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Abstract—In this letter, we propose multi-antenna based spec-
trum sensing methods for cognitive radios (CRs) using the
generalized likelihood ratio test (GLRT) paradigm. The proposed
methods utilize the eigenvalues of the sample covariance matrix
of the received signal vector from multiple antennas, taking
advantage of the fact that in practice, the primary user signals
to be detected will either occupy a subspace of dimension strictly
smaller than the dimension of the observation space, or have a
non-white spatial spectrum. These methods do not require prior
knowledge of the primary user signals, or the channels from
the primary users to the CR. By making different assumptions
on the availability of the white noise power value at the CR
receiver, we derive two algorithms that are shown to outperform
the standard energy detector.

Index Terms—Antenna array, blind detection, cognitive radio,
generalized likelihood ratio test (GLRT), spectrum sensing.

I. INTRODUCTION

SPECTRUM sensing to detect the presence of primary
user transmissions is a crucial task for a cognitive radio

(CR) system, which opportunistically accesses the spectrum of
interest. To date many spectrum sensing algorithms have been
proposed in the literature, including, e.g., energy detection
[1], [2], matched-filter detection [3]-[5], and cyclostationarity-
based detection [6], [7]. All of these techniques may be
applied at an individual CR sensor or multiple CR sensors in
a collaborative manner such as those discussed in [8]–[12]. In
prior works on spectrum sensing for CRs, it is usually assumed
that there is full or partial knowledge available at the CR of
the primary user signal characteristics, the channel from the
primary user to the CR, and/or the noise power level at the
CR receiver. Such assumptions may limit the applicability of
these algorithms in realistic CR environments.

In this letter, we propose for multi-antenna CR sensors a
class of spectrum sensing methods that require no information
about the primary users or the channels from the primary to the
secondary users. The proposed methods utilize the eigenvalues
of the sample covariance matrix of the received signal vector
from multiple antennas, taking advantage of the fact that in
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practice, the primary signals to be detected will either occupy
a subspace of dimension strictly smaller than the number
of antennas, or have a non-white spectrum in space. Using
the generalized likelihood ratio test (GLRT) paradigm [13],
we derive two new algorithms for spectrum sensing under
different assumptions on the availability of the white noise
power value at the CR receiver.

The use of antenna arrays for signal detection is well
known in radar applications [14], [15], but these methods
are based on knowing the waveform of the signal to be
detected, and therefore cannot be used for CRs, in which the
primary user transmits a random signal that cannot be known a
priori. Blind signal detection for multi-antenna sensors with no
knowledge about the signal to be detected and the sensor noise
level has been studied in [16] based on information-theoretic
criteria rather than the GLRT principle. Furthermore, heuristic
algorithms for eigenvalue-based spectrum sensing for CRs has
been proposed in [17]. In this letter, by applying the GLRT
principle we derive new eigenvalue-based spectrum sensing
algorithms that are different from those in [17]. Finally, multi-
antenna transceivers have also been studied in [18] for transmit
beamforming instead of spectrum sensing for CRs.

II. SIGNAL MODEL

Consider a CR terminal performing spectrum sensing based
on a set of 𝑁 discrete-time vector observations x[𝑛], 𝑛 =
0, . . . , 𝑁−1, to decide if the primary signal is present. The 𝑖-th
component of x[𝑛], denoted as 𝑥𝑖[𝑛], 𝑖 = 0, . . . ,𝑀 −1, is the
output of the 𝑖-th antenna, where 𝑀 is the number of antennas
at the CR terminal.1 For notational convenience, an aggregate
observation matrix is defined as X = [x[0], . . . ,x[𝑁 − 1]].
The hypothesis testing problem of interest is expressed as

ℋ0 : x[𝑛] = w[𝑛], 𝑛 = 0, . . . , 𝑁 − 1

ℋ1 : x[𝑛] = s[𝑛] +w[𝑛], 𝑛 = 0, . . . , 𝑁 − 1 (1)

where w[𝑛] is the additive noise at the CR receiver, modeled
as an independent and identically distributed (i.i.d.) circularly
symmetric complex Gaussian (CSCG) vector with zero mean
and the covariance matrix 𝜎2I, with I denoting an identity
matrix, while s[𝑛] is the received primary signal to be detected.
In the absence of any prior knowledge of the form of s[𝑛],
or any attempt to estimate it, the signal s[𝑛] is suitably

1Alternatively, we may apply the model to collaborative sensing, in which
each single-antenna node senses the spectrum and then amplifies and forwards
via orthogonal channels the observations to a fusion center where the detection
decision is made using one of the methods to be described in this letter.
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assumed to be an i.i.d. CSCG random vector2 with zero mean
and the covariance matrix denoted by R𝑠 = 𝐸[s[𝑛]s𝐻 [𝑛]],
where (⋅)𝐻 denotes the conjugate transpose. We also write
R𝑥 = 𝐸[x[𝑛]x𝐻 [𝑛]]. We define the empirical or sample
covariance matrix of x[𝑛] to be

R̂𝑥 =
1

𝑁

𝑁−1∑
𝑛=0

x[𝑛]x𝐻 [𝑛] (2)

and assume that it is feasible to perform an eigen-
decomposition so that the unitary eigenvector matrix U𝑥 and
diagonal eigenvalue matrix Λ𝑥 in R̂𝑥 = U𝑥Λ𝑥U

𝐻
𝑥 are known

in each block of 𝑁 observations.
The algorithms to be proposed rely on one of the following

conditions to hold:

1) R𝑠 is rank-deficient: In other words, rank(R𝑠) = 𝑁𝑠 <
𝑀 , the dimension of the received signal space.3 In this
case, the smallest 𝑀 − 𝑁𝑠 eigenvalues of R̂𝑥 will be
approximately equal to the noise variance 𝜎2, while the
𝑁𝑠 largest eigenvalues of R̂𝑥 will be approximately the
sum of an eigenvalue of R𝑠 and 𝜎2. These approxima-
tions become exact in the limit 𝑁 → ∞.

2) R𝑠 is full-rank but R𝑠 ∕= 𝛼I, where 𝛼 is an arbitrary
positive constant: In this case, rank(R𝑠) = 𝑀 , and
each eigenvalue of R̂𝑥 will be approximately the sum
of an eigenvalue of R𝑠 and 𝜎2. Under this condition,
the eigenvalues of R𝑠 are unequal,4 and hence so are
those of R̂𝑥.

Note that when the primary signal is not present, R̂𝑥 → 𝜎2I
as 𝑁 → ∞, i.e., R̂𝑥 is a full-rank diagonal matrix with equal
eigenvalues, which is different from R̂𝑥 when the primary
signal is present provided that one of the above two conditions
is satisfied. Thus, R̂𝑥 can be used to detect the existence of
a primary signal, as will be more rigorously addressed next.

III. DETECTION ALGORITHMS

If the primary signal covariance matrix, R𝑠, and the noise
variance, 𝜎2, are both known, the Neyman-Pearson approach
[13] leads to the following estimator-correlator detector that is
optimal (in the sense of maximizing detection probability, 𝑃𝐷 ,
at a given probability of false alarm, 𝑃𝐹𝐴) for the hypothesis
testing problem in (1):

𝑇EC(X) =

𝑁−1∑
𝑛=0

x𝐻 [𝑛]R𝑠(R𝑠 + 𝜎2I)−1x[𝑛]
ℋ1

≷
ℋ0

𝛾 (3)

where (⋅)−1 denotes the matrix inverse, while 𝛾 is set to
provide a desired 𝑃𝐹𝐴. In the special case that R𝑠 = 𝛼I,

2Such assumptions are made merely for the convenience of analysis, while
the sensing methods to be proposed in this letter work even when the primary
signals are correlated over samples and/or have a non-Gaussian distribution,
as will be shown via simulation results.

3This occurs when e.g., the primary transmitter uses 𝑁𝑠 antennas in a
spatial multiplexing mode, and 𝑁𝑠 < 𝑀 ; or more generally when there are
a total of 𝑁𝑠 independent inputs from the primary network, originating from
one or more nodes.

4This could be due to the independent channels from the primary signal
sources to the CR terminal.

simplification of (3) (after discarding irrelevant constant terms)
reveals the energy detector to be optimal:

𝑇ED(X) =
𝑁−1∑
𝑛=0

∥x[𝑛]∥2
ℋ1

≷
ℋ0

𝛾 (4)

where ∥ ⋅ ∥ denotes the Euclidean norm of a complex vector.
If the secondary sensor does not know R𝑠 and/or 𝜎2

prior to spectrum sensing, the detection problem becomes
hypothesis testing in the presence of uncertain parameters,
which is generally known as “composite” hypothesis testing.
One useful solution for this type of problems is the GLRT [13],
which first obtains the maximum likelihood estimate (MLE)
of the unknown parameters under ℋ0 and ℋ1:

𝜃0 = argmax
𝜃0

𝑝(X∣ℋ0, 𝜃0), 𝜃1 = argmax
𝜃1

𝑝(X∣ℋ1, 𝜃1)

where 𝜃0 (𝜃1) is the set of parameters unknown under ℋ0

(ℋ1), and then forms the GLRT statistic

𝐿𝐺(X) =
𝑝(X∣𝜃1,ℋ1)

𝑝(X∣𝜃0,ℋ0)

ℋ1

≷
ℋ0

𝛾. (5)

In the next section, we will present two new spectrum sensing
algorithms designed using the GLRT principle, one for the
case where both R𝑠 and 𝜎2 are unknown, and the other for
the case where 𝜎2 is known, but R𝑠 is unknown.

A. Both R𝑠 and 𝜎2 Unknown

In this case, the log-likelihood function (LLF) under ℋ0 of
the unknown parameter 𝜎2 can be expressed as

ln 𝑝(X∣ℋ0, 𝜎
2) = −𝑀𝑁

2
ln(2𝜋𝜎2)− 1

2𝜎2

𝑁−1∑
𝑛=0

∥x[𝑛]∥2. (6)

The MLE of 𝜎2 under ℋ0 minimizes (6), and is given by

𝜎2
0 =

1

𝑀𝑁

𝑁−1∑
𝑛=0

∥x[𝑛]∥2, (7)

which upon substitution into (6) yields

ln 𝑝(X∣ℋ0, 𝜎2
0) = −𝑀𝑁

2

[
ln

(
2𝜋

𝑀𝑁

𝑁−1∑
𝑛=0

∥x[𝑛]∥2
)

+ 1

]
. (8)

Similarly, the LLF under ℋ1 of both unknowns R𝑠 and 𝜎2,
or equivalently, R𝑥, can be expressed as

ln 𝑝(X∣ℋ1,R𝑥) = −𝑀𝑁

2
ln(2𝜋)− 𝑁

2
ln (det(R𝑥))

− 1

2

𝑁−1∑
𝑛=0

x𝐻 [𝑛]R−1
𝑥 x[𝑛] (9)

where det(⋅) denotes the matrix determinant. The MLE of R𝑥

under ℋ1 can be derived as follows. First, define A = R−1
𝑥 .

Thus, (9) can be written as

𝑓(A) = −𝑀𝑁

2
ln(2𝜋)+

𝑁

2
ln (det(A))−1

2

𝑁−1∑
𝑛=0

x𝐻 [𝑛]Ax[𝑛].

(10)
Since R𝑥 ર 0, i.e., R𝑥 is positive semi-definite, so is A. It
is then easy to verify that 𝑓(A) is a concave function of A.
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By setting the first derivative of A to the all-zero matrix, the
optimal A that maximizes 𝑓(A) can be obtained. Equivalently,
the MLE of R𝑥 that maximizes 𝑝(X∣ℋ1,R𝑥) is obtained as
(manipulations omitted)

R̂𝑥 =
1

𝑁

𝑁−1∑
𝑛=0

x[𝑛]x𝐻 [𝑛]. (11)

Note that the above MLE of R𝑥 is identical to the sample
covariance matrix defined in (2). Substituting (11) into (9)
and using the identity tr(AB) = tr(BA) with tr(⋅) denoting
the matrix trace, we obtain

ln 𝑝(X∣ℋ1, R̂𝑥) = −𝑀𝑁

2
ln(2𝜋)− 𝑁

2
ln
(
det
(
R̂𝑥

))
− 𝑀𝑁

2
.

(12)

Let the 𝑀 eigenvalues of R̂𝑥 be denoted by 𝝀𝑥 =
[𝜆1,𝑥, . . . , 𝜆𝑀,𝑥]. Hence, subtracting (8) from (12) gives the
log-GLRT statistic

ln𝐿𝐺(X) =
𝑀𝑁

2

{
ln

(
1

𝑀

𝑀∑
𝑚=1

𝜆𝑚,𝑥

)
− 1

𝑀
ln

(
𝑀∏

𝑚=1

𝜆𝑚,𝑥

)}
.

(13)
Finally, removing constant terms and using the monotonicity
of the logarithm function gives the GLRT statistic

𝑇AGM(𝝀𝑥) =
1
𝑀

∑
𝑚 𝜆𝑚,𝑥

(
∏

𝑚 𝜆𝑚,𝑥)
1/𝑀

ℋ1

≷
ℋ0

𝛾. (14)

Note that the above test statistic depends only on the eigenval-
ues of the sample covariance matrix, 𝝀𝑥. This test statistic is
the ratio of the arithmetic mean (AM) to the geometric mean
(GM) of the eigenvalues. We thus call this detection algorithm
the AGM (arithmetic to geometric mean) method.

B. 𝜎2 Known, R𝑠 Unknown

In this subsection, a detector is obtained by assuming that
𝜎2 is known,5 but R𝑠 is unknown and thus has to be estimated
in a GLRT. The LLF under ℋ0 is given in (6) where 𝜎2 is now
treated as a known parameter, and that under ℋ1, conditioned
on the unknown parameter R𝑠, is

ln 𝑝(X∣ℋ1,R𝑠) = −𝑀𝑁

2
ln(2𝜋)− 𝑁

2
ln
(
det(R𝑠 + 𝜎2I)

)
− 1

2

𝑁−1∑
𝑛=0

x𝐻 [𝑛]
(
R𝑠 + 𝜎2I

)−1
x[𝑛]. (15)

The MLE of R𝑠 under ℋ1 can be obtained as follows. First,
like in the previous subsection, we introduce A = R−1

𝑥 =
(R𝑠 + 𝜎2I)−1 so that ln 𝑝(X∣ℋ1,R𝑠) can be rewritten as
𝑓(A) in (10). Since R𝑠 ર 0, it follows that R𝑥 ર 𝜎2I and
hence A ⪯ 1

𝜎2 I. The MLE of R𝑠 can be obtained from the
MLE of A by solving the following constrained optimization
problem over A:

Maximize 𝑓(A) (16)

Subject to A ર 0 (17)

A ⪯ 1

𝜎2
I. (18)

5Since this is a function of the receiver implementation at each sensor, it
may be estimated separately from the sensing operation.

TABLE I
SUMMARY OF SENSING ALGORITHMS

Name Test Statistic Equation
Estimator-Correlator (E-C) 𝑇EC (3)

Energy Detector (ED) 𝑇ED (4)
AM/GM (AGM) 𝑇AGM (14)

Signal-Subspace E-Values (SSE) 𝑇SSE (21)

Since it has been earlier shown that 𝑓(A) is a concave function
of A, and furthermore, the constraints in (17) and (18) specify
a convex set of A, it follows that the above optimization
problem is convex. In the appendix, by applying the Karush-
Kuhn-Tucker (KKT) optimality conditions [19], we show that
the optimal A for the above problem can be obtained as

A∗ = U𝑥Diag

(
min

(
1

𝜆1,𝑥
,
1

𝜎2

)
. . .min

(
1

𝜆𝑀,𝑥
,
1

𝜎2

))
U𝐻

𝑥 (19)

where Diag(x) denotes a diagonal matrix with the diagonal el-
ements expressed in x, while 𝜆𝑚,𝑥’s and U𝑥 are obtained from
the eigen-decomposition of R̂𝑥. Without loss of generality, we
also assume from this point that the eigenvalues are ordered
from largest to smallest, i.e., 𝜆1,𝑥 ≥ 𝜆2,𝑥 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝑀,𝑥. The
MLE of R𝑠 can then be obtained as

R̂𝑠 = U𝑥Diag
((

𝜆1,𝑥 − 𝜎2
)+

, . . . ,
(
𝜆𝑀,𝑥 − 𝜎2

)+)
U𝐻

𝑥 (20)

where (𝑥)+ = max(𝑥, 0). Substituting (20) into (15) and
subtracting (6) (with known 𝜎2) from it yields the log-GLRT
statistic as

𝑇SSE(𝝀𝑥) =
𝑁𝑚′

2

[
AM(𝝀𝑠

𝑥)

𝜎2
− ln

(
GM(𝝀𝑠

𝑥)

𝜎2

)
− 1

] ℋ1

≷
ℋ0

𝛾

(21)
where 𝑚′ corresponds to the largest 𝑚 such that 𝜆𝑚,𝑥 > 𝜎2,
𝝀𝑠
𝑥 denotes the vector of signal-subspace eigenvalues of R̂𝑥,

i.e., 𝝀𝑠
𝑥 = [𝜆1,𝑥, . . . , 𝜆𝑚′,𝑥], and AM(x) and GM(x) denote

the arithmetic mean and the geometric mean over the elements
in a vector x, respectively. We call this algorithm the SSE
(signal-subspace eigenvalues) method.

IV. SIMULATION RESULTS

In this section, we present simulation results to compare the
performances of various sensing algorithms considered in this
letter (which are summarized in Table I).

First, we consider an ideal case where a CR sensor with
𝑀 = 8 antennas is to detect 𝑄 = 3 single-antenna primary
signal sources, each carrying an equal-power and independent
data stream. For each data stream, the transmitted primary
signals are i.i.d. CSCG random variables, the same as assumed
for the analysis in this letter. An independent Rayleigh flat-
fading channel between each transmit-receive antenna pair is
assumed. 1, 000 Monte Carlo simulations are carried out with
each simulation consisting of 𝑁 = 104 independent observa-
tion samples. For the ED, we consider that the estimated noise
power is �̂�2 = 𝛼𝜎2, and 𝛼 in dB, i.e., 10 log10 𝛼 is uniformly
distributed in an interval [−𝐵,𝐵] [2], [3]. More specifically,
for ED we test two cases: without noise uncertainty, i.e., 𝐵 =
0, denoted as ED (0dB); and with 0.5 dB noise uncertainty, i.e.,
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Fig. 1. ROC curves of various sensing algorithms: 𝑀 = 8, 𝑄 = 3, SNR=-
20dB, and 𝑁 = 104.

𝐵 = 0.5, denoted as ED (0.5dB). The received average signal-
to-noise radio (SNR) per antenna is fixed at −20dB. Fig. 1
shows the Receiver Operating Characteristics (ROC) curves,
each of which constitutes all the achievable probability pairs
of 𝑃𝐷 and 𝑃𝐹𝐴 for each sensing algorithm. It is observed
that the E-C always performs the best since it is the optimal
detector assuming perfect knowledge of the received primary
signal covariance and the noise variance. If only the noise
variance is perfectly known, the SSE performs better than the
perfect ED without noise uncertainty. However, if the noise
variance is unknown, even with only 0.5dB noise uncertainty,
the ED performs substantially worse than the proposed AGM,
which operates without knowing the noise variance.

Next, we consider a practical CR application scenario in a
WRAN network, where a CR sensor with 𝑀 = 4 antennas
is to detect a single-source (𝑄 = 1) baseband FM modulated
wireless microphone signal (soft speaker) [20]. The sampling
rate at the receiver is 6MHz (the same as the TV bandwidth
in USA). The channel between each transmit-receive antenna
pair is a multipath channel with 5 independent, equal-power
taps, where each tap coefficient is generated from a CSCG
distribution. The test threshold, 𝛾, is chosen to achieve a target
𝑃𝐹𝐴 of 10%, as required in the IEEE 802.22 standard, and
𝑁 = 104. In Fig. 2, 𝑃𝐷 is plotted against the average received
SNR for each sensing algorithm. Again, it is observed that
the proposed eigenvalue-based methods (AGM and SSE) out-
perform the ED with and without noise variance uncertainty,
respectively. It is also observed that the proposed methods
work well for realistic channels and non-Gaussian primary
signals.

V. CONCLUSION

This paper applies the well-known GLRT principle to the
problem of spectrum sensing in a CR network. Under mild
assumptions on the primary signal, the proposed eigenvalue-
based algorithms are shown to perform better than the con-
ventional energy detector, with or without noise power uncer-
tainty. The price paid for the performance improvement over
energy detection is higher implementation complexity because
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Fig. 2. Probability of detection for wireless microphone primary signals by
various sensing algorithms: 𝑃𝐹𝐴 = 0.1, 𝑀 = 4, 𝑄 = 1, and 𝑁 = 104.

of the need to estimate the signal covariance matrix, and
perform an eigen-decomposition on this estimate. Practically,
the proposed algorithms enable shorter sensing intervals for
given 𝑃𝐷 and 𝑃𝐹𝐴, or higher 𝑃𝐷/lower 𝑃𝐹𝐴 for a given
sensing interval; these features are valuable for the successful
development of wireless networks based on opportunistic
spectrum access.

APPENDIX

In this appendix, the derivation of (19) is shown in details.
By introducing the dual variables B and C, where B ર 0 and
C ર 0, corresponding to the constraint (17) and (18), respec-
tively, the Lagrangian [19] of this constrained optimization
problem can be written as

ℒ (A,B,C) = 𝑓(A) + tr (BA)− tr

(
C

(
A− 1

𝜎2
I

))
. (22)

Let A∗ denote the optimal primal solution of the problem
at hand, and B∗ and C∗ the optimal dual solutions for its
dual problem. Since the problem at hand is convex and has a
feasible solution set, Slater’s condition holds and the duality
gap is zero [19]. The following KKT conditions [19] must be
satisfied by A∗, B∗, and C∗ simultaneously:

∂ℒ (A∗,B∗,C∗)
∂A

= 𝑓 ′(A∗) +B∗ −C∗ = 0 (23)

tr (B∗A∗) = 0 (24)

tr

(
C∗

(
A∗ − 1

𝜎2
I

))
= 0. (25)

It can be verified that A∗ given by (19) and the following B∗

and C∗ satisfy the above KKT conditions:

B∗ = 0 (26)

C∗ =
𝑁

2
U𝑥Diag

(
max

(
𝜆1,𝑥, 𝜎

2
)− 𝜆1,𝑥, . . . ,

max
(
𝜆𝑀,𝑥, 𝜎

2
)− 𝜆𝑀,𝑥

)
U𝐻

𝑥 . (27)

Since the KKT conditions are both necessary and sufficient
for the optimality of the primal and dual solutions of a convex
optimization problem, the proof thus follows.
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