720 pixels or a Geovision camera (model 
no. GV-BX4700-3V) also acquired at 30 frames per second (fps) at a resolution of 
704 × 480 pixels. A human annotator labeled on the adult animal the same 12 body 
points as in the tri-mouse dataset and five body points on the pup along its spine. 
Initially only the two ends were labeled, and intermediate points were added by 
interpolation and their positions was manually adjusted if necessary. Frames were 
generated from across 25 videos.

Marmoset home-cage behavior. Videos of common marmosets (Callithrix 
jacchus) were made in the laboratory of G. Feng at MIT. Male and female 
marmoset pairs housed here (n = 50, 30 pairs, age range of 2 to 12 years) were 
recorded using Kinect V2 cameras (Microsoft) with a resolution of 1,080 pixels 
and frame rate of 30 Hz. After acquisition, images to be used for training the 
network were manually cropped to 1,000 × 1,000 pixels or smaller. For our analysis, 
we used 7,600 labeled frames from 40 different marmosets collected from three 
different colonies (in different facilities, thus over 20 videos were used for dataset 
generation). Each cage contains a pair of marmosets, where one marmoset had 
light blue dye applied to its tufts. One human annotator labeled the 15 body points 
on each animal present in the frame (frames contained either one or two animals). 
All animal procedures were overseen by veterinary staff of the MIT and Broad 
Institute Department of Comparative Medicine, in compliance with the National 
Institutes of Health guide for the care and use of laboratory animals and approved 
by the MIT and Broad Institute animal care and use committees. As a test of 
out-of-domain generalization, we additionally labeled 300 frames from ten new 
cages and animals. See Fig. 5 for example images and results.

We also analyzed two long-term recording sessions from a pairs of marmosets 
with the DLCRNet_ms5 model, by reidentifying each marmoset in each frame with 
the ID head. Overall we considered about 9 h (824,568 frames) from two different 
home cages. We computed the principal components for egocentric postures as 
well as illustrated their relative head and body orientations (Fig. 5). For Fig. 5e, the 
distances are normalized based on the running average distance between each ear 
tuft to center of head, over a second. This measurement does correlate well with 
depth values in videos recorded with a depth channel (which was not done for 
the example sessions). To make the postural data egocentric, we first centered the 
data around ‘Body2’ (x = 0, y = 0) and then rotated it such that the line formed by 
‘Body1’, ‘Body2’ and ‘Body3’ was as close to the line ‘x = 0’ as possible.

Fish schooling behavior. Schools of inland silversides (Menidia beryllina, 
n = 14 individuals per school, sex unknown but likely to be equal females and 
males, aged approximately 9 months) were recorded in the Lauder Laboratory 
at Harvard University while swimming at 15 speeds (0.5 to 8 body lengths per 
s at 0.5 body lengths per s intervals) in a flow tank with a total working section 
of 28 × 28 × 40 cm as described in previous work32, at a constant temperature 
(18 ± 1∘C) and salinity (33 parts per thousand), at a Reynolds number of 
approximately 10,000 (based on body length). Dorsal views of steady swimming 
across these speeds were recorded by high-speed video cameras (FASTCAM Mini 
AX50, Photron) at 60–125 fps (feeding videos at 60 fps, swimming alone 125 fps). 
The dorsal view was recorded above the swim tunnel and a floating Plexiglas panel 
at the water surface prevented surface ripples from interfering with dorsal view 
videos. Five keypoints were labeled (tip, gill, peduncle, dorsal fin tip, caudal tip) 
and taken from five videos.

Dataset properties. All frames were labeled with the annotation GUI; depending 
on the dataset, between 100 and 7,600 frames were labeled (Table 1). We illustrated 
the diversity of the postures by clustering (Extended Data Fig. 2). To assess the 
level of interactions, we evaluate a Proximity Index (Extended Data Fig. 2m), 

whose idea is inspired by ref. 33 but its computation was adapted to keypoints. For 
each individual, instead of delineating bounding boxes to determine the vicinity 
of an animal we rather define a disk centered on the individual’s centroid and of 
sufficiently large radius such that all of that individual’s keypoints are inscribed 
within the disk; this is a less static description of the immediate space an animal 
can reach. The index is then taken as the ratio between the number of keypoints 
within that region that belong to other individuals and the number of keypoints of 
the individual of interest (Extended Data Fig. 2m).

For each dataset we created one random split with 70% of the data used for 
training and the rest for testing (unless otherwise noted). Note that identity 
prediction accuracy (Fig. 2d) and tracking performance (Fig. 3e) are reported on 
all three splits, and all show little variability. The data are available as a benchmark 
challenge at https://benchmark.deeplabcut.org/.

Multi-task deep-learning architecture. DeepLabCut consists of keypoint 
detectors, comprising a deep CNN pretrained on ImageNet as a backbone 
together with multiple deconvolutional layers13,19,21. Here, as backbones we 
considered Residual Networks (ResNet)22 and EfficientNets21,23. Other backbones 
are integrated in the toolbox21,28 such as MobileNetV2 (ref. 34). We use a stride 
of 16 for the ResNets (achieved by atrous convolution) and then upsample the 
filter banks by a factor of two to predict the score maps and location refinement 
fields with an overall stride of eight. Furthermore, we developed a multi-scale 
architecture that upsamples from conv5 and fuses those filters with filters learned 
as 1 × 1 convolutions from conv3. This bank is then upsampled by a factor of two 
via deconvolution layers. This architecture thus learns from multiple scales with an 
overall stride of four (including the upsampling in the decoder). We implemented 
a similar architecture for EfficientNets. These architectures are called ResNet50_
strideX and (EfficientNet) bY_strideX for strides four to eight; we used ResNet50 
as well as EfficientNets B0 and B7 for experiments (Extended Data Fig. 3).

We further developed a multi-scale architecture (DLCRNet_ms5) that fuses 
high-resolution feature map to lower resolution feature map (Fig. 1c)—we 
concatenated the feature map from conv5, the feature map learned as a 3 × 3 
convolutions followed by a 1 × 1 convolutions from conv3 and the feature map 
learned as 2 stacked 3 × 3 convolutions and a 1 × 1 convolutions from conv2. This 
bank is then upsampled via (up to) two deconvolution layers. Depending on how 
many deconvolution layers are used this architecture learns from multiple scales 
with an overall stride of 2–8 (including the upsampling in the decoder). Note, 
during our development phase we used 95% train and 5% test splits of the data; this 
testing is reported at http://maDLCopt.deeplabcut.org and in our preprint35.

DeepLabCut creates three output layers per keypoint that encode an intensity 
and a vector field. The purpose of the deconvolution layers is to upsample the 
spatial information (Fig. 1b,c). Consider an input image I(x,y) with ground truth 
keypoint (xk,yk) for index k. One of the output layers encodes the confidence of a 
keypoint k being in a particular location (Sk(p,q)), and the other two layers encode 
the (x-) and (y-) difference (in pixels of the full-sized) image between the original 
location and the corresponding location in the downsampled (by the overall 
stride) location (Lkx(p, q) and Lky(p, q)). For each training image the architecture is 
trained end-to-end to predict those outputs. Thereby, the ground truth keypoint is 
mapped into a target score map, which is 1 for pixels closer to the target (this can 
be subpixel location) than radius r and 0 otherwise. We minimize the cross-entropy 
loss for the score map (Sk) and the location refinement loss was calculated as a 
Huber loss13,19.

To link specific keypoints within one animal, we use PAFs, which were 
proposed by Cao et al.9. Each (ground truth) PAF Plx(p, q) and Ply(p, q) for limb 
l connecting keypoint ki and kj places a directional unit vector at every pixel 
vector within a predefined distance from the ideal line connecting two keypoints 
(modulated by pafwidth). We trained DeepLabCut to also minimize the L1-loss 
between the predicted and true PAFs, which is added to the other losses.

Inspired by Cao et al.9, we refine the score maps and PAFs in multiple stages. 
As can be seen from Fig. 1b, at the first stage, the original image feature from the 
backbone is fed into the network to predict the score map, PAF and the feature 
map. The output of each branch, concatenated with the feature map is fed into the 
subsequent stages. However, unlike Cao et al., we observed that simply adding 
more stages can cause performance degradation. To overcome that, we introduced 
shortcut connections between two consequence stages on the score map branch to 
improve multiple stage prediction.

Examples for score maps, location refinement and PAFs are shown in Fig. 1b.  
For training, we used the Adam optimizer36 with learning schedule (0.0001 
for first 7,500 iterations then 5 × 10−5 until 12,000 iterations and then 1 × 10−5) 
unless otherwise noted. We trained for 60,000–200,000 (for the marmosets) 
iterations with batch size 8; this was enough to reach good performance (Fig. 2a 
and Extended Data Fig. 3). During training we also augmented images by using 
techniques including rotation, covering with random boxes and motion blur. 
We also developed a keypoint-aware image cropping technique to occasionally 
augment regions of the image that are dense in keypoints. Crop centers are 
sampled applying at random one of the following two strategies: uniform sampling 
over the whole image; or sampling based on keypoint density, where the probability 
of a point being sampled increases in proportion to its number of neighbors 
(within a radius equal to 10% of the smallest image side). Crop centers are further 
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shifted along both dimensions by random amounts no greater than 40% of the crop 
size—the hyperparameters can be changed by the user.

CNN-based identity prediction. For animal identification we used a classification 
approach4, while also considering spatial information. To have a monolithic 
solution (with just a single CNN), we simply predict in parallel the identity of 
each animal from the image. For this purpose, n deconvolution layers are added 
for n individuals. The network is trained to predict the summed score map for 
all keypoints of that individual. At test time, we then look up which of the output 
classes has the highest likelihood (for a given keypoint) and assign that identity 
to the keypoint. This output is trained jointly in a multi-task configuration. We 
evaluate the performance for identity prediction on the marmoset dataset (Fig. 2e).

Identity prediction can be leveraged by DeepLabCut in three different ways: 
(1) for assembly, by grouping keypoints based on their predicted identity; (2) for 
local, frame-by-frame tracking, using a soft-voting scheme where body parts are 
regarded as individual classifiers providing an identity probability and (3) for 
global stitching, by weighing down the cost of edges connecting two tracklets of 
similar appearance (as in Figs. 3 and 4). These three sequential stages can thus be 
made reliant on visual appearance features alone, as done with the long recordings 
of marmoset behavior (Fig. 5).

Multi-animal inference. Any number of keypoints can be defined and labeled 
with the toolbox; additional ones can be added later on. Based on our experience 
and testing, we recommend labeling more keypoints than a subsequent analysis 
might require, since it improves the part detectors19 and, more importantly, animal 
assembly (Extended Data Fig. 9a).

Before decoding, score maps are smoothed with a Gaussian kernel of spread 
σ = 1 to make peaks more salient37. For each keypoint one obtains the most likely 
keypoint location (x*,y*) by taking the maximum: (p*,q*) = argmax(p,q)Sk(p,q) and 
computing:

x∗ = p∗ · λ + λ/2 + Lkx(p∗, q∗)

y∗ = q∗ · λ + λ/2 + Lky(p∗, q∗)
(1)

with overall stride λ. If there are multiple keypoints k present then one can naturally 
take the local maxima of Sk to obtain the corresponding detections. Local maxima 
are identified via nonmaximum suppression with 2D max pooling of the score 
maps.

Thus, one obtains putative keypoint proposals from the score maps and 
location refinement fields. We then use the PAFs to assign the cost for linking two 
keypoints (within a putative animal). For any pair of keypoint proposals (that are 
connected via a limb as defined by the part affinity graph) we evaluate the affinity 
cost by integrating along line γ connecting two proposals, normalized by the length 
of γ:

∫

∥ Plx,y ∥ dγ/
∫

dγ (2)

This integral is computed by sampling. Thus, for a given part affinity graph, one 
gets a (possibly) large number of detections and costs. The next step is to assemble 
those detections into animals.

Data-driven PAF graph selection. To relieve the user from manually defining 
connections between keypoints, we developed an entirely data-driven procedure. 
Models are trained on a complete graph to learn all possible body part connections. 
We tested whether randomly pruning the complete marmoset skeleton (to 25, 
50 and 75% of its original size: that is, 26, 52, 78 edges or 52, 104, 156 PAFs) to 
alleviate memory demands could still yield acceptable results. We found that 
pruning a large graph before training to a fourth of its original size was harmful 
(mAP loss of 15–20 points; Extended Data Fig. 9); at half and 75% of its size, a 
performance equivalent to that of the full graph was reached at 24 edges, although 
it remained about 1.5 mAP point under the maximal mAP score observed overall. 
Consequently, for large skeletons, a random subgraph is expected to yield only 
slightly inferior performance at a lesser computational cost.

The graph is then pruned based on edge discriminability power on the training 
set. For this purpose, within- and between-animal part affinity cost distributions 
(bin width 0.01) are evaluated (see Extended Data Fig. 4 for the mouse dataset). 
Edges are then ranked in decreasing order of their ability to separate both 
distributions—evaluated from the auROC curve. The smallest, data-driven graph 
is taken as the maximum spanning tree (that is, a subgraph covering all keypoints 
with the minimum possible number of edges that also maximizes part affinity 
costs). For graph search following a network’s evaluation, up to nine increasingly 
redundant graphs are formed by extending the minimal skeleton progressively 
with strongly discriminating edges in the order determined above. By contrast, 
baseline graphs are grown from a skeleton a user would naively draw, with edges 
iteratively added in reversed order (that is, from least to most discriminative). The 
graph jointly maximizing purity and the fraction of connected keypoints is the one 
retained to carry out the animal assemblies.

Animal assembly. Animal assembly refers to the problem of assigning keypoints 
to individuals. Yet, reconstructing the full pose of multiple individuals from a set of 
detections is NP hard, as it amounts to solving a k-dimensional matching problem 
(a generalization of bipartite matching from 2 to k disjoint subsets)9,38. To make the 
task more tractable, we break the problem down into smaller matching tasks, in a 
manner akin to Cao et al.9.

For each edge type in the data-driven graph defined earlier, we first pick 
strong connections based on affinity costs alone. Following the identification of 
all optimal pairs of keypoints, we seek unambiguous individuals by searching 
this set of pairs for connected components—in graph theory, these are subsets of 
keypoints all reachable from one another but that do not share connection with any 
additional keypoint; consequently, only connectivity, but not spatial information, is 
taken into account. Breadth-first search runs in linear time complexity, which thus 
allows the rapid predetermination of unique individuals. Note that, unlike  
ref. 9, redundant connections are seamlessly handled and do not require changes in 
the formulation of the animal assembly. Then, remaining connections are sorted in 
descending order of their affinity costs (equation (2)) and greedily linked.

 To further improve the assembly’s robustness to ambiguous connections (that 
is, a connection attempting to either link keypoints belonging to two distinct 
individuals or overwrite existing ones), the assembly procedure can be calibrated 
by determining the prior probability of an animal’s pose as a multivariate normal 
distribution over the distances between all pairs of keypoints. Mean and covariance 
are estimated from the labeled data via density estimation with Gaussian kernel 
and bandwidth automatically chosen according to Scott’s Rule. A skeleton is then 
only grown if the candidate connection reduces the Mahalanobis distance between 
the resulting configuration and the prior (referred to as with calibration in Fig. 2c). 
Last, our assembly’s implementation is fully parallelized to benefit greatly from 
multiple processors (Extended Data Fig. 5).

Optionally (and only when analyzing videos), affinity costs between body parts 
can be weighted so as to prioritize strong connections that were preferentially 
selected in the past frames. To this end, and inspired by ref. 39, we compute a 
temporal coherence cost as follows: 1j

∑j
i=1 e−γΔt∥c−cn∥2

, where γ controls the 
influence of distant frames (and is set to 0.01 by default), c and cn are the current 
connection and its closest neighbor in the relevant past frame and Δt is the 
temporal gap separating these frames.

Top-down pose estimation. In general, top-down pose estimation is characterized 
by two stages that require an object detector and a single animal pose estimation 
model7. This pipeline requires bounding box annotations (which can come from 
many different algorithms). Here, bounding boxes were determined from ground 
truth keypoint coordinates. If a box’s aspect ratio was lower than 4:1, its smallest 
side was extended by 10 pixels. Box bounds were further enlarged by 25 pixels 
to make sure the bounding boxes covered an animal’s entire body. We pad the 
cropped images to a square and then resize them to the original size (400 × 400) to 
keep the aspect ratio constant. Second, we retrain a model (either with or without 
PAFs) on training images cropped by these bounding boxes. For inference, we 
retain the best prediction per bounding box, as decided by detection confidence 
for the model without PAFs and with highest assembly score for the model with 
PAF. Finally, for evaluation, we map coordinates of our final predictions back to the 
original images.

Detection performance and evaluation. To compare the human annotations 
with the model predictions we used the Euclidean distance to the closest predicted 
keypoint (r.m.s.e.) calculated per keypoint. Depending on the context, this metric 
is shown for a specific keypoint, averaged over all keypoints or averaged over 
a set of train or test images (Fig. 2a and Extended Data Fig. 3). Nonetheless, 
unnormalized pixel errors may be difficult to interpret in certain scenarios; for 
example, marmosets dramatically vary in size as they leap from the top to the 
bottom of the cage. Thus, we also calculated the percentage of correct keypoints 
(PCK) metric21,40; that is, the fraction of predicted keypoints that fall within a 
threshold distance from the location of the ground truth detection. PCK was 
computed in relation to a third of the tip–gill distance for the fish dataset, and a 
third of the left-right ear distance for the remaining ones.

Animal assembly quality was evaluated in terms of mAP computed over object 
keypoint similarity thresholds ranging from 0.50 to 0.95 in steps of 0.05, as is 
standard in human pose literature and COCO challenges18. Keypoint standard 
deviation was set to 0.1. As interpretable metrics, we also computed the number 
of ground truth keypoints left unconnected (after assembly) and purity—an 
additional criterion for quality that can be understood as the accuracy of the 
assignment of all keypoints of a putative subset to the most frequent ground truth 
animal identity within that subset41. Since pups are very hard to label consistently 
(see Extended Data Fig. 7 for examples), we allow flips between symmetric pairs of 
keypoints (end1 versus end2 or interm1 versus interm3, Extended Data Fig. 1) to 
be acceptable detection errors when evaluating keypoint similarity.

Statistics for assessing data-driven method. Two-way, repeated-measures 
ANOVA were performed using Pinetwork flow minimizationngouin (v.0.5.0)42 to 
test whether graph size and assembling method (naive versus data-driven versus 
calibrated assembly) had an impact on the fraction of unconnected body parts and 
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assembly purity. Since sphericity was violated, the Greenhouse–Geisser correction 
was applied. Provided a main effect was found, we conducted multiple post hoc 
(paired, two-sided) tests adjusted with Benjamini–Hochberg false discovery rate 
correction to locate pairwise differences. The Hedges’ g was calculated to report 
effect sizes between sets of observations.

Comparison to state-of-the-art pose estimation models. For benchmarking, we 
compared our architectures to current state-of-the-art architectures on COCO18, a 
challenging, large-scale multi-human pose estimation benchmark. Specifically, we 
considered HRNet11,43 as well as ResNet backbones22 with Associative Embedding10 
as implemented in the MMPose toolbox (https://github.com/open-mmlab/
mmpose). We chose them as control group for their simplicity (ResNet) and 
performance (HRNet). We used the bottom-up variants of both models. The 
bottom-up variants leverage associative embedding as the grouping algorithms10. 
In particular, the bottom-up variant of HRNet we used has mAP that is comparable 
to the state-of-the-art model HigherHRNet11 in COCO (69.8 versus 70.6) for a 
multiple scale test and (65.4 versus 67.7) for a single scale test.

To fairly compare, we used the same train and test split. The total training 
epochs are set such that models from two groups see roughly same number of 
images. The hyperparameters search was manually performed to find the optimal 
hyperparameters. For a small dataset such as the tri-mouse and (largest) marmoset, 
we found that the default settings for excellent performance on COCO gave 
optimal accuracy except that we needed to modify the total training steps to match 
DeepLabCut’s. For both the marmoset and tri-mouse datasets, the initial learning 
rate was 0.0015. For the three mouse dataset, the total epochs is 3,000 epochs 
and the learning rate decayed by a factor of 10 at 600 and 1,000 epochs. For the 
marmoset dataset, we trained for 50 epochs and the learning rate decayed after 
20 and 40 epochs. The batch size was 32 and 16 for ResNet-AE and HRNet-AE, 
respectively. For smaller datasets such as tri-mouse, fish and parenting, we found 
that a smaller learning rate and a smaller batch size gave better results; a total of 
3,000 epochs were used. After hyper-parameter search, we set batch size to four 
and initial learning rate a 0.0001, which then decayed at 1,000 and 2,000 epochs. 
As within DeepLabCut, multiple scale test and flip test were not performed 
(which is, however, common for COCO evaluation). For the parenting dataset, 
MMPose models can only be trained on one dataset (simultaneously), which is 
why these models are not trained to predict the mouse, and we only compare the 
performance on the pups. Full results are shown in Fig. 2.

Benchmarking idtacker.ai. We used version idtracker.ai27 v.3, taken from commit 
6b89601b; we tested it on tri-mouse and marmoset data. We report the MOTA 
results in Extended Data Fig. 8. For marmoset data, reasonable parameters to 
segment individual animals with the GUI could not be found (likely due to the 
complex background), thus we performed a grid search for the valid minimum 
intensity threshold and maximum intensity threshold, the two critical parameters, 
by step 2 from range 0 to 255. Even with these efforts, we still could not get 
reasonable results (Supplementary Video 5); that is, MOTA was negative.

DeepLabCut Tracking modules. Having seen that DeepLabCut provides a strong 
predictor for individuals and their keypoints, detections are linked across frames 
using a tracking-by-detection approach (for example, ref. 44). Thereby, we follow a 
divide-and-conquer strategy for (local) tracklet generation and tracklet stitching 
(Extended Data Fig. 4b,c). Specifically, we build on the Simple Online and Realtime 
Tracking framework (SORT25) to generate tracklets. The inter-frame displacement 
of assembled individuals is estimated via Kalman filter-based trackers. The task of 
associating these location estimates to the model detections is then formulated as a 
bipartite graph matching problem solved with the Hungarian algorithm, therefore 
guaranteeing a one-to-one correspondence across adjacent frames. Note that the 
trackers are agnostic to the type of skeleton (animal body plan), which render them 
robust and computationally efficient.

Box tracker. Bounding boxes are a common and well-established representation 
for object tracking. Here they are computed from the keypoint coordinates of each 
assembled individual, and expanded by a margin optionally set by the user. The state 
s of an individual is parametrized as s = [x, y, A, r, ẋ, ẏ, Ȧ], where x and y are the 
2D coordinates of the center of the bounding box; A, its area and r, its aspect ratio, 
together with their first time derivatives. Association between detected animals and 
tracker hypotheses is based on the intersection-over-union measure of overlap.

Ellipse tracker. A 2σ covariance error ellipse is fitted to an individual’s detected 
keypoints. The state is modeled as s = [x, y, h, w, θ, ẋ, ẏ, ḣ, ẇ, θ̇], where x and 
y are the 2D coordinates of the center of the ellipse; h and w, the lengths of its 
semi-axes and θ, its inclination relative to the horizontal. We anticipated that this 
parametrization would better capture subtle changes in body conformation, most 
apparent through changes in ellipse width and height and orientation. Moreover, 
an error ellipse confers robustness to outlier keypoints (for example, a prediction 
assigned to the wrong individual, which would cause the erroneous delineation 
of an animal’s boundary under the above-mentioned box tracking). In place of 
the ellipse overlap, the similarity cost c between detected and predicted ellipses is 
efficiently computed as: c = 0.8(1 − d) + 0.2(1 − d)(cos(θd − θp)), where d is 

the Euclidean distance separating the ellipse centroids normalized by the length of 
the longest semi-axis.

The existence of untracked individuals in the scene is signaled by assembled 
detections with a similarity cost lower than iou_threshold (set to 0.6 in our 
experiments). In other words, the higher the similarity threshold, the more 
conservative and accurate the frame-by-frame assignment, at the expense of shorter 
and more numerous tracklets. On creation, a tracker is initialized with the required 
parameters described above, and all (unobservable) velocities are set to 0. To avoid 
tracking sporadic, spurious detections, a tracker is required to live for a minimum of 
min_hits consecutive frames, or is otherwise deleted. Occlusions and reidentification 
of individuals are handled with the free parameter max_age—the maximal number 
of consecutive frames tracks can remain undetected before the tracker is considered 
lost. We set both to 1 to delegate the tasks of tracklet reidentification and false 
positive filtering to our TrackletStitcher, as we shall see below.

Tracklet stitching. Greedily linking individuals across frames is locally, but 
not globally, optimal. An elegant and efficient approach to reconstructing full 
trajectories (or tracks) from sparse tracklets is to cast the stitching task as a network 
flow minimization problem45,46. Each fully reconstructed track is equivalent to 
finding a flow through the graph from a source to a sink, subject to capacity 
constraints and whose overall linking cost is minimal (Extended Data Fig. 4c).

Formulation. The tracklets collected after animal tracking are denoted as 
{T1, ..., Tn}, and each contains a (temporally) ordered sequence of observations 
and time indices. Thereby, the observations are given as vectors of body part 
coordinates in pixels and likelihoods. In contrast to most approaches described 
in the literature, the proposed approach requires solely spatial and temporal 
information natively, while leveraging visual information (for example, animals’ 
identities predicted beforehand) is optional (see Fig. 3e for marmosets). This way, 
tracklet stitching is agnostic to the framework poses were estimated with, and 
works readily on previously collected kinematic data.

We construct a directed acyclic graph G = (V,E) using NetworkX47 to describe 
the affinity between multiple tracklets, where the ith node Vi corresponds to the 
ith tracklet Ti , and E is the set of edges encoding the cost entailed by linking the 
two corresponding tracklets (or, in other words, the likelihood that they belong 
to the same track). In our experiments, tracklets shorter than five frames were 
flagged as residuals: they do not contribute to the construction of the graph and 
are incorporated only after stitching. This minimal tracklet length can be changed 
by a user. To drastically reduce the number of possible associations and make our 
approach scale efficiently to large videos, edge construction is limited to those 
tracklets that do not overlap in time (since an animal cannot occupy multiple spatial 
locations at any one instant) and temporally separated by no more than a certain 
number of frames. By default, this threshold is automatically taken as 1.5 × τ, where 
τ is the smallest temporal gap guaranteeing that all pairs of consecutive tracklets 
are connected. Alternatively, the maximal gap to consider can be programmatically 
specified. The source and the sink are two auxiliary nodes that supply and demand 
an amount of flow k equal to the number of tracks to form. Each node is virtually 
split in half: an input with unit demand and an output with unit supply, connected 
by a weightless edge. All other edges have unit capacity and a weight w calculated 
from the affinity models described in the next subsection. Altogether, these 
constraints ensure that all nodes are visited exactly once, which thus amounts to 
a problem similar to covering G with k node-disjoint paths at the lowest cost. We 
considered different affinities for linking tracklets (Fig. 4d).

Affinity models. Motion affinity. Let us consider two nonoverlapping tracklets 
T1 and T2 consecutive in time. Their motion affinity is measured from the error 
between the true locations of their centroids (that is, unweighted average keypoint) 
and predictions made from their linear velocities. Specifically, we calculate a 
tracklet’s tail and head velocities by averaging instantaneous velocities over its 
three first and last data points (Fig. 4d). Assuming uniform, rectilinear motion, 
the centroid location of T1 at the starting frame of T2 is estimated, and we note df 
the distance between the forward prediction and the actual centroid coordinates. 
The same procedure is repeated backward in time, predicting the centroid location 
of T2 at the last frame of T1 knowing its tail velocity, yielding db. Motion affinity is 
then taken as the average error distance.

Spatial proximity. If a pair of tracklets overlaps in time, we calculate the Euclidean 
distance between their centroids averaged over their overlapping portion. 
Otherwise, we evaluate the distance between a tracklet’s tail and the other’s head.

Shape similarity. Shape similarity between two tracklets is taken as the undirected 
Hausdorff distance between the two sets of keypoints. Although this measure 
provides only a crude approximation of the mismatch between two animals’ skeletons, 
it is defined for finite sets of points of unequal size; for example, it advantageously 
allows the comparison of skeletons with a different number of visible keypoints.

Dynamic similarity. To further disambiguate tracklets in the rare event that 
they are spatially and temporally close, and similar in shape, we propose to use 
motion dynamics in a manner akin to ref. 48. The procedure is fully data-driven, 
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and requires no a priori knowledge of the animals’ behavior. In the absence of 
noise, the rank of the Hankel matrix—a matrix constructed by stacking delayed 
measurements of a tracklet’s centroid—theoretically determines the dimension 
of state space models; that is, it is a proxy for the complexity of the underlying 
dynamics49. If two tracklets originate from the same dynamical system, a single, 
low-order regressor should suffice to approximate them both. On the other hand, 
tracklets belonging to different tracks would require a higher-order (that is, more 
complex) model to explain their spatial evolution48. Low rank approximation of a 
noisy matrix, however, is a complex problem, as the matrix then tends to be full 
rank (that is, all its singular values are nonzero). For computational efficiency, we 
approximate the rank of a large numbers of potentially long tracklets using singular 
value decomposition via interpolative decomposition. Optimal low rank was 
chosen as the rank after which eigenvalues drop by less than 1%.

Problem solution for stitching. The optimal flow solution can be found using 
a min-cost flow algorithm. We use NetworkX’s capacity scaling variant of the 
successive shortest augmenting path algorithm, which requires polynomial time 
for the assignment problem (that is, when all nodes have unit demands and 
supplies, ref. 50). Residual tracklets are then greedily added back to the newly 
stitched tracks at locations that guarantee time continuity and, when there are 
multiple candidates, minimize the distances to the neighboring tracklets. Note 
that although residuals are typically very short, making the assignment decisions 
error-prone. To improve robustness and simultaneously reduce complexity, 
association hypotheses between temporally close residual tracklets are stored in 
the form of small directed acyclic graphs during a preliminary forward screening 
pass. An hypothesis likelihood is then scored based on pairwise tracklet spatial 
overlap, and weighted longest paths are ultimately kept to locally grow longer, 
more confident residuals.

This tracklet stitching process is implemented in DeepLabCut and 
automatically carried out after assembly and tracking. The tracks can then also be 
manually refined in a dedicated GUI (Extended Data Fig. 1).

Transformer for unsupervised ID tracking. To track unidentified animals we 
turn to metric learning4 with transformers, which are state-of-the-art for reID 
of humans and vehicles51. However, in contrast to ref. 51, we created a tracking 
approach and wanted to make use of the task-trained CNNs, and thus require 
fewer training data.

Specifically, we used the predicted coordinates of each tracklet (individual 
with temporal continuality) and extract features of 2,048 dimensions from the last 
layer of our (multi-task-trained) backbone network to form so called ‘keypoint 
embedding’, which contains embedding of each detected keypoint for every 
individual (and encode high-level visual features around the keypoint). Then we 
feed this keypoint embedding to a transformer that processes these embeddings 
and aggregates information globally. The transformer layers have four heads and 
four blocks with dimension of 768 and residual connections between blocks. The 
output of transformer layers are then followed by a multi-layer perceptron that 
outputs a vector of dimension 128 (more layers, as in ref. 51, actually gave a worse 
performance). We then use the output of the multi-layer perceptron to minimize 
triplet loss where we treat within tracklet embedding as anchor-positive pairs 
while tracklets from different individuals as anchor-negative pairs. For each test 
video, we extracted 10,000 triplets from the local-tracking approach (ellipse, 
to evaluate the capacity based on tracklets) and from the ground truth data (to 
evaluate the capacity of the approach; as triplets from ground truth tracks already 
are split into the correct number of animals). We then trained the transformer 
on 90% of the triplets, and evaluated it on the rest (Fig. 4). Thus, the transformer 
learns to recognize identities of each tracklet and we then use the cosine similarity 
as an additional cost to our graph. For this purpose, we used the transformer to 
extract 128 dimensional feature vectors (appearance embeddings) per keypoint 
embedding, which we then used for tracking (below).

Tracking performance evaluation. Tracking performance was assessed with 
the field standard MOTA metrics52. Namely, we used https://github.com/
cheind/py-motmetrics to compute MOTA, which evaluates a tracker’s overall 
performance at detecting and tracking individuals (all possible sources of errors 
considered: number of misses, of false positives and of mismatches (switches) 
respectively) independently of its ability to predict an individual’s location. MOTA 
is thereby the sum of three errors: the ratio of misses in the sequence, computed 
over the total number of objects present in all frames, the ratio of false positives 
and the ratio of mismatches52. The number of misses counts actual detections for 
which there are no matching trackers. The number of fragments indicates the 
number of times tracking was interrupted. The number of switches, occurring 
most often when two animals pass very close to one another or if tracking 
resumes with a different ID after an occlusion. In our software, remaining ID 
swaps are automatically flagged in the Refine Tracklets GUI (Extended Data Fig. 
1) by identifying instants at which the x and y coordinates of a pair of keypoints 
simultaneously intersect each other53.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
For this study, we established four differently challenging multi-animal datasets 
from ecology and neuroscience. Data collection was institutionally approved: 
tri-mouse, parenting behavior, fish schooling from Harvard University IACUC and 
marmosets from MIT and Broad Institute IACUC. They are available to download, 
minus a small amount (30%) held out as benchmark competition data, at https://
benchmark.deeplabcut.org/, and on Zenodo54–57. Findings in this paper can be 
replicated using the downloadable data and supplied code.

Code availability
Code to use this package is found at https://github.com/DeepLabCut/DeepLabCut 
with a LGPL-3.0 License. Code to reproduce the figures from this work is found at 
https://github.com/DeepLabCut/maDLC_NatureMethods2022.
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Extended Data Fig. 1 | DeepLabCut 2.2 workflow. (a) Multi-animal DeepLabCut2.2+ workflow. (b) An example screenshot of the Refine Tracklet GUI. We 
show the ellipse similarity score (black line), hand-noted GT switches in ID (blue), and additional frames in orange where the selected keypoint requires 
further examination. (c) Body part keypoint diagrams with names on the animal skeletons (see also Extended Data Figure 2).
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Extended Data Fig. 2 | Dataset characteristics and statistics. For each datasets, normalized animal poses were clustered using K-means adapted for 
missing elements, and embedded non-linearly in 2D space via Isometric mapping (Tenenbaum et al. 2000). Embeedings as well as representative poses 
are shown for the tri-mouse dataset (a). Counts of labeled keypoints (b) and distribution of bounding box diagonal lengths (c). (d-l) show the same for the 
other three datsets. The Proximity Index (m) reflects the crowdedness of the various dataset scenes. Statistics were computed from the ground truth test 
video annotations. The mice and fish datasets are more cluttered on average than the pups and marmosets.
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Extended Data Fig. 3 | Performance of various DeepLabCut network architectures. (a) Overall keypoint prediction errors of ResNets-50 and the 
EfficientNets backbones (B0/B7), DLCRNet at stride 4 and 8. Distribution of train and test errors are displayed as light and dark box plots, respectively. 
Box plots show median, first and third quartiles, with whiskers extending past the low and high quartiles to ± 1.5 times the interquartile range. All models 
were trained for 60k iterations. n=independent image samples as follows: for train∣test per dataset: 112∣49 (tri-mouse); 379∣163 (pups); 5316∣2278 
(marmosets); 70∣30 (fish). (b): Images on held-out test data, where plus indicates human ground truth, and the circle indicates the model prediction 
(shown for ResNet50 with stride 8). (c): Marmoset identification train-test accuracy for various backbones.
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Extended Data Fig. 4 | Discriminability of part affinity fields. Within- (pink) and between-animal (blue) affinity cost distributions for all edges of the 
mouse skeleton with DLCRNet_ms5. The saturated subplots highlight the 11 edges kept to form the smallest, optimal part affinity graph (see Fig. 2b). This 
is based on the separability power of an edge, that is, its ability to discriminate a connection between two keypoints effectively belonging to the same 
animal from the wrong ones, and reflected by the corresponding AUC scores (listed at the top of the subplots).
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Extended Data Fig. 5 | Average animal assembly speed in frames per second as a function of graph size. Assembly rates vs. graphs size for the four 
datasets. Improving the assembly robustness via calibration with labeled data in large graphs incurs no extra computational cost at best, and a slowdown 
by 25% at worst; remarkably, it is found to accelerate assembly speed in small graphs. Relying exclusively on keypoint identity prediction results in average 
speeds of around 5600 frames per second, independent of graph size. Three timing experiments were run per graph size (lighter colored dots) and 
averages are shown. Note that assembling rates exclude CNN processing times. Speed benchmark was run on a workstation with an Intel(R) Core(TM) 
i9-10900X CPU 3.70GHz.
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Extended Data Fig. 6 | Performance on out of domain marmoset data. (a) Example images from original dataset, and example generalization test images. 
(b) Median RMSE and PCK (gray numbers) for data and network (DLCRNet) as shown in Fig. 2a. (c) same, but on the generalization test images (n=300) 
(d) same but per cage as shown in a (n=30 test images per marmoset). Box plots show median, first and third quartiles, with whiskers extending past the 
low and high quartiles to ± 1.5 times the interquartile range.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Comparison of top-down methods with and without assembly. (a) Schematics of top-down method with example images from 
the pup dataset, which consists of first detecting individuals and then performing pose prediction on each bounding box (plus is human ground truth, and 
the circle is bottom-up model (DLCRNet, stride 8, data-driven) predictions. (b) Performance mAP computed for top-down method with and without PAFs 
and bottom-up method (baseline, data-driven) as also shown in Fig. 2d. PAF vs. w/o PAF one-way ANOVA p-values, tri-mouse: 4.656e-11, pups: 3.62e-12, 
marmosets: 1.33e-28, fish: 1.645e-06). There were significant model effects across all datasets: one-way ANOVA p-values– tri-mouse: 4.13e-11, pups: 
4.59e-25, marmosets: 3.04e-40, fish: 1.18e-14. (c) Example predictions within the smaller images (that is, bounded crops) from the top-down model (that 
is, w/PAF), and bottom-up predictions (full images, as noted).
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Extended Data Fig. 8 | Performance of idtracker.ai. (a) Segmented regions (red) overlaid on example image in idtracker.ai GUI. Example how idtracker.ai 
fails to segment only the mice in the full data frame for tri-mouse and (b) in marmoset dataset. (c) Using the ROI selection feature, we could find mostly 
just mice. However, due to the inhomogeneous lighting, the segmentation is not error-free. (d) Result of a grid search to find optimal parameters for 
idtracker with MOTA scores on the same videos as shown in Fig. 3a,e; one-sided, one-sample T-tests indicated that idtracker.ai performed significantly 
worse than DeepLabCut in both datasets (tri-mouse: T=-11.03, p=0.0008, d=5.52; marmosets: T=-8.43, p=0.0018, d=4.22).
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Extended Data Fig. 9 | Parameter sensitivity: evaluation of number of body parts, frames, and PAF sizes. (a) The number of keypoints affects mAP; 
evaluated with ResNet50 stride8 on the two datasets with the most keypoints originally labeled by subsampling the keypoints. [Mouse: snout/tailbase (2) 
+ leftear/rightear (4) + shoulder/spine1/spine2/spine3 (8) vs. full (12); Marmoset: Middle/Body2 (2) + FL1/BL1 /FR1/BR1/Left/Right (8) + front/body1/
body3 (11) vs. full (15)] (b) Identity prediction is not strongly affected by the number of keypoints used (same experiments as in a, but for identity). (c) 
Impact of graph size, and randomly dropping edges on performance. (d) Test performance on 30% of the data vs. training set size (as fraction of 70%) for 
all four datasets.
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