
Multi-Armed Bandits in Metric Spaces

Robert Kleinberg
∗

Computer Science Dept.
Cornell University
Ithaca, NY, USA

rdk@cs.cornell.edu

Aleksandrs Slivkins
†

Microsoft Research
Mountain View, CA, USA

slivkins@microsoft.com

Eli Upfal
‡

Computer Science Dept.
Brown University

Providence, RI, USA
eli@cs.brown.edu

ABSTRACT
In a multi-armed bandit problem, an online algorithm chooses
from a set of strategies in a sequence of n trials so as to max-
imize the total payoff of the chosen strategies. While the per-
formance of bandit algorithms with a small finite strategy set
is quite well understood, bandit problems with large strategy
sets are still a topic of very active investigation, motivated by
practical applications such as online auctions and web adver-
tisement. The goal of such research is to identify broad and
natural classes of strategy sets and payoff functions which en-
able the design of efficient solutions.

In this work we study a very general setting for the multi-
armed bandit problem in which the strategies form a metric
space, and the payoff function satisfies a Lipschitz condition
with respect to the metric. We refer to this problem as the Lip-
schitz MAB problem. We present a complete solution for the
multi-armed problem in this setting. That is, for every metric
space (L,X) we define an isometry invariant MaxMinCOV(X)
which bounds from below the performance of Lipschitz MAB
algorithms for X , and we present an algorithm which comes
arbitrarily close to meeting this bound. Furthermore, our tech-
nique gives even better results for benign payoff functions.

Categories and Subject Descriptors
F.1.2 [Theory of Computation]: Computation by Abstract De-
vices—Modes of Computation: Online computation

; F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms

General Terms
Algorithms, Theory

∗Supported in part by NSF awards CCF-0643934 and CCF-
0729102.
†Parts of this work were done while the author was a postdoc
at Brown University.
‡Supported in part by NSF awards CCR-0121154 and DMI-
0600384, and ONR Award N000140610607.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’08, May 17–20, 2008, Victoria, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-047-0/08/05 ...$5.00.

1. INTRODUCTION
In a multi-armed bandit problem, an online algorithm must

choose from a set of strategies in a sequence of n trials so as
to maximize the total payoff of the chosen strategies. These
problems are the principal theoretical tool for modeling the ex-
ploration/exploitation tradeoffs inherent in sequential decision-
making under uncertainty. Studied intensively for the last three
decades [7, 8, 13], bandit problems are having an increasingly
visible impact on computer science because of their diverse ap-
plications including online auctions, adaptive routing, and the
theory of learning in games. The performance of a multi-armed
bandit algorithm is often evaluated in terms of its regret, defined
as the gap between the expected payoff of the algorithm and that
of an optimal strategy. While the performance of bandit algo-
rithms with a small finite strategy set is quite well understood,
bandit problems with exponentially or infinitely large strategy
sets are still a topic of very active investigation [1, 3, 4, 5, 6, 9,
10, 11, 12, 14, 15, 16, 17].

Absent any assumptions about the strategies and their pay-
offs, bandit problems with large strategy sets allow for no non-
trivial solutions — any multi-armed bandit algorithm performs
as badly, on some inputs, as random guessing. But in most
applications it is natural to assume a structured class of pay-
off functions, which often enables the design of efficient learn-
ing algorithms [16]. In this paper, we consider a broad and
natural class of problems in which the structure is induced by
a metric on the space of strategies. While bandit problems
have been studied in a few specific metric spaces (such as a
one-dimensional interval) [1, 4, 9, 15, 19], the case of gen-
eral metric spaces has not been treated before, despite being an
extremely natural setting for bandit problems. As a motivat-
ing example, consider the problem faced by a website choos-
ing from a database of thousands of banner ads to display to
users, with the aim of maximizing the click-through rate of
the ads displayed by matching ads to users’ characterizations
and the web content that they are currently watching. Inde-
pendently experimenting with each advertisement is infeasible,
or at least highly inefficient, since the number of ads is too
large. Instead, the advertisements are usually organized into
a taxonomy based on metadata (such as the category of prod-
uct being advertised) which allows a similarity measure to be
defined. The website can then attempt to optimize its learn-
ing algorithm by generalizing from experiments with one ad
to make inferences about the performance of similar ads [19].
Abstractly, we have a bandit problem of the following form:
there is a strategy set X , with an unknown payoff function
µ : X → [0, 1] satisfying a set of predefined constraints of
the form |µ(u) − µ(v)| ≤ δ(u, v) for some u, v ∈ X and
δ(u, v) > 0. In each period the algorithm chooses a point

x ∈ X and observes an independent random sample from a
payoff distribution whose expectation is µ(x).

A moment’s thought reveals that this abstract problem can be
regarded as a bandit problem in a metric space. Specifically, if
L(u, v) is defined to be the infimum, over all finite sequences
u = x0, x1, . . . , xk = v in X , of the quantity

P
i δ(xi, xi+1),

then L is a metric1 and the constraints |µ(u)−µ(v)| < δ(u, v)
may be summarized by stating that µ is a Lipschitz function
(of Lipschitz constant 1) on the metric space (L,X). We refer
to this problem as the Lipschitz MAB problem on (L,X), and
we refer to the ordered triple (L,X, µ) as an instance of the
Lipschitz MAB problem.2

Prior work. While our work is the first to treat the Lipschitz
MAB problem in general metric spaces, special cases of the
problem are implicit in prior work on the continuum-armed
bandit problem [1, 4, 9, 15] — which corresponds to the space
[0, 1] under the metric Ld(x, y) = |x − y|1/d, d ≥ 1 — and
the experimental work on “bandits for taxonomies” [19], which
corresponds to the case in which (L,X) is a tree metric. Be-
fore describing our results in greater detail, it is helpful to put
them in context by recounting the nearly optimal bounds for
the one-dimensional continuum-armed bandit problem, a prob-
lem first formulated by R. Agrawal in 1995 [1] and recently
solved (up to logarithmic factors) by various authors [4, 9, 15].
In the following theorem and throughout this paper, the regret
of a multi-armed bandit algorithm A running on an instance
(L,X, µ) is defined to be the function RA(t) which measures
the difference between its expected payoff at time t and the
quantity t supx∈X µ(x). The latter quantity is the expected
payoff of always playing a strategy x ∈ argmaxµ(x) if such
strategy exists.

Theorem 1.1 ([4, 9, 15]). For any d ≥ 1, consider the Lipschitz
MAB problem on (Ld, [0, 1]). There is an algorithm A whose
regret on any instance µ satisfies RA(t) = Õ(tγ) for every t,
where γ = d+1

d+2
. No such algorithm exists for any γ < d+1

d+2
.

In fact, if the time horizon t is known in advance, the upper
bound in the theorem can be achieved by an extremely naïve
algorithm which simply uses an optimal k-armed bandit algo-
rithm (such as the UCB1 algorithm [2]) to choose strategies
from the set S = {0, 1

k
, 2
k
, . . . , 1}, for a suitable choice of the

parameter k. While the regret bound in Theorem 1.1 is essen-
tially optimal for the Lipschitz MAB problem in (Ld, [0, 1]),
it is strikingly odd that it is achieved by such a simple algo-
rithm. In particular, the algorithm approximates the strategy
set by a fixed mesh S and does not refine this mesh as it gains
information about the location of the optimal strategy. More-
over, the metric contains seemingly useful proximity informa-
tion, but the algorithm ignores this information after choosing
its initial mesh. Is this really the best algorithm?

A closer examination of the lower bound proof raises fur-
ther reasons for suspicion: it is based on a contrived, highly
singular payoff function µ that alternates between being con-
stant on some distance scales and being very steep on other
(much smaller) distance scales, to create a multi-scale “nee-
dle in haystack” phenomenon which nearly obliterates the use-
fulness of the proximity information contained in the metric
Ld. Can we expect algorithms to do better when the payoff

1More precisely, it is a pseudometric because some pairs of
distinct points x, y ∈ X may satisfy L(x, y) = 0.
2When the metric space (L,X) is understood from context, we
may also refer to µ as an instance.

function is more benign? For the Lipschitz MAB problem on
(L1, [0, 1]), the question was answered affirmatively in [9, 4]
for some classes of instances, with algorithms that are tuned to
the specific classes.

Our results and techniques. In this paper we consider the
Lipschitz MAB problem on arbitrary metric spaces. We are
concerned with the following two main questions motivated by
the discussion above:

(i) what is the best possible bound on regret for a given met-
ric space?

(ii) how to take advantage of benign payoff functions?

In this paper we give a complete solution to (i), by describing
for every metric space X a family of algorithms which come
arbitrarily close to achieving the best possible regret bound for
X . We also give a very satisfactory answer to (ii); our solution
is arbitrarily close to optimal in terms of the zooming dimen-
sion defined below. In fact, our algorithm for (i) is an extension
of the algorithmic technique used to solve (ii).

Our main technical contribution is a new algorithm, the zoom-
ing algorithm, that combines the upper confidence bound tech-
nique used in earlier bandit algorithms such as UCB1 with a
novel adaptive refinement step that uses past history to zoom
in on regions near the apparent maxima of µ and to explore a
denser mesh of strategies in these regions. This algorithm is a
key ingredient in our design of an optimal bandit algorithm for
every metric space (L,X). Moreover, we show that the zoom-
ing algorithm can perform significantly better on benign prob-
lem instances. That is, for every instance (L,X, µ) we define
a parameter called the zooming dimension, and use it to bound
the algorithm’s performance in a way that is often significantly
stronger than the corresponding per-metric bound. Note that
the zooming algorithm is self-tuning, i.e. it achieves this bound
without requiring prior knowledge of the zooming dimension.

To state our theorem on the per-metric optimal solution for
(i), we need to sketch a few definitions which arise naturally as
one tries to extend the lower bound from [15] to general met-
ric spaces. Let us say that a subset Y in a metric space X
has covering dimension d if it can be covered by O(δ−d) sets
of diameter δ for all δ > 0. A point x ∈ X has local cov-
ering dimension d if it has an open neighborhood of covering
dimension d. The space X has max-min-covering dimension
d = MaxMinCOV(X) if it has no subspace whose local cover-
ing dimension is uniformly bounded below by a number greater
than d.

Theorem 1.2. Consider the Lipschitz MAB problem on a com-
pact metric space (L,X). If γ > d+1

d+2
, d = MaxMinCOV(X)

then there exists a bandit algorithm A satisfying RA(t) =
O(tγ) for all t. No such algorithm exists if γ < d+1

d+2
.

In general MaxMinCOV(X) is upper-bounded by the covering
dimension of X . For metric spaces which are highly homo-
geneous (in the sense that any two ε-balls are isometric to one
another) the two dimensions are equal, and the upper bound in
the theorem can be achieved using a generalization of the naïve
algorithm described earlier. The difficulty in Theorem 1.2 lies
in dealing with inhomogeneities in the metric space.3 It is im-
portant to treat the problem at this level of generality, because
3To appreciate this issue, it is very instructive to consider a con-
crete example of a metric space (L,X) where MaxMinCOV(X)
is strictly less than the covering dimension, and for this spe-
cific example design a bandit algorithm whose regret bounds

some of the most natural applications of the Lipschitz MAB
problem, e.g. the web advertising problem described earlier,
are based on highly inhomogeneous metric spaces. (That is,
in web taxonomies, it is unreasonable to expect different cate-
gories at the same level of a topic hierarchy to have the roughly
the same number of descendants.)

The algorithm in Theorem 1.2 combines the zooming algo-
rithm described earlier with a delicate transfinite construction
over closed subsets consisting of “fat points” whose local cov-
ering dimension exceeds a given threshold d. For the lower
bound, we craft a new dimensionality notion, the max-min-
covering dimension introduced above, which captures the inho-
mogeneity of a metric space, and we connect this notion with
the transfinite construction that underlies the algorithm.

For “benign” input instances we provide a better performance
guarantee for the zooming algorithm. The lower bounds in
Theorems 1.1 and 1.2 are based on contrived, highly singular,
“needle in haystack” instances in which the set of near-optimal
strategies is astronomically larger than the set of precisely op-
timal strategies. Accordingly, we quantify the tractability of a
problem instance in terms of the number of near-optimal strate-
gies. We define the zooming dimension of an instance (L,X, µ)
as the smallest d such that the following covering property holds:
for every δ > 0 we require onlyO(δ−d) sets of diameter δ/8 to
cover the set of strategies whose payoff falls short of the maxi-
mum by an amount between δ and 2δ.

Theorem 1.3. If d is the zooming dimension of a Lipschitz
MAB instance then at any time t the zooming algorithm suf-
fers regret Õ(tγ), γ = d+1

d+2
. Moreover, this is the best possible

exponent γ as a function of d.

The zooming dimension can be significantly smaller than the
max-min-covering dimension.4 Let us illustrate this point with
two examples (where for simplicity the max-min-covering di-
mension is equal to the covering dimension). For the first ex-
ample, consider a metric space consisting of a high-dimensional
part and a low-dimensional part. For concreteness, consider a
rooted tree T with two top-level branches T ′ and T ′′ which are
complete infinite k-ary trees, k = 2, 10. Assign edge weights
in T that are exponentially decreasing with distance to the root,
and let L be the resulting shortest-paths metric on the leaf set
X .5 Then if there is a unique optimal strategy that lies in the
low-dimensional part T ′ then the zooming dimension is upper-
bounded by the covering dimension in T ′, whereas the “global”
covering dimension is that in T ′′. In the second example, let
(L,X) be a homogeneous high-dimensional metric, e.g. the
Euclidean metric on the unit k-cube, and the payoff function
is µ(x) = 1 − L(x, S) for some subset S. Then the zooming
dimension is equal to the covering dimension of S, e.g. it is 0
if S is a finite point set.

Discussion. In stating the theorems above, we have been impre-
cise about specifying the model of computation. In particular,
we have ignored the thorny issue of how to provide an algo-
rithm with an input containing a metric space which may have
an infinite number of points. The simplest way to interpret our
theorems is to ignore implementation details and interpret “al-
gorithm” to mean an abstract decision rule, i.e. any function

are better than those suggested by the covering dimension. This
is further discussed in Section 3.
4One can show that in this case the naïve algorithm from The-
orem 1.1 performs poorly compared to the zooming algorithm.
5Here a leaf is defined as an infinite path away from the root.

mapping a history of past observations (xi, ri) ∈ X × [0, 1]
to a strategy x ∈ X which is played in the current period.
All of our theorems are valid under this interpretation, but they
can also be made into precise algorithmic results provided that
the algorithm is given appropriate oracle access to the metric
space. In most cases, our algorithms require only a covering
oracle which takes a finite collection of open balls and either
declares that they cover X or outputs an uncovered point. We
refer to this setting as the standard Lipschitz MAB problem.
For example, the zooming algorithm requires only a covering
oracle for (L,X), and the algorithm is very efficient, requiring
only O(t log t) operations in total (including oracle queries) to
choose its first t strategies. However, the per-metric optimal
algorithm in Theorem 1.2 requires a more complicated pair of
oracles, and we defer the definition of these oracles to Section 3.

While our definitions and results so far have been tailored for
the Lipschitz MAB problem on infinite metrics, some of them
can be extended to the finite case as well. In particular, for the
zooming algorithm we obtain sharp results (that are meaningful
for both finite and infinite metrics) using a more precise, non-
asymptotic version of the zooming dimension. Extending the
notions in Theorem 1.2 to the finite case is an open question.

Preliminaries. Given a metric space, B(u, r) denotes an open
ball of radius r. Throughout the paper, he constants in the O(·)
notation are absolute unless specified otherwise.

Definition 1.4. In the Lipschitz MAB problem on (L,X), there
is a strategy set X , a metric space (L,X) of diameter ≤ 1, and
an unknown payoff function µ : X → [0, 1] such that |µ(x)−
µ(y)| ≤ L(x, y) for all x, y ∈ X . (CallL a Lipschitz metric for
µ.) In each round the algorithm chooses x ∈ X and observes
an independent random sample from a payoff distribution with
support [0; 1] and expectation µ(x).

The regret of a bandit algorithm A running on a given prob-
lem instance is the RA(t) = WA(t) − tµ∗, where WA(t) is
the expected payoff of A at time t and µ∗ = supx∈X µ(x) is
the maximal expected reward.

The c-zooming dimension of the problem instance (L,X, µ)
is the smallest d such that for any r ∈ (0, 1] the set Xr = {x ∈
X : r

2
< µ∗ − µ(x) ≤ r} can be covered by c r−d sets of

diameter at most r/8.

Definition 1.5. Fix a metric space on set X . Let N(r) be the
smallest number of sets of diameter r required to cover X . The
covering dimension of X is COV(X) = inf{ d : ∃c ∀r >
0 N(r) ≤ cr−d }. The c-covering dimension of X is defined
as the infimum of all d such that N(r) ≤ cr−d for all r > 0.

2. THE ZOOMING ALGORITHM
In this section we present the zooming algorithm. Consider

the standard Lipschitz MAB problem on (L,X). The algorithm
proceeds in phases i = 1, 2, 3, . . . of 2i rounds each. Let us
focus on a single phase iph of the zooming algorithm. For each
strategy v ∈ X and time t, let nt(v) be the number of times
this strategy has been played in this phase before time t, and let
µt(v) be the corresponding average reward. Define µt(v) = 0
if nt(v) = 0. Note that at time t both quantities are known to
the algorithm. Define the confidence radius of v as

rt(v) :=
q

8 iph / (2 + nt(v)). (1)

Let µ(v) be the expected reward of strategy v. Note that
E[µt(v)] = µ(v). Using Chernoff Bounds, we can bound
|µt(v)− µ(v)| in terms of the confidence radius:

Definition 2.1. A phase is called clean if for each strategy v ∈
X that has been played at least once during this phase and each
time t we have |µt(v)− µ(v)| ≤ rt(v).

Claim 2.2. Phase iph is clean with probability at least 1−4−iph .

Throughout the execution of the algorithm, a finite number
of strategies are designated active. Our algorithm only plays
active strategies, among which it chooses a strategy v with the
maximal index

It(v) = µt(v) + 2 rt(v). (2)

Say that strategy v covers strategy u at time t if u ∈ B(v, rt(v)).
Say that a strategy u is covered at time t if at this time it is cov-
ered by some active strategy v. Note that the covering oracle
(as defined in Section 1) can return a strategy which is not cov-
ered if such strategy exists, or else inform the algorithm that all
strategies are covered. Now we are ready to state the algorithm
and the corresponding theorem:

Algorithm 2.3 (Zooming Algorithm). Each phase i runs for 2i

rounds. In the beginning of the phase no strategies are active.
In each round do the following:

1. If some strategy is not covered, make it active.
2. Play an active strategy with the maximal index (2);

break ties arbitrarily.

Theorem 2.4. Consider the standard Lipschitz MAB problem.
Let A be Algorithm 2.3. Then ∀C > 0

RA(t) ≤ O(C log t)1/(2+d) × t1−1/(2+d) for all t, (3)

where d is the C-zooming dimension of the problem instance.

In the remainder of this section we prove Theorem 2.4. Note
that after step 1 in Algorithm 2.3 all strategies are covered. (In-
deed, if some strategy is activated in step 1 then it covers the
entire metric.) Let µ∗ = supu∈X µ(u) be the maximal ex-
pected reward; note that we do not assume that the supremum
is achieved by some strategy. Let ∆(v) = µ∗ − µ(v). Let us
focus on a given phase iph of the algorithm.

Lemma 2.5. If phase iph is clean then ∆(v) ≤ 4 rt(v) for any
time t and any strategy v. Hence nt(v) ≤ O(iph) ∆−2(v).

PROOF. Suppose strategy v is played at time t. First we claim
that It(v) ≥ µ∗. Indeed, fix ε > 0. By definition of µ∗ there
exists a strategy v∗ such that ∆(v∗) < ε. Let vt be an active
strategy that covers v∗. By the algorithm specification It(v) ≥
It(vt). Since v is clean at time t, by definition of index we
have It(vt) ≥ µ(vt) + rt(vt). By the Lipschitz property we
have µ(vt) ≥ µ(v∗)− L(vt, v

∗). Since vt covers v∗, we have
L(vt, v

∗) ≤ rt(vt) Putting all these inequalities together, we
have It(v) ≥ µ(v∗) ≥ µ∗ − ε. Since this inequality holds for
an arbitrary ε > 0, we in fact have It(v) ≥ µ∗. Claim proved.

Furthermore, note that by the definitions of “clean phase”
and “index” we have µ∗ ≤ It(v) ≤ µ(v) + 3 rt(v) and there-
fore ∆(v) ≤ 3 rt(v).

Now suppose strategy v is not played at time t. If it has never
been played before time t in this phase, then rt(v) > 1 and thus
the lemma is trivial. Else, let s be the last time strategy v has
been played before time t. Then by definition of the confidence
radius rt(v) = rs+1(v) ≥

p
2/3 rs(v) ≥ 1

4
∆(v).

Corollary 2.6. In a clean phase, for any active strategies u, v

L(u, v) > 1
4

min(∆(u),∆(v)).

PROOF. Assume u has been activated before v. Let s be the
time when v has been activated. Then by the algorithm spec-
ification we have L(u, v) > rs(u). By Lemma 2.5 we have
rs(u) ≥ 1

4
∆(u).

Let d be the the C-zooming dimension. For a given time t
in the current phase, let S(t) be the set of all strategies that are
active at time t, and let

A(i, t) = {v ∈ S(t) : 2i ≤ ∆−1(v) < 2i+1}.

We claim that |A(i, t)| ≤ C 2id. Indeed, setA(i, t) can be cov-
ered by C 2id sets of diameter at most 2−i/8; by Corollary 2.6
each of these sets contains at most one strategy from A(i, t).

Claim 2.7. In a clean phase iph, for each time t we haveP
v∈S(t)∆(v)nt(v) ≤ O(C iph)

1−γ tγ , (4)

where γ = d+1
d+2

and d is the C-zooming dimension.

PROOF. Fix the time horizon t. For a subset S ⊂ X of strate-
gies, let RS =

P
v∈S ∆(v)nt(v). Let us choose ρ ∈ (0, 1)

such that ρt = (1
ρ
)d+1(C iph) = tγ (C iph)

1−γ .

Define B as the set of all strategies v ∈ S(t) such that
∆(v) ≤ ρ. Recall that by Lemma 2.5 for each v ∈ A(i, t)
we have nt(v) ≤ O(iph) ∆−2(v). Then

RA(i,t) ≤ O(iph)
P
v∈A(i,t) ∆−1(v)

≤ O(2i iph) |A(i, t)|

≤ O(C iph) 2i(d+1)X
v∈S(t)

∆(v)nt(v) ≤ RB +
X

i<log(1/ρ)

RA(i,t)

≤ ρt+O(C iph) (1
ρ
)d+1

≤ O
`
tγ (C iph)

1−γ´ .
The left-hand side of (4) is essentially the contribution of

the current phase to the overall regret. It remains to sum these
contributions over all phases.

Proof of Theorem 2.4 Let iph be the current phase, let t be
the time spend in this phase, and let T be the total time since
the beginning of phase 1. Let Rph(iph, t) be the left-hand side
of (4). Combining Claim 2.2 and Claim 2.7, we have

E[Rph(iph, t)] < O(C iph)
1−γ tγ ,

RA(T) = E

24Rph(iph, t) +

iph−1X
i=1

Rph(i, 2
i)

35
< O(C log T)1−γ T γ .

3. PER-METRIC OPTIMALITY
In this section we ask, “What is the best possible algorithm

for the Lipschitz MAB problem on a given metric space?” We
consider the per-metric performance, which we define as the
worst-case performance of a given algorithm over all possible
problem instances on a given metric. As everywhere else in
this paper, we focus on minimizing the exponent γ such that
RA(t) ≤ tγ for all sufficiently large t. Equivalently, we can try
to minimize the regret dimension defined as follows.

Definition 3.1. Consider the Lipschitz MAB problem on a given
metric space. For algorithm A and problem instance I let
DIMI(A) = infd{∃t0 ∀t ≥ t0 RA(t) ≤ t1−1/(d+2)}. The

regret dimension ofA is DIM(A) = supI DIMI(A), where the
supremum is over all problem instances I.

Recall from Section 1 that if d is the covering dimension of
(L,X), then regret dimension d can be achieved by the “naïve
algorithm” which divides time into phases of exponentially in-
creasing length, chooses a δ-net of cardinality K = O(δ−d)
during each phase (tuning the parameter δ optimally given the
phase length), and runs a K-armed bandit algorithm such as
UCB1 on the elements of the δ-net. In fact, the covering dimen-
sion is the best regret dimension achievable by a naïve algo-
rithm of this sort (we omit the proof), and for highly homoge-
neous metric spaces (such as those in which all balls of a given
radius are isometric to each other) it is the optimal regret di-
mension of any bandit algorithm. We next discuss the proof of
this fact.

It is known [3] that a worst-case instance of the K-armed
bandit problem consists of K − 1 strategies with identical pay-
off distributions, and one which is slightly better. We refer to
this as a “needle-in-haystack” instance. The construction of
lower bounds for Lipschitz MAB problems relies on creating a
multi-scale needle-in-haystack instance in which there are K
disjoint open sets, and K − 1 of them consist of strategies
with identical payoff distributions, but in the remaining open
set there are strategies whose payoff is slightly better. More-
over, this special open set contains K′ � K disjoint subsets,
only one of which contains strategies superior to the others, and
so on down through infinitely many levels of recursion. To en-
sure that this construction can be continued indefinitely, one
needs to assume a covering property which ensures that each of
the open sets arising in the construction has sufficiently many
disjoint subsets to continue to the next level of recursion.

Definition 3.2. For a metric space (L,X), we say that d is
the min-covering dimension of X , d = MinCOV(X), if d is the
infimum of COV(U) over all non-empty open subsets U ⊆ X .
The max-min-covering dimension of X is defined by

MaxMinCOV(X) = sup{MinCOV(Y) : Y ⊆ X}.
The infimum over open U ⊆ X in the definition of min-

covering dimension ensures that every open set which may arise
in the needle-in-haystack construction described above will con-
tain Ω(δε−d) disjoint δ-balls for some sufficiently small δ, ε.
Constructing lower bounds for Lipschitz MAB algorithms in a
metric space X only requires that X should have subsets with
large min-covering dimension, which explains the supremum
over subsets in the definition of max-min-covering dimension.

We will use the following simple packing lemma.6

Lemma 3.3. If Y is a metric space of covering dimension d,
then for any b < d and r0 > 0, there exists r ∈ (0, r0) such
that Y contains a collection of more than r−b disjoint open
balls of radius r.

PROOF. Let r < r0 be a positive number such that every cov-
ering of Y requires more than r−b balls of radius 2r. Such an
r exists, because the covering dimension of Y is strictly greater
than b. Now let P = {B1, B2, . . . , BM} be any maximal col-
lection of disjoint r-balls. For every y ∈ Y there must exist
some ball Bi (1 ≤ i ≤ M) whose center is within distance
2r of y, as otherwise B(y, r) would be disjoint from every el-
ement of P contradicting the maximality of that collection. If
we enlarge each ball Bi to a ball B+

i of radius 2r, then every
y ∈ Y is contained in one of the balls {B+

i | 1 ≤ i ≤ M}, i.e.
they form a covering of Y . Hence M ≥ r−b as desired.
6This is a folklore result; we provide the proof for convenience.

Theorem 3.4. If X is a metric space and d is the max-min-
covering dimension of X then DIM(A) ≥ d for every bandit
algorithm A.

PROOF. Given γ < d+1
d+2

, let a < b < c < d be such that γ <
a+1
a+2

. Let Y be a subset of X such that MinCOV(Y) ≥ c. Using
Lemma 3.3 we recursively construct an infinite sequence of sets
P0,P1, . . . each consisting of finitely many disjoint open balls
in X , centered at points of Y . Let P0 = {X} = B(y0, rmax),
where y0 is an arbitrary point in Y and rmax is a number greater
than or equal to the diameter of X . If i > 0, for every ball
B ∈ Pi−1, let r denote the radius of B and choose a number
0 < ri(B) < r/4 such that B contains ni(B) = dri(B)−be
disjoint balls centered at points of Y . Such a collection of dis-
joint balls exists, by Lemma 3.3. Let Pi(B) denote this collec-
tion of disjoint balls and let Pi =

S
B∈Pi−1

Pi(B).

Now sample a random sequence of ballsB1, B2, . . . by pick-
ing B1 ∈ P1 uniformly at random, and for i > 1 picking
Bi ∈ Pi(Bi−1) uniformly at random. Let xi, ri be the center
and radius of Bi, and let fi(x) be a Lipschitz function on X
defined by

fi(x) =

(
min{ri − L(x, xi), ri/2} if x ∈ Bi
0 otherwise

.

Let f0(x) = 1/3 for all x ∈ X . The reader may verify that
the sum µ =

P∞
i=0 fi is a Lipschitz function. Define the pay-

off distribution for x ∈ X to be a Bernoulli random variable
with expectation µ(x). We have thus specified a randomized
construction of an instance (L,X, µ). We claim that for every
algorithm A and every constant C,

Pr
µ,A

(∀ t RA(t) < Ctγ) = 0. (5)

The proof of this claim is based on a “needle in haystack”
lemma (Lemma 3.6 below) which states that for all i, condi-
tional on the sequence B1, . . . , Bi−1, with probability at least
1−O((ri(Bi))

(b−a)/2), no more than half of the first ti(Bi) =
ri(Bi)

−a−2 strategies picked by A lie inside Bi. The proof of
the lemma is deferred to the end of this section.

Any strategy x 6∈ Bi satisfies µ(x) < µ(x∗) − ri/2, so we
may conclude that

Pr
`
RA(ti(Bi)) <

1
4
ri(Bi)

−a−1 |B1, . . . , Bi−1

´
≤ O

“
(ri(Bi))

(b−a)/2
”
. (6)

Denoting ri(Bi) and ti(Bi) by ri, ti, respectively, we have
1
4
r−a−1
i = 1

4
t
(a+1)/(a+2)
i > Ctγi for all sufficiently large

i. As i runs through the positive integers, the terms on the right
side of (6) are dominated by a geometric progression because
ri(Bi) ≤ 4−i. By the Borel-Cantelli Lemma, almost surely
there are only finitely many i such that the events on the left
side of (6) occur. Thus (5) follows.

Remark. To prove Theorem 3.4 it suffices to show that for ev-
ery given algorithm there exists a “hard” problem instance. In
fact we proved a stronger result (5): essentially, we construct a
probability distribution over problem instances which is hard,
almost surely, for every given algorithm. This seems to be the
best possible bound since, obviously, a single problem instance
cannot be hard for every algorithm.

In Section 3.1 we will show that for some metric spaces,
there exist algorithms whose regret dimension is smaller than

the covering dimension. We develop these ideas further in Sec-
tion 3.2 and provide an algorithm whose regret dimension is
arbitrarily close to optimal.

The needle-in-haystack lemma. We conclude this section by
providing a precise formulation and proof of the “needle in
haystack” lemma used in the proof of Theorem 3.4. To do
this, we need to introduce some notation. Let us fix an abitrary
Lipschitz MAB algorithm A. We will assume that A is deter-
ministic; the corresponding result for randomized algorithms
follows by conditioning on the algorithm’s random bits (so that
its behavior, conditional on these bits, is deterministic), invok-
ing the lemma for deterministic algorithms, and then removing
the conditioning by averaging over the distribution of random
bits. Note that since our construction uses only {0, 1}-valued
payoffs, and the algorithmA is deterministic, the entire history
of play in the first t rounds can be summarized by a binary vec-
tor σ ∈ {0, 1}t, consisting of the payoffs observed by A in the
first t rounds. Thus a payoff function µ determines a probabil-
ity distribution Pµ on the set {0, 1}t, i.e. the distribution on
t-step histories realized when using algorithmA on instance µ.

Let B be any ball in the set Pi−1, let

n = ni(B), r = ri(B), t = ti(B),

and letB1, B2, . . . , Bn be an enumeration of the balls inP(B).
Choose an arbitrary sequence of balls B1 ⊇ B2 ⊇ . . . ⊇
Bi−1 = B such that B1 ∈ P1 and for all j > 0 Bj ∈
P(Bj−1). Similarly, for k = 1, 2, . . . , n, choose an arbitrary
sequence of balls Bk = Bki ⊇ Bki+1 ⊇ . . . such that Bkj ∈
P(Bkj−1) for all j ≥ i. Define functions fj (1 ≤ j ≤ i − 1)

and fkj (j ≥ i) using the balls Bj , Bkj , as in the proof of The-
orem 3.4. Let µ0 =

Pi−1
j=0 fj and

µk = µ0 +

∞X
j=i

fkj (for 1 ≤ k ≤ n).

Note that the instances µk (1 ≤ k ≤ n) are equiprobable
under our distribution on input instances µ. The instance µ0 is
not one that could be randomly sampled by our construction,
but it is useful as a “reference measure” in the following proof.
Note that the functions µk have the following properties, by
construction.

(a) 1/3 ≤ µk(x) ≤ 2/3 for all x ∈ X .
(b) 0 ≤ µk(x)− µ0(x) ≤ r for all x ∈ X .
(c) If x ∈ X \Bk, then µk(x) = µ0(x).
(d) If x ∈ X \ Bk, then there exists some point xk ∈ Bk

such that µk(xk)− µk(x) ≥ r/2.
Each of the payoff functions µk (0 ≤ k ≤ n) gives rise

to a probability distribution Pµk on {0, 1}t as described in the
preceding section. We will use the shorthand notation Pk in-
stead of Pµk . We will also use Ek to denote the expectation
of a random variable under distribution Pk. Finally, we let Nk
denote the random variable defined on {0, 1}t that counts the
number of rounds s (1 ≤ s ≤ t) in which algorithmA chooses
a strategy in Bk given the history σ.

The following lemma is analogous to Lemma A.1 of [3], and
its proof is identical to the proof of that lemma.

Lemma 3.5. Let f : {0, 1}t → [0,M] be any function defined
on reward sequences σ. Then for any k,

Ek[f(σ)] ≤ E0[f(σ)] + M
2

p
− ln(1− 4r2)E0[Ni].

Applying Lemma 3.5 with f = Nk and M = t, and averag-
ing over k, we may apply exactly the same reasoning as in the

proof of Theorem A.2 of [3] to derive the bound

1

n

nX
k=1

Ek(Nk) ≤ t

n
+O

tr

r
t

n

!
. (7)

Recalling that the actual ball Bk sampled when randomly con-
structing µ in the proof of Theorem 3.4 is a uniform random
sample from B1, B2, . . . , Bn, we may write N∗ to denote the
random variable which counts the number of rounds in which
the algorithm plays a strategy in Bk and the bound (7) implies

E(N∗) = O

t

n
+ tr

r
t

n

!
Recalling that t = r−a−2 and n = r−b, we see that the
O(tr

p
t/n) term is the dominant term on the right side, and

that it is bounded byO(tr(b−a)/2).An application of Markov’s
inequality now yields:

Lemma 3.6. Pr(N∗ ≥ t/2) = O(r(b−a)/2).

3.1 Beyond the covering dimension
Thus far, we have seen that every metric space X has a ban-

dit algorithm A such that DIM(A) = COV(X) (the naïve al-
gorithm), and we have seen (via the needle-in-haystack con-
struction, Theorem 3.4) that X can never have a bandit algo-
rithm satisfying DIM(A) < MaxMinCOV(X). When COV(X) 6=
MaxMinCOV(X), which of these two bounds is correct, or can
they both be wrong? To gain intuition, we will consider two
concrete examples. Consider an infinite rooted tree where for
each level i ∈ N most nodes have out-degree 2, whereas the
remaining nodes (called fat nodes) have out-degree x > 2 so
that the total number of nodes is 4i. In our first example, there
is exactly one fat node on every level and the fat nodes form
a path (called the fat leaf). In our second example, there are
exactly 2i fat nodes on every level i and the fat nodes form a
binary tree (called the fat subtree). In both examples, we as-
sign a weight of 2−id (for some constant d > 0) to each level-
i node; this weight encodes the diameter of the set of points
contained in the corresponding subtree. An infinite rooted tree
induces a metric space (L,X) where X is the set of all infi-
nite paths from the root, and for u, v ∈ X we define L(u, v)
to be the weight of the least common ancestor of paths u and
v. In both examples, the covering dimension is 2d, whereas the
max-min-covering dimension is only d because the “fat subset”
(i.e. the fat leaf or fat subtree) has covering dimension at most
d, and every point outside the fat subset has an open neighbor-
hood of covering dimension d. In the next few paragraphs, we
sketch some algorithms for dealing with certain metric spaces
that have fat subsets, as a means of building intuition leading up
to the (rather complicated) optimal algorithm for general metric
spaces. The gory details are omitted until we reach the descrip-
tion of the algorithm for general metric spaces.

In both of the metrics described above, the zooming algo-
rithm (Algorithm 2.3) performs poorly when the optimum x∗

is located inside the fat subset S, because it is too burdensome
to keep covering7 the profusion of strategies located near x∗ as
the ball containing x∗ shrinks. An improved algorithm, achiev-
ing regret exponent d, modifies the zooming algorithm by im-
posing quotas on the number of active strategies that lie outside
S. At any given time, some strategies outside S may not be
covered; however, it is guaranteed that there exists an optimal
7Recall that a strategy u is called covered at time t if for some
active strategy v we have L(u, v) ≤ rt(v).

strategy which eventually becomes covered and remains cov-
ered forever afterward. Intuitively, if some optimal strategy lies
in S then imposing a quota on active strategies outside S does
not hurt. If no optimal strategy lies in S then all of S gets cov-
ered eventually and stays covered thereafter, in which case the
uncovered part of the strategy set has low covering dimension
and (starting after the time when S becomes permanently cov-
ered) no quota is ever exceeded.

This use of quotas extends to the following general setting
which abstracts the idea of “fat subsets”:

Definition 3.7. Fix a metric space (L,X). A closed subset
S ⊂ X is d-fat if COV(S) ≤ d and for any open superset
U of S we have COV(X \ U) ≤ d. More generally, a d-fat
decomposition of depth k is a decreasing sequence X = S0 ⊃
. . . ⊃ Sk ⊃ Sk+1 = ∅ of closed subsets such that COV(Sk) ≤
d and COV(Si \ U) ≤ d whenever i ∈ [k] and U is an open
superset of Si+1.

Example 3.8. Let (L,X) be the metric space in either of the
two “tree with a fat subset” examples. Then the corresponding
“fat subset” S is d-fat. For an example of a fat decomposition of
depth k = 2, consider the product metric (L∗, X ×X) defined
by L∗((x1, x2), (y1, y2)) = L(x1, y1) + L(x2, y2), with a fat
decomposition given by S1 = (S ×X) ∪ (X × S) and S2 =
S × S.

WhenX is a metric space with a d∗-fat decompositionD, the
algorithm described earlier can be modified to achieve regret
O (tγ) for any γ > 1 − 1/(d∗ + 2), by instituting a separate
quota for each subset Si. The algorithm requires access to a
D-covering oracle which for a given i and a given finite set of
open balls (given by the centers and the radii) either reports that
the balls cover Si, or returns some strategy in Si which is not
covered by the balls. No further knowledge of D or the metric
space is required.

Theorem 3.9. Consider the Lipschitz MAB problem on a fixed
compact metric space with a d∗-fat decomposition D. Then for
any d > d∗ there is an algorithmAD such that DIM(AD) ≤ d.

Remarks. (1) We can relax the compactness assumption in The-
orem 3.9: instead, we can assume that the completion of the
metric space is compact and re-define the sets in the d-fat de-
composition as subsets of the completion (possibly disjoint with
the strategy set). This corresponds to the “fat leaf” which lies
outside the strategy set. Such extension requires some minor
modifications; we discuss this further in the full version.

(2) The per-metric guarantee expressed by Theorem 3.9 can
be complemented with sharper per-instance guarantees. First,
for every problem instance I the per-instance regret dimension
DIMI(A) is upper-bounded by the zooming dimension of I.
Second, if the c-covering dimension ofX is finite then for some
γ < 1 and all t we have RA(t) ≤ O(c tγ). However, for the
ease of exposition in the present version we focus on analyzing
the regret dimension.

Our algorithm proceeds in phases i = 1, 2, 3, . . . of 2i

rounds each. In a given phase, we run a fresh instance of the
following phase algorithm Aph(T, d,D) parameterized by the
phase length T = 2i, target dimension d > d∗ and the D-
covering oracle. The phase algorithm is a version of a single
phase of the zooming algorithm (Algorithm 2.3) with very dif-
ferent rules for activating strategies. As in Algorithm 2.3, the
confidence radius and the index are defined by (1) and (2), re-
spectively. At the start of each round some strategies are ac-
tivated, and then an active strategy with the maximal index is
played.

Let us specify the activation rules. Denote D = {Si}ki=0.
Initially the algorithm constructs 2−j-nets Nj , j ∈ N, using
the covering oracle. It finds the largest j such that N = Nj
contains at most 1

2
T d/(d+2) points, and activates all strategies

inN . The rest of the active strategies are partitioned into k+ 1
pools Pi ⊂ Si such that at each time t each pool Pi satisfies
the following quota Qi:

|{u ∈ Pi : rt(u) ≥ ρ}| ≤ Cρ ρ−d (8)

where ρ = T−1/(d+2) and Cρ = (64k log 1
ρ
)−1. In the be-

ginning of each round the following activation routine is per-
formed. If there exists a set Si such that some strategy in Si is
not covered and there is room under the corresponding quota
Qi, pick one such strategy, activate it, and add it to the corre-
sponding pool Pi. Since for a given strategy u the confidence
radius rt(u) is non-increasing in t, the constraint (8) is never
violated.

Repeat until there are no such sets Si left. This completes
the description of the algorithm. As was the case in Section 2,
the analysis of the unbounded-time-horizon algorithm reduces
to proving a lemma about the regret of each phase algorithm.

Lemma 3.10. Fix a problem instance in the setting of Theo-
rem 3.9. Let Aph(T) = Aph(T, d,D). Then

(∃ tmin <∞) (∀T ≥ tmin) RAph(T)(T) ≤ T 1−1/(d+2). (9)

Note that the lemma bounds the regret ofAph(T) for time T
only. Proving Theorem 3.9 is now straightforward:

PROOF OF THEOREM 3.9. LetAph(T) be the phase algorithm
from Lemma 3.10. Recall that in each phase i in the overall al-
gorithmA we simply run a fresh instance of algorithmAph(2

i)
for 2i steps.

Let t0 be the tmin from (9) rounded up to the nearest end-of-
phase time. Let i0 be the phase starting at time t0 +1. Note that
RA(t0) ≤ t0. Let Ri be the regret accumulated by A during
phase i. Let γ = d+1

d+2
. Then for any time t ≥ t

1/γ
0 in phase i

we have

RA(t) ≤ t0 +

iX
j=i0

Rj ≤ t0 +

iX
j=i0

(2j)γ ≤ O(tγ).

In the remainder of this section we prove Lemma 3.10. Let
us fix a problem instance of the Lipschitz MAB problem on
a compact metric space (L,X) with a d∗-fat decomposition
D = {Si}ki=0. Fix d > d∗ and let Aph(T) = Aph(T, d,D)
be the phase algorithm. Let µ be the expected reward function
and let µ∗ = supu∈X µ(u) be the optimal reward. Let ∆(u) =
µ∗ − µ(u).

SinceL is a Lipschitz metric, it follows that µ is a continuous
function on the metric space (L,X). Therefore the supremum
µ∗ is achieved by some strategy (call such strategies optimal).
Say that a run of algorithm Aph(T) is well-covered if at every
time t ≤ T some optimal strategy is covered.

Say that a run of algorithm Aph(T) is clean if the property
in Claim 2.2 holds for all times t ≤ T . Note that a given run is
clean with probability at least 1 − T−2. The following lemma
adapts the technique from Lemma 2.5 to the present setting:

Claim 3.11. Consider a clean run of algorithm Aph(T).
(a) If strategies u, v are active at time t ≤ T then

∆(v)−∆(u) ≤ 4rt(v).

(b) if the run is well-covered and strategy v is active at
time t ≤ T then ∆(v) ≤ 4rt(v).

The quotas (8) are chosen specifically to make the regret
computation in Claim 2.7 work out for a clean and well-covered
run of algorithm Aph(T); we omit the details.

Claim 3.12. RA(T) ≤ T 1−1/(d+2) for any clean well-covered
run of algorithm A = Aph(T).

PROOF SKETCH. Let At(δ) be the set of all strategies u ∈ X
such that u is active at time t ≤ T and δ ≤ rt(u) < 2δ. Note
that for any such strategy we have nt(u) ≤ O(log T) δ−2 and
∆(u) ≤ 4rt(u) < 8δ. Write

R∗(T) :=
P
u∈X∆(u)nT (u)

≤ ρT +
Pdlog 1/ρe
i=0

P
u∈AT (2−i) ∆(u)nT (u),

where ρ = T−1/(d+2) and apply the quotas (8).

Let S` be the smallest set in D which contains some optimal
strategy. For simplicity define Sk+1 = ∅. Then there is an opti-
mal strategy contained in S`\S`+1; let u∗ be one such strategy.
The following claim essentially shows that the irrelevant high-
dimensional subset S`+1 is eventually pruned away.

Claim 3.13. There exists an open set U containing S`+1 such
that u∗ 6∈ U and U is always covered throughout the first T
steps of any clean run of algorithm Aph(T), provided that T is
sufficiently large.

PROOF. Set S`+1 is compact since it is a closed subset of a
compact metric space. Since function µ is continuous, it as-
sumes a maximum value on S`+1. By construction, this maxi-
mum value is strictly less than µ∗. So there exists ε > 0 such
that ∆(w) > 8ε for anyw ∈ S`+1. DefineU = B(S`+1, ε/2).
Note that u∗ 6∈ U since 8ε < ∆(w) ≤ L(u∗, w) for any
w ∈ S`+1.

Recall that in the beginning of algorithm A(T) all strategies
in some 2−j-net N are activated. Suppose T is large enough
so that 2−j ≤ ε.

Consider a clean run of algorithm Aph(T). We claim that
U is covered at any given time t ≤ T . Indeed, fix u ∈ U . By
definition ofU there existsw ∈ S`+1 such thatL(u,w) < ε/2.
By definition ofN there exist v, v∗ ∈ N such thatL(v, w) ≤ ε
and L(u∗, v∗) ≤ ε.

(a) Note that ∆(v∗) = µ(u∗)− µ(v∗) ≤ L(u∗, v∗) ≤ ε.
(b) Since L(v, w) ≤ ε and ∆(w) > 8ε, it follows that
∆(v) > 7ε.

(c) By Claim 3.11 we have ∆(v)−∆(v∗) ≤ 4rt(v
∗).

Combining (a-c), it follows that rt(v) ≥ 3
2
ε ≥ L(u, v), so v

covers u. Claim proved.

PROOF OF LEMMA 3.10. By Claim 3.12 it suffices to show
that if T is sufficiently large then any clean run of algorithm
Aph(T) is well-covered. (Runs that are not clean contribute
only O(1/T) to the expected regret of Aph(T), because the
probability that a run is not clean is at most T−2 and the regret
of such a run is at most T .) Specifically, we will show that u∗

is covered at any time t ≤ T during a clean run of Aph(T). It
suffices to show that at any time t ≤ T there is room under the
corresponding quota Q` in (8).

Let U be the open set from Claim 3.13. Since U is an open
neighborhood of S`+1, by definition of the fat decomposition it
follows that COV(S` \ U) ≤ d∗. Define ρ and Cρ as in (8) and
fix d′ ∈ (d∗, d). Then for any sufficiently large T it is the case
that (i) S` \ U can be covered with (1

ρ
)d
′

sets of diameter < ρ

and moreover (ii) that (1
ρ
)d
′
≤ 1

2
Cρ ρ

−d.

Fix time t ≤ T and let At be the set of all strategies u
such that u is in the pool P` at time t and rt(u) ≥ ρ. Note
that At ⊂ S` \ U since U is always covered, and by the
specification of Aph only active uncovered strategies in S` are
added to pool P`. Moreover, At is ρ-separated. (Indeed, let
u, v ∈ At and assume u has been activated before v. Then
L(u, v) > rs(u) ≥ rt(u) ≥ ρ, where s is the time when v was
activated.) It follows that |At| ≤ 1

2
Cρ ρ

−d, so there is room
under the corresponding quota Q` in (8).

3.2 The per-metric optimal algorithm
To extend the ideas of the preceding section to arbitrary met-

ric spaces, we must extend Definition 3.7 to transfinitely infinite
fat decompositions.

Definition 3.14. Fix a metric space (L,X). Let β denote an
arbitrary ordinal. A transfinite d-fat decomposition of depth β
is a transfinite sequence {Sλ}0≤λ≤β of closed subsets of X
such that:

(a) S0 = X , Sβ = ∅, and Sν ⊇ Sλ whenever ν < λ.
(b) if V ⊂ X is closed, then the set of ordinals ν ≤ β

such that V intersects Sν has a maximum element.
(c) for any ordinal λ ≤ β and any open set U ⊂ X con-
taining Sλ+1 we have COV(Sλ \ U) ≤ d.

Note that for a finite depth β the above definition is equiv-
alent to Definition 3.7. In Theorem 3.16 below, we will show
how to modify the “quota algorithms” from the previous sec-
tion to achieve regret dimension d in any metric with a trans-
finite d∗-fat decomposition for d∗ < d. This gives an optimal
algorithm for every metric space X because of the following
surprising relation between the max-min-covering dimension
and transfinite fat decompositions.

Proposition 3.15. For every compact metric space (L,X), the
max-min-covering dimension of X is equal to the infimum of
all d such that X has a transfinite d-fat decomposition.

PROOF. If ∅ 6= Y ⊆ X and MinCOV(Y) > d then, by
transfinite induction, Y ⊆ Sλ for all λ in any transfinite d-
fat decomposition, contradicting the fact that Sβ = ∅. Thus,
the existence of a transfinite d-fat decomposition of X implies
d ≥ MaxMinCOV(X). To complete the proof we will construct,
given any d > MaxMinCOV(X), a transfinite d-fat decomposi-
tion of depth β, where β is any ordinal whose cardinality ex-
ceeds that of X . For a metric space Y , define the set of d-thin
points TP(Y, d) to be the union of all open sets U ⊆ Y satis-
fying COV(U) < d. Its complement, the set of d-fat points, is
denoted by FP(Y, d). Note that it is a closed subset of Y .

For an ordinal λ ≤ β, we define a set Sλ using transfinite
induction as follows:

1. S0 = X and Sλ+1 = FP(Sλ, d) for each ordinal λ.
2. If λ is a limit ordinal then Sλ =

T
ν<λ Sν .

Note that each Sλ is closed, by transfinite induction. It remains
to show that D = {Sλ}λ∈O satisfies the properties (a-c) in
Definition 3.14. It follows immediately from the construction
that S0 = X and Sν ⊇ Sλ when ν < λ. To prove that Sβ = ∅,
observe first that the sets Sλ \ Sλ+1 (for 0 ≤ λ < β) are dis-
joint subsets of X , and the number of such sets is greater than
the cardinality of X , so at least one of them is empty. This
means that Sλ = Sλ+1 for some λ < β. If Sλ = ∅ then
Sβ = ∅ as desired. Otherwise, the relation FP(Sλ, d) = Sλ
implies that MinCOV(Sλ) ≥ d contradicting the assumption
that MaxMinCOV(X) < d. This completes the proof of property
(a). To prove property (b), suppose {νi | i ∈ I} is a set of ordi-
nals such that Sνi intersects V for every i. Let ν = sup{νi}.

Then Sν ∩V =
T
i∈I(Sνi ∩V), and the latter set is nonempty

because X is compact and the closed sets {Sνi ∩ V | i ∈ I}
have the finite intersection property. Finally, to prove prop-
erty (c), note that if U is an open neighborhood of Sλ+1 then
the set T = Sλ \ U is closed (hence compact) and is con-
tained in TP(Sλ, d). Consequently T can be covered by open
sets V satisfying COV(V) < d. By compactness of T , this
covering has a finite subcover V1, . . . , Vm, and consequently
COV(T) = max1≤i≤m COV(Vi) < d.

Theorem 3.16. Consider the Lipschitz MAB problem on a com-
pact metric space (L,X). For any d > MaxMinCOV(X) there
exists an algorithm Ad such that DIM(Ad) ≤ d.

Note that Theorem 1.2 follows immediately by combining
Theorem 3.16 with Theorem 3.4.

We next describe an algorithm Ad satisfying Theorem 3.16.
The algorithm requires two oracles: a depth oracle Depth(·)
and a D-covering oracle D-Cov(·). For any finite set of open
ballsB0, B1, . . . , Bn (given via the centers and the radii) whose
union is denoted by B, Depth(B0, B1, . . . , Bn) returns the
maximum ordinal λ such that Sλ intersects the closure B; such
an ordinal exists by Definition 3.14(b).8 Given a finite set of
open ballsB0, B1, . . . , Bn with unionB as above, and an ordi-
nal λ, D-Cov(λ,B0, B1, . . . , Bn) either reports that B covers
Sλ, or it returns a strategy x ∈ Sλ \B.

Our algorithm proceeds in phases i = 1, 2, 3, . . . of 2i rounds
each. In any given phase i, there is a “target ordinal” λ(i) (de-
fined at the end of the preceding phase), and we run an algo-
rithm during the phase which: (i) activates some nodes initially;
(ii) plays a version of the zooming algorithm which only acti-
vates strategies in Sλ(i); (iii) concludes the phase by computing
λ(i+ 1). The details are as follows. In a given phase we run a
fresh instance of a phase algorithmAph(T, d, λ) where T = 2i

and λ = λ(i) is a target ordinal for phase i, defined below
when we give the full description of Aph(T, d, λ). The goal of
Aph(T, d, λ) is to satisfy the per-phase bound

RAph(T,d,λ)(T) = eO(T γ) (10)

for all T > T0, where γ = 1 − 1/(d + 2) and T0 is a number
which may depend on the instance µ. Then, to derive the bound
RAd(t) = eO(tγ) for all t we simply sum per-phase bounds
over all phases ending before time 2t.

Initially Aph(T, d, λ) uses the covering oracle to construct
2−j-nets Nj , j = 0, 1, 2, . . ., until it finds the largest j such
that N = Nj contains at most 1

2
T d/(d+2) log(T) points. It

activates all strategies inN and sets

ε(i) = max{2−j , 32T−1/(d+2) log(T)}.

After this initialization step, for every active strategy v we de-
fine the confidence radius

rt(v) := max

(
T−1/(d+2),

s
8 log T

2 + nt(v)

)
,

where nt(v) is the number of times v has been played by the
phase algorithmAph(T, d, λ) before time t. LetB0, B1, . . . , Bn
be an enumeration of the the open balls belonging to the set
{B(v, rt(v)) | v active at time t}. If n < 1

2
T d/(d+2) log(T)

8To avoid the question of how arbitrary ordinals are represented
on the oracle’s output tape, we can instead say that the oracle
outputs a point u ∈ Sλ instead of outputting λ. In this case, the
definition ofD-Cov should be modified so that its first argument
is a point of Sλ rather than λ itself.

then we perform the oracle call D-Cov(λ,B0, . . . , Bn), and if
it reports that a point x ∈ Sλ is uncovered, we activate x and
set nt(x) = 0. The index of an active strategy v is defined as
µt(v) + 4rt(v) — note the slight difference from the index de-
fined in Algorithm 2.3 — and we always play the active strategy
with maximum index. To complete the description of the algo-
rithm, it remains to explain how the ordinals λ(i) are defined.
The definition is recursive, beginning with λ(1) = 0. At the
end of phase i (i ≥ 1), we let B0, B1, . . . , Bm be an enumera-
tion of the open balls in the set {B(v, ε(i)) | v active, rT (v) <
ε(i)/2}. Finally, we set λ(i+ 1) = Depth(B0, B1, . . . , Bm).

PROOF OF THEOREM 3.16. Since we have modified the def-
inition of index, we must prove a variant of Claim 3.11 which
asserts that in a clean run ofAph, if u, v are active at time t then
∆(v)−∆(u) ≤ 5rt(v). To prove it, let s be the latest round in
{1, 2, . . . , t} when v was played. We have rt(v) = rs(v), and
∆(v)−∆(u) = µ(u)− µ(v), so it remains to prove that

µ(u)− µ(v) ≤ 5rs(v). (11)

From the fact that v was played instead of u at time s, together
with the fact that both strategies are clean, we have

µs(u) + 4rs(u) ≤ µs(v) + 4rs(v) (12)
µ(u)− µs(u) ≤ rs(u) (13)
µs(v)− µ(v) ≤ rs(v). (14)

We obtain (11) by adding (12)-(14), noting that rs(u) > 0.
Let λ be the maximum ordinal such that Sλ contains an opti-

mal strategy u∗; such an ordinal exists by Definition 3.14(b).
We will prove that for sufficiently large i, if the i-th phase
is clean, then λ(i) = λ. The set Sλ+1 is compact, and the
function µ is continuous, so it assumes a maximum value on
Sλ+1 which is, by construction, strictly less than µ∗. Choose
ε > 0 such that ∆(w) > 5ε for all w ∈ Sλ+1, and choose
T0 = 2i0 such that ε(i0) ≤ ε. We shall prove that for all
T = 2i ≥ T0 and all ordinals ν, a clean run of Aph(T, d, ν)
results in setting λ(i + 1) = λ. First, let v∗ ∈ N be such
that L(u∗, v∗) ≤ ε(i). If v is active and rT (v) < ε(i)/2
then Claim 3.11 implies that ∆(v) − ∆(v∗) ≤ 5

2
ε(i) hence

∆(v) ≤ 7
2
ε(i). As ∆(w) > 5ε ≥ 5ε(i) for all w ∈ Sλ+1, it

follows that the closure of B(v, ε(i)) does not intersect Sλ+1.
This guarantees that Depth(B0, B1, . . . , Bm) returns an ordi-
nal less than or equal to λ. Next we must prove that this or-
dinal is greater than or equal to λ. Note that the total num-
ber of strategies activated byAph(T, d, ν) is bounded above by
T d/(d+2) log(T). Let AT denote the set of strategies active at
time T and let

v0 = arg max
v∈AT

nT (v).

By the pigeonhole principle, nT (v0) ≥ T 2/(d+2)/ log(T) and
hence rT (v0) < 3T−1/(d+2) log(T). If t denotes the last time
at which v0 was played, then we have

It(v
0) = µt(v

0) + 4rt(v
0) ≤ µ∗ + 5rt(v

0)

≤ µ∗ + 15T−1/(d+2) log(T) < µ∗ + ε(i)/2,

provided that the phase is clean and that T ≥ T0. Since v0

had maximum index at time t, we deduce that It(v∗) < µ∗ +
ε(i)/2 as well. As L(u∗, v∗) ≤ ε(i) we have µt(v∗) ≥ µ∗ −
ε(i) − rt(v∗) provided the phase is clean. To finish the proof
we observe that

µ∗ + ε(i)/2 > It(v
∗) ≥ µ∗ − ε(i) + 3rt(v

∗)

which implies rt(v∗) < ε(i)/2. Since the confidence radius
does not increase over time, we have rT (v∗) < ε(i)/2 so
B(v∗, ε(i)) is one of the balls B0, B1, . . . , Bm. Since u∗ is
contained in the closure of this ball, we may conclude that
Depth(B0, B1, . . . , Bm) returns the ordinal λ as desired.

Let U = B(Sλ+1, ε(i)/2). As in Claim 3.13 it holds that
in any clean phase, U is covered throughout the phase by balls
centered at points of N . Hence for any pair of consecutive
clean phases, in the second phase of the pair our algorithm only
calls the covering oracle D-Cov with the proper ordinal λ (i.e.
the maximum λ such that Sλ contains an optimal strategy) and
with a set of balls B0, B1, . . . , Bn that covers U . Also, note
that an active strategy v during a run ofAph(T, d, λ) never has a
confidence radius rt(v) less than δ = T−1/(d+2), so the strate-
gies activated by the covering oracle form a δ-net in the space
Sλ \U . By Definition 3.14(c), a δ-net in Sλ \U contains fewer
than O(δ−d) points. Hence for sufficiently large T the “quota”
of 1

2
T d/(d+2) active strategies is never reached, which implies

that every point of Sλ — including u∗ — is covered through-
out the phase. The upper bound on the regret of Aph(T, d, λ)
concludes as in the proof of Theorem 2.4.

4. EXTENSIONS
Let us briefly discuss several extensions of this work that

have been omitted from this extended abstract due to lack of
space. The precise theorem statements and proofs will appear
in the full version of this paper.

We observe that the proof in Section 2 works under a more
abstract definition of confidence radius of strategy u at time t:
esentially, it can be any function of t and the history of playing
u such that Claim 2.2 holds. The allows our results to be ex-
tended in the following three directions. First, we may upgrade
the zooming algorithm to satisfy the guarantee in Theorem 2.4
and to enjoy the improved guarantee RA(t) < Õ(td/(d+1)),
if the maximal reward is exactly 1. The key ingredient here
is a refined version of the confidence radius which gets much
sharper when the sample average is close to 1. Second, we
may consider the setting when the reward from playing a given
strategy u is the corresponding expected reward µ(u) plus an
independent random sample from a fixed distibution P known
to the algorithm. We obtain improved bounds on regret if P has
a “special region” that can be identified using a small number
of samples. For instance, if P has at least one point mass, the
regret is at most Õ(t1−1/d). Third, we may extend our anal-
ysis from reward distributions supported on [0; 1] to those on
unbounded support, assuming a finite absolute third moment.
This extension relies on the Berry-Esseen theorem [18].

Our techniques also lead to improved bounds for a special
case of the standard Lipschitz MAB problem problem where
the expected reward function has the appealing gradient ascent
structure: µ(·) = 1 − f(L(· , S)), where f is a known non-
decreasing function and S is the target subset which is not re-
vealed to the algorithm. The objective is, essentially, to zoom
in on S as quickly as possible. For a wide class of growth-
constrained functions f which includes polynomials, we ob-
tain guarantees in terms of COV(S), the intuition being that
COV(S) � COV(X). In particular, we obtain poly-logarithmic
regret when f(0) = COV(S) = 0. We run a version of the
zooming algorithm that instead of the original metric space
(L,X) uses a modified space (f(L), X). The analysis is based
on that in Section 2; the switch from (L,X) to (f(L), X)
forces us to revisit the analysis and seek the very minimal as-
sumptions which enable it.

5. REFERENCES
[1] R. Agrawal. The continuum-armed bandit problem. SIAM

J. Control and Optimization, 33(6):1926–1951, 1995.
[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time

analysis of the multiarmed bandit problem. Machine
Learning, 47(2-3):235–256, 2002.

[3] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire.
The nonstochastic multiarmed bandit problem. SIAM J.
Comput., 32(1):48–77, 2002.

[4] P. Auer, R. Ortner, and C. Szepesvári. Improved Rates for
the Stochastic Continuum-Armed Bandit Problem. In
20th Conference on Learning Theory (COLT), pages
454–468, 2007.

[5] B. Awerbuch and R. Kleinberg. Online linear
optimization and adaptive routing. Journal of Computer
and System Sciences, 74(1):97–114, February 2008.

[6] J. S. Banks and R. K. Sundaram. Denumerable-armed
bandits. Econometrica, 60(5):1071–1096, 1992.

[7] D. A. Berry and B. Fristedt. Bandit problems: sequential
allocation of experiments. Chapman and Hall, 1985.

[8] N. Cesa-Bianchi and G. Lugosi. Prediction, learning,
and games. Cambridge University Press, 2006.

[9] E. Cope. Regret and convergence bounds for
immediate-reward reinforcement learning with
continuous action spaces, 2004. Unpublished manuscript.

[10] V. Dani, T. Hayes, and S. M. Kakade. The Price of Bandit
Information for Online Optimization. Preprint, 2007.

[11] V. Dani and T. P. Hayes. Robbing the bandit: Less regret
in online geometric optimization against an adaptive
adversary. In 16th ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 937–943, 2006.

[12] A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online
convex optimization in the bandit setting: Gradient
descent without a gradient. In 16th ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 385–394, 2005.

[13] J. C. Gittins and D. M. Jones. A dynamic allocation
index for the sequential design of experiments. In J. G.
et al., editor, Progress in Statistics, pages 241–266.
North-Holland, 1974.

[14] S. M. Kakade, A. T. Kalai, and K. Ligett. Playing Games
with Approximation Algorithms. In 39th ACM Symp. on
Theory of Computing (STOC), 2007.

[15] R. Kleinberg. Nearly tight bounds for the
continuum-armed bandit problem. In 18th Advances in
Neural Information Processing Systems (NIPS), 2004.
Full version appeared as Chapters 4-5 in [16].

[16] R. Kleinberg. Online Decision Problems with Large
Strategy Sets. PhD thesis, MIT, Boston, MA, 2005.

[17] H. B. McMahan and A. Blum. Online geometric
optimization in the bandit setting against an adaptive
adversary. In 17th Annual Conference on Learning
Theory (COLT), volume 3120 of LNCS, pages 109–123.
Springer Verlag, 2004.

[18] K. Neammanee. On the constant in the nonuniform
version of the Berry-Esseen theorem. Intl. J. of
Mathematics and Mathematical Sciences,
2005:12:1951–1967, 2005.

[19] S. Pandey, D. Agarwal, D. Chakrabarti, and V. Josifovski.
Bandits for Taxonomies: A Model-based Approach. In
SIAM Intl. Conf. on Data Mining (SDM), 2007.

