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Abstract

A multi-armed bandit episode consists of n trials, each al-
lowing selection of one of K arms, resulting in payoff from
a distribution over [0, 1] associated with that arm. We as-
sume contextual side information is available at the start of
the episode. This context enables an arm predictor to identify
possible favorable arms, but predictions may be imperfect so
that they need to be combined with further exploration during
the episode. Our setting is an alternative to classical multi-
armed bandits which provide no contextual side information,
and is also an alternative to contextual bandits which provide
new context each individual trial. Multi-armed bandits with
episode context can arise naturally, for example in computer
Go where context is used to bias move decisions made by a
multi-armed bandit algorithm.
The UCB1 algorithm for multi-armed bandits achieves worst-
case O(

p
Kn log(n)) regret. We seek to improve this using

episode context, particularly in the case where K is large.
Using a predictor that places weight Mi > 0 on arm i with
weights summing to 1, we present the PUCB algorithm which
achieves regret O( 1

M∗

p
n log(n)) where M∗ is the weight

on the optimal arm. We also discuss methods for obtaining
suitable predictors for use with PUCB.

1 Introduction
In the stochastic multi-armed bandit problem, fixed but un-
known payoff distributions over [0, 1] are associated with
each of K arms. The “multi-armed bandit” name comes
from envisioning a casino with a choice of K “one-armed
bandit” slot machines. In each trial, an agent can pull one of
the arms and receive its associated payoff, but does not learn
what payoffs it might have received from other arms. Over
a sequence of trials, the agent’s goal is to mix exploration
to learn which arms provide favorable payoffs, and exploita-
tion of the best arms. The agent’s goal over n trials is to
achieve total payoff close to the total payoff of the best sin-
gle arm. The difference between the agent’s payoff and the
best arm’s payoff is called the regret (Auer, Cesa-Bianchi, &
Fischer 2002).

A foundation for the work here is the UCB1 algorithm for
stochastic multi-armed bandits (Auer, Cesa-Bianchi, & Fis-
cher 2002). UCB1 maintains an empirical average payoff
xi on each arm i, and each trial pulls the arm maximizing an
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upper confidence bound xi+
√

2 log(n)
si

where si is the num-
ber of previous pulls of i, and n is the total number of trials
so far. The acronym “UCB” comes from “upper confidence
bound.” This simple algorithm successfully achieves worst-
case expected regret upper-bounded by O(

√
Kn log(n)).

UCB1-based algorithms have played a key role in recent
progress in software for playing the game of Go, and this
provides a motivating example for the theoretical work in
this paper. Computer Go has been very challenging (Bouzy
& Cazenave 2001; Cai & Wunsch 2007), but major ad-
vances have been obtained using Monte Carlo techniques
that evaluate positions using random playouts (Bouzy &
Helmstetter 2003; Gelly & Silver 2007; 2008). An im-
portant development has been the efficient combination of
Monte Carlo evaluation with tree search. In particular, the
UCT algorithm (Kocsis & Szepesvari 2006) applies UCB1
to choose moves at each node (board position) of the search
tree. The bandit arms correspond to legal moves from the
position, and payoffs are obtained from Monte Carlo play-
out results. UCT has been effective for Go (Gelly & Sil-
ver 2007), and has generally replaced earlier heuristics for
Monte Carlo tree search (e.g. (Bouzy & Helmstetter 2003;
Coulom 2006)) which lacked the theoretical regret bounds
behind UCB1. Following success in Go, UCT-based meth-
ods have been applied successfully to other domains (Finns-
son & Björnsson 2008; de Mesmay et al. 2009).

There has been ongoing theoretical development of multi-
armed bandit algorithms, including issues that may be rel-
evant to Go and Monte Carlo tree search. This includes
the “pure exploration” bandit problem relevant at the root
of a search tree (Bubeck, Munos, & Stoltz 2009), studies
of bandits with large numbers of arms (Teytaud, Gelly, &
Sebag 2007), and fundamental improvements in UCB-style
bandit algorithms and regret bounds (Audibert, Munos, &
Szepesvári 2009; Audibert & Bubeck 2009). But computer
Go has progressed further with trial-and-error development
of more complex heuristics (e.g. (Chaslot et al. 2008)) for
which there is little theoretical understanding of the type
available for UCB1.

In this paper, we examine theoretically one particular
issue of importance in computer Go, which is the inte-
gration of contextual information to approximately predict
good arms at the start of a sequence of multi-armed ban-



dit trials. In Go, while a node’s board position in princi-
ple would allow a predictor to make a perfect move rec-
ommendation, in practice this has been extremely difficult
(Bouzy & Cazenave 2001). But it is possible for relatively
simple approximate predictors in this domain to make use-
ful initial recommendations, with further bandit-based ex-
ploration improving upon this. A predictor’s recommenda-
tions can be especially useful in multi-armed bandit appli-
cations like Go where the number of arms is large. Sev-
eral heuristic approaches for combining multi-armed ban-
dit algorithms (especially UCB1) with recommendations
of a predictor have been developed for Go. These in-
clude using the predictor to rank the moves and start ex-
ploration with only the best ones while significantly delay-
ing entry of those further down the list (Coulom 2007a;
2007b), and an additive bias to UCB1’s payoff estimates
(Chaslot et al. 2007). The algorithm presented in this pa-
per modifies UCB1 with a novel form of additive bias, and
we show this enables an advantageous regret bound.

This paper’s theoretical learning model considers se-
quences of multi-armed bandit trials called episodes, with
contextual side information obtained before the first trial and
fixed throughout an episode. We call this a multi-armed
bandit problem with episode context. A predictor uses the
context to make an approximate recommendation of which
arms are likely to be best. The multiple trials of the episode
then provide an opportunity to improve upon the predictor’s
recommendation. In the computer Go example, the context
corresponds to the board position at a node of the search
tree, and a predictor performs static analysis of the position
to make initial recommendations before the start of bandit
trials at the node. But the learning model may describe as-
pects of other applications as well – for example, in web
advertising the content of a webpage may cause a predictor
to recommend some ads over others, and then a bandit al-
gorithm can test these recommendations and improve upon
them during repeated user visits to the webpage.

The definition of episode context used here is intended as
an alternative to the contextual multi-armed bandits which
have been studied by others under various names (Langford
& Zhang 2007; Wang, Kulkarni, & Poor 2005; Strehl et al.
2006). In this prior work, the context has been allowed to
change every trial. This is more general, but is also more dif-
ficult than necessary for modelling applications like bandit-
based decisions in computer Go. Also, regret bounds from
previous theoretical work on contextual multi-armed bandits
do not satisfy our technical goals described below.
Goals: In the stochastic multi-armed bandit problem, each
arm is associated with an unknown payoff distribution that
is fixed throughout the episode. Without use of context,
worst-case regret is lower-bounded by Ω(

√
Kn) (Auer et al.

2002), and the UCB1 algorithm achieves worst-case regret
at most O(

√
Kn log(n)) (Auer, Cesa-Bianchi, & Fischer

2002; Streeter & Smith 2006). In our setting, a predictor
uses context to assign a vector of arm weights M at the start
of the episode, and we seek a regret bound that depends on
the weights in a way that improves worst-case regret’s de-
pendence on K. In Section 2 we seek a worst-case regret

bound of the form O(f(M)g(n)), with f(M) measuring
how suitable the predictor is for improving worst-case re-
gret. An advantage of a bound of this form is that the right
choice of M does not depend on n. In seeking a bound of
this form, we do not want g(n) worse than

√
n log(n). That

is, we do not want to worsen UCB1’s worst-case dependence
on episode length, no matter how poor the predictor.

We seek an efficient algorithm that is effective both for
short episodes (including n < K) and long episodes (n �
K).

The algorithm in Section 2 achieves these goals, yielding
a regret bound of O( 1

M∗

√
n log(n)).

In Section 2.3, we then show how the predictor can be
modified to give PUCB additional favorable properties pos-
sessed by UCB1. Specifically, one modification enables
PUCB to revert smoothly towards UCB1’s worst-case regret
bound of the form O(

√
Kn log(n)) as the Mi become uni-

form (such uniform Mi provide no information about which
arm is best). A separate second modification enables PUCB
to achieve (after an initial period) regret that scales logarith-
mically in n, in the case where the optimal arm is better than
the other arms by a sufficiently large margin.

Then, Section 3 describes methods for obtaining suitable
predictors for use with PUCB.

2 Multi-armed Bandit Episodes
2.1 Definitions
The multi-armed bandit problem is an interaction between
an agent and an environment. A multi-armed bandit episode
consists of a sequence of trials. Each episode is associated
with a context chosen by the environment from a fixed set
Z of possible contexts. A predictor maps context z ∈ Z to
a vector of real-valued weights M with Mi > 0 for each i,
and

∑
iMi = 1. The predictor is assumed to be available to

the agent at the start of the episode. Formally, an episode is a
tuple (K, z, n,D) with D consisting of a payoff distribution
Di over [0, 1] for each arm i with 1 ≤ i ≤ K. Di has
mean µi, not revealed to the agent. The choice of episodes
is controlled by the environment.

An episode (K, z, n,D) proceeds as follows:

1. K and z are revealed to the agent.

2. Each trial t with 1 ≤ t ≤ n, the agent pulls arm it and re-
ceives payoff xit chosen independently according to Di.

3. Following trial t = n the environment notifies the agent
that the episode is over.

Let ∗ be any fixed arm. Given the agent’s policy for se-
lecting it, the expected regret to arm ∗ for the episode is the
expected value of the difference between the payoff achieved
by pulling ∗ every trial, and the payoff achieved by the agent:

R∗ = nµ∗ − E[
n∑
t=1

µit ]

where expectation E is taken over sequences of payoffs and
any randomization in the agent’s policy.

Throughout, we use log to denote natural logarithm.



2.2 Multi-armed bandit policy PUCB
In an episode in which the payoff distributions with means
µi are selected by the environment, let ∗ be the optimal arm
and set ∆i = µ∗ − µi comparing the mean of arm i to that
of ∗. The original UCB1 policy (Auer, Cesa-Bianchi, & Fis-
cher 2002) achieves expected regret at most:

R∗ ≤ (8
∑

i:µi<µ∗

log(n)
∆i

) + (1 +
π2

3
)(

K∑
i=1

∆i) (1)

In addition to the bound expressed above, regret is ∆i ≤ 1
per trial in which arm i is pulled, and so total regret is
also upper-bounded by n for the episode. Discussions of
UCB1 often focus on the case of constant ∆i and the log-
arithmic dependence of regret on n as n increases. How-
ever, with an adversarial environment selecting worst-case
payoff distributions with knowledge of horizon n, ∆i that
is Θ(

√
K log(n)/n) yields an expected regret bound of

O(
√
Kn log(n)) (Streeter & Smith 2006; Juditsky et al.

2008). We focus here on this worst-case bound.
Note that if all ∆i are a larger Θ(K

√
log(n)/n), then

the problem becomes easier and UCB1 obtains an expected
regret bound of O(

√
n log n).

We now present our new algorithm PUCB (“Predictor +
UCB” – see Figure 1), which is a modification of UCB1.
PUCB uses additive penalties proportional to 1

Mi
; it seeks

to overcome worst-case ∆i by placing substantial additive
penalties on arms that have low weight. For example, if
two arms each have weight 1

4 but all remaining arms have
weight 1

2K then PUCB will place penalties proportional to
K

√
log(n)/n on these latter arms. Indeed, since the sum of

the weights is 1 and average weight is 1
K , it must be the case

that most arms receive a large penalty – so if one of the few
arms favored by the weights is optimal, we will show that
regret is small.

The policy carefully handles the case where arm i has not
yet been pulled, to achieve a result that holds for small n <
K as well as larger values of n; this is different from UCB1
which starts with one pull on each of the K arms.

PUCB also differs slightly from the original UCB1 in us-
ing a 3

2 constant in c(t, s) whereas UCB1 used 2; other au-
thors have discussed bounds for UCB1 using a range of val-
ues for this constant (Audibert, Munos, & Szepesvári 2009).

Note PUCB is deterministic, so the expected value of re-
gret depends only on the random sequence of payoffs and
not on any randomization by the agent.

Theorem 1 Given weights Mi > 0 with
∑
iMi = 1, com-

pared to any fixed arm ∗ PUCB achieves expected regret for
the episode of R∗ ≤ 17 1

M∗

√
n log(n) for n > 1.

Usually ∗ would be chosen to be the optimal arm maxi-
mizing µ∗, but Section 3.1 uses near-optimal ∗ as well.

First we will present some notation and prove a lemma.
Notation: Let st,i denote the value of si at the start of

trial t, and extend this so that if t > n then st,i is the final
total number of pulls on i for the episode. Let X(i, s) de-
note the value of empirical average payoff xi after s previous

On trial t pull arm it = argmaxi (xi+c(t, si)−m(t, i)) where:
• si is the number of previous pulls on i
• xi is i’s average payoff so far if si > 0, otherwise 1

• c(t, s) =
√

3 log(t)
2s if s > 0, otherwise 0

• m(t, i) = 2
Mi

√
log(t)
t if t > 1, otherwise 2

Mi

Figure 1: Multi-armed bandit policy PUCB

pulls on i. For s greater than the total number of pulls on
i during the episode, extend with additional independently
drawn samples from the distribution associated with arm i
and include these in X(i, s). That is, X(i, s) continues to
be the empirical average of s independently drawn samples
from the distribution associated with arm i even for large s;
this simplifies the analysis below. Note that X(i, st,i) is the
value of xi at the start of trial t (and is 1 if st,i = 0). Let
Vt,i = X(i, st,i) + c(t, st,i)−m(t, i); an arm with maximal
Vt,i is pulled on trial t.

For any condition Q, let notation {Q} indicate 1 if condi-
tion Q is true and 0 otherwise.

The following lemma will help handle relatively small n.

Lemma 2 At most 1.61
√
n

M∗
distinct arms are pulled during

the episode.
Proof of Lemma 2: We want to show that low Mi arms

are not pulled, during a sufficiently short episode. Assume

Mi ≤
M∗

1.61
√
n

Now show that i cannot be pulled during the episode. Before
i’s first pull, assuming t > 1:

Vt,i = 1− 2
1
Mi

√
log(t)
t

By the assumption on Mi:

Vt,i ≤ 1− (2)(1.61)
1
M∗

√
n log(t)

t

≤ 1− (3.22)
1
M∗

√
log(t)

≤ (1− 1.22
1
M∗

√
log(t))− 2

1
M∗

√
log(t)

For t > 1, and because 1
M∗
≥ 1, 1.22 1

M∗

√
log(t) ≥ 1, so:

Vt,i ≤ −2
1
M∗

√
log(t) ≤ −m(t, ∗) < Vt,∗

whether or not ∗ has been pulled yet at trial t. For t = 1,
Vt,i < Vt,∗ as well because 1

Mi
> 1

M∗
by the assumption

on Mi. Therefore arm i cannot be pulled for any t during
the episode. Since

∑
iMi = 1, the number of arms not

satisfying the original assumption is at most 1.61
√
n

M∗
. This is

an upper bound on the number of distinct arms that may be



pulled during the episode. 2

Proof of Theorem 1: We will assume below that n ≥ 4; for
1 < n < 4 the bound in Theorem 1 is clearly true because

1
M∗
≥ 1 and regret is at most 1 per trial.

Consider only arms i with µi < µ∗, since pulls of other
arms with µi ≥ µ∗ do not incur any positive regret. For each
arm i with µi < µ∗ and with i pulled at least once during
the episode, we will bound its total number of pulls. Parts of
this follow previous UCB1 analyses (Auer, Cesa-Bianchi, &
Fischer 2002; Audibert, Munos, & Szepesvári 2009).

Say arm i has first pull t = Fi. Counting subsequent pulls

sn+1,i = 1 +
n∑

t=Fi+1

{it = i}

In the sum, a pull it = i requires that:

X(∗, st,∗)+c(t, st,∗)−m(t, ∗) ≤ X(i, st,i)+c(t, st,i)−m(t, i)

For this to be true, at least one of the following must hold:

X(∗, st,∗) + c(t, st,∗) < µ∗ (2)
X(i, st,i)− c(t, st,i) > µi (3)

µ∗ −m(t, ∗) ≤ µi + 2c(t, st,i)−m(t, i)(4)

Note (2) is false for st,∗ = 0 sinceX(∗, 0) = 1 by definition.
And in (3) we only consider pulls beyond the first (st,i ≥ 1)
since t > Fi. So we only need consider (2) for pulls of ∗
beyond its first, and (3) for pulls of i beyond its first.

Let stail
n+1,i denote the number of pulls of i with Fi + 1 ≤

t ≤ n and for which (2) or (3) is satisfied, and let sclose
n+1,i

denote the number of pulls of i with t in this interval and (4)
satisfied. So total pulls:

sn+1,i ≤ 1 + stail
n+1,i + sclose

n+1,i

Define the set of suboptimal arms pulled at least once: A =
{i : µi < µ∗ and sn+1,i > 0}. Define ∆i = µ∗ − µi. From
the definition of R∗:

R∗ =
∑
i∈A

∆iE[sn+1,i]

with expectationE taken over random sequences of payoffs.

R∗ ≤
∑
i∈A

∆i(1 + E[stail
n+1,i] + E[sclose

n+1,i])

Since ∆i ≤ 1 and Lemma 2 gives |{i ∈ A}| ≤ 1.61
√
n

M∗
:

R∗ ≤
1.61
√
n

M∗
+

∑
i∈A

∆i(E[stail
n+1,i] + E[sclose

n+1,i])

Define:
Rtail =

∑
i∈A

∆iE[stail
n+1,i]

Rclose =
∑
i∈A

∆iE[sclose
n+1,i]

So that:

R∗ ≤
1.61
√
n

M∗
+Rtail +Rclose (5)

We will analyze Rtail and Rclose separately.

Regret Rtail:

stail
n+1,i ≤

n∑
t=Fi+1

{X(∗, st,∗) + c(t, st,∗) < µ∗}+

n∑
t=Fi+1

{X(i, st,i)− c(t, st,i) > µi}

≤
n∑

t=Fi+1

{∃s∗ ≤ t s.t. X(∗, s∗) + c(t, s∗) < µ∗}+

n∑
t=Fi+1

{∃si ≤ t s.t. X(i, si)− c(t, si) > µi}

≤
n∑

t=Fi+1

t∑
s∗=1

{X(∗, s∗) + c(t, s∗) < µ∗}+

n∑
t=Fi+1

t∑
si=1

{X(i, si)− c(t, si) > µi}

UsingE to denote expected value over sequences of payoffs:

E[stail
n+1,i] ≤

n∑
t=Fi+1

t∑
s∗=1

Pr{X(∗, s∗) + c(t, s∗) < µ∗}+

n∑
t=Fi+1

t∑
si=1

Pr{X(i, si)− c(t, si) > µi}

Bound the probabilities using Hoeffding’s inequality:
sX(j, s) is the sum of s random variables in [0, 1], and has
expected value sµj . Applying Hoeffding’s inequality:

Pr{X(∗, s∗) < µ∗ − c(t, s∗)} ≤ e−3 log(t) = t−3

Pr{X(i, si) > µi + c(t, si)} ≤ e−3 log(t) = t−3

E[stail
n+1,i] ≤ (

n∑
t=Fi+1

t∑
s∗=1

t−3) + (
n∑

t=Fi+1

t∑
si=1

t−3)

≤ 2
n∑

t=Fi+1

t−2 < 2
∞∑
t=1

t−2 =
π2

3

In the worst case, regret for these pulls is at most 1 per trial.
By Lemma 2, the number of arms with at least one pull is at
most 1.61

√
n

M∗
, so the regret associated with stail

n+1,i, summed
across all arms i with at least one pull, is bounded:

Rtail ≤ (
π2

3
)
1.61
√
n

M∗
<

5.3
√
n

M∗
(6)

Regret Rclose: Assign each arm one of two types (a) and
(b) as defined below, giving Rclose = Rclose

(a) + Rclose
(b) . We

will bound Rclose
(a) and Rclose

(b) separately.



Type (a) arms: Type (a) arms are defined to be those that
have m(n, i) −m(n, ∗) < m(n,i)

2 . Let A(a) denote the in-
dices i of type (a) arms. At worst, in every trial one of the
type (a) arms is pulled with (4) being satisfied:∑

{i∈A(a)}

sclose
n+1,i ≤ n

Because these pulls satisfy (4), for each pull:

µ∗ −m(t, ∗) ≤ µi + 2c(t, si)−m(t, i)
µ∗ − µi ≤ 2c(t, si) +m(t, ∗)

So, the regret associated with sclose
n+1,i summed over all type

(a) arms is at most
∑n
t=1(2c(t, sit) + m(t, ∗)) for some

choice of sequence of it with all it ∈ A(a).

Rclose
(a) ≤

n∑
t=1

(2c(t, sit) +m(t, ∗))

≤ (
∑

{i∈A(a)}

sclosen+1,i∑
si=1

2c(n, si)) + (
n∑
t=1

m(t, ∗))

≤ (
∑

{i∈A(a)}

(2

√
3
2

log(n))
sclosen+1,i∑
si=1

1
√
si

) +

((2
1
M∗

√
log(n))

n∑
t=1

1√
t
)

Note that the last line requires m(t, ∗) ≤ 2
M∗

√
log(n)/t,

which is valid given our constraint that n ≥ 4.
Applying inequality

∑k
j=1(1/

√
j) < 2

√
k to both terms:

Rclose
(a) ≤

 ∑
{i∈A(a)}

4

√
3
2

log(n)sclose
n+1,i

+4
1
M∗

√
n log(n)

with: ∑
{i∈A(a)}

sclose
n+1,i ≤ n

Because m(n, i) − m(n, ∗) < m(n,i)
2 for type (a) arms,

m(n, i) < 2m(n, ∗) and so Mi >
1
2M∗. Since

∑
iMi = 1

the maximum number of such arms is at most 2 1
M∗

. This
is an upper bound on |{i ∈ A(a)}|. Now, since Jensen’s

inequality gives 1
|S|

∑
i∈S
√
si ≤

√
1
|S|

∑
i∈S si:

∑
{i∈A(a)}

4

√
3
2

log(n)sclose
n+1,i

≤ 4

√
3
2

log(n)
√
|{i ∈ A(a)}|

√ ∑
{i∈A(a)}

sclose
n+1,i

≤ 4

√
3
2

log(n)
√

2
1
M∗

√
n = 4

√
3n log(n)

1
M∗

So:

Rclose
(a) ≤

√
n log(n)(4

√
3
M∗

+
4
M∗

) <
11

√
n log(n)
M∗

(7)

since
√

1
M∗
≤ 1

M∗
for M∗ ≤ 1.

Type (b) arms: Type (b) arms have m(n, i) − m(n, ∗) ≥
m(n,i)

2 . Given our constraint that n ≥ 4, m(t, i)−m(t, ∗) ≥
m(n, i) −m(n, ∗) and so m(t, i) −m(t, ∗) ≥ m(n,i)

2 . As-
sume there is a pull on type (b) arm i at time t with (4)
satisfied and

st,i >
6 log(n)

(µ∗ − µi + (m(n, i)/2))2
(8)

giving:

2c(t, st,i) < 2

√
3
2 log(t)(µ∗ − µi + (m(n, i)/2))2

6 log(n)

2c(t, st,i) < µ∗ − µi +
m(n, i)

2
2c(t, st,i) < µ∗ − µi +m(t, i)−m(t, ∗)

µ∗ −m(t, ∗) > µi + 2c(t, st,i)−m(t, i)
and so (4) is false. So, there cannot be any pulls on i with
st,i this large and (4) true. If t′ is the time of the final pull
on i with (4) true, then we have shown:

st′+1,i ≤ 1 +
6 log(n)

(µ∗ − µi + (m(n, i)/2))2

Of these pulls, sclose
n+1,i by definition excludes the first pull, so

sclose
n+1,i ≤ st′+1,i − 1 ≤ 6 log(n)

(µ∗ − µi + m(n,i)
2 )2

Let ∆i = µ∗ − µi. Regret associated with sclose
n+1,i for type

(b) arm i is at most:

∆i(
6 log(n)

(∆i + m(n,i)
2 )2

) =
6 log(n)

(∆i + m(n,i)
2 )(1 + m(n,i)

2∆i
)

=
6 log(n)

∆i + 2m(n,i)
2 + m(n,i)2

4∆i

≤ 6 log(n)
m(n, i)

= 3Mi

√
n log(n)

Sum this over all i using
∑
iMi = 1 to upper-bound regret

associated with sclose
n+1,i across all type (b) arms:

Rclose
(b) ≤ 3

√
n log(n) (9)

Total regret: Using Rclose = Rclose
(a) +Rclose

(b) and substitut-
ing (6), (7) and (9) into (5):

R∗ ≤ 11
M∗

√
n log(n) + 3

√
n log(n) +

5.3
√
n

M∗
+

1.61
√
n

M∗

≤ 14
√
n log(n)

1
M∗

+
7
√
n

M∗



For n > 500,
√

log(n) > 7
3 and so taking n > 500:

R∗ ≤ 14
√
n log(n)

1
M∗

+3

√
n log(n)
M∗

≤ 17
√
n log(n)

1
M∗

Regret is at most 1 per trial, and so for n ≤ 500 this bound
holds trivially since in that case 17

√
n log(n) ≥ n. So for

all n > 1 we have proven the theorem. 2

The constant isn’t tight; we used loose bounds to simplify.
For example, the bound in Lemma 2 is loose for n � K2.
If we have good lower bounds on 1

M∗
or n, the constant in

m(t, i) as well as the proof itself can be used to improve the
constant.

2.3 Additional Capabilities for PUCB
We discuss two modifications that separately give PUCB ad-
ditional favorable properties possessed by UCB1. The mod-
ifications affect only the choice of weights Mi and the anal-
ysis; PUCB is itself unchanged.
Recovering UCB1’s Worst-Case Bound: Theorem 1 can’t
match UCB1’s worst-case regretO(

√
Kn log(n)), indepen-

dent of the identity of ∗. Uniform Mi yields the worse
O(K

√
n log(n)). Here, we summarize a variant of PUCB

that can recover UCB1’s worst-case regret (up to a constant).
Run PUCB with a predictor with weights that needn’t sat-

isfy
∑
iMi = 1: let Z =

∑K
i=1Mi for the now-variable

total.

Theorem 3 With weights 0 < Mi ≤ 1, compared to any
fixed arm ∗, for n > 1 expected regret for the episode sat-
isfies R∗ ≤ 4

√
n log(n)(

√
Z +

√
1
M∗

)2 + min(5K, 7Z
√
n

M∗
)

The proof closely follows that of Theorem 1; we summarize
the differences here.

The upper bound on number of distinct arms pulled in
Lemma 2 is replaced by min(K, 1.61Z

√
n

M∗
). The proof of

this modified Lemma 2 is essentially the same until the final
step where

∑
iMi = Z is now used instead of

∑
iMi = 1.

The bound is also modified by capping it at the total number
of arms K. This modified bound also serves as a bound on
the regret from the first pull of each arm, replacing the first
term in (5).

The analysis of Rtail is the same until its final step where
the modified Lemma 2 from above is applied to yield the
modified bound:

Rtail ≤ (
π2

3
) min(K,

1.61Z
√
n

M∗
) (10)

The maximum number of type (a) arms becomes 2 Z
M∗

in-
stead of 2 1

M∗
. This leads to

Rclose
(a) ≤

√
n log(n)(4

√
3Z
M∗

+
4
M∗

) (11)

For type (b) arms, the analysis is the same until its final
step, where the sum of 3Mi

√
n log(n) over i is equal to

3Z
√
n log(n); this is the bound on Rclose

(b) .

The bound on R∗ is the sum of these modified terms
above, which simplifies to the form stated in Theorem 3.

As an example of Theorem 3: with Mi = 1√
K

for all

i, 1
M∗

= Z =
√
K and the bound is O(

√
Kn log(n)),

independent of the choice of ∗. This is comparable to the
worst-case bound for UCB1.

Large ∆i: Returning to the original PUCB with
∑
iMi =

1, we consider a different issue. Define ∆i = µ∗ − µi,
choosing ∗ to be the optimal arm. For suitably large episode
length n, and with all ∆i sufficiently large for suboptimal
arms i, the original UCB1 regret bound (1) can be much
better (logarithmic in n) than PUCB’s bound in Theorem 1
which assumes worst-case ∆i. We show that PUCB can also
obey an improved regret bound for sufficiently large n in the
case with all ∆i sufficiently large.

First, given Mi > 0 with
∑
iMi = 1, set M ′i =

2
3Mi + 1

3K and use these M ′i instead with PUCB. Note∑
iM
′
i = 1. For any arm ∗ we have 1

M ′∗
< 3

2
1
M∗

, so the
original PUCB bound in Theorem 1 still applies (with regret
bound worsened by constant factor 3

2 ). Now, M ′i >
1

3K for
all i.

Theorem 4 Let ∗ denote the optimal arm. Use weights
M ′i >

1
3K . Now, on episodes which satisfy, for some n0 > 2,

∆i ≥ 48K
√

log(n0)/n0 for all i with µi < µ∗, PUCB
achieves expected regret for the episode:

R∗ ≤ 17
1
M ′∗

√
n0 log(n0) + (8

∑
i:µi<µ∗

log(n)
∆i

) + 5K

The main idea is that the large ∆i overwhelm the penalty
m(t, ∗) once t > n0, even if the predictor is completely
wrong (that is, even if M ′∗ is as small as allowed here).

For the first n0 trials, use the original Theorem 1 with the
weightsM ′i . This bounds regret for these n0 trials by at most
17 1

M ′∗

√
n0 log(n0). This gives the first term of the overall

regret bound in Theorem 4.
For trials after the first n0, the proof that additional regret

is bounded by (8
∑
i:µi<µ∗

log(n)
∆i

) + 5K is an adaptation of
the proof of Theorem 1. We summarize the differences here.
Note that some regret from the first n0 trials will be counted
again here; this is done to enable a simpler analysis.

To account for arms that receive their first pull after the
first n0 trials, replace Lemma 2’s upper bound, on the num-
ber of arms pulled, by K. Due to this, the first term in (5) is
replaced by K, and the upper bound in (6) is replaced by

Rtail ≤ (
π2

3
)K < 4K

Eliminate the analysis for type (a) arms; Rclose is ana-
lyzed for all suboptimal arms by adapting the analysis for
type (b) arms as follows. Assume there is a pull on subop-
timal arm i (beyond its first pull) at time t > n0 with (4)
satisfied and

st,i >
6 log(n)

(µ∗ − µi − 6K
√

log(n0)/n0)2
(12)



giving:

2c(t, st,i) < 2

√
3
2 log(t)(µ∗ − µi − 6K

√
log(n0)/n0))2

6 log(n)

2c(t, st,i) < µ∗ − µi − 6K
√

log(n0)/n0

Note that, by the constraint on M ′∗:

m(t, i)−m(t, ∗) ≥ (1− 3K)2
√

log(t)/t

≥ −6K
√

log(t)/t

And for t > n0, given that n0 > 2, we have:

m(t, i)−m(t, ∗) ≥ −6K
√

log(n0)/n0

So we have:

2c(t, st,i) < µ∗ − µi +m(t, i)−m(t, ∗)
µ∗ −m(t, ∗) > µi + 2c(t, st,i)−m(t, i)

and so (4) is false. This bounds the time of the final pull on
arm i with t > n0 and with (4) true. The remaining analysis
of Rclose proceeds as in the original proof for type (b) arms,
using the form of (12) instead of (8). Using the constraint
on ∆i, the regret bound associated with sclose

n+1,i can then be
simplified to 8 log(n)/∆i. Summing the regret terms yields
the result.

3 Obtaining Predictors for Use with PUCB
We summarize two approaches to obtaining suitable predic-
tors for use with PUCB.

3.1 Offline Training That Minimizes 1/M∗
In computer Go it is common to prepare a predictor in ad-
vance via an offline process, then freezing it for later use in
bandit-based search (Gelly & Silver 2007; Coulom 2007a).
One specific approach that has been successful in heuristic
use (Coulom 2007a) is convex optimization to minimize a
logarithmic loss function over training data, using a model
of the form described in Section 3.1.1. Here, we consider of-
fline training that minimizes a loss function based on 1/M∗;
this produces a predictor that minimizes the regret bound
from Theorem 1. This predictor is then frozen for subse-
quent use with PUCB.

The agent experiences each of T training episodes drawn
independently from a fixed but unknown distribution Q. Af-
ter training on these, the agent then outputs its chosen pre-
dictor M for subsequent use with PUCB on test episodes
drawn independently from the same distribution Q. The dis-
tribution Q may range over a vast set of possible episodes
with associated contexts, so the predictor learning task re-
quires generalization from a limited set of training episodes
to a much larger set of unseen test episodes.

We assume a class of predictors parameterized by x ∈ Rd
with ‖x‖ ≤ B. Given episode context z, the predictor puts
weight M(x; z)i on arm i. To enable successful generaliza-
tion in the procedure below, we assume that 1/M(x; z)i is
L-Lipschitz with respect to x. To enable efficient learning,
we may also assume that for all z and i, 1/M(x; z)i is a
convex function of x.

Below we describe the agent’s procedure (in boldface)
as well as its performance. The procedure uses input
parameters 0 < ε < 1 (during training, target arms are
within ε of optimal) and 0 < δ < 0.25 (this controls failure
probability and is used several times).

• Draw T training episodes fromQ.
• For episode j with context zj and Kj arms, sam-

ple each arm 4
ε2

log(2KjT/δ) times and choose tar-
get arm bj obtaining highest observed average payoff.
Arm bj has expected payoff within ε of the episode’s op-
timal arm, with probability at least 1 − δ/T [(Even-Dar,
Mannor, & Mansour 2006) Theorem 6].

• Choose x that minimizes (or approximately mini-
mizes) F (x) = 1

T

∑
j 1/M(x; zj)bj

. This can be
viewed as minimizing average 1/M∗ over the training set
(with ∗ here being within ε of the optimal arm).
– As a specific example of how this minimization can be

done in the convex case: stochastic convex optimiza-
tion (Shalev-Shwartz et al. 2009) efficiently finds x
such that F (x) is within O(

√
B2L2 log(1/δ)/T ) of

optimal, with probability at least 1−δ [(Shalev-Shwartz
et al. 2009) equation (7)].

• Now, with probability at least 1 − δ, the chosen x has
expected value of 1/M(x; z)b for episodes drawn from
Q that is within O(

√
L2B2d log(T ) log(d/δ)/T ) of the

F (x) observed on the training set [(Shalev-Shwartz et al.
2009) Theorem 5]. That is, the chosen x generalizes suc-
cessfully with high probability. Here, b is some arm with
expected payoff for the episode within ε of the episode’s
optimal arm.

• Run PUCB with predictor weights M(x; z)i on test
episodes drawn fromQ. The predictor enables PUCB to
obtain bounded regret with respect to some arm b that is
within ε of optimal. To express the overall regret bound
comparing to the optimal arm, combine the bounds above
with Theorem 1: expected episode regret to the optimal
arm ∗ is bounded by:

O(ε+
√
n log(n)(F (x)+

√
B2L2d log(T ) log(d/δ)/T ))

(13)
This holds with overall success probability at least 1−2δ.

Regret can be reduced by increasing training set size, and
by decreasing ε via longer training episodes. As an exam-
ple of the latter, if targeting test episodes of length n then
choosing ε =

√
log(n)/n allows (13) to be simplified by ab-

sorbing the ε term into the second (
√
n log(n)) term. Note,

though, that this results in training episodes that are substan-
tially longer than test episodes.

Success also depends on choosing an appropriate class of
predictors for which x can be found that has small F (x). We
next give a concrete example of a predictor class.

3.1.1 Generalized Bradley-Terry Model Generalized
Bradley-Terry statistical models have been successfully ap-
plied heuristically in conjunction with multi-armed bandits



in computer Go (Coulom 2007a; 2007b). Establish a fixed
mapping from context z and arm i to a team ofW feature in-
dices feat(z, i, 1) . . . feat(z, i,W ). The same feature can be
associated with multiple arms. In an episode with K arms,
use a form of the Bradley-Terry model that gives for each i:

M(x; z)i =
e

PW
j=1

1
KW xfeat(z,i,j)∑K

k=1 e
PW

j=1
1

KW xfeat(z,k,j)

Now, 1
Mi

is a convex function of vector x, and stochastic
convex optimization can be successfully applied within the
procedure of Section 3.1.

3.2 Probability Distribution Over Arms
In some applications, we may be able to map context onto
a probability distribution which approximately reflects the
probability that an arm will be optimal. For example, in
computer Go, one can use samples of human expert games to
create models which output an approximate distribution over
correct move choices in any board position (Coulom 2007a;
Bouzy & Chaslot 2005). This in turn approximately reflects
the probability that a move will emerge as the eventual opti-
mal choice of bandit-based search. In the context of PUCB,
such a probability distribution can be turned into weightsMi

as follows.
Theorem 1’s regret bound is proportional to 1/M∗. If

we have probability distribution Pi that exactly reflects the
probability that arm iwill be optimal, then expected regret is
bounded by 17

√
n log(n)

∑
i
Pi

Mi
. This bound is minimized

by Mi proportional to
√
Pi (scaling Mi to sum to 1), giving

expected regret

O(
√
n log(n)(

∑
i

√
Pi)2) (14)

If most Pi satisfy Pi � 1
K (e.g. most Pi ∼ 1

K2 ), this can be
a substantial improvement over UCB1.

If our Pi are only approximate, and the (unknown) true
probabilities are Ri but our Pi are sufficiently accurate so
that Ri ≤ αPi for some α ≥ 1 and for all i, then the regret
bound is only degraded by a factor of α.

If the case where n > K2, then with the approach of
Theorem 3 we may takeMi =

√
Pi without normalizingMi

to sum to 1. The regret bound of Theorem 3 then simplifies
to

O(
√
n log(n)(

∑
i

√
Pi)) (15)

which is an improvement over (14). As above, if Pi are
approximate but the true probabilities satisfyRi ≤ αPi then
the bound is degraded only by factor α.

4 Discussion
We have shown an efficient algorithm PUCB for multi-
armed bandits with episode context. PUCB combines the
recommendations of a predictor with further exploration
during an episode, and its regret is quantified in terms of
the quality of the predictor. We have also described methods
for obtaining predictors suitable for use with PUCB.

It remains to be seen whether PUCB can be adapted for
practical use in a full application like Go.

An open question: can we unify predictor learning (across
episodes) and PUCB (within-episode) into one online learn-
ing algorithm without the training/test distinction of Sec-
tion 3.1? If predictor learning needs reliable identification
of near-optimal target arms, a known lower bound (Man-
nor & Tsitsiklis 2004) suggests training episodes need to be
longer than test episodes. But there may exist alternatives
that make do with limited target information; this has been
studied in other settings (Kakade, Shalev-Shwartz, & Tewari
2008).
Acknowledgments. Thanks to Mark Land for helpful com-
ments on an earlier draft. Thanks to the anonymous review-
ers for their helpful comments.
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