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Abstract
To deal with situations involving uncertainty, Fermatean fuzzy sets are more effective than Pythagorean fuzzy sets,

intuitionistic fuzzy sets, and fuzzy sets. Applications for fuzzy similarity measures can be found in a wide range of fields,

including clustering analysis, classification issues, medical diagnosis, etc. The computation of the weights of the criteria in

a multi-criteria decision-making problem heavily relies on fuzzy entropy measurements. In this paper, we employ

t-conorms to suggest various Fermatean fuzzy similarity measures. We have also discussed all of their interesting char-

acteristics. Using the suggested similarity measurements, we have created some new entropy measures for Fermatean fuzzy

sets. By using numerical comparison and linguistic hedging, we have established the superiority of the suggested similarity

metrics and entropy measures over the existing measures in the Fermatean fuzzy environment. The usefulness of the

proposed Fermatean fuzzy similarity measurements is shown by pattern analysis. Last but not least, a novel multi-attribute

decision-making approach is described that tackles a significant flaw in the order preference by similarity to the ideal

solution, a conventional approach to decision-making, in a Fermatean fuzzy environment.

Keywords Fuzzy set � Fermatean fuzzy set � t-Conorm � Similarity measure � Entropy measure � Multi-attribute decision-

making

1 Introduction

To solve problems involving uncertainty more precisely, a

new notion known as the Pythagorean fuzzy set (PFS) was

put forward by Yager (2013). PFS is a generalized version

of fuzzy (Zadeh 1965) and intuitionistic fuzzy sets (Ata-

nassov 1986) (IFSs). A membership rð Þ and a non-mem-

bership 1ð Þ degree whose maximum square sum is one

r2 þ 12 � 1ð Þ is assigned to each element in a PFS. The

Pythagorean fuzzy number and the technique for order of

preference by similarity to the ideal solution (TOPSIS) in a

Pythagorean fuzzy (PF) environment were proposed by

Zhang and Xu (2014). Yager (2014) provided several PF

aggregating functions and their usefulness in decision-

making. Wei and Lu (2018) developed some PF power

aggregation functions. Garg (2016) suggested some new

aggregating functions for the PF environment utilizing

Einstein operations. Wei (2017) proposed many PF inter-

action aggregation functions and discussed their applica-

bility to multi-attribute decision-making (MADM). The
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literature has numerous studies (Garg 2017; Lu et al. 2017;

Wei et al. 2017; Wei and Lu 2017) on the PF aggregating

functions and their applicability. The TODIM (multi-cri-

teria decision-making in Portuguese) in the PF setting was

developed by Ren et al. (2016). Many PF measures of

information were proposed by Peng et al. (2017). A new PF

distance metric was proposed by Peng and Dai (2017).

Singh and Ganie (2020) developed a few PF metrics of

correlation with their utility. PFSs have been examined and

implemented by numerous researchers (Garg 2019a, b;

Khan et al. 2019a, b; Akram and Ali 2020; Ejegwa

2020a, b; Rahman et al. 2020; Zhang et al. 2021; Olgun

et al. 2021; Mishra et al. 2021; Zeb et al. 2022; Wang et al.

2022; Ganie 2022, 2023; Ganie et al. 2022; Akram and

Bibi 2023; Ejegwa et al. 2023; Aldring and Ajay 2023;

Kirişci 2023; Akram et al. 2023b; Akram et al. 2023a, c) in

various uncertain situations. Chen and Chiou (2015) and

Zeng et al. (2020) discussed the applicability of interval-

valued IFSs to MADM problems. Although PFSs have

many uses in a variety of domains, they are unable to

handle circumstances where r2 þ 12 [ 1. For instance, if

r ¼ 0:8 and 1 ¼ 0:7, then r2 þ 12 ¼ 1:13[ 1. Senapati

and Yager’s (2020) concept of Fermatean fuzzy sets was

thus proposed (FFSs). We have r3 þ 13 � 1 in a Fermatean

fuzzy set (FFS). FFSs are more robust and effective than

FSs, IFSs, and PFSs because these all fall in the space of

FFSs. Senapati and Yager (2019) provided a list of FFS

aggregation operators and their potential applications in

decision-making. Mishra and Rani (2021) proposed the

weighted aggregated sum product assessment (WASPAS)

method in the Fermatean fuzzy (FF) environment. Kesha-

varz-Ghorabaee et al. (2020) presented an innovative FF

decision-making approach. Garg et al. (2020) demonstrated

the use of FF aggregating functions in the COVID-19

testing facility. The continuities and derivatives of FF

functions were researched by Yang et al. (2021). Sergi and

Sari (2021) suggested a few FF capital budgeting strate-

gies. Sahoo (2021a, b) suggested a few score functions for

FFSs and discussed their use in solving transportation-re-

lated problems and making decisions. Aydemir and Yilmaz

(2020) introduced the FF TOPSIS technique. Some FF

aggregating functions based on Einstein’s norm were pro-

posed by Akram et al. (2020). There are some investiga-

tions of FFSs and their real-world applications in the

literature (Salsabeela and John 2021; Aydın 2021; Gul

et al. 2021; Hadi et al. 2021; Shit and Ghorai 2021; Rani

and Mishra 2021; Akram et al. 2022, 2023d; Mishra et al.

2022a, b, 2023; Ali and Ansari 2022; Zhou et al. 2022;

Luqman and Shahzadi 2023). The creation of several FF

similarity and entropy measurements is discussed in this

study.

Based on the content of equality, two things can be

compared very effectively using similarity measurements.

Zhang (2016) introduced a PF metric of similarity and

applied it to a decision-making problem. Many novel PF

measurements of distance and similarity were given by

Peng (2019). Based on the cosine function, some PF

measurements of similarity were proposed by Wei and Wei

(2018). Mohd and Abdullah (2018) created several inno-

vative PF similarity metrics by fusing the Euclidean dis-

tance measure with cosine similarity measures. By

considering all three membership grades Ejegwa (2020a)

presented many PF metrics of similarity and distance. The

applicability of some PF metrics of similarity and distance

in MADM was shown by Zeng et al. (2018). A Hausdorff

PF similarity metric was suggested by Hussain and Yang

(2019). Zhang et al. (2019) developed some exponential PF

similarity metrics and showed how they may be used for

pattern identification, MADM, and medical diagnostics. Li

and Lu (2019) provided a few complement-based, match-

ing function-based, and set theoretic-based PF similarity

measurements. Wang et al. (2019) provided some PF Dice

similarity measures with applications in decision-making.

Some trigonometric function-based PF metrics of similar-

ity were created by Verma and Merigo (2019). Peng and

Garg (2019) highlighted how several multi-parametric PF

measures of similarity can be used in classification

challenges.

A PFS’s ambiguous content determines its entropy. In a

MADM problem involving PF information, the attribute

weights are computed using entropy measures. Xue et al.

(2018) defined the entropy function for PFSs and its usage

in decision-making. Yang and Hussain (2018) provided

some probabilistic and nonprobabilistic PF entropy mea-

surements. Thao and Smarandache (2019) introduced the

CORPAS MADM approach in the PF environment with the

use of a new PF entropy measure. Five FF entropy mea-

surements were introduced by Mishra and Rani (2021).

The following are the main causes that motivated us to

carry out this study.

• Several domains, including clustering, decision-mak-

ing, pattern detection, etc., use fuzzy sets’ similarity

metrics and their various extensions. The FFS similarity

measures, however, have not yet been properly

investigated.

• The majority of the proposed formula-level fuzzy

similarity metrics, both standard and non-standard, do

not adhere to the axiomatic requirements. Thus, there is

no technique that can be applied repeatedly to assess

similarity.

• The five FF entropy measurements (Olgun et al. 2021)

are worthless from the standpoint of linguistic hedging,
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and there is no standard method for creating the FF

entropy measurements.

• The conventional MADM technique i.e., TOPSIS

provides a compromise solution that is most similar to

the PIS (positive ideal solution), but not the least similar

to the NIS (negative ideal solution). So, a new decision-

making method is desirable.

The contribution of this paper is given below:

• We suggest four metrics of similarity for FFSs along

with their weighted equivalents.

• We suggest four metrics of entropy for FFSs using the

suggested FF metrics of similarity.

• We contrast the performance of the proposed FF

information measures with the available measures.

• We apply the FF similarity metrics in classification

problems.

• We introduce an innovative decision-making method in

the FF setting.

Section 2 of the paper is preliminary. Section 3 lists

many unique FF similarity measurements along with

desirable characteristics. A few similarity-based FF

entropy measurements are introduced in Sect. 4. Section 5

displays a comparison of the proposed FF entropy and

similarity metrics with the current FF/PF compatibility

metrics. The use of the suggested similarity measures in

pattern identification is illustrated in Sect. 6. In Sect. 7, a

new MADM technique for the FF environment is proposed.

The benefits and implications of the suggested FF simi-

larity metrics, entropy measures, and the new MADM

method are covered in Sect. 8. Section 9 provides the

conclusion and recommendations for further research.

2 Preliminaries

Let FFSðBÞ denote the collection of all FFSs of the uni-

versal set B ¼ b1; b2; . . .; bp
� �

.

Definition 1 (Yager 2013) A PFS C1 in B is defined as

C1 ¼ bt; rC1
btð Þ; 1C1

btð Þ
� �

; bt 2 B
� �

:

Here, rC1
btð Þ is the grade of membership and 1C1

btð Þ is
the grade of non-membership of the element bt in C1 with

the conditions that 0� rC1
btð Þ; 1C1

btð Þ� 1 and

0� r2C1
btð Þ þ 12C1

btð Þ� 1. Further, sC1
btð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2C1

btð Þ � 12C1
btð Þ

q
is the grade of the hesitancy of the

element bt in C1.

An example of a PFS is C1 ¼
b1; 0:5; 0:6ð Þ; b2; 0:1; 0:3ð Þ;f b3; 0:2; 0:6ð Þg: Here, we see

that rC1
b1ð Þ þ 1C1

b1ð Þ ¼ 0:5þ 0:6 ¼ 1:1[ 1; but

r2C1
b1ð Þ þ 12C1

b1ð Þ ¼ 0:25þ 0:36 ¼ 0:61\1.

Definition 2 (Senapati and Yager 2020) An FFS C1 in B is

defined as

C1 ¼ bt; rC1
btð Þ; 1C1

btð Þ
� �

; bt 2 B
� �

:

Here, rC1
btð Þ is the grade of membership and 1C1

btð Þ is
the grade of non-membership of the element bt in C1 with

the conditions that 0� rC1
btð Þ; 1C1

btð Þ� 1 and

0� r3C1
btð Þ þ 13C1

btð Þ� 1. Further, sC1
btð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r3C1

btð Þ � 13C1
btð Þ3

q
is the grade of the hesitancy of the

element bt in C1.

An example of an FFS is

C1 ¼ b1; 0:2; 0:4ð Þ; b2; 0:7; 0:8ð Þ;f b3; 0:6; 0:5ð Þg. Here, we
see that r2C1

b2ð Þ þ 12C1
b2ð Þ ¼ 0:49þ 0:64 ¼ 1:13[ 1, but

r3C1
b1ð Þ þ 13C1

b1ð Þ ¼ 0:343þ 0:512 ¼ 0:855\1.

Definition 3 (Senapati and Yager 2020) Let

C1;C2 2 FFSðBÞ, then some operations are listed below.

1. C1 [ C2 ¼ bt;max rC1
btð Þ; rC2

btð Þð Þ;ðf
min 1C1

btð Þ; 1C2
btð Þ

� �
Þ; bt 2 Bg:

2. C1 \ C2 ¼ bt;min rC1
btð Þ; rC2

btð Þð Þ;ðf
max 1C1

btð Þ; 1C2
btð Þ

� �
Þ; bt 2 Bg:

3. C1 � C2: iff rC1
btð Þ� rC2

btð Þ and

1C1
btð Þ� 1C2

btð Þ8 bt 2 B.

4. C1ð Þc ¼ bt; 1C1
btð Þ; rC1

btð Þ
� �

; bt 2 B
� �

:

For example, consider the two FFSs C1;C2 2 FFS Bð Þ
given as
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C1 ¼ b1; 0:2; 0:4ð Þ; b2; 0:6; 0:8ð Þ; b3; 0:6; 0:5ð Þf g;
C2 ¼ b1; 0:8; 0:4ð Þ; b2; 0:7; 0ð Þ; b3; 0:7; 0:2ð Þf g:

Then,

1.

C1 [ C2 ¼
b1;max 0:2; 0:8ð Þ;min 0:4; 0:4ð Þð Þ; b2;max 0:6; 0:7ð Þ;min 0:8; 0ð Þð Þ;

b3;max 0:6; 0:7ð Þ;min 0:5; 0:2ð Þð Þ

� �
¼ b1; 0:8; 0:4ð Þ; b2; 0:7; 0ð Þ; b3; 0:7; 0:2ð Þf g:

2.

C1 \ C2 ¼
b1;min 0:2; 0:8ð Þ;max 0:4; 0:4ð Þð Þ; b2;min 0:6; 0:7ð Þ;max 0:8; 0ð Þð Þ;

b3;min 0:6; 0:7ð Þ;max 0:5; 0:2ð Þð Þ

� �
¼ b1; 0:2; 0:4ð Þ; b2; 0:6; 0:8ð Þ; b3; 0:6; 0:5ð Þf g:

3. C1 � C2 because rC1
btð Þ� rC2

btð Þ and 1C1
btð Þ�

1C2
btð Þ8 t ¼ 1; 2; 3.

4. C1ð Þc ¼ b1; 0:4; 0:2ð Þ; b2; 0:8; 0:6ð Þ;f b3; 0:5; 0:6ð Þg:

Definition 4 (Peng et al. 2017) A PF similarity measure

SPF is a function SPF : PFS Bð Þ � PFS Bð Þ ! 0; 1½ � such that

8 C1;C2 and C3 2 PFS Bð Þ,

(SM1) 0� SPF C1;C2ð Þ� 1.

(SM2) SPF C1;C2ð Þ ¼ SPF C2;C1ð Þ.
(SM3) SPF C1;C2ð Þ ¼ 1 iff C1 ¼ C2.

(SM4) SPF C1; C1ð Þcð Þ ¼ 0 iff C1 is a crisp set, where c

denotes the complement.

(SM5) If C1 � C2 � C3, then SPF C1;C2ð Þ� SPF C1;C3ð Þ
and SPF C2;C3ð Þ� SPF C1;C3ð Þ.

An example of a PF similarity measure is given below:

SPF C1;C2ð Þ ¼ 1� 1

2p

Xp

t¼1

r2C1
btð Þ � r2C2

btð Þ
		 		þ 12C1

btð Þ � 12C2
btð Þ

		 		þ s2C1
btð Þ � s2C2

btð Þ
		 		


 �
:

Definition 5 (Peng et al. 2017) A PF distance measure DPF

is a function DPF : PFS Bð Þ � PFS Bð Þ ! 0; 1½ � such that

8 C1;C2 and C3 2 PFS Bð Þ,

(DM1) 0�DPF C1;C2ð Þ� 1.

(DM2) DPF C1;C2ð Þ ¼ DPF C2;C1ð Þ.
(DM3) DPF C1;C2ð Þ ¼ 0 iff C1 ¼ C2.

(DM4) DPF C1; C1ð Þcð Þ ¼ 1 iff C1 is a crisp set, where c

denotes the complement.

(DM5) If C1 � C2 � C3, then DPF C1;C2ð Þ�
DPF C1;C3ð Þ and DPF C2;C3ð Þ�DPF C1;C3ð Þ.

An example of a PF similarity measure is given below:

DPF C1;C2ð Þ ¼ 1

2p

Xp

t¼1

r2C1
btð Þ � r2C2

btð Þ
		 		



þ 12C1
btð Þ � 12C2

btð Þ
		 		þ s2C1

btð Þ � s2C2
btð Þ

		 		Þ:

Definition 6 (Mishra and Rani 2021) An FF entropy

measure EFF is a function EFF : FFS Bð Þ ! 0; 1½ � such that

8 C1;C2 and C3 2 FFS Bð Þ,

(EM1) 0�EFF C1ð Þ� 1

(EM2) EFF C1ð Þ ¼ 0iff C1 is a crisp set.

(EM3) EFF C1ð Þ ¼ 1 iff rC1
btð Þ ¼ 1C1

btð Þ8 bt 2 B.

(EM4) EFF C1ð Þ ¼ EFF C1ð Þcð Þ where c denotes the

complement.

(EM5) EFF C1ð Þ�EFF C2ð Þ, if rC1
btð Þ� rC2

btð Þ�
1C2

btð Þ� 1C1
btð Þ or rC1

btð Þ� rC2
btð Þ � 1C2

btð Þ� 1C1
btð Þ8 bt 2 B.

An example of FF entropy is given below:

EFF C1ð Þ ¼ 1
ffiffiffi
2

p
� 1

� �
p

Xp

t¼1

cos
p 1þ r3C1

btð Þ � 13C1
btð Þ


 �

4

0

@

1

A

0

@

þcos
p 1� r3C1

btð Þ þ 13C1
btð Þ


 �

4

0

@

1

A� 1

1

A:

Definition 7 (Weber 1983) A t-conorm is a function h :

0; 1½ � � 0; 1½ � ! 0; 1½ � if 8 i; j; k; l 2 0; 1½ �

1. h i; jð Þ ¼ h j; ið Þ.
2. h i; jð Þ� h k; lð Þ; whenever i� k and j� l.

3. h i; 0ð Þ ¼ i.

4. h i; h j; kð Þð Þ ¼ h h i; jð Þ; kð Þ.

An example of a t-conorm is h b1; b2ð Þ ¼ b1þb2�2b1b2
1�b1b2

.

We offer some innovative similarity measures for FFSs

along with their characteristics in the following section.
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3 New Fermatean fuzzy similarity measures

Here, we suggest a few FF similarity measurements. A

similarity metric is first defined in the FF environment.

Definition 8 An FF similarity measure SFF is a function

SFF : FFS Bð Þ � FFS Bð Þ ! R such that 8 C1;C2 and

C3 2 FFS Bð Þ:

(SM1) 0� SFF C1;C2ð Þ� 1.

(SM2) SFF C1;C2ð Þ ¼ SFF C2;C1ð Þ.
(SM3) SFF C1;C2ð Þ ¼ 1 iff C1 ¼ C2.

(SM4) SFF C1; C1ð Þcð Þ ¼ 0 iff C1 is a crisp set, where c

denotes the complement.

(SM5) If C1 � C2 � C3, then SFF C1;C2ð Þ� SFF C1;C3ð Þ
and SFF C2;C3ð Þ� SFF C1;C3ð Þ.

We now present a novel technique for deriving FF

similarity metrics from t-conorms.

Definition 9 For C1;C2 2 FFS Bð Þ; let SG : FFS Bð Þ �
FFS Bð Þ ! R be a function defined as

SG C1;C2ð Þ ¼ 1� 1

p

Xp

t¼1

h r3C1
btð Þ � r3C2

btð Þ
		 		;



13C1
btð Þ � 13C2

btð Þ
		 		Þ:

ð1Þ

Here, h is a t-conorm.

Theorem 1 SG in Eq. (1) is a valid measure of similarity

for FFSs.

Proof We will establish that SG satisfies the characteristic

of a metric of similarity for FFSs listed in Definition 8.

(SM1) It is obvious.

(SM2) SG C1;C2ð Þ ¼ SG C2;C1ð Þ follows from the defi-

nition of SG.

(SM3) SG C1;C2ð Þ ¼ 1 () h r3C1
btð Þ � r3C2

btð Þ
		 		;



13C1
btð Þ�

		 13C2
btð ÞjÞ ¼ 0 8 t; () r3C1

btð Þ � r3C2
btð Þ

		 		 ¼ 0

and 13C1
btð Þ � 13C2

btð Þ
		 		 ¼ 0 8 t, () r3C1

btð Þ ¼ r3C2
btð Þ

and 13C1
btð Þ ¼ 13C2

btð Þ 8 t, () C1 ¼ C2.

(SM4) SG C1; C1ð Þcð Þ ¼ 0 () h r3C1
btð Þ

		



� 13C1
btð Þj;

13C1
btð Þ

		 �r3C1
btð ÞjÞ ¼ 1 8 t; () r3C1

btð Þ � 13C1
btð Þ

		 		 ¼ 1

and 13C1
btð Þ � r3C1

btð Þ
		 		 ¼ 1 8 t, () r3C1

btð Þ�
		

13C1
btð Þj ¼ 1 8 t, () r3C1

btð Þ ¼ 1 and 13C1
btð Þ ¼ 0 or

r3C1
btð Þ ¼ 0 and 13C1

btð Þ ¼ 1 8 t; () rC1
btð Þ ¼ 1 and

1C1
btð Þ ¼ 0 or rC1

btð Þ ¼ 0 and 1C1
btð Þ ¼ 1 8 t; () C1 is

a crisp set.

(SM5) Let C1 � C2 � C3, then r3C1
btð Þ� r3C2

btð Þ� r3C3
btð Þ and 13C1

btð Þ� 13C2
btð Þ� 13C3

btð Þ 8 t. Then, we

have

r3C1
btð Þ � r3C2

btð Þ
		 		� r3C1

btð Þ � r3C3
btð Þ

		 		; 13C1
btð Þ

		

� 13C2
btð Þj � 13C1

btð Þ � 13C3
btð Þ

		 		;

and

r3C2
btð Þ � r3C3

btð Þ
		 		� r3C1

btð Þ � r3C3
btð Þ

		 		; 13C2
btð Þ

		

� 13C3
btð Þj � 13C1

btð Þ � 13C3
btð Þ

		 		:

So, h r3C1
btð Þ � r3C2

btð Þ
		 		; 13C1

btð Þ � 13C2
btð Þ

		 		

 �

�
h r3C1

btð Þ � r3C3
btð Þ

		 		; 13C1
btð Þ � 13C3

btð Þ
		 		


 �
and

h r3C2
btð Þ � r3C3

btð Þ
		 		; 13C2

btð Þ � 13C3
btð Þ

		 		

 �

� h r3C1
btð Þ � r3C3

btð Þ
		 		; 13C1

btð Þ � 13C3
btð Þ

		 		

 �

:

Thus SG C1;C2ð Þ� SG C1;C3ð Þ and SG C2;C3ð Þ� SG
C1;C3ð Þ. Hence, SG is a similarity measure for FFSs.

Theorem 2 The measure of similarity SG in Eq. (1) pos-

sesses the following characteristics.

1. SG C1ð Þc; C2ð Þcð Þ ¼ SG C1;C2ð Þ8 C1;C2 2 FFS Bð Þ.
2. SG C1; C2ð Þcð Þ ¼ SG C1ð Þc;C2ð Þ8 C1;C22 FFS Bð Þ.
3. SG C1; C1ð Þcð Þ ¼ 1 if and only if rC1

btð Þ ¼ 1C1
btð Þ8 t.

4. SG C1 \ C2;C2ð Þ� SG C1;C2ð Þ, for every

C1;C2 2 FFS Bð Þ.
5. SG C1 [ C2;C2ð Þ� SG C1;C2ð Þ, for every C1;C2 2

FFS Bð Þ.

Proof 1. SG C1ð Þc; C2ð Þcð Þ ¼ 1� 1
p

Pp
t¼1 h 13C1

btð Þ�
		



13C2
btð Þj; r3C1

		 btð Þ � r3C2
btð ÞjÞ

¼ 1� 1

p

Xp

t¼1

h r3C1
btð Þ � r3C2

btð Þ
		 		; 13C1

btð Þ � 13C2
btð Þ

		 		

 �

¼ SG C1;C2ð Þ:

2.

SG C1; C2ð Þcð Þ ¼ 1� 1
p

Pp
t¼1 h r3C1

btð Þ � 13C2
btð Þ

		 		;



13C1
btð Þ

		

�r3C2
btð ÞjÞ

¼ 1� 1

p

Xp

t¼1

h 13C1
btð Þ � r3C2

btð Þ
		 		; r3C1

btð Þ � 13C2
btð Þ

		 		

 �
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¼ SG C1ð Þc;C2ð Þ

3.

SG C1; C1ð Þcð Þ ¼ 1 () 1� 1

p

Xp

t¼1

h

r3C1
btð Þ � 13C1

btð Þ
		 		; 13C1

btð Þ � r3C1
btð Þ

		 		

 �

¼ 1

() h r3C1
btð Þ � 13C1

btð Þ
		 		; 13C1

btð Þ � r3C1
btð Þ

		 		

 �

¼ 0 8 t

() r3C1
btð Þ � 13C1

btð Þ
		 		 ¼ 0 and 13C1

btð Þ � r3C1
btð Þ

		 		 ¼
0 8 t

() r3C1
btð Þ � 13C1

btð Þ
		 		 ¼ 0 8 t

() r3C1
btð Þ ¼ 13C1

btð Þ 8 t

() rC1
btð Þ ¼ 1C1

btð Þ 8 t:

4. SG C1 \ C2;C2ð Þ ¼ 1� 1
p

Pp
t¼1 h

min r3C1
btð Þ; r3C2

btð Þ

 �

� r3C2
btð Þ

			
			;

max 13C1
btð Þ; 13C2

btð Þ

 �

� 13C2
btð Þ

			
			

0

@

1

A.

Now, there are the following cases:

(a) When rC1
btð Þ� rC2

btð Þ and 1C1
btð Þ� 1C2

btð Þ 8 t,

then

SG C1 \ C2;C2ð Þ ¼ 1� 1

p

Xp

t¼1

h

r3C2
btð Þ � r3C2

btð Þ
		 		; 13C1

btð Þ � 13C2
btð Þ

		 		

 �

¼ 1� 1

p

Xp

t¼1

h 0; 13C1
btð Þ � 13C2

btð Þ
		 		


 �

� 1

� 1

p

Xp

t¼1

h r3C1
btð Þ � r3C2

btð Þ
		 		; 13C1

btð Þ � 13C2
btð Þ

		 		

 �

¼ SG C1;C2ð Þ:

(b) When rC1
btð Þ� rC2

btð Þ and 1C1
btð Þ� 1C2

btð Þ 8 t,

then

SG C1 \ C2;C2ð Þ ¼ 1� 1

p

Xp

t¼1

h

r3C2
btð Þ � r3C2

btð Þ
		 		; 13C2

btð Þ � 13C2
btð Þ

		 		

 �

¼ 1� 1

p

Xp

t¼1

h 0; 0ð Þ ¼ 1� SG C1;C2ð Þ:

(c) When rC1
btð Þ� rC2

btð Þ and 1C1
btð Þ� 1C2

btð Þ 8 t,

then

SG C1 \ C2;C2ð Þ ¼ 1� 1

p

Xp

t¼1

h

r3C1
btð Þ � r3C2

btð Þ
		 		; 13C1

btð Þ � 13C2
btð Þ

		 		

 �

¼ SG C1;C2ð Þ:

(d) When rC1
btð Þ� rC2

btð Þ and 1C1
btð Þ� 1C2

btð Þ 8 t,

then

SG C1 \ C2;C2ð Þ ¼ 1� 1

p

Xp

t¼1

h r3C1
btð Þ

		



� r3C2
btð Þj; 13C2

btð Þ � 13C2
btð Þ

		 		Þ

¼ 1� 1

p

Xp

t¼1

h r3C1
btð Þ � r3C2

btð Þ
		 		; 0

 �

� 1

� 1

p

Xp

t¼1

h r3C1
btð Þ � r3C2

btð Þ
		 		; 13C1

btð Þ � 13C2
btð Þ

		 		

 �

¼ SG C1;C2ð Þ:

5. SG C1 [ C2;C2ð Þ ¼1� 1
p

Pp
t¼1 h

max r3C1
btð Þ; r3C2

btð Þ

 �

� r3C2
btð Þ

			
			;

min 13C1
btð Þ; 13C2

btð Þ

 �

� 13C2
btð Þ

			
			

0

@

1

A.

Now, there are the following cases:

(a) When rC1
btð Þ� rC2

btð Þ and 1C1
btð Þ� 1C2

btð Þ 8 t,

then

SG C1 [ C2;C2ð Þ ¼ 1� 1

p

Xp

t¼1

h

r3C1
btð Þ � r3C2

btð Þ
		 		; 132 btð Þ � 13C2

btð Þ
		 		


 �

¼ 1� 1

p

Xp

t¼1

h r3C1
btð Þ � r3C2

btð Þ
		 		; 0

 �

� 1

� 1

p

Xp

t¼1

h r3C1
btð Þ � r3C2

btð Þ
		 		; 13C1

btð Þ � 13C2
btð Þ

		 		

 �

¼ SG C1;C2ð Þ:

(b) When rC1
btð Þ� rC2

btð Þ and 1C1
btð Þ� 1C2

btð Þ 8 t,

then

SG C1 [ C2;C2ð Þ ¼ 1� 1

p

Xp

t¼1

h

r3C1
btð Þ � r3C2

btð Þ
		 		; 13C1

btð Þ � 13C2
btð Þ

		 		

 �

¼ SG C1;C2ð Þ:
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(c) When rC1
btð Þ� rC2

btð Þ and 1C1
btð Þ� 1C2

btð Þ 8 t,

then

SG C1 [ C2;C2ð Þ ¼ 1� 1

p

Xp

t¼1

h

r3C2
btð Þ � r3C2

btð Þ
		 		; 13C2

btð Þ � 13C2
btð Þ

		 		

 �

¼ 1� 1

p

Xp

t¼1

h 0; 0ð Þ ¼ 1� SG C1;C2ð Þ:

(d) When rC1
btð Þ� rC2

btð Þ and 1C1
btð Þ� 1C2

btð Þ 8 t,

then

SG C1 [ C2;C2ð Þ

¼ 1� 1

p

Xp

t¼1

h r3C2
btð Þ � r3C2

btð Þ
		 		;



13C1
btð Þ � 13C2

btð Þ
		 		Þ

¼ 1� 1

p

Xp

t¼1

h

0; 13C1
btð Þ � 13C2

btð Þ
		 		


 �

� 1

� 1

p

Xp

t¼1

h r3C1
btð Þ � r3C2

btð Þ
		 		; 13C1

btð Þ � 13C2
btð Þ

		 		

 �

¼ SG C1;C2ð Þ:

Example 1 Table 1 provides some examples of FF simi-

larity measurements.

Next, we construct the weighted metrics of similarity for

FFSs.

Definition 10 For C1;C2 2 FFS Bð Þ; let the function SWG :

FFS Bð Þ � FFS Bð Þ ! R be defined as

Table 1 FF similarity

measurements
t-Conorms FF similarity measures

h b1; b2ð Þ ¼ b1þb2�2b1b2
1�b1b2

SG1 C1;C2ð Þ ¼ 1� 1
p

Pp
t¼1

r3C1
btð Þ � r3C2

btð Þ
		 		þ 13C1

btð Þ � 13C2
btð Þ

		 		

�2 r3C1
btð Þ � r3C2

btð Þ
		 		 13C1

btð Þ � 13C2
btð Þ

		 		

1� r3
C1

btð Þ�r3
C2

btð Þ
			

			 13
C1

btð Þ�13
C2

btð Þ
			

			

2

664

3

775

h b1; b2ð Þ ¼ b1 þ b2 � b1b2
SG2 C1;C2ð Þ ¼ 1� 1

p

Pp
t¼1

r3C1
btð Þ � r3C2

btð Þ
		 		þ 13C1

btð Þ � 13C2
btð Þ

		 		

� r3C1
btð Þ � r3C2

btð Þ
		 		 13C1

btð Þ � 13C2
btð Þ

		 		

� 

h b1; b2ð Þ ¼ min 1; b1 þ b2ð Þ
SG3 C1;C2ð Þ ¼ 1� 1

p

Pp
t¼1 min

1; r3C1
btð Þ � r3C2

btð Þ
		 		

þ 13C1
btð Þ � 13C2

btð Þ
		 		

� �

h b1; b2ð Þ ¼ b1þb2
1þb1b2

SG4 C1;C2ð Þ ¼ 1� 1
p

Pp
t¼1

r3
C1

btð Þ�r3
C2

btð Þ
			

			þ 13
C1

btð Þ�13
C2

btð Þ
			

			

1þ r3
C1

btð Þ�r3
C2

btð Þ
			

			 13
C1

btð Þ�13
C2

btð Þ
			

			

2

4

3

5:

Table 2 Some examples of

weighted FF similarity

measurements

t-Conorms FF-weighted similarity measures

h b1; b2ð Þ ¼ b1þb2�2b1b2
1�b1b2

SWG1 C1;C2ð Þ ¼ 1� 1
p

Pp
t¼1 wt

r3C1
btð Þ � r3C2

btð Þ
		 		þ 13C1

btð Þ � 13C2
btð Þ

		 		

�2 r3C1
btð Þ � r3C2

btð Þ
		 		 13C1

btð Þ � 13C2
btð Þ

		 		

1� r3
C1

btð Þ�r3
C2

btð Þ
			

			 13
C1

btð Þ�13
C2

btð Þ
			

			

2

664

3

775

h b1; b2ð Þ ¼ b1 þ b2 � b1b2
SWG2 C1;C2ð Þ ¼ 1� 1

p

Pp
t¼1 wt

r3C1
btð Þ � r3C2

btð Þ
		 		þ 13C1

btð Þ � 13C2
btð Þ

		 		

� r3C1
btð Þ � r3C2

btð Þ
		 		 13C1

btð Þ � 13C2
btð Þ

		 		

� 

h b1; b2ð Þ ¼ min 1; b1 þ b2ð Þ
SWG3 C1;C2ð Þ ¼ 1� 1

p

Pp
t¼1 wtmin

1; r3C1
btð Þ � r3C2

btð Þ
		 		

þ 13C1
btð Þ � 13C2

btð Þ
		 		

� �

h b1; b2ð Þ ¼ b1þb2
1þb1b2

SWG4 C1;C2ð Þ ¼ 1� 1
p

Pp
t¼1 wt

r3C1
btð Þ�r3C2

btð Þ
			

			þ 13C1
btð Þ�13C2

btð Þ
			

			

1þ r3
C1

btð Þ�r3
C2

btð Þ
			

			 13
C1

btð Þ�13
C2

btð Þ
			

			

2

4

3

5:
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SWG C1;C2ð Þ ¼ 1� 1

p

Xp

t¼1

wth

r3C1
btð Þ � r3C2

btð Þ
		 		; 13C1

btð Þ � 13C2
btð Þ

		 		

 �

;

ð2Þ

where h is a t-conorm.

Theorem 2 SWG given in Eq. (1) is a valid weighted mea-

sure of similarity for FFSs.

Proof Same as Theorem 1.

Example 2 Table 2 provides some examples of weighted

FF similarity measurements.

Some similarity-based metrics of entropy for FFSs are

given in the next section.

4 Entropy measures based on FF similarity
measures

The degree of ambiguity in an FFS is determined using the

entropy measures. In this section, we present a technique

for creating FF entropy measurements using FF similarity

measures.

Definition 11 For C1 2 FFS Bð Þ, let the function EG :

FFS Bð Þ ! 0; 1½ � be defined as

EG C1ð Þ ¼ SG C1; C1ð Þcð Þ; ð3Þ

with SG a similarity measure of FFSs.

Theorem 3 EG in Eq. (3) is a valid measure of entropy for

FFSs.

Proof We demonstrate that the function EG has the

characteristics of an FF measure of entropy listed in Def-

inition 6.

(EM1) It is obvious as 0� SG C1; C1ð Þcð Þ� 1.

(EM2) EG C1ð Þ ¼ 0 () SG C1; C1ð Þcð Þ () C1 is a

crisp set.

(EM3) EG C1ð Þ ¼ 1 () SG C1; C1ð Þcð Þ ¼ 1 () rC1

btð Þ¼1C2
btð Þ8 t.

(EM4) EG C1ð Þc ¼ EG C1ð Þ follows by the definition of

EG.

(EM5) Consider C1 to be less fuzzy than C2, i.e.,

rC1
btð Þ� rC2

btð Þ� 1C2
btð Þ� 1C1

btð Þ or rC1
btð Þ� rC2

btð Þ
� 1C2

btð Þ� 1C1
btð Þ:

When rC1
btð Þ� rC2

btð Þ� 1C2
btð Þ� 1C1

btð Þ, we have

r3C1
btð Þ � 13C1

btð Þ
		 		� r3C2

btð Þ � 13C2
btð Þ

		 		. So,

SG C1; C1ð Þcð Þ ¼ 1� 1
p

Pp
t¼1 h r3C1

btð Þ�
		



13C1
btð Þj; 13C1

btð Þ � r
3

C1
btð Þ

			
			Þ

� 1� 1

p

Xp

t¼1

h r3C2
btð Þ � 13C2

btð Þ
		 		; 13C2

btð Þ � r
3

C2
btð Þ

			
			


 �

¼ SG C2; C2ð Þcð Þ:

Thus, EG C1ð Þ�EG C2ð Þ.
Similarly, for rC1

btð Þ� rC2
btð Þ � 1C2

btð Þ� 1C1
btð Þ, we

have EG C1ð Þ�EG C2ð Þ. Hence, EG in Eq. (3) is a valid

measure of entropy for FFSs.

Some FF measurements of entropy are provided in

Table 3 below using Eq. (3) and the recommended FF

measures of similarity.

Now, we contrast several existing PF/FF measures of

information with the suggested FF measures of similarity

and entropy.

5 Comparative analysis

In this part, we demonstrate that the proposed FF measures

of similarity and entropy outperform the majority of

existing PF/FF measures of information in terms of

accuracy.

5.1 Comparability of the proposed metrics
of similarity for FFSs with the several
available metrics

For comparability, we first recall the available metrics of

distance and similarity. These are shown in Tables 4 and 5

respectively.

Now, we examine three distinct FFS situations, each of

which consists of two distinct FFSs. Table 6 displays the

values of comparability.

From Table 6, we observe

1. The similarity metrics S1; S4; S5; S6; S9; S10 and distance

metrics D1;D4;D5;D6;D9;D10 consider the FFSs

C1;C2 (Case I) and C1;C2 (Case II) to be the same,

which is unreasonable.

2. The similarity metric S2 gives 1 as the similarity level

between the FFSs (Case III), which is unreasonable as

C1 6¼ C2.

3. The level of similarity between the FFSs (Case I and

Case II) comes out to be negative by the similarity

metrics S7 and S8 and thus violates the non-negativity

property of a similarity metric.

4. The similarity metrics S7; S8; S9, and S10 gives 0 as the

similarity level between the FFSs (Case III), which is

unreasonable as C2 is not a complement of C1.

5. The distance metrics D7;D8;D9, and D10 gives 1 as the

similarity level between the FFSs (Case III), which is

unreasonable as C2 is not a complement of C1.
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6. The suggested metrics of similarity produce satisfac-

tory results in all three cases.

Thus, we conclude that most of the available compati-

bility measures produce unreasonable results as shown by

bold values, whereas the newly suggested measures of

similarity SGt; t ¼ 1; 2; 3; 4 give satisfactory results in all

three cases. This establishes the effectiveness of the sug-

gested similarity measures.

Next, we contrast the proposed FF entropy measures

with the existing PF/FF entropy metrics.

5.2 Comparison of the proposed FF entropy
measurements with the existing PF/FF
entropy measures

For comparability, we first enumerate the available metrics

of entropy for FFSs/PFSs as shown in Table 7.

Now, we demonstrate the usefulness of the recom-

mended FF measurements of entropy using linguistic

hedges.

Definition 12 (Senapati and Yager 2020) The modifier of

an FFS C1 2 FFS Bð Þ is given by

C1ð Þd¼ bt; r3C1
btð Þ


 �d
; 1� 1� 13C1

btð Þ

 �d� �1

3

 !

; bt 2 B

( )

:

ð4Þ

Now, we consider the following FFSs:

LARGE: C1, very LARGE: C1ð Þ2, quite very LARGE:

C1ð Þ3, very very LARGE: C1ð Þ4, more or less LARGE:

C1ð Þ
1
2.

E, the entropy must meet the following criteria since it

computes the ambiguity content in an FFS.

E C1ð Þ
1
2


 �
[E C1ð Þ[E C1ð Þ2


 �
[E C1ð Þ3


 �
[E C1ð Þ4


 �

ð5Þ

We now take a look at an illustration of how the

aforementioned FFSs compute ambiguity.

Example 3 Consider C1 2 FFS Bð Þ as
C1 ¼ b1; 0:48; 0:56ð Þ; b2; 0:80; 0:35ð Þ;f
b3; 0:21; 0:60ð Þ; b4; 0:45; 0:72ð Þ; b5; 0:33; 0:47ð Þg:

We form the FFSs C1ð Þ
1
2; C1ð Þ2; C1ð Þ3, and C1ð Þ4 with

the aid of Definition 12. Table 8 displays the amount of

ambiguity present in these FFSs.

From Table 8, we observe that

1. E1 C1ð Þ
1
2kE1 C1ð Þ

2. E2 C1ð Þ
1
2kE2 C1ð Þ:

3. E3 C1ð Þ
1
2kE3 C1ð Þ

4. E4 C1ð Þ
1
2kE4 C1ð Þ

5. E5 C1ð Þ
1
2kE5 C1ð Þ

6. E6 C1ð Þ
1
2kE6 C1ð Þ

7. E6 C1ð Þ
1
2kE6 C1ð ÞkE6 C1ð Þ2kE6 C1ð Þ3kE6 C1ð Þ4

8. E8 C1ð Þ
1
2kE8 C1ð Þ

9. E9 C1ð Þ
1
2kE9 C1ð Þ

10. E10 C1ð Þ
1
2kE10 C1ð Þ

11. E11 C1ð Þ
1
2kE11 C1ð Þ

12. E12 C1ð Þ2kE12 C1ð Þ3

13. E13 C1ð Þ
1
2kE13 C1ð Þ

14. E14 C1ð Þ
1
2kE14 C1ð Þ

15. E15 C1ð Þ
1
2kE15 C1ð Þ

16. EGt C1ð Þ
1
2 [EGt C1ð Þ[EGt C1ð Þ2 [

EGt C1ð Þ3 [EGt C1ð Þ4; t ¼ 1; 2; 3; 4:

Therefore, it follows that none of the PF/FF measure-

ments of entropy Et; 1� t� 15 that are currently available

satisfy the condition stated in Eq. (5). All of our FF entropy

Table 3 Some examples of FF entropy measures

Recommended FF similarity

measures

FF entropy measures

SG1

EG1 C1ð Þ ¼ 1� 1
p

Pp
t¼1

2 r3
C1

btð Þ�13
C1

btð Þ
			

			� r3
C1

btð Þ�13
C1

btð Þ
			

			
2

� �

1� r3
C1

btð Þ�13
C1

btð Þ
			

			
2

SG2 EG2 C1ð Þ ¼ 1� 1
p

Pp
t¼1 2 r3C1

btð Þ � 13C1
btð Þ

		 		� r3C1
btð Þ � 13C1

btð Þ
		 		2


 �

SG3 EG3 C1ð Þ ¼ 1� 1
p

Pp
t¼1 min 1; 2 r3C1

btð Þ � 13C1
btð Þ

		 		

 �

SG4
EG4 C1ð Þ ¼ 1� 1

p

Pp
t¼1

2 r3
C1

btð Þ�13
C1

btð Þ
			

			

1þ r3
C1

btð Þ�13
C1

btð Þ
			

			
2
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metrics EGt; 1� t� 4, however, adhere to the specification

outlined in Eq. (5). This demonstrates that the recom-

mended measurements of entropy are more reliable than

the ones that are already available from the perspective of a

linguistic hedge.

6 The applicability of the proposed
similarity metrics in pattern identification

Here, we demonstrate how the suggested FF measures of

similarity can be applied to address pattern classification-

related issues. In pattern analysis, an unidentified pattern is

categorized into one of the recognized patterns by applying

several compatibility criteria, such as ‘‘similarity’’, ‘‘dis-

tance’’, ‘‘correlation’’, etc. We also compare our findings to

the various similarity metrics.

Now, using the examples below, we will solve several

pattern analysis-related issues.

Example 4 (Jiang et al. 2019) Consider C1;C2;C3, and C

representing patterns in terms of FFSs.

C1 ¼ b1; 0:01; 0:13ð Þ; b2; 0:21; 0:46ð Þ; b3; 0:33; 0:35ð Þf g;
C2 ¼ b1; 0; 0:14ð Þ; b2; 0:20; 0:47ð Þ; b3; 0:35; 0:33ð Þf g;
C3 ¼ b1; 0:02; 0:12ð Þ; b2; 0:19; 0:48ð Þ; b3; 0:34; 0:34ð Þf g;
C ¼ b1; 0:04; 0:10ð Þ; b2; 0:23; 00:44ð Þ; b3; 0:37; 0:31ð Þf g:

The challenge is to determine which pattern Ct; t ¼
1; 2; 3 shares the most similarities with C. We use the

existing metrics of similarity with the recommended FF

similarity measurements for this aim. Table 9 displays the

computed results. Table 9 makes it obvious that C should

Table 4 Some existing PF measures of similarity (Peng et al. 2017)

Similarity

measure

Expression

S1 C1;C2ð Þ 1� 1
2p

Pp
t¼1 r2C1

btð Þ � r2C2
btð Þ

		 		þ 12C1
btð Þ � 12C2

btð Þ
		 		þ s2C1

btð Þ � s2C2
btð Þ

		 		

 �

S2 C1;C2ð Þ 1� 1
2p

Pp
t¼1 r2C1

btð Þ � r2C2
btð Þ � 12C1

btð Þ � 12C2
btð Þ


 �			
			


 �

S3 C1;C2ð Þ
1� 1

4p

Pp
t¼1

r2C1
btð Þ � r2C2

btð Þ
		 		þ 12C1

btð Þ � 12C2
btð Þ

		 		

þ s2C1
btð Þ � s2C2

btð Þ
		 		

� �

þ
Pp

t¼1 r2C1
btð Þ � r2C2

btð Þ � 12C1
btð Þ � 12C2

btð Þ

 �			

			

 �

2

64

3

75

S4 C1;C2ð Þ 1� 1
p

Pp
t¼1 max r2C1

btð Þ � r2C2
btð Þ

		 		; 12C1
btð Þ � 12C2

btð Þ
		 		


 �

S5 C1;C2ð Þ
1
p

Pp
t¼1

1�max r2C1
btð Þ�r2C2

btð Þ
			

			; 12C1 btð Þ�12C2
btð Þ

			
			


 �

1þmax r2
C1

btð Þ�r2
C2

btð Þ
			

			; 12C1 btð Þ�12
C2

btð Þ
			

			

 �

S6 C1;C2ð Þ Pp

t¼1
1�max r2C1

btð Þ�r2C2
btð Þ

			
			; 12C1 btð Þ�12C2

btð Þ
			

			

 �

Pp

t¼1
1þmax r2

C1
btð Þ�r2

C2
btð Þ

			
			; 12C1 btð Þ�12

C2
btð Þ

			
			


 �

S7 C1;C2ð Þ
x

Pp

t¼1
min r2C1

btð Þ;r2C2 btð Þ

 �

Pp

t¼1
max r2

C1
btð Þ;r2

C2
btð Þ


 �þ y

Pp

t¼1
min 12C1

btð Þ;12C2 btð Þ

 �

Pp

t¼1
max 12

C1
btð Þ;12

C2
btð Þ


 � ; xþ y ¼; x; y 2 0; 1½ �

S8 C1;C2ð Þ
x
p

Pp
t¼1

min r2C1
btð Þ;r2C2 btð Þ


 �

max r2
C1

btð Þ;r2
C2

btð Þ

 �þ y

p

Pp
t¼1

max r2C1
btð Þ;r2C2 btð Þ


 �

max 12
C1

btð Þ;12
C2

btð Þ

 � ; xþ y ¼; x; y 2 0; 1½ �

S9 C1;C2ð Þ
1
p

Pp
t¼1

min r2C1
btð Þ;r2C2 btð Þ


 �
þmin 12C1

btð Þ;12C2 btð Þ

 �

max r2
C1

btð Þ;r2
C2

btð Þ

 �

þmax 12
C1

btð Þ;12
C2

btð Þ

 �

S10 C1;C2ð Þ Pp

t¼1
min r2C1

btð Þ;r2C2 btð Þ

 �

þmin 12C1
btð Þ;12C2 btð Þ


 �

Pp

t¼1
max r2

C1
btð Þ;r2

C2
btð Þ


 �
þmax 12

C1
btð Þ;12

C2
btð Þ


 �

S11 C1;C2ð Þ
1
p

Pp
t¼1

min r2C1
btð Þ;r2C2 btð Þ


 �
þmin 1�12C1

btð Þ;1�12C2 btð Þ

 �

max r2
C1

btð Þ;r2
C2

btð Þ

 �

þmax 1�12C1 btð Þ;1�12C2 btð Þ
� �

S12 C1;C2ð Þ Pp

t¼1
min r2C1

btð Þ;r2C2 btð Þ

 �

þmin 1�12C1
btð Þ;1�12C2 btð Þ


 �

Pp

t¼1
max r2

C1
btð Þ;r2

C2
btð Þ


 �
þmax 1�12C1 btð Þ;1�12C2 btð Þ

� �

Granular Computing

123



be assigned to C2 based on the majority of similarity

metrics, including the specified FF metrics.

Example 5 Consider C1;C2;C3, and C representing pat-

terns in terms of FFSs.

C1 ¼ b1; 0:5; 0:3ð Þ; b2; 0:2; 0:5ð Þ; b3; 0:3; 0:4ð Þ;f
b4; 0:4; 0:3ð Þ; b5; 0:1; 0:3ð Þg;

C2 ¼ b1; 0:3; 0:3ð Þ; b2; 0:1; 0:4ð Þ; b3; 0:2; 0:1ð Þ;f
b4; 0:2; 0:3ð Þ; b5; 0:7; 0:1ð Þg;

C3 ¼ b1; 0:6; 0:1ð Þ; b2; 0:7; 0ð Þ;f
b3; 0:4; 0:3ð Þ; b4; 0:5; 0:3ð Þ; b5; 0:4; 0:3ð Þg;

C ¼ b1; 0:4; 0:2ð Þ; b2; 0:7; 0:1ð Þ; b3; 0:4; 0:3ð Þ;f
b4; 0:3; 0:4ð Þ; b5; 0:6; 0:2ð Þg:

The challenge is to determine which pattern Ct; t ¼
1; 2; 3 shares the most similarities with C. We use the

existing metrics of similarity with the recommended FF

similarity measurements for this aim. Table 10 and Fig. 1

both display the computed results. As can be seen from

Table 10, the majority of the measures indicate that C

should be assigned to C3.

From examples 4 and 5, we conclude that the recom-

mended similarity metrics of FFSs are compatible with the

current similarity metrics in terms of pattern recognition.

We now demonstrate the usefulness of the FF entropy

and similarity measurements in decision-making.

7 An innovative Fermatean fuzzy MADM
approach

In this section, we first go over the shortcomings of the

conventional Fermatean fuzzy TOPSIS method. Then,

under the FF circumstances, we present a novel MADM

approach that is similar to TOPSIS.

7.1 Flaws of Fermatean fuzzy TOPSIS method

One of the most popular and efficient approaches for

solving MADM problems is the methodology for order

preference by similarity to ideal solution (TOPSIS), which

was first put out by Hwang and Yoon (1981) and then

extended to the fuzzy environment by Chen (2000). The

TOPSIS method is predicated on the notion that the best

choice should be the one that is farthest from the NIS and

closest to the PIS. The selected alternative should have the

lowest similarity to NIS and the highest similarity to PIS if

we use the similarity metric in TOPSIS rather than the

distance measure. The TOPSIS-selected alternative,

however, does not have a minimum similarity to NIS, as

can be shown in the examples below.

Example 6 Take into consideration a FF decision matrix

A1 with three options Bt; t ¼ 1; 2; 3, and two characteristics

Ck; k ¼ 1; 2.

A1 ¼
0:7; 0:6ð Þ 0:5; 0:4ð Þ
0:5; 0:6ð Þ 0:7; 0:8ð Þ
0; 0:2ð Þ 0:8; 0:4ð Þ

0

@

1

A:

Then, PIS Bþ and NIS B� are Bþ ¼
0:7; 0:2ð Þ; 0:8; 0:4ð Þf g and B� ¼ 0; 0:6ð Þ; 0:5; 0:8ð Þf g.

Table 11 and Fig. 2 display how similar each alternative is

to Bþ; i.e., SG1 Bt;B
þð Þ and B� i.e., SG1 Bt;B

�ð Þ and their

closeness coefficient

lt ¼
SG1 Bt;B

þð Þ
SG1 Bt;B

þð Þ þ SG1 Bt;B
�ð Þ ; t ¼ 1; 2; 3:

The same Table 11 also displays the alternatives’ final

rankings. Table 11 makes it evident that there is no mini-

mum similarity between the best alternative B3 and the NIS

B� as SG1 B3;B
�ð Þ[ SG1 B1;B

�ð Þ.

Example 7 Take into consideration an FF decision matrix

A2 with three options Bt; t ¼ 1; 2; 3, and two characteristics

Ck; k ¼ 1; 2.

A2 ¼
0:9; 0:2ð Þ 0:1; 0:9ð Þ
0:7; 0:8ð Þ 0:6; 0:5ð Þ
0:1; 0:2ð Þ 0:4; 0:5ð Þ

0

@

1

A:

Then PIS Bþ and NIS B� are Bþ ¼
0:9; 0:2ð Þ; 0:6; 0:5ð Þf g and B� ¼ 0:1; 0:8ð Þ; 0:1; 0:9ð Þf g.

Table 12 and Fig. 3 display how similar each alternative is

to Bþ; i.e., SG1 Bt;B
þð Þ and B�; i.e., SG1 Bt;B

�ð Þ and their

closeness coefficient

lt ¼
SG1 Bt;B

þð Þ
SG1 Bt;B

þð Þ þ SG1 Bt;B
�ð Þ ; t ¼ 1; 2; 3:

The same Table 12 also displays the alternatives’ final

rankings. Table 12 makes it evident that there is no mini-

mum similarity between the best alternative B2 and the NIS

B� as SG1 B2;B
�ð Þ[ SG1 B3;B

�ð Þ.
The ideal TOPSIS alternative does not possess low

similarity with NIS, as seen in Examples 6 and 7. To

overcome this severe issue, we suggest the inferior ratio

method in the FF environment known as the Fermatean

fuzzy inferior ratio (FFIR) method. This is based on the

same principle as that of TOPSIS.
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7.2 Fermatean fuzzy inferior ratio (FFIR) method

Our suggested method produces an alternative that is the

least identical to NIS and the most similar to PIS. The

algorithm for solving an MCDM problem with p choices

Bt; t ¼ 1; 2; . . .; p and q criteria Ck; k ¼ 1; 2; ::; q and

wk; k ¼ 1; 2; . . .; q as criteria weights, where 0�wk � 1 andPq
k¼1 wk ¼ 1 is given below.

Algorithm Step 1: Create the decision matrix A ¼
rtk; 1tkð Þ½ �p�q to convey information about the options

concerning the criteria.

Step 2: Create the normalized decision matrix D ¼
r

0

tk; 1
0

tk

� �� �
p�q

with

r
0

tk; 1
0

tk


 �
¼ rtk; 1tkð Þ; for benefit criteria Ck

1tk; rtkð Þ; for cost criteria Ck:

�

Step 3: Find the criteria weights wk; k ¼ 1; 2; . . .; q using

the FF entropy measure as wk ¼ E Ckð ÞPq

k¼1
E Ckð Þ

; k ¼ 1; 2; . . .; q,

with E being a FF measure of entropy.

Step 4: Find the PIS

Bþ ¼ rþ1 ; 1
þ
1

� �
; rþ2 ; 1

þ
2

� �
; . . .; rþq ; 1

þ
q


 �n o

and the NIS

Table 5 Some existing PF measures of distance (Peng et al. 2017)

Distance

measures

Expression

D1 C1;C2ð Þ 1
2p

Pp
t¼1 r2C1

btð Þ � r2C2
btð Þ

		 		þ 12C1
btð Þ � 12C2

btð Þ
		 		þ s2C1

btð Þ � s2C2
btð Þ

		 		

 �

D2 C1;C2ð Þ 1
2p

Pp
t¼1 r2C1

btð Þ � r2C2
btð Þ � 12C1

btð Þ � 12C2
btð Þ


 �			
			


 �

D3 C1;C2ð Þ
1
4p

Pp
t¼1

r2C1
btð Þ � r2C2

btð Þ
		 		þ 12C1

btð Þ � 12C2
btð Þ

		 		

þ s2C1
btð Þ � s2C2

btð Þ
		 		

� �

þ
Pp

t¼1 r2C1
btð Þ � r2C2

btð Þ � 12C1
btð Þ � 12C2

btð Þ

 �			

			

 �

2

64

3

75

D4 C1;C2ð Þ 1
p

Pp
t¼1 max r2C1

btð Þ � r2C2
btð Þ

		 		; 12C1
btð Þ � 12C2

btð Þ
		 		


 �

D5 C1;C2ð Þ
2
p

Pp
t¼1

max r2C1
btð Þ�r2C2

btð Þ
			

			; 12C1 btð Þ�12C2
btð Þ

			
			


 �

1þmax r2
C1

btð Þ�r2
C2

btð Þ
			

			; 12C1 btð Þ�12
C2

btð Þ
			

			

 �

D6 C1;C2ð Þ
2
Pp

t¼1
max r2C1

btð Þ�r2C2
btð Þ

			
			; 12C1 btð Þ�12C2

btð Þ
			

			

 �

Pp

t¼1
1þmax r2

C1
btð Þ�r2

C2
btð Þ

			
			; 12C1 btð Þ�12

C2
btð Þ

			
			


 �

D7 C1;C2ð Þ
1� x

Pp

t¼1
min r2C1

btð Þ;r2C2 btð Þ

 �

Pp

t¼1
max r2

C1
btð Þ;r2

C2
btð Þ


 �� y

Pp

t¼1
min 12C1

btð Þ;12C2 btð Þ

 �

Pp

t¼1
max 12

C1
btð Þ;12

C2
btð Þ


 � ; xþ y ¼; x; y 2 0; 1½ �

D8 C1;C2ð Þ
1�

x
Pp

t¼1
min r2C1

btð Þ;r2C2 btð Þ

 �

p
Pp

t¼1
max r2

C1
btð Þ;r2

C2
btð Þ


 ��
y
Pp

t¼1
min 12C1

btð Þ;12C2 btð Þ

 �

p
Pp

t¼1
max 12

C1
btð Þ;12

C2
btð Þ


 � ; xþ y ¼; x; y 2 0; 1½ �

D9 C1;C2ð Þ
1� 1

p

Pp
t¼1

min r2C1
btð Þ;r2C2 btð Þ


 �
þmin 12C1

btð Þ;12C2 btð Þ

 �

max r2
C1

btð Þ;r2
C2

btð Þ

 �

þmax 12
C1

btð Þ;12
C2

btð Þ

 �

D10 C1;C2ð Þ
1�

Pp

t¼1
min r2C1

btð Þ;r2C2 btð Þ

 �

þmin 12C1
btð Þ;12C2 btð Þ


 �

Pp

t¼1
max r2

C1
btð Þ;r2

C2
btð Þ


 �
þmax 12

C1
btð Þ;12

C2
btð Þ


 �

D11 C1;C2ð Þ
1� 1

p

Pp
t¼1

min r2C1
btð Þ;r2C2 btð Þ


 �
þmin 1�12C1

btð Þ;1�12C2 btð Þ

 �

max r2
C1

btð Þ;r2
C2

btð Þ

 �

þmax 1�12
C1

btð Þ;1�12C2 btð Þ

 �

D12 C1;C2ð Þ
1�

Pp

t¼1
min r2C1

btð Þ;r2C2 btð Þ

 �

þmin 1�12C1
btð Þ;1�12C2 btð Þ


 �

Pp

t¼1
max r2

C1
btð Þ;r2

C2
btð Þ


 �
þmax 1�12

C1
btð Þ;1�12C2 btð Þ


 �
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B� ¼ r�1 ; 1
�
1

� �
; r�2 ; 1

�
2

� �
; . . .; r�q ; 1

�
q


 �n o
;

where rþk ¼ max
t

rtkð Þ, 1þk ¼ min
t

rtkð Þ and r�k ¼ min
t

rtkð Þ,
1�k ¼ max

t
rtkð Þ; k ¼ 1; 2; . . .; q:

Step 5: Determine the similarity of each alternative

Bt; t ¼ 1; 2; . . .; p with the PIS Bþ and NIS B� with the

help of the newly introduced FF-weighted measures of

similarity, i.e., find SWGj Bt;B
þð Þ and SWGj Bt;B

�ð Þ; t ¼
1; 2; . . .; p; and j ¼ 1; 2; 3; 4:

Step 6: Determine SWGj B
þð Þ, where SWGj B

þð Þ ¼

max
1� t� p

SWGj Bt;B
þð Þ and so if SWGj B

þð Þ ¼ SWGj Bt;B
þð Þ, the

alternative Bt has maximum similarity with PIS.

Step 7: Determine SWGj B
�ð Þ, where SWGj B

�ð Þ ¼

min
1� t� p

SWGj Bt;B
�ð Þ and so if SWGj B

�ð Þ ¼ SWGj Bt;B
�ð Þ, the

alternative Bt has minimum similarity with NIS.

Step 8: Determine mt ¼
SWGj Bt ;B

þð Þ
SWGj B

þð Þ � SWGj Bt ;B
�ð Þ

SWGj B
�ð Þ ; 1� t� p: It

is obvious that mt represents the amount to which an option

Bt; t ¼ 1; 2; . . .; p has the least and greatest similarity with

NIS and PIS, respectively, at the same time. The option for

which mt ¼ 0 is the best choice.

Step 9: Compute the FFIR kt ¼ mt
min

1� t� p
mt
.

Step 10: In the increasing order of the values of kt, we
rank the alternatives.

In the example that follows, we apply the suggested

FFIR approach to resolve a MADM issue with FF data.

Table 6 Values of

comparability
Compatibility measure Case I

C1 ¼ 0:5; 0:3ð Þ
C2 ¼ 0:4; 0:3ð Þ

Case I

C1 ¼ 0:5; 0:2ð Þ
C2 ¼ 0:4; 0:3ð Þ

Case I

C1 ¼ 0; 0ð Þ
C2 ¼ 0:5; 0:5ð Þ

S1 0.9100 0.9100 0.5000

S2 0.9550 0.9300 1

S3 0.8650 0.8150 0.7500

S4 0.9100 0.9100 0.7500

S5 0.8349 0.8349 0.6000

S6 0.8349 0.8349 0.6000

S7 2 0.5080 2 0.1191 0

S8 2 0.5080 2 0.1191 0

S9 0.6400 0.6400 0

S10 0.6400 0.6400 0

S11 0.9224 0.8843 0.6000

S12 0.9224 0.8843 0.6000

D1 0.0900 0.0900 0.5000

D2 0.0450 0.0700 0

D3 0.1350 0.1850 0.2500

D4 0.0900 0.0900 0.2500

D5 0.1651 0.1651 0.4000

D6 0.1651 0.1651 0.4000

D7 0.1080 0.4969 1

D8 0.1080 0.4969 1

D9 0.3600 0.3600 1

D10 0.3600 0.3600 1

D11 0.0776 0.1157 0.4000

D12 0.0776 0.1157 0.4000

SG1 0.9390 0.9222 0.7778

SG2 0.9390 0.9212 0.7656

SG3 0.9390 0.9200 0.7500

SG4 0.9390 0.9201 0.7538

Unreasonable results are indicated by bold values
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Example 8 (Singh and Ganie 2022) Consider the issue of

choosing a home among the five homes Bt; t ¼ 1; 2; 3; 4; 5.

Take into account the following factors: C1: Ventilation,

C2: Purchase price, C3: Location, C4: Design, C5: Ceiling

height. The decision matrix A below illustrates how the

information regarding the five houses in relation to the five

aforementioned criteria is expressed as FFSs.

A ¼

0:6; 0:5ð Þ 0:8; 0:3ð Þ 0:4; 0:7ð Þ 0:6; 0:8ð Þ 0:7; 0:5ð Þ
0:1; 0:7ð Þ 0:4; 0:6ð Þ 0:2; 0:7ð Þ 0:7; 0:3ð Þ 0:6; 0:6ð Þ
0:1; 0:3ð Þ 0:71; 0:3ð Þ 0:6; 0:8ð Þ 0:21; 0:9ð Þ 0:29; 0:8ð Þ
0:4; 0:7ð Þ 0:5; 0:6ð Þ 0:1; 0:6ð Þ 0:2; 0:8ð Þ 0:2; 0:9ð Þ
0:3; 0:4ð Þ 0:6; 0:6ð Þ 0:4; 0:8ð Þ 0:32; 0:9ð Þ 0:3; 0:9ð Þ

0

BBBB@

1

CCCCA
:

Given that the criteria C2 is a cost attribute, the nor-

malized decision matrix D is provided below using Step 2:

Table 7 Some existing PF/FF measures of entropy (Xue et al. 2018; Yang and Hussain 2018; Thao and Smarandache 2019; Senapati and Yager

2020; Mishra and Rani 2021)

Entropy

measure

Expression

E1
�1

p�ln2

Pp
t¼1

r3C1
btð Þln r3C1

btð Þ

 �

þ 13C1
btð Þln 13C1

btð Þ

 �

� 1� s3C1
btð Þ


 �
ln 1� s3C1

btð Þ

 �

� s3C1
btð Þln2

0

@

1

A

E2 1
2p

Pp
t¼1 sin

r3C1
btð Þþ1�13C1

btð Þ
2

� �
pþ sin

13C1
btð Þþ1�r3C1

btð Þ
2

� �
p

� �

E3

1ffiffi
2

p
�1ð Þp

Pp
t¼1 cos

p 1þr3C1
btð Þ�13C1

btð Þ

 �

4

0

@

1

Aþ cos
p 1�r3C1

btð Þþ13C1
btð Þ


 �

4

0

@

1

A� 1

0

@

1

A

E4

1ffiffi
2

p
�1ð Þp

Pp
t¼1 sin

p 1þr3C1
btð Þ�13C1

btð Þ

 �

4

0

@

1

Aþ sin
p 1�r3C1

btð Þþ13C1
btð Þ


 �

4

0

@

1

A� 1

0

@

1

A

E5
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
p

Pp
t¼1 r2C1

btð Þ � 12C1
btð Þ


 �2
r

E6 1
p

Pp
t¼1 1� r2C1

btð Þ � 1
3

		 		� 12C1
btð Þ � 1

3

		 		

 �

E7 1
p

Pp
t¼1 1� r2C1

btð Þ � 12C1
btð Þ


 �
r2C1

btð Þ � 12C1
btð Þ

		 		

 �

E8

1
p

Pp
t¼1 tan

p
4
�

r2C1
btð Þ�12C1

btð Þ
			

			

4 1þs2
C1

btð Þ

 � p

0

@

1

A

E9

1
p

Pp
t¼1 cot

p
4
þ

r2C1
btð Þ�12C1

btð Þ
			

			

4 1þs2
C1

btð Þ

 � p

0

@

1

A

E10 1ffiffi
2

p
�1ð Þp

Pp
t¼1 cos

1þr2C1
btð Þ�12C1

btð Þ
4

p

� �
þ cos

1�r2C1
btð Þþ12C1

btð Þ
4

p

� �
� 1

� �

E11 1ffiffi
2

p
�1ð Þp

Pp
t¼1 sin

1þr2C1
btð Þ�12C1

btð Þ
4

p

� �
þ sin

1�r2C1
btð Þþ12C1

btð Þ
4

p

� �
� 1

� �

E12

1
p

Pp
t¼1

min r2C1
btð Þ;12C1 btð Þ


 �

max r2
C1

btð Þ;12
C1

btð Þ

 �

E13 1� 1
p

Pp
t¼1 r2C1

btð Þ � 12C1
btð Þ

		 		

E14
Pp

t¼1
1� r2C1

btð Þ�12C1
btð Þ

			
			


 �

Pp

t¼1
1þ r2

C1
btð Þ�12

C1
btð Þ

			
			


 �

E15

1
p

Pp
t¼1

s2C1
btð Þþ1� r2C1

btð Þ�12C1
btð Þ

			
			

s2
C1

btð Þþ1þ r2
C1

btð Þ�12
C1

btð Þ
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D ¼

0:6; 0:5ð Þ 0:3; 0:8ð Þ 0:4; 0:7ð Þ 0:6; 0:8ð Þ 0:7; 0:5ð Þ
0:1; 0:7ð Þ 0:6; 0:4ð Þ 0:2; 0:7ð Þ 0:7; 0:3ð Þ 0:6; 0:6ð Þ
0:1; 0:3ð Þ 0:3; 0:71ð Þ 0:6; 0:8ð Þ 0:21; 0:9ð Þ 0:29; 0:8ð Þ
0:4; 0:7ð Þ 0:6; 0:5ð Þ 0:1; 0:6ð Þ 0:2; 0:8ð Þ 0:2; 0:9ð Þ
0:3; 0:4ð Þ 0:6; 0:6ð Þ 0:4; 0:8ð Þ 0:32; 0:9ð Þ 0:3; 0:9ð Þ

0

BBBB@

1

CCCCA
:

Table 8 Computed values of several measures of entropy concerning

Example 3

C1ð Þ4 C1ð Þ3 C1ð Þ2 C1 C1ð Þ
1
2

E1 0.5229 0.6056 0.7101 0.8650 0.8455

E2 0.1422 0.1598 0.1782 0.1919 0.1829

E3 0.6867 0.7717 0.8602 0.9266 0.8831

E4 0.6867 0.7717 0.8602 0.9266 0.8831

E5 0.2731 0.3612 0.4943 0.6880 0.6248

E6 0.3155 0.4224 0.5296 0.6782 0.6670

E7 1.5283 1.4081 1.2429 0.9902 0.8592

E8 0.3640 0.4785 0.5750 0.7412 0.7209

E9 0.3640 0.4785 0.5750 0.7412 0.7209

E10 12.0414 12.0963 12.1659 12.2385 12.2186

E11 1.2769 1.2909 1.3087 1.3275 1.3222

E12 0.0836 0.1677 0.1497 0.3864 0.4849

E13 0.3155 0.4260 0.5296 0.7311 0.7176

E14 0.1873 0.2706 0.3602 0.5762 0.5596

E15 0.3050 0.4183 0.5062 0.6900 0.6761

EG1 0.3849 0.4778 0.5188 0.6659 0.6692

EG2 0.3241 0.4210 0.4680 0.6339 0.6404

EG3 0.2212 0.3082 0.3731 0.5636 0.6046

EG4 0.2939 0.3890 0.4325 0.6094 0.6238

Table 9 Computed values of several similarity metrics about Exam-

ple 4

Similarity measure C1;Cð Þ C2;Cð Þ C3;Cð Þ Result

S1 0.9824 0.9829 0.9792 C2

S2 0.9851 0.9869 0.9833 C2

S3 0.9837 0.9849 0.9813 C2

S4 0.9824 0.9829 0.9792 C2

S5 0.9655 0.9665 0.9595 C2

S6 0.0173 0.0168 0.0204 C3

S7 0.8431 0.8560 0.8242 C2

S8 0.7237 0.7152 0.7494 C3

S9 0.5639 0.5503 0.5923 C3

S10 0.8348 0.8547 0.8188 C2

S11 0.9694 0.9719 0.9643 C2

S12 0.9690 0.9728 0.9654 C2

SG1 0.9854 0.9872 0.9827 C2

SG2 0.9854 0.9872 0.9826 C2

SG3 0.9853 0.9872 0.9825 C2

SG4 0.9853 0.9872 0.9825 C2

Table 10 Computed values of several similarity metrics concerning

Example 5

Similarity measure C1;Cð Þ C2;Cð Þ C3;Cð Þ Result

S1 0.7840 0.8000 0.8860 C3

S2 0.8590 0.9030 0.9280 C3

S3 0.8215 0.8515 0.9070 C3

S4 0.7940 0.8260 0.8860 C3

S5 0.6868 0.7291 0.8075 C3

S6 0.1708 0.1482 0.1023 C1

S7 0.3429 0.3147 0.6027 C3

S8 0.4036 0.3094 0.4911 C3

S9 0.3749 0.4024 0.6498 C3

S10 0.3041 0.3627 0.6418 C3

S11 0.7707 0.8130 0.8870 C3

S12 0.7545 0.8026 0.8873 C3

SG1 0.8321 0.8619 0.9096 C3

SG2 0.8257 0.8585 0.9083 C3

SG3 0.8158 0.8534 0.9068 C3

SG4 0.8197 0.8552 0.9070 C3

Fig. 1 Similarity values regarding Example 5

Table 11 Computed values related to Example 6

Alternative SG1 Bt;B
�ð Þ SG1 Bt;B

þð Þ lt Ranking

B1 0.8085 0.8620 0.5160 2

B2 0.9198 0.7954 0.4637 3

B3 0.8232 0.8037 0.5205 1
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We acquire the following criteria weights using Step 3

and the suggested entropy measure EG1 presented in

Table 3:w1 ¼ 0:2714; w2 ¼ 0:2464;w3 ¼ 0:1897;w4 ¼
0:1250; and w5 ¼ 0:1675.

The FF PIS Bþ and FF NIS B� are then provided using

Step 4.

Bþ ¼ 0:6; 0:3ð Þ; 0:6; 0:4ð Þ; 0:6; 0:6ð Þ; 0:6; 0:4ð Þ; 0:6; 0:3ð Þf g

B� ¼ 0:1; 0:7ð Þ; 0:3; 0:8ð Þ; 0:1; 0:8ð Þ; 0:2; 0:9ð Þ; 0:2; 0:9ð Þf g:

Then using the suggested similarity measure SWG1 we

calculate the similarity values of each alternative Bt; t ¼
1; 2; 3; 4; 5 with the FF PIS Bþ and FF NIS B�. Then we

get SWG1 Bþð Þ ¼ max
1� t� p

SWG1 Bt;B
þð Þ ¼0:9594 ¼ SWG1 B2;B

þð Þ

and SWG1 B�ð Þ ¼ min
1� t� p

SWG1 Bt;B
�ð Þ ¼ 0:9307 ¼ SWG1 B2;B

�ð Þ

Then for each alternative, we determine mt and

kt; t ¼ 1; 2; 3; 4; 5. Finally, we rank the alternatives in

increasing order of the values of kt. All these computations

are listed in Table 13 and shown in Fig. 4. Table 13 also

provides the ranking results for the other there suggested

weighted similarity measures SWGj; j ¼ 2; 3; 4.

We conclude from Table 13 and Figs. 5, 6, 7 and 8 that

B2 is the most practical choice because all recommended

FF similarity measures show the same results. We can see

from Table 13 and Figs. 5, 6, 7 and 8 that the optimal

alternative B2 is most similar to PIS Bþ while being least

similar to NIS B�.

8 Discussion and comparative analysis

In the vast quantity of studies on the topic, applications for

fuzzy and non-standard fuzzy information measures can be

found in MADM, pattern recognition, clustering analysis,

picture segmentation, etc. In a certain situation, both

activities appear to have the same outcome. Yet, it could

provide a variety of results. For instance, in a MADM

situation, the ranks of the alternatives may vary depending

on the fuzzy entropy or fuzzy knowledge metrics used.

When evaluating the compatibility of two fuzzy sets, we

may obtain different results with alternate fuzzy similarity/

distance/accuracy metrics. This seems to be due to the

fuzzy/non-standard fuzzy information measure’s failure to

accurately represent the ambiguity or precision present in

the fuzzy/non-standard fuzzy sets under consideration. As a

result, when modeling a specific fuzzy system, we must

carefully assess the fuzzy/non-standard fuzzy information

measurements. There are many reasons given in the liter-

ature for picking a fuzzy information/compatibility mea-

sure in a certain situation. The noteworthy ones involve

computations for weight, similarity/distance, and linguistic

hedging, among other things. The significance of our rec-

ommended similarity and entropy metrics are then justified.

We have devised a method for creating the FF similarity

measures from t-conorms in Sect. 3 . In Theorem 2, we

went through a few of their fresh features. By computing

the similarity between several FFSs, we have demonstrated

in Sect. 5 that the suggested similarity metrics are prefer-

able. Table 6 has three different FFS situations, each of

which consists of two different FFSs. In these three cir-

cumstances, while calculating the degree of similarity

between the FFSs, we found that the majority of the

existing distance and similarity metrics did not produce the

desired results, and some of them even failed to meet the

Fig. 2 Alternatives’ similarity with PIS and NIS concerning Example

6

Table 12 Computed values related to Example 7

Alternative SG1 Bt;B
�ð Þ SG1 Bt;B

þð Þ lt Ranking

B1 0.8051 0.8378 0.5099 3

B2 0.7531 0.8460 0.5291 1

B3 0.7202 0.7814 0.5204 2

Fig. 3 Alternatives’ similarity with PIS and NIS concerning Example

7
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necessary axiomatic requirements. Nonetheless, the sug-

gested similarity measures handled all three scenarios

correctly and without creating any illogical circumstances.

We have demonstrated in Sect. 6 how the recommended

similarity measures can be applied to the classification

problems and we have also noted that the suggested simi-

larity metrics produce satisfactory results.

With the suggested FF similarity measures, we have

demonstrated how to create several innovative FF entropy

measures in Sect. 4. Additionally, we have proven that

these entropy measurements meet all axiomatic constraints

for FF entropy measures. We used linguistic hedges in

Sect. 5.2 to demonstrate how the suggested entropy metrics

outperform the current entropy measures. Only the sug-

gested entropy measures are found to perform in accor-

dance with the desired condition stated in Eq. (5) in the

numerical example studied in this Sect. 5.2. Also, we’ve

shown how to use them to calculate attribute weights in a

MADM problem in Sect. 7.2 (Step 3 of Algorithm).

Finding the best option out of all those that are offered is

the ultimate goal of a MADM technique. The alternative

that is most similar to the positive ideal solution (PIS) and

least similar to the negative ideal solution is the ideal

Table 13 Computed values for

Example 8 based on the

suggested FF similarity measure

SWGj; j ¼ 1; 2; 3; 4

Similarity measure Alternative SWGj Bt;B
�ð Þ SWGj Bt;B

þð Þ lt Ranking

SWG1(proposed) B1 0.9414 0.9472 - 0.0243 2

B2 0.9307 0.9594 0 1

B3 0.9595 0.9216 - 0.0703 5

B4 0.9571 0.9304 - 0.0586 3

B5 0.9610 0.9260 - 0.0674 4

SWG2(proposed) B1 0.9365 0.9438 - 0.0248 2

B2 0.9255 0.9562 0 1

B3 0.9594 0.9165 - 0.0781 5

B4 0.9551 0.9249 - 0.0648 3

B5 0.9590 0.9210 - 0.0730 4

SWG3(proposed) B1 0.9256 0.9374 - 0.0285 2

B2 0.9128 0.9512 0 1

B3 0.9592 0.9047 - 0.0998 3

B4 0.9515 0.9115 - 0.0842 4

B5 0.9559 0.9047 - 0.0932 5

SWG4(proposed) B1 0.9325 0.9409 - 0.0520 2

B2 0.9216 0.9534 0 1

B3 0.9593 0.9125 - 0.0838 5

B4 0.9535 0.9208 - 0.0688 3

B5 0.9573 0.9174 - 0.0765 4

Fig. 4 FFIR values corresponding to the proposed four FF similarity

measures

Fig. 5 Alternatives’ similarity using SWG1
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alternative (NIS). In contrast, we have demonstrated in

Examples 6 and 7 that the optimal option resulting from

TOPSIS has maximum similarity to PIS but not least

resemblance to NIS. However, the suggested FFIR method

gives us the optimal option that is close to PIS and at the

same time is far from the NIS as can be seen in Table 13.

The benefits of the novel MADM technique, the sug-

gested entropy metrics, and similarity measures are out-

lined below.

• The suggested method of obtaining the new similarity

measures from t-conorms can be used in many recent

generalizations of fuzzy sets.

• Since the present entropy methods yield inaccurate

results, the ambiguity content of FFSs can be calculated

using similarity-based entropy measurements.

• The suggested similarity metrics can be used for image

processing, identifying construction materials, and

bidirectional approximate reasoning, among other

things.

• The TOPSIS method has a significant flaw that causes it

to provide irrational results, hence the newly developed

MADM approach, the FFIR method, can be used in its

substitute.

In addition to the benefits already described, one

drawback of the suggested methods is that they are chal-

lenging to implement in real-world situations with the crisp

data found in repositories and other websites that are

similar to them. The suggested actions can be put into

practice by either developing a linguistic database or

applying certain conversion procedures.

9 Conclusion

This article presents a novel method for the creation of

various similarity metrics and entropy measures for FFSs.

First, four new similarity measures were created, and then

utilizing the suggested similarity measurements, four new

entropy measures were established. The proposed measures

of similarity outperform the majority of the PF distance/

similarity metrics reported in the literature in terms of the

distance or degree of similarity between different PFSs/

FFSs. The suggested entropy metrics for FFSs are also

more dependable than the existing PF/FF entropy measures

from the linguistic hedge standpoint. The suggested FF

similarity measurements have achieved satisfactory results

in pattern analysis. A compromise solution that has the

most similarity to PIS and the least similarity to NIS was

created using the recently proposed MADM methodology,

commonly known as the FFIR method.

We will further present examples of clustering and

medical diagnostics using the proposed FFS similarity

metrics. Additionally, we will add some more recent gen-

eralizations of FSs, such as picture fuzzy sets (Cuong and

Kreinovich 2013), spherical fuzzy sets (Mahmood et al.

2019), complex fuzzy sets (Ramot et al. 2002), etc., into

the suggested method for calculating similarity and entropy

measurements. We will also extend the newly introduced

MADM method to the recent extensions of fuzzy sets.

Fig. 6 Alternatives’ similarity using SWG2

Fig. 7 Alternatives’ similarity using SWG3

Fig. 8 Alternatives’ similarity using SWG4
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