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Abstract. Multi-armed bandit problems (MABPs) are a special type of
optimal control problem well suited to model resource allocation under
uncertainty in a wide variety of contexts. Since the first publication of
the optimal solution of the classic MABP by a dynamic index rule, the
bandit literature quickly diversified and emerged as an active research
topic. Across this literature, the use of bandit models to optimally de-
sign clinical trials became a typical motivating application, yet little of
the resulting theory has ever been used in the actual design and analysis
of clinical trials. To this end, we review two MABP decision-theoretic
approaches to the optimal allocation of treatments in a clinical trial:
the infinite horizon Bayesian Bernoulli MABP and the finite horizon
variant. These models possess distinct theoretical properties and lead
to separate allocation rules in a clinical trial design context. We eval-
uate their performance compared to other allocation rules, including
fixed randomization. Our results indicate that bandit approaches offer
significant advantages, in terms of assigning more patients to better
treatments, and severe limitations, in terms of their resulting statisti-
cal power. We propose a novel bandit based patient allocation rule that
overcomes the issue of low power, thus removing a potential barrier for
their use in practice.
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2 VILLAR ET AL.

1. INTRODUCTION

Randomized controlled trials have become the gold-standard approach in clin-
ical research over the last 60 years. Fixing the probability of being assigned to
each arm for its duration, it removes (asymptotically) any systematic differences
between patients on different arms with respect to all known or unknown con-
founders. The frequentist operating characteristics of the standard approach (e.g.
the type I error rate and power) are well understood, and the size of the trial
can easily be chosen in advance to fix these at any level the practitioner desires.
However, whilst it is important for a clinical trial to be adequately powered to
detect a significant difference at its conclusion, the wellbeing of patients during
the study itself must not be forgotten.
MABPs are an idealized mathematical decision framework for deciding how to
optimally allocate a resource among a number of competing uses, given that such
allocation is to be done sequentially and under randomly evolving conditions. In
its simplest version, the resource is work, which can further be devoted to only
one use at a time. The uses are treated as independent “projects” with a binary
outcome which develop following Markov rules. Their roots can be traced back to
work produced by Thompson (1933), which was later continued and developed in
Robbins (1952), Bellman (1956), and finally Gittins and Jones (1974). Although
their scope is much more general, the most common scenario chosen to motivate
this methodology is that of a clinical trial which has the aim of balancing two
separate goals:

• To correctly identify the best treatment (exploration or learning).
• To treat patients as effectively as possible during the trial (exploitation or

earning).

One might think that these two goals are naturally complementary, but this is
not the case. Correctly identifying the best treatment requires some patients to
be assigned to all treatments, and therefore the former acts to limit the latter.

Despite this apparent near-perfect fit between a real world problem and a
mathematical theory, the MABP has yet to be applied to an actual clinical trial.
Such a state of affairs was pointed out early on by Peter Armitage in a paper
reflecting upon the use in practice of theoretical models to derive optimal solutions
for problems in clinical trials:

Either the theoreticians have got hold of the wrong problem, or the practising trial-
lists have shown a culpable lack of awareness of relevant theoretical developments,
or both. In any case, the situation does not reflect particularly well on the statistical
community. (Armitage, 1985, pg. 15).

A very similar picture is described two decades later in Palmer (2002) when
discussing and advocating for the use of “learn-as-you-go” designs as a means
of alleviating many problems faced by those involved with clinical trials today.
More recently, Don Berry - a leading proponent of the use of Bayesian methods
to develop innovative adaptive clinical trials, also highlighted the resistance to
the use of bandit theoretical results:

But if you want to actually use the result then people will attack your assumptions.
Bandit problems are good examples. An explicit assumption is the goal to treat
patients effectively, in the trial as well as out. That is controversial (...) (Stangl
et al., 2012)
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MAB MODELS FOR THE OPTIMAL DESIGN OF CLINICAL TRIALS 3

In view of this, a broad goal of this article is to contribute to setting the
ground for change by reviewing a concrete area of theoretical bandit results, in
order to facilitate their application in practice. The layout of the paper is as
follows: In Section 2 we first recount the basic elements of the Bayesian Bernoulli
MABP. In Section 3 we focus on the infinite horizon case, presenting its solution
in terms of an index rule - whose optimality was first proved by Gittins and
Jones over 30 years ago. In Section 4 we review the finite horizon variant by
reformulating it as an equivalent infinite horizon restless MABP, which further
provides a means to compute the index rule for the original problem. In Section 5
we compare, via simulation, the performance of the MABP approaches to existing
methods of response adaptive allocation (including standard randomization) in
several clinical trial settings. These results motivate the proposal of a composite
method, that combines bandit-based allocation for the experimental treatment
arms with standard randomisation for the control arm. We conclude in Section 6
with a discussion of the existing barriers to the implementation of bandit based
rules for the design of clinical trials and point to future research.

2. THE BAYESIAN BERNOULLI MULTI-ARMED BANDIT PROBLEM

The Bayesian Bernoulli K-armed bandit problem corresponds to a MABP in
which only one arm can be worked on at a time t, and work on arm k = 1, . . . ,K
represents drawing a sample observation from a Bernoulli population Yk,t with
unknown parameter pk, ‘earning’ the observed value yk,t as a reward (i.e., either 0
or 1). In a clinical trial context, each arm represents a treatment with an unknown
success rate. The Bayesian feature is introduced by letting each parameter pk have
a Beta prior with parameters sk,0 and fk,0 such that (sk,0, fk,0) ∈ N2

+ before the
first sample observation is drawn (i.e., at t = 0). After having observed Sk,t = sk,t
successes and Fk,t = fk,t failures, with (Sk,t, Fk,t) ∈ N2

0 for any t ≥ 1, the posterior
density is a Beta distribution with parameters (sk,0 + sk,t, fk,0 + fk,t).

Formally, the Bernoulli Bayesian MABP is defined by letting each arm k be a
discrete-time Markov Control Process(MCP)with the following elements:

(a) The state space: Xk,t = {(sk,0+Sk,t, fk,0+Fk,t) ∈ N2
+ : Sk,t+Fk,t ≤ t, for t =

0, 1, . . . , T} which represents all the possible two-dimensional vectors of in-
formation on the unknown parameter pk at time t. We denote the available
information on treatment k at time t as xk,t = (sk,0 + Sk,t, fk,0 + Fk,t) and
the initial prior as xk,0 = (sk,0, fk,0). In a clinical trial context, the ran-
dom vector (Sk,t, Fk,t) represents the number of successful and unsucessful
patient outcomes (e.g. response to treatment, remission of tumor, etc.).

(b) The action set Ak is a binary set representing the action of drawing a
sample observation from population k at time t (ak,t = 1) or not (ak,t = 0).
In a clinical context, the action variable stands for the choice of assigning
patient t to treatment arm k or not.

(c) The Markovian transition law Pk(xk,t+1|xk,t, ak) describing the evolution
of the information state variable in population k from time t to t + 1 is
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4 VILLAR ET AL.

given by:
(2.1)

xk,t+1 =


(sk,0 + sk,t + 1, fk,0 + fk,t) , if ak,t = 1 w.p

sk,0+sk,t
sk,0+fk,0+sk,t+fk,t

,

(sk,0 + sk,t, fk,0 + fk,t + 1) , if ak,t = 1 w.p
fk,0+fk,t

sk,0+fk,0+sk,t+fk,t
,

xk,t, if ak,t = 0 w.p 1,

for any xk,t ∈ Xk,t and where w.p stands for ‘with probability’.
(d) The expected rewards and resource consumption functions are:

(2.2) R(xk,t, ak,t) =
sk,0 + sk,t

sk,0 + fk,0 + sk,t + fk,t
ak,t C(xk,t, ak,t) = ak,t,

for t = 0, 1, . . . T − 1. Where, in accordance to (2.1), a reward (i.e., a treat-
ment success) in arm k arises only if that arm is worked on and with a
probability given by the posterior predictive mean of pk at time t and re-
source consumption is restricted by the fact that (at most) one treatment
can be allocated to every patient in the trial, i.e.,

∑K
k=1 ak,t ≤ 1 for all t.

A rule is required to operate the resulting MCP, indicating which action to take
for each of the K arms, for every possible combination of information states and
at every time t, until the final horizon T . Such a rule forms a sequence of actions
{ak,t}, which depends on the information available up to time t, i.e., on {xk,t},
and it is known as a policy within the Markov Decision Processes literature. To
complete the specification of this multi-armed bandit model as an optimal control
model, the problem’s objective function must be selected. Given an objective
function and a time horizon, a multi-armed bandit optimal control problem is
mathematically summarized as the problem of finding a feasible policy, π, in Π
(the set of all the feasible policies given the resource constraint) that optimizes
the selected performance objective.

The performance objective in the Bayesian Bernoulli MABP is to maximize
the Expected Total Discounted (ETD) number of successes after T observations,
letting 0 ≤ d < 1 be the discount factor. Then, the corresponding bandit opti-
mization problem is to find a discount-optimal policy such that,

(2.3) V ∗D(x̃0) = max
π∈Π

Eπ

[
T−1∑
t=0

K∑
k=1

dt
sk,0 + Sk,t

sk,0 + fk,0 + Sk,t + Fk,t
ak,t

∣∣∣x̃0 = (xk,0)Kk=1

]
,

where x̃0 is the initial joint state , Eπ[·] denotes expectation under policy π and
transition probability rule (2.1), V ∗D(x̃0) is the optimal expected total discounted
value function conditional on the initial joint state being equal to x̃0 (for any
possible joint initial state) and where, given the resource constraint, the family
of admissible feasible policies Π contains the sampling rules π for which it holds
that

∑K
k=1 ak,t ≤ 1 for all t.

A generic MABP formally consists of K discrete-time MCPs with their ele-
ments defined in more generality, i.e., (a) the state space: a Borel space, (b) the
binary action set, (c) the Markovian transition law : a stochastic kernel on the
state space given each action and (d) a reward function and a work consumption
function: two measurable functions. As before, the MABP is to find a policy that
optimizes a given performance criterion, e.g., it maximizes the ETD net rewards.
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Robbins (1952) proposed an alternative version of the Bayesian Bernoulli
MABP problem, by considering the average regret after allocating T sample
observations (for a large T and for any given and unknown (pk)

K
k=1). For the

Bayesian Bernoulli MABP, the total regret ρ is defined as

(2.4) ρ = T max
k
{pk} − Eπ

[
T−1∑
t=0

K∑
k=1

ak,tYk,t

]
for some (pk)

K
k=1.

A form of asymptotic optimality can be defined for sampling rules π in terms of
(2.4) if it holds that for any (pk)

K
k=1: limT→∞

ρ
T = 0. A necessary condition for a

rule to attain this property is to sample each of the K populations infinitely often,
i.e., to continue to sample from (possibly) suboptimal arms for every t < ∞. In
other words, asymptotically optimal rules have a strictly positive probability of
allocating a patient to every arm at any point of the trial. Of course, within the
set of asymptotically optimal policies secondary criteria may be defined and con-
sidered (See e.g., Lai and Robbins (1986)). As it will be illustrated in Section 5,
objectives in terms of (2.3) or (2.4) give rise to sampling rules with distinct sta-
tistical properties. Asymptotically optimal rules, i.e., in terms of (2.4), maximize
the learning about the best treatment, provided it exists, while the rules that are
optimal in terms of (2.3), maximize the mean number of total successes in the
trial.

3. THE INFINITE HORIZON CASE: A CLASSIC MABP

We now review the solution giving the optimal policy to optimization problem
(2.3) in the infinite-horizon setting, by letting T =∞. In general, as MABPs are a
special class of MCPs, the traditional technique to address them is via a dynamic
programming (DP) approach. Thus, the solution to (2.3), according to Bellman’s
principle of optimality (Bellman, 1952), is such that for every t = 0, 1, . . . the
below DP equation holds:

V ∗D(x1,t, . . . ,xK,t) = max
k

{
sk,0 + sk,t

sk,0 + fk,0 + sk,t + fk,t
+

d

(
sk,0 + sk,t

sk,0 + fk,0 + sk,t + fk,t
V ∗D(x1,t,xk,t + e1, . . . ,xK,t)+

fk,0 + fk,t
sk,0 + fk,0 + sk,t + fk,t

V ∗D(x1,t,xk,t + e2, . . . ,xK,t)

)}
,

(3.1)

where e1, e2 respectively denote the unit vectors (1, 0) and (0, 1). Under the
assumptions defining the Bayesian Bernoulli MABP, the theory for discounted
MCPs ensures the existence of an optimal solution to (3.1) and also the mono-
tone convergence of the value functions V ∗D(x̃t). Therefore, equation (3.1) can be
approximately solved iteratively using a backwards induction algorithm.

Unfortunately, as shown in Figure 1, such a DP technique suffers from a se-
vere computational burden, which is particularly well illustrated in the classic
MABP where the size of the state space grows with the truncation horizon T .
To illustrate this fact, consider the case of K treatments with an initial uniform
prior distribution (i.e., sk,0 = fk,0 = 1 ∀k) and truncation horizon to initialize
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Fig 1: The number of individual computations for an approximation to the opti-
mal rule in a particular instance of the Bayesian Bernoulli MABP as a function of
T with K = 3 and d = 0.9 for the Brute force, DP and Gittins Index approaches

the algorithm equal to T . The total number of individual calculations (i.e., the
number of successive evaluations of V ∗D(x1,t, . . . ,xK,t)) required to find an ap-

proximate optimal solution by means of the DP algorithm equals (T−1)!
(2K)!(T−2K−1)! .

The precision of such an approximation depends on d, e.g., if d ≤ 0.9 values to
four-figure accuracy are calculated for T ≥ 100. Therefore, considering the prob-
lem with K = 3 and d = 0.9 (and hence T ≥ 100) makes the intractability of
the problem’s optimal policy become evident. (For a more detailed discussion see
Appendix A.)

3.1 The Gittins Index Theorem

The computational cost of the DP algorithm to solve equation (3.1) is signifi-
cantly smaller than the cost of a complete enumeration the set of feasible policies
Π (i.e., the brute force strategy), yet it is still not enough to make the solution of
the problem applicable for most real world scenarios, with more than 2 treatment
arms. For this reason the problem gained the reputation of being extremely hard
to solve soon after being formulated for the first time, becoming a paradigmatic
problem to describe the exploration versus exploitation dilemma characteristic of
any data based learning process.

Such state of affairs explains why the solution first obtained by Gittins and
Jones (1974) constitutes such a landmark event in the bandit literature. The
index theorem states that if problem P is an infinite horizon MABP with each of
its K composing MCPs having: (1) a finite action set Ak, (2) a finite or infinite
numerable state space Xk, (3) a Markovian transition law under the passive action
ak,t = 0 (i.e., the passive dynamics) such that:

(3.2) Pk(x′k|xk, 0) = Pk{Xk,t+1 = x′k|Xk,t = xk, ak,t = 0} = 1{xk′=xk},

for any xk, x
′
k ∈ Xk, where 1{xk′=xk} is an indicator variable for the event that
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the state variable value at time t+ 1: xk′ equals the state variable value of state
t: xk, and (4) the set of feasible polices Π contains all polices π such that for all t

(3.3)
K∑
k=1

ak,t ≤ 1,

then there exists a real-valued index function G(xk,t), which recovers the optimal
solution to such a MABP when the objective function is defined under a ETD
criterion, as in (2.3). Such function is defined as follows

(3.4) Gk(xk,t) = sup
τ≥1

EXk,t=xk,t

τ−1∑
i=0

R(Xk,t+i, 1)di

EXk,t=xk,t

τ−1∑
i=0

C(Xk,t+i, 1)di

,

where the expectation is computed with respect to the corresponding Marko-
vian (active) transition law Pk(x′k|xk, 1), and τ is a stopping time. Specifically,
the optimal policy π∗ for problem P is to work on the bandit process with the
highest index value, breaking ties randomly. Note that the stopping time τ is
past-measurable, i.e., it is based on the information available at each decision
stage only. Observe also that the index is defined as the ratio of the ETD reward
up to τ active steps to the ETD cost up to τ active steps.

MABPs whose dynamics are restricted as in (3.2) (namely those in which
passive projects remain frozen in their states) are referred to in the specialized
literature as classic MABPs and the name Gittins index is used for the function
(3.4). The index theorem’s significant impact derives from the possibility of us-
ing such result to break the curse of dimensionality by decomposing the optimal
solution to a K-armed MABP in terms of its independent parts, which are re-
markably more tractable than the original problem as shown in Figure 1. The
number of individual calculations required to solve problem (3.1) using the index
Theorem is of order 1

2(T − 1)(T − 2), which no longer explodes with the trunca-
tion horizon T . Further, it is completely independent of K, which means that a
single index table suffices for all possible trials, therefore reducing the computing
requirements appreciably. (For more details, see Appendix A.)

Such computational savings are particularly well illustrated in the Bayesian
Bernoulli MABP where the Gittins index (3.4) is given by

(3.5) Gk(xk,t) = sup
τ≥1

E.
τ−1∑
i=0

sk,0 + Sk,t+i
sk,0 + fk,0 + Sk,t+i + Fk,t+i

di

E.
τ−1∑
i=0

di

,

where E. = EXk,t=(sk,0+sk,t,fk,0+fk,t).
Calculations of the indices (3.5) have been reported in brief tables as in Gittins

(1979) and Robinson (1982). Improvements to the efficiency of this computing the
index have since been proposed by Katehakis and Veinott Jr (1985); Katehakis
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8 VILLAR ET AL.

and Derman (1986). Moreover, since the publication of Gittins’ first proof of the
optimality result of the index policy for a classic MABP in Gittins and Jones
(1974), there have been alternative proofs, each offering complementary insights
and interpretations. Among them, the proofs by Whittle (1980), Varaiya et al.
(1985), Weber (1992), and Bertsimas and Niño-Mora (1996) stand out.

To elaborate a little more on the use of the Gittins index for solving a K-
armed Bayesian Bernoulli MABP in a clinical trial context, we have included
some values of the Gittins index in Table 1 and Figure 2. These values correspond
to a particular instance in which the initial prior for every arm is uniform, the
discount factor is d = 0.99, the index precision is of 4 digits and we have truncated
the search of the best stopping time to T = 750. The choice of d=0.99 is a widely
used value in the related bandit literature. In our example, since 0.99750 < 10−3,
patients treated after this time yield an almost zero expected discounted reward
and are hence ignored.

The Gittins index policy assigns a number to every treatment (from an ex-
tended version of Table 1), based on the values of sk,t and fk,t observed, and then
prioritizes sampling the one with the highest value. Thus, provided that we adjust
for each treatment prior, the same table can be used for making the allocation
decision of all treatments in a trial. Furthermore, the number of treatments need
not be pre-specified in advance and new treatments may be seamlessly intro-
duced part-way through the trial as well (see Whittle, 1981). To give a concrete
example, suppose that all treatments start with a common uniform prior then all
initial states are equal to xk,0 = (1, 1) with a corresponding Gittins index value
of 0.8699 for all of them. Yet, if a treatment k has a beta prior with parameters
(1, 2) and another treatment k′ has a prior with parameters (2, 1), their respective
initial states are xk,0 = (1, 2) and xk′,0 = (2, 1), and their associated index values
respectively are 0.7005, 0.9102. The same reasoning applies for the case in which
priors combine with data so as to have xk,1 = (1, 2) and xk′,1 = (2, 1).

f/s 1 2 3 4 5 6

1 0.8699 0.9102 0.9285 0.9395 0.9470 0.9525

2 0.7005 0.7844 0.8268 0.8533 0.8719 0.8857

3 0.5671 0.6726 0.7308 0.7696 0.7973 0.8184

4 0.4701 0.5806 0.6490 0.6952 0.7295 0.7561

5 0.3969 0.5093 0.5798 0.6311 0.6697 0.6998

6 0.3415 0.4509 0.5225 0.5756 0.6172 0.6504

Table 1
The (approximate) Gittins index values for an information vector of s0 + st successes and

f0 + ft failures where d = 0.99 and T is truncated at T = 750.

The underlined values in Table 1 describe situations in which the learning
element plays a key role. Consider two treatments with the same posterior mean of
success 2/4 = 4/8 = 1/2. According to the indices denoted by the single line, the
treatment with the smallest number of observations is preferred 0.7844 > 0.6952.
Moreover, consider the case in which the posterior means of success suggest the
superiority of one over the other: 2/5 = 0.4 < 6/12 = 0.5 yet their indices denoted
by the double-underline, suggest the opposite 0.6726 > 0.6504, again prioritizing
the least observed population.

Gittins and Wang (1992) define the learning component of the index as the
difference between the index value and the expected immediate reward, which for
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MAB MODELS FOR THE OPTIMAL DESIGN OF CLINICAL TRIALS 9

Fig 2: The (approximate) Gittins index values for an information vector of s0 +st
successes and f0 + ft failures where d = 0.99 and T is truncated at T = 750.

the general Bayesian Bernoulli MABP is given by
sk,0+sk,t

sk,0+fk,0+sk,t+fk,t
. This poste-

rior probability is the current belief that a treatment k is successful and it can
be used for making patient allocation decisions in a myopic way, i.e. exploiting
the available information without taking into account the possible future learn-
ing. Consider for instance the case where xk,0 = (1, 1) for all k. In that case,
the learning component before making any treatment allocation decision is thus
(0.8699− 0.5) = 0.3699. As the number of observations of a bandit increases, the
learning part of the indices decreases.

4. THE FINITE HORIZON CASE: A RESTLESS MABP

Of course, clinical trials are not run with infinite resources or patients. Rather,
one usually attempts to recruit the minimum number of patients to achieve a pre-
determined power. Thus, we now consider the optimization problem defined in
(2.3) for a finite value of T . Indeed, a solution could in theory be obtained via DP,
but it is impractical in large-scale scenarios for reasons already stated. Moreover,
the Index Theorem does not apply to this case, thus the Gittins index function as
defined for the infinite-horizon variant does not exist (Berry and Fristedt, 1985).
In the infinite-horizon problem, at any t there is always an infinite number of
possible sample observations to be drawn from any of the populations. This is no
longer the case in a finite-horizon problem, and the value of a sampling history
(sk,t, fk,t) is not the same when the sampling process is about to start than when
it is about to end. The finite-horizon problem analysis is thus more complex,
because these transient effects must be considered for the characterization of the
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10 VILLAR ET AL.

optimal policy. In what follows we summarize how to derive an index function
analogous to Gittins’ rule for the finite-horizon Bayesian Bernoulli MABP based
on an equivalent reformulation of it as an infinite-horizon Restless MABP, as it
was done in Nino-Mora (2005). In the equivalent model the information state
is augmented, adding the number of remaining sample observations that can
be drawn from the K populations. Hence, the MCP has the following modified
elements:

(a) An augmented state space X̂k given by the union of the set Xk,t×T, where
T = {0, 1, . . . , T}, and an absorbing state {E}, representing the end of the
sampling process. Thus, x̂k,t = (xk,t, T − t) is a three dimensional vector
combining the information on the treatment (prior and observed) and the
number of remaining patients to allocate until the end of the trial.

(b) The same as in Section 2.
(c) A transition law Pk(x̂k,t+1|x̂k,t, ak) for every x̂k,t such that 0 ≤ t ≤ T − 1:

(4.1)

x̂k,t+1 =



if ak,t = 1 :

(sk,0 + sk,t + 1, fk,0 + fk,t, T − (t+ 1)) , w.p
sk,t+sk,0

sk,t+fk,t+sk,0+fk,0
,

(sk,0 + sk,t, fk,0 + fk,t + 1, T − (t+ 1)) , w.p
fk,t+fk,0

sk,t+fk,t+sk,0+fk,0
,

if ak,t = 0 (xk,t, T − (t+ 1)) , w.p 1,

x̂k,T and E, under both actions, lead to E with probability one.
(d) The one-period expected rewards and resource consumption functions are

defined as in (2.2) for t = 0, 1, . . . T − 1, while the states E and x̂k,T both
yield 0 reward and work consumption.

The objective in the resulting bandit optimization problem is also to find a
discount-optimal policy that maximizes the ETD rewards.

4.1 Restless MABPs and the Whittle Index

In this equivalent version the horizon is infinite (a fiction introduced by forcing
every arm of the MABP to remain in state E after the period T ), nonetheless the
Index Theorem does not apply to it because its dynamics do not fulfil condition
(3.2). The inclusion of the number of remaining observations to allocate as a state
variable causes inactive arms to evolve regardless of the selected action, and this
particular feature makes the augmented MABP restless.

In the seminal work by Whittle (1988), this particular extension to the MABP
dynamics was first proposed and the name restless was introduced to refer to this
class of problems. Whittle deployed a Lagrangian relaxation and decomposition
approach to derive an index function, analogous to the one Gittins had proposed
to solve the classic case, which has become known as the Whittle index.

One of the main implications of Whittle’s work is the realization that the
existence of such an index function is not guaranteed for every restless MABP.
Moreover, even in those cases in which it exists, the index rule does not necessarily
recover the optimal solution to the original MABP (as it does in the classic case),
being thus a heuristic rule. Whittle further conjectured that the index policy for
the restless variant enjoys a form of asymptotic optimality (in terms of the ETD
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MAB MODELS FOR THE OPTIMAL DESIGN OF CLINICAL TRIALS 11

rewards achieved), a property later established by Weber and Weiss (1990) under
certain conditions. Typically, the resulting heuristic has been found to be nearly
optimal in various models.

4.2 Indexability of finite-horizon classic MABP

In general, establishing the existence of an index function for a restless MABP
(i.e., showing its indexability) and computing it is a tedious task. In some cases,
the sufficient indexability conditions (SIC) introduced by Niño-Mora (2001) can
be applied for both purposes.

The restless bandit reformulation of finite-horizon classic MABPs, as defined
in Section 2, is always indexable. Such a property can either be shown by means
of the SIC approach or simply using the seminal result in Bellman (1956), by
which the monotonicity of the optimal policies can be ensured, allowing to focus
attention on a nested family of stopping-times.

Moreover, the fact that in this restless MABP reformulation the part of the
augmented state that continues to evolve under ak,t = 0, i.e., T − t , does so in
the exact same way that under ak,t = 1 allows computation of the Whittle index
as a modified version of the Gittins index, in which the search of the optimal
stopping time in (3.4) is truncated to be less than or equal to the number of
remaining observations to allocate (at each decision period) (See Proposition 3.1
in Niño-Mora, 2011). Hence, the Whittle index for the finite-horizon Bayesian
Bernoulli MABP is:

(4.2)

Wk(x̂k,t) = sup
1≤τ≤T−t

EX̂k,t=x̂k,t

τ−1∑
i=0

R(X̂k,t+i, 1)di

EX̂k,t=x̂k,t

τ−1∑
i=0

C(X̂k,t+i, 1)di

, for x̂k,t ∈ X̂k \ {E, x̂k,T }

where the expectation is computed with respect to the corresponding Markovian
(active) transition law Pk(x̂k,t+1|x̂k,t, 1) and τ is a stopping time.

Table 2, Table 3 and Table 4 include some values of the Whittle indices for
instances in which, as before, the initial prior is uniform for all the arms and the
index precision is of 4 digits but, the discount factor is d = 1, the sampling horizon
is set to be T = 180, and the number of remaining observations is respectively
allowed to be T − t = 80, T − t = 40 and T − t = 1. Again, the Whittle index
rule assigns a number from these tables to every treatment, based on the values
of sk,0 + sk,t and fk,0 + fk,t and on the number of remaining periods T − t, and
then prioritizes sampling the one with highest value.

It follows from the above tables that the learning element of this index de-
creases as T − t decreases. In the limit, when T − t = 1 the Whittle index is
exactly the posterior mean of success (which corresponds to the myopic alloca-
tion rule that results from using current belief as an index). On the contrary as,
T − t → ∞, the Whittle index tends to approximate the Gittins index. Hence,
for a given information vector, the relative importance of exploring (or learning)
vs. exploiting (or being myopic) varies significantly over time in a finite-horizon
problem as opposed to the infinite-horizon case in which this balance remains
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f/s 1 2 3 4 5 6

1 0.8558 0.9002 0.9204 0.9326 0.9409 0.9471

2 0.6803 0.7689 0.8140 0.8423 0.8621 0.8769

3 0.5463 0.6552 0.7158 0.7565 0.7855 0.8077

4 0.4503 0.5630 0.6335 0.6812 0.7167 0.7444

5 0.3786 0.4923 0.5642 0.6169 0.6565 0.6876

6 0.3247 0.4348 0.5073 0.6040 0.6040 0.6380

Table 2
The Whittle index values for an information vector of s0 + st successes and f0 + ft failures,

T − t = 80, d = 1 and where the size of the trial is T = 180

f/s 1 2 3 4 5 6

1 0.8107 0.8698 0.8969 0.9132 0.9244 0.9326

2 0.6199 0.7239 0.7778 0.8120 0.8360 0.8539

3 0.4877 0.6067 0.6753 0.7214 0.7546 0.7802

4 0.3955 0.5157 0.5920 0.6447 0.6837 0.7147

5 0.3297 0.4476 0.5231 0.5802 0.6233 0.6573

6 0.2805 0.3929 0.4690 0.5254 0.571 0.6075

Table 3
The Whittle index at T − t = 40

constant in time depending solely on the sampling history. Notice that the com-
putational cost of a single Whittle index table is, at most, the same as for a
Gittins index one, however solving a finite horizon MABP using the Whittle rule
has significantly higher computational cost than the infinite horizon case, because
the Whittle indices must be computed at every time point t.

This evolution of the learning vs. earning trade-off is depicted graphically in
Figure 3 and causes the decisions in each of the highlighted situations of Table 1
to change over time when considered for a finite-horizon problem. In Table 2 with
T − t = 80 both decisions coincide with the ones described for Table 1 while in
Table 3, in which T − t = 40, the decision for the second example has changed
and in Table 4, in which T − t = 1, the decisions in both cases are different.

5. SIMULATION STUDY

In this section, we evaluate the performance of a range of patient allocation
rules in a clinical trial context, including the bandit based solutions of Section 3
and Section 4. We focus on the: statistical power (1 − β); type I error rate (α);
expected proportion of patients in the trial assigned to the best treatment (p∗);
expected number of patient successes (ENS) and, for the two-arm case, bias in the
maximum likelihood estimate of treatment effect associated with each decision
rule. Specifically, we investigate the following patient allocation procedures:

• Fixed randomized design (FR): uses an equal, fixed probability to allocate
patients to each arm throughout the trial.
• Current Belief (CB): allocates each patient to the treatment with the high-

est mean posterior probability of success.
• Thompson Sampling (TS): randomizes each patient to a treatment k with a

probability that is proportional to the posterior probability that treatment
k is the best given the data. In the simulations we shall use the allocation
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f/s 1 2 3 4 5 6

1 0.5000 0.6667 0.7500 0.8000 0.8333 0.8571

2 0.3333 0.5000 0.6000 0.6667 0.7143 0.7500

3 0.2500 0.4000 0.5000 0.5714 0.6250 0.6667

4 0.2000 0.3333 0.4286 0.5000 0.5556 0.6000

5 0.1667 0.2857 0.3750 0.4444 0.5000 0.5455

6 0.1429 0.2500 0.3333 0.4000 0.4545 0.5000

Table 4
The Whittle index at T − t = 1

probabilities defined as:

(5.1) πk,t = P(ak,t = 1|xk,t) =
P(maxi pi = pk|xk,t)c∑K
k=1 P(maxi pi = pk|xk,t)c

where c is a tuning parameter defined as t
2T , and t and T are the current

and maximum sample size respectively. See e.g., Thall and Wathen (2007).
• Gittins Index (GI) and Whittle Index (WI): respectively use the correspond-

ing index functions defined by formulae (3.5) and (4.2).
• Upper Confidence Bound Index (UCB), developed by Auer et al. (2002),

takes into account not only the posterior mean and but also its variability
by allocating the next patient to the treatment with the highest value of

an index, calculated as follows:
sk,0+sk,t

sk,0+fk,0+sk,t+fk,t
+
√

2 log t
sk,0+fk,0+sk,t+fk,t

.

Semi-randomized (asymptotically optimal) bandit approaches

In addition, we consider a randomized class of index-based bandit patient allo-
cation procedures based on a simple modification first suggested in Bather (1981).
The key idea is to add small perturbations to the index value corresponding to
the observed data at each stage, obtaining a new set of indices in which the (de-
terministic) index-based part captures the importance of the exploitation based
on the accumulated information and the (random) perturbation part, captures
the learning element. Formally, these rules are defined as follows:

(5.2) I(sk,0 + sk,t, fk,0 + fk,t) + Zt ∗ λ(sk,0 + sk,t + fk,t + fk,0),

where I(sk,0 + sk,t, fk,0 + fk,t) is the index value associated to the prior and
observed data on arm k by time t, Zt is an i.i.d. positive and unbounded random
variable and λ(sk,0 + sk,t + fk,t + fk,0) is sequence of strictly positive constants
tending to 0 as sk,0 +sk,t+fk,t+fk,0 tends to∞. The interest in this class of rules
is due to their asymptotic optimality, i.e., property (2.4) discussed in Section 2,
specifically on assessing how their performance compares to the index rules that
are optimal (or nearly optimal) in terms of the the ETD objective (2.3). Notice
that rules defined by (5.2) have a decreasing, though strictly positive, probability
of allocating patients to every arm at any point of the trial. In other words, rules
(5.2) are such that most of the patients are allocated sequentially to the current
best arm (according to the criteria given by the index value), while some patients
are allocated to all the other treatment arms.

For the simulations included in this paper we let Zt(K) be an exponential
random variable with parameter 1

K ; λ(sk,0 + sk,t + fk,t + fk,0) = K
sk,0+sk,t+fk,t+fk,0

and define two additional approaches
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14 VILLAR ET AL.

Fig 3: The (approximate) Whittle index values for an information vector of s0+st
successes and f0 + ft failures, plotted for T − t ∈ {1, 40, 80} with d = 1 and
T = 180.

• Randomized Belief Index (RBI) design: makes the sampling decisions be-
tween the populations based on an index computed setting I(sk,0+sk,t, fk,t+

fk,0) =
sk,0+sk,t

sk,0+fk,0+sk,t+fk,t
in (5.2).

• Randomized Gittins Index (RGI) design, first suggested in Glazebrook (1980),
makes the sampling decisions between the populations based on the index
computed setting I(sk,0 +sk,t, fk,t+fk,0) = G(sk,0 +sk,t, fk,t+fk,0) in (5.2).

For every design, ties are broken at random and in every simulated scenario
we let xk,0 = (sk,0, fk,0) = (1, 1) for all k..

Design scenarios

We implement all of the above methods in several K-arm trial design settings.
In each case, trials are made up of K−1 experimental treatments and one control
treatment. The control group (and its associated quantities) is always denoted by
the subscript 0 and the experimental treatment groups by 1, ...,K − 1. We first
consider the case K = 2. To compare the two treatments we consider the following
hypothesis:H0 : p0 ≥ p1, with the type I error rate calculated at p0 = p1 = 0.3 and
the power to reject H0 calculated at H1 : p0 = 0.3; p1 = 0.5. We set the size of trial
to be T = 148 to ensure that FR will attain at least 80% power when rejecting
H0 with a one-sided 5% type I error rate. We then evaluate the performances of
these designs by simulating 104 repetitions of the trials under each hypothesis
and comparing the resulting operating characteristics of the trials. Hypothesis
testing is performed using a normal cut-off value (when appropriate) and using
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an adjusted Fisher’s exact test for comparing two binomial distributions, where
the adjustment chooses the cutoff value to achieve a 5% type-I error.

For the K-arm design settings we shall consider the following hypothesis: H0 :
p0 ≥ pi for i = 1, . . . ,K − 1 with the family-wise error rate calculated at p0 =
p1 = · · · = pK−1 = 0.3. We use the Bonferroni correction method to account
for multiple testing and therefore ensure that the family wise error rate is less
or equal than 5%, i.e., all hypothesis whose p-values pk are such that pk <

α
K−1

are rejected. Additionally, when there are multiple experimental treatments, we
shall define the statistical power as the probability of the trial ending with the
conclusion that a truly effective treatment is effective.

5.1 Two-arm trial setting simulations

Table 5 shows the results for K = 2 under both hypothesis and for each pro-
posed allocation rule. The randomized and semi-randomized response-adaptive
procedures (i.e., TS, UCB, RBI and RGI) exhibit a slightly inferior power level
than a FR design however they have an advantage in terms of ENS over a FR
design. On the other hand, the three deterministic index-based approaches (i.e.,
CB, WI and GI) have the best performance in terms of ENS yet result power
values which are far below the required values. In the most extreme case, for the
CB and WI rules, the power is approximately 3.5 times smaller than with a FR
design.

Crit. H0 : p0 = p1 = 0.3 H1 : p0 = 0.3 , p1 = 0.5
Value α p∗ (s.e.) ENS (s.e.) 1 − β p∗ (s.e.) ENS (s.e.)

FR 1.645 0.052 0.500 (0.04) 44.34 (5.62) 0.809 0.501 (0.04) 59.17 (6.03)
TS 1.645 0.066 0.499 (0.10) 44.39 (5.58) 0.795 0.685 (0.09) 64.85 (6.62)

UCB 1.645 0.062 0.499 (0.10) 44.30 (5.60) 0.799 0.721 (0.07) 66.03 (6.57)
RBI 1.645 0.067 0.502 (0.14) 44.40 (5.57) 0.763 0.737 (0.07) 66.43 (6.54)
RGI 1.645 0.063 0.500 (0.11) 44.40 (5.61) 0.785 0.705 (0.07) 65.46 (6.40)
CB Fa 0.046 0.528 (0.44) 44.34 (5.55) 0.228 0.782 (0.35) 67.75 (12.0)
WI Fa 0.048 0.499 (0.35) 44.37 (5.59) 0.282 0.878 (0.18) 70.73 (8.16)
GI Fa 0.053 0.501 (0.26) 44.41 (5.58) 0.364 0.862 (0.11) 70.21 (7.11)

UB 44.40 (0.00) 1 74.00 (0.00)

Table 5
Comparison of different two-arm trial designs of size T = 148. Fa: Fisher’s adjusted test; α:
type I error; 1 − β: power; p∗: expected proportion of patients in the trial assigned to the best

treatment; ENS: expected number of patient successes; UB: upper bound.

Adaptive rules have their power reduced because they induce correlation among
treatment assignments, however for the deterministic index policies this effect is
the most severe because they permanently skew treatment allocation towards a
treatment as soon as one exhibits a certain advantage over the other arms.

To illustrate the above point, let n0 and n1 be the number of patients allo-
cated to treatment 0 and 1 respectively, then for the results in Table 5 it holds
that ECB(n0) = 31.60, ECB(n1) = 116.40, EWI(n0) = 16.49, EWI(n1) = 131.51
and EGI(n0) = 19.06, EGI(n1) = 128.94. Moreover, this implies that the re-
quired ‘superiority’ does not need to be a statistical significant difference of the
size included in the alternative hypothesis as suggested by the following val-
ues: ECBk (s/n) = [0.1437 ; 0.4208], V CB

k (s/n) = [0.1528 ; 0.1831], EWI
k (s/n) =

[0.1976 ; 0.4860], V WI
k (s/n) = [0.1470 ; 0.08875], EGIk (s/n) = [0.2283 ; 0.4959] and

V GI
k (s/n) = [0.1271 ; 0.0538].
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16 VILLAR ET AL.

The results in Table 5 illustrate the natural tension between the two opposing
goals of maximizing the statistical power to detect a significant treatment effects
(using FR) and maximizing the health of the patients in the trial (using GI).
The optimality property inherent in the GI design produces an average gain
in successfully treated patients of 11 (an improvement of 18.62% over the FR
design). This is only 4 fewer patients’ on average than the theoretical upper
bound (calculated as T × p1 = 74) achievable if all patients were assigned to
the best treatment from the start. It is worth noting that the asymptotically
optimal index approaches (w.r.t (2.4)) improve on the statistical power of the
index designs (around 76% − 78% for a 5% type I error rate) at the expense of
attaining an inferior value of ENS (around 5 fewer successes on average compared
to the bandit based rules). Yet, these rules significantly improve on the value of
ENS attained by a FR design, naturally striking a better balance in the patient
health/power trade-off.

From Table 5 one can see that the three index-based rules significantly im-
prove on the average number of successes in the trial by increasing the allocation
towards the superior treatment based on the observed data. This acts to reduce
the power to detect significant treatment effect. Another factor at play is bias:
index-based rules induce a negative bias in the treatment effect estimates of each
arm, the magnitude of this bias is largest for inferior treatments (for which less
patients are assigned to than superior treatments). When the control is inferior
to the experimental treatment, this induces a positive bias in the estimated ben-
efit of the experimental treatment over the control. This is shown in Figure 4.
A heuristic explanation for this is as follows. The index-based rules select a ‘su-
perior’ treatment before the trial is over based on the accumulated data. This
implies that if a treatment performs worse than its true average, i.e., worse for a
certain number of consecutive patients, then the treatment will not be assigned
further patients. The treatment’s estimate then has no chance to regress up to-
wards the true value. Conversely, if a treatment performs better than its true
average, the index based rules all assign further patients to receive it, and its
estimate then has the scope to regress down towards its true value. This negative
bias of the unselected arms is observed for all dynamic allocation rules, and is
the most extreme for CB method.

The final observation refers to the fact that although all the index-based rules
fail to achieve the required level of power to detect the true superior treatment,
they tend to correctly skew patient allocation towards the best treatment within
the trial, when it exists. For the simulation reported in Table 5 we have computed
the probability that each rule makes the wrong choice (i.e., stops allocating pa-
tients to the experimental treatment). These values are: 0.1730, 0.0307, 0.0035 for
the CB, WI, and GI methods respectively.

5.2 Multi-arm trial setting

We now present results for a K = 4 setting. First, we consider the case of
a trial with T = 423 patients. As before, we set the size of the trial to ensure
that a FR design results in at least 80% power to detect an effective treatment
for a family wise-error rate of less than 5%. Results for this case are depicted
in Table 6. The Whittle index approach is omitted because for T roughly larger
than 150 its performance is near identical to that attained by the Gittins index
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Fig 4: Top: The bias in the control treatment estimate as a function of the number of
allocated patients under H1. Bottom: The bias in the experimental treatment estimate
under H1.
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but with a significantly higher computational cost.
In this setting, the randomized and semi-randomized adaptive rules (i.e., TS,

UCB, RBI, RGI) exhibit an advantage over a FR both in the achieved power and
in ENS. The reason for that is that these rules continue to allocate patients to all
arms while they skew allocation to the best performing arm, hence ensuring that
by the end of the design the control arm will have a similar number of observations
than with FR while the best arm will have a larger number. Among these rules,
TS and UCB exhibit the best balance between power-ENS which achieve the 80%
power increasing ENS in approximately 23 over a FR design. The deterministic
index-based rules CB and GI increase this advantage in ENS over a FR design by
roughly 36 and 50, respectively. However, a severe reduction is again observed in
the power values of these designs. On the other hand, the probability that each
of these rules makes a wrong choice (i.e., it does not skew the allocation towards
the best experimental treatment) is 0.2691 and 0.0051 respectively for the CB
and GI.

5.3 The controlled Gittins index approach

To overcome the severe loss of statistical power of the Gittins index we in-
troduce, for the multi-arm trial setting only, a composite design in which the
allocation to the control treatment is done in such a way that one in every K
patients is allocated to the control group whilst the allocation of the remaining
patients among the experimental treatments is done using the Gittins index rule.
We refer to this design as the controlled Gittins (CG) approach.

Based on the simulation results, CG manages to solve the trade-off quite suc-
cessfully, in the sense that it achieves more than 80% power, while it achieves
a mean number of successes very close to the one achieved by the CB rule and
with a third of the variability that CB exhibits in expected number of patient
successes.

Crit. H0 : p0 = pi = 0.3 for i = 1, . . . , 3 H1 : p0 = pi = 0.3 i = 1, 2:, p3 = 0.5
Value α p∗ (s.e.) ENS (s.e.) (1 − β) p∗ (s.e.) ENS (s.e.)

FR 2.128 0.047 0.250 (0.02) 126.86 (9.41) 0.814 0.250 (0.02) 148.03 (9.77)
TS 2.128 0.056 0.251 (0.07) 126.93 (9.47) 0.884 0.529 (0.09) 172.15 (13.0)

UCB 2.128 0.055 0.251 (0.06) 126.97 (9.41) 0.877 0.526 (0.07) 171.70 (11.9)
RBI 2.128 0.049 0.250 (0.03) 126.77 (9.40) 0.846 0.368 (0.04) 158.34 (10.4)
RGI 2.128 0.046 0.250 (0.03) 126.80 (9.36) 0.847 0.358 (0.03) 157.26 (10.3)
CB Fa 0.047 0.269 (0.39) 126.89 (9.61) 0.213 0.677 (0.41) 184.87 (36.8)
GI Fa 0.048 0.248 (0.18) 126.68 (9.40) 0.428 0.831 (0.10) 198.25 (13.7)
CG 2.128 0.034 0.250 (0.02) 127.16 (9.46) 0.925 0.640 (0.08) 182.10 (12.3)

UB 126.90 (0.00) 1 211.50 (0.00)

Table 6
Comparison of different four-arm trial designs of size T = 423. Fa: Fisher’s adjusted test; α:
family wise type I error; 1 − β: power; p∗: expected proportion of patients in the trial assigned

to the best treatment; ENS: expected number of patient successes; UB: upper bound.

5.4 Multi-arm trial in a rare disease setting

Finally, we imagine a rare disease setting, where the number of patients in the
trial is a high proportion of all patients with the condition, but is not enough
to guarantee reasonable power to detect a treatment effect of a meaningful size.
In such a context, the idea of prioritizing patient benefit over hypothesis testing
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is likely to raise less controversy than in a common-disease context (Wang and
Arnold, 2002). We therefore simulate a four-arm trial as before but where the size
of the trial is T = 80. Given that the size of the trial implies a very small number
of observations per arm Table 7 only includes the results of the tests using Fisher’s
exact test and Fisher’s adjusted exact test (in this case, adjusted to attain the
same type I error as the other methods). Also, to make the scenario more general
we have considered that under the alternative hypothesis the parameters are such
that H1 : pk = 0.3 + 0.1× k k = 0, 1, 2, 3.

The FR approach exhibits a 30% power and attains an ENS value of 36. Ta-
ble 7 shows the results attained for each of the designs considered. Under the
alternative hypotheses, the GI and WI designs achieve an ENS gain over the FR
design of 6 patients. Again, the CG rule exhibits an advantage over FR in both
in the achieved power and in the ENS (which in the case of this small population
equals the advantage achieved by TS or UCB). Its ENS is less than 10 below
the theoretical upper bound of 48. An important feature to highlight is that the
Whittle rule does not significantly differ from the Gittins rule as it could be ex-
pected, given the trial (and hence its horizon) is small. These results illustrate
how the GI and WI start skewing patient allocation towards the best arm (when
it exists) earlier than other adaptive designs, therefore explaining their advantage
in terms of p∗ for small T over all of them

Crit. H0 : p0 = pi = 0.3 for i = 1, . . . , 3 H1 : pk = 0.3 + 0.1 × k k = 0, 1, 2, 3
Value α p∗ (s.e.) ENS (s.e.) (1 − β) p∗ (s.e.) ENS (s.e.)

FR F 0.019 0.251 (0.04) 24.01 (4.07) 0.300 0.250 (0.04) 35.99 (4.41)
TS F 0.013 0.250 (0.07) 24.01 (4.15) 0.246 0.338 (0.08) 38.34 (4.68)

UCB F 0.011 0.252 (0.06) 24.00 (4.12) 0.218 0.362 (0.08) 38.84 (4.71)
RBI F 0.018 0.250 (0.03) 23.97 (4.06) 0.295 0.268 (0.03) 36.52 (4.41)
RGI F 0.017 0.250 (0.02) 24.07 (4.07) 0.298 0.265 (0.03) 36.45 (4.36)
CB Fa 0.017 0.270 (0.30) 23.98 (4.08) 0.056 0.419 (0.38) 40.92 (6.89)
WI Fa 0.015 0.258 (0.22) 23.00 (4.14) 0.101 0.537 (0.31) 42.65 (6.02)
GI Fa 0.000 0.251 (0.13) 23.97 (4.11) 0.002 0.492 (0.21) 41.60 (5.44)
CG Fa 0.015 0.253 (0.13) 24.04 (4.13) 0.349 0.393 (0.16) 38.29 (4.82)

UB 24.00 (0.00) 1 48.00 (0.00)

Table 7
Comparison of different four-arm trial designs of size T = 80. F: Fisher; α: type I error; 1− β:

power; p∗: expected proportion of patients in the trial assigned to the best treatment; ENS:
expected number of patient successes; UB: upper bound.

6. DISCUSSION

Multi-armed bandit problems have emerged as the archetypal model for ap-
proaching learning problems whilst addressing the dilemma of exploration versus
exploitation. Although it has long been used as the motivating example, they have
yet to find any real application in clinical trials. After reviewing the theory of the
Bernoulli MABP approach, and the Gittins and Whittle indices in particular, we
have attempted to illustrate their utility compared to other methods of patient
allocation in several multi-arm clinical trial contexts.

Our results in Section 5 show that the Gittins and Whittle index based allo-
cation methods perform extremely well when judged solely on patient outcomes,
compared to the traditional fixed randomisation approach. The two indexes have
distinct theoretical properties, yet in our simulations any differences in their per-
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formance were negligible, with both designs being close to each other and the best
possible scenario in terms of patient benefit. Since it only needs to be calculated
once before the trial starts, the Gittins index may naturally be preferred.

The Gittins index, therefore, represents an extremely simple - yet near optimal -
rule for allocating patients to treatments within the finite horizon of a real clinical
trial. Furthermore, since the index is independent of the number of treatments,
it can seamlessly incorporate the addition of new arms in a trial, by balancing
the need to learn about the new treatment with the need to exploit existing
knowledge on others. The issue of adding treatment arms is present in today’s
cutting edge clinical trials. For example, this facet has been built into the I-SPY
2 trial investigating tumour-specific treatments for breast cancer from the start
(Barker et al., 2009). It is also now being considered in the multi-arm multi-stage
STAMPEDE trial into treatments for prostate cancer as an unplanned protocol
amendment, due to a new agent becoming available (Sydes et al., 2009; Wason
et al., 2012).

Gittins indices and analogous optimality results have been derived for end-
points other than binary. Therefore, the analysis and conclusions of this work
naturally extend to the multinomial distribution (Glazebrook, 1978), normally
distributed processes with known variance (Jones, 1970) and with unknown vari-
ance (Jones, 1975) and exponentially distributed populations (Do Amaral, 1985;
Gittins et al., 2011).

Unfortunately, the frequentist properties of designs that utilize index based
rules can certainly be questioned; both the Gittins and Whittle index approaches
required an adjustment of the Fisher’s exact test in order to attain type I error
control, produced biased estimates and, most importantly, have very low power
to detect a treatment difference at the end of the trial. Since this latter issue
greatly reduces their practical appeal, we proposed a simple modification that
acted to stabilize the numbers of patients allocated to the control arm. This
greatly increased their power whilst seemingly avoiding any unwanted type I
error inflation above the nominal level. This principle is not without precedence,
indeed Trippa et al. (2012) have recently proposed a Bayesian adaptive design
in the oncology setting for which protecting the control group allocation is also
an integral part. Further research is needed to see whether statistical tests can
be developed for bandit based designs with well controlled type I error rates and
also if bias adjusted estimation is possible.

There are of course other obvious limitations to the use of index based ap-
proaches in practice. A patient’s response to treatment needs to be known before
the next patient is recruited, since the subsequent allocation decision depends
on it. This will only be true in a small number of clinical contexts, for example
in early phase trials where the outcome is quick to evaluate, or for trials where
the recruitment rate may be slow (e.g. some rare disease settings). MABPs rely
on this simplifying assumption for the sake of ensuring both tractability and op-
timality, and can not claim these special properties without making additional
assumptions (see e.g. Caro and Yoo, 2010). It would be interesting to see, how-
ever, if index based approaches could be successfully applied in the more general
settings where patient outcomes are observed in groups at a finite number of
interim analyses, such as in a multi-arm multi-stage trial (Magirr et al., 2012;
Wason and Jaki, 2012). Further research is needed to address this question.
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A different limitation to the use of bandit strategies is found in the fact that
the approach leads to deterministic strategies. Randomization naturally protects
designs against many possible sources of bias, for example patient drift unbal-
ancing treatment arms (Tang et al., 2010) or unscrupulous trial sponsors cherry
picking patients (FDA, 2006). Of course, whilst these are serious concerns, they
could also be levelled at any other other deterministic allocation rule, such as
play-the-winner. Further research is needed to introduce randomization to ban-
dit strategies and also to determine some general conditions under which arms
are selected or dropped when using the index rules.

Further supporting materials for this paper, including programs to calculate
extended tables of the Gittins and Whittle indexes, can be found at
http://www.mrc-bsu.cam.ac.uk/software/miscellaneous-software/.

APPENDIX A: INDEX COMPUTATION

There is a vast literature on the efficient computation of the Gittins indices.
In Beale (1979), Varaiya et al. (1985) and Chen and Katehakis (1986), among
others, algorithms for computing the Gittins indices for the infinite-horizon classic
MABP with a finite state space are provided. The computational cost for all of
them (in terms of its running time as a function of the number of states N) is N3+
O(N2). The algorithm for computing the Gittins indices in such a case achieving
the lowest time complexity, 2/3N3 +O(N2), was provided by Niño-Mora (2007).
For MABP with an infinite state space, such as the Bayesian Bernoulli MABP
in Section 3, the indices can be computed using any of the above algorithms but
confining attention to some finite set of states, which will eventually determine the
precision of their calculation. For the finite-horizon classic MABP, as reviewed in
Section 4, an efficient exact computation method based on a recursive adaptive-
greedy algorithm is provided in Niño-Mora (2011).

In what follows we examine in more detail the so called calibration method
for the approximate index computation in the Bayesian Bernoulli MABP, both
for the infinite- (Gittins index) and finite- horizon case (Whittle index). There
are many reasons for focusing on this approach, not least because it was the
algorithm used for computing the values presented in this paper. It also sheds
light on the interpretation of the resulting index values, by connecting the Gittins
index approach to the work in Bellman (1956) and has long been the preferred
computational method.

The calibration method

Bellman (1956) studied an infinite random sampling problem involving two
binomial distributions: one with a known success rate and the other one with an
unknown rate but with a Beta prior. Bellman’s key contribution was to show that
the solution to the problem of determining the sequence of choices that maximize
the ETD number of successes exists, is unique and moreover is expressible in
terms of an index function which depends only on the total observed number of
successes s and failures f of the unknown process.

Gittins and Jones (1974) used that result and showed that the optimal rule
for a infinite-horizon MABP can also be expressed in terms of an index function
for each of the K Bernoulli populations and based on their observed sampling
histories (s, f). Such an index function is given by the value p ∈ [0, 1] for which
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the decision maker is indifferent between sampling the next observation from a
population with known success rate p or from an unknown one with an expected
success rate s

s+f . The calibration method uses DP to approximate the Gittins
index values based on this idea, as explained in Gittins and Jones (1979) and it
can be adapted to compute the finite-horizon counterpart, as explained in Berry
and Fristedt (1985, Chapter 5).

Specifically, this index computation method solves, for a grid of p values (the
size of which determines the accuracy of the resulting index values approxima-
tions), the following DP problem

V ∗D,t(s, f, p) = max{p 1− dT−t

1− d
,

s

s+ f

(
1 + d V ∗D,(t+1)(s+ 1, f, p)

)
+

f

s+ f

(
d V ∗D,(t+1)(s, f + 1, p)

)
},

t = 0, . . . , T − 2

V ∗D,T−1(s, f, p) = max{p , s

s+ f
}

(A.1)

For the infinite-horizon problem and with 0 ≤ d < 1, the convergence result allows
for the omission of the subscript t in the optimal value functions in (A.1), letting
the reward associated to the known arm be p

(1−d) . For obtaining a reasonably
good initial approximation of the optimal value function, the terminal condition
on V ∗D,T−1(s, f, p) is solved for some values of s and f such that s + f = T − 1,
and for a large T and then a backwards induction algorithm is applied to yield an
approximate value for V ∗D,0(s, f, p). For a fixed p the total number of arithmetic
operations to solve (A.1) is 1/2(T − 1)(T − 2), which, as stated in Section 3.1,
no longer grows exponentially in the horizon of truncation T (nor does it grow
in the number of arms of the MABP).

For the finite-horizon variant, the terminal condition is not used for approxi-
mating the initial point of the backwards-induction algorithm and the solution,
but for computing the optimal value function exactly. The resulting number of
operations to compute the Whittle index is basically the same as for the Git-
tins index yet, the total computational cost is significantly higher given that the
Whittle indices must be computed and stored for every possible t ≤ T − 1 and
(s, f). However, notice that an important advantage of the Whittle index over
the Gittins index is that the discount factor d = 1 can be explicitly considered for
the former directly adopting an Expected Total objective function, by replacing
the term 1−dT−t

1−d by T − t, using the fact that:

lim
d→1

1− dT−t

1− d
=

T−t−1∑
i=0

di.

ACKNOWLEDGEMENTS

This work was funded by the UK Medical Research Council (grant num-
bers G0800860 and MR/J004979/1). We thank the Biometrika Trust for a post-
doctoral fellowship to S.S.Villar. The authors are grateful for the insightful and
very useful comments of the anonymous referee and associate editor that signifi-
cantly improved the presentation of this paper.

imsart-sts ver. 2013/03/06 file: sts_paper_STS504.tex date: January 23, 2015



MAB MODELS FOR THE OPTIMAL DESIGN OF CLINICAL TRIALS 23

REFERENCES

Armitage, P. (1985). The search for optimality in clinical trials. International Statistical Re-
view/Revue Internationale de Statistique, 15–24.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256.

Barker, A.D., Sigman, C.C., Kelloff, G.J., Hylton, N.M., Berry, D.A., Esserman L.J. (2009). I-
SPY 2: An Adaptive Breast Cancer Trial Design in the Setting of Neoadjuvant Chemotherapy.
Clinical Pharmacology & Therapeutics, 86:97-100.

Bather, J. (1981). Randomized allocation of treatments in sequential experiments. Journal of
the Royal Statistical Society. Series B (Methodological), pages 265–292.

Beale, E. (1979). Contribution to the discussion of Gittins, J. R.Statist. Soc. B,, 41:171–2.
Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the National

Academy of Sciences of the United States of America, 38(8):716.
Bellman, R. (1956). A problem in the sequential design of experiments. Sankhyā: The Indian
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