
Multi-Attribute Preference Logic

Koen V. Hindriks
Man-Machine Interaction

Delft University of Technology
The Netherlands

k.v.hindriks@tudelft.nl

Wietske Visser
Man-Machine Interaction

Delft University of Technology
The Netherlands

wietske.visser@tudelft.nl

Catholijn M. Jonker
Man-Machine Interaction

Delft University of Technology
The Netherlands

c.m.jonker@tudelft.nl

ABSTRACT
Preferences for objects are commonly derived from ranked sets
of properties or multiple attributes associated with these objects.
There are several options or strategies to qualitatively derive a pref-
erence for one object over another from a property ranking. We in-
troduce a modal logic, called multi-attribute preference logic, that
provides a language for expressing such strategies. The logic pro-
vides the means to represent and reason about qualitative multi-
attribute preferences and to derive object preferences from prop-
erty rankings. The main result of the paper is a proof that various
well-known preference orderings can be defined in multi-attribute
preference logic.

1. INTRODUCTION
Preferences may be associated with various entities such as states
of affairs, properties, objects and outcomes in e.g. games. Our main
concern here are object preferences. A natural approach to obtain
preferences about objects is to start with a set of properties of these
objects and derive preferences from a ranking of these properties,
where the ranking indicates the relative importance or priority of
each of these properties. This approach to obtain preferences is typ-
ical in multi-attribute decision theory, see e.g. Keeney and Raiffa
[10]. Multi-attribute decision theory provides a quantitative the-
ory that derives object preferences from utility values assigned to
outcomes which are derived from numeric weights associated with
properties or attributes of objects. As it is difficult to obtain such
quantitative utility values and weights, however, several qualitative
approaches have been proposed instead, see e.g. [2, 4, 5, 6, 11].
There is also extensive literature on preference logic following the
seminal work of Von Wright [12, 9], but such logics are not specif-
ically suited for the multi-attribute case. To illustrate what we are
after, we first present a motivating example that is used throughout
the paper.

EXAMPLE 1. Suppose we want to buy a house. The properties
that we find important are that we can afford the house, that it is
close to our work, and that it is large, in that order. Consider three
houses, house1, house2 and house3, whose properties are listed in
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Figure 1: Properties of three houses

Figure 1, which we have to order according to our preferences. It
seems clear that we would prefer house1 over the other two, be-
cause it has two of the most important properties, while both other
houses only have one of these properties. But what about the rela-
tive preference of house2 and house3? house3 has two out of three
of the relevant properties where house2 has only one. If the prop-
erty that house2 has is considered more important than both prop-
erties of house3, house2 would be preferred over house3.

Key to a logic of multi-attribute preferences is the representation
of property rankings. Encodings of property rankings have been
explored in Coste-Marquis et al. [6] where they are called goal
bases, and in Brewka [4] where they are called ranked knowledge
bases. Such ranked goals are binary, and in this paper we also
consider desired attributes that are binary (as opposed to numeric
or ordinal ones). Coste-Marquis et al. and Brewka moreover dis-
cuss various options, or strategies, for deriving object preferences
from a property ranking. The preference orderings thus obtained
are not expressed in a logic, however. Brewka et al. [5] propose a
non-monotonic logic called qualitative choice logic to reason about
multi-attribute preferences. An alternative approach towards a logic
of multi-attribute preferences is presented in Liu [11] where prop-
erty rankings called priority sequences are encoded in first-order
logic. Both approaches are based on one particular strategy, namely
lexicographic ordering, and cannot be used to reason about prefer-
ence orderings.

In this paper a generic logic of qualitative multi-attribute prefer-
ences is proposed in which property rankings and associated strate-
gies for deriving object preferences from such rankings can be de-
fined. In Section 2 the syntax and semantics of multi-attribute pref-
erence logic is introduced. Section 3 shows how various strategies
to obtain object preferences from a property ranking can be defined



in the logic. Section 4 presents the main result of the paper and
shows that property rankings encoded as ranked knowledge bases
and a number of related strategies to obtain preference orderings
can be equivalently translated into multi-attribute preference logic.
Section 5 concludes the paper.

2. MULTI-ATTRIBUTE
PREFERENCE LOGIC

2.1 Syntax and semantics
The logic of multi-attribute preferences that we introduce here is
an extension of the modal binary preference logic presented in [7].
This logic is a propositional modal logic with a modal operator
◻≤ϕ , and its dual ◇≤

ϕ . Here ◻≤ϕ expresses that ϕ is true in all
states that are at least as good as the current state. Binary preference
relations over formulae are subsequently defined. One of the more
natural binary preference statements is ϕ <∀∀ ψ which expresses
that any state where ψ is true is strictly better than any state where
ϕ is true. That is, whenever ϕ is the case, ψ is preferred, and never
vice versa. By adding a global modality U to the language, the
binary preference operator <∀∀ can be defined by U(ψ →◻≤¬ϕ),
when it is assumed that the underlying order on worlds or states has
been completely specified, i.e. is total.

Multi-attribute preference logic adds two operators to binary pref-
erence logic. First, multi-attribute preference logic, as in hybrid
logic [1] adds names for objects to the language by adding nullary
modal operators i, j to the language. The semantics of the operators
introduced here, however, differs from the standard semantics of
hybrid logic. Here i, j are used as names for objects which seman-
tically are more complex entities than the usual worlds of modal
semantics. In order to avoid confusion, we will refer to i, j as ob-
ject names below. This language extension allows us to talk about
objects and associated preferences explicitly.

Second, the logic introduces a new modal operator ◻≠. The lan-
guage of multi-attribute preference logic consists of four unary mo-
dal operators. Instead of the single operator ◻≤ it is more conve-
nient to introduce the two operators ◻< and ◻=: informally, ◻<ϕ

expresses that at all worlds that are ranked higher than the current
one ϕ is true, whereas ◻=ϕ expresses that at all worlds that are
equally ranked to the current one ϕ is true. The modal operator ◻≠
is introduced to inspect worlds that are not ranked equally to the
current one.

DEFINITION 2. (Language)
Let At be a set of propositional atoms with typical element p and
Nom be a set of names, with typical elements i, j. The language
Lpref is defined as follows:

ϕ ∈ Lpref ∶∶= p ∣ i ∣ ¬ϕ ∣ ϕ ∧ϕ ∣ ◻= ϕ ∣ ◻≠ ϕ ∣ ◻< ϕ ∣Uϕ

Disjunction ∨, implication →, and bi-implication↔ are defined as
the usual abbreviations. ◇<

ϕ,◇=,◇≠ are abbreviations for ¬◻<
¬ϕ , ¬◻=¬ϕ , and ¬◻≠¬ϕ . ◻≤ϕ is short for ◻<ϕ ∨◻=ϕ and ◇≤

ϕ

is its dual. The dual of the global modal operator, Eϕ , is defined
as ¬U¬ϕ . We also write Uiϕ for U(i→ ϕ) and Eiϕ for E(i∧ϕ)
for i ∈ Nom. Finally, the set of purely propositional formulae is
denoted byL0 and consists of all formulae without any occurrences
of modal operators or names i ∈ Nom. ϕ ∈ L0 is also called an
objective formula.

The basic concepts in the semantics for multi-attribute preference
logic are objects and properties those objects may have. Proper-
ties are naturally represented by sets of worlds. As we want to
use properties to classify the ranking of objects, properties are or-
dered in correspondence with their relative importance; such an
order is called a property ranking here. To order properties, i.e. sets
of worlds, it is required that properties are disjoint sets of worlds.
Property rankings will be derived from an order on worlds below.

Objects are also identified with particular sets of worlds. The idea
is that the properties (in the sense of the previous paragraph) of an
object can be derived from the worlds which define the object. To
ensure that objects are coherent, that is have a uniquely defined set
of properties, the worlds that define the object need to be copies
of each other, which means that these worlds need to assign the
same truth values to propositional atoms. Objects are identified
with equivalence classes of worlds with respect to a truth assign-
ment.

DEFINITION 3. (Object)
Let W be a set of worlds and V be a mapping of W to truth assign-
ments 2At . An object is an equivalence class on W with respect to
V . The set OV denotes the set of all objects defined by W and V
and is formally defined by:

OV = {[w]V ∣ w ∈W}

where [w]V = {v ∈W ∣V(w) =V(v)}. Whenever V is clear from the
context, we drop the subscript V . As an object o is the equivalence
class of a world w with respect to V , we also say that world w
identifies object o.

DEFINITION 4. (Model)
A multi-attribute preference modelM is a tuple ⟨W,≾,V,N⟩ where
W is a set of worlds with typical elements u,v,w, ≾ is a total pre-
order (i.e. a reflexive, transitive and total relation) on W , V is a
valuation function mapping worlds in W onto truth assignments in
2At , and N is a naming function. The strict subrelation ≺ of ≾ is
defined by: v ≺ w ∶= v ≾ w & w /≾ v. We write v ∼ w whenever v ≾ w
and w ≾ v.

Although the strict order ≺ derived from ≾ indicates a ranking of
worlds where v ≺w means that w is ranked higher than v, we do not
say that w is preferred over v, because we want to reserve this ter-
minology for talking about objects. A preference between objects
is derived from the ranking ≾ over worlds. The naming function N
maps names i to objects o.

The truth definition for propositional atoms and Boolean opera-
tors is standard. Given a model M= ⟨W,≾,V,N⟩, the semantics
of names i ∈ Nom is provided by the naming function N. The truth
definitions for most modal operators are also standard definitions
using the associated accessibility relations for these operators. The
semantic clause for ◻= is defined by means of the relation ∼, which
is derived from the order ≾. Similarly, the semantic clause for ◻<
is provided by means of the strict order ≺. The global operator U
simply inspects all worlds in a model.

The truth definition for ◻≠ is not directly defined in terms of a given
relation on W . It inspects all worlds that (i) are not ranked equally
as the current one, and (ii) are not copies of worlds that are ranked



equally as the current one. The motivation for this definition will
become clear in Section 2.2 when clusters are introduced.

DEFINITION 5. (Truth Definition)
Let M= ⟨W,≾,V,N⟩ be an MPL model and w ∈W a world. The
truth of a formula ϕ ∈ Lpref inM at w is defined by:
M,w ⊧ p ⇔ p ∈V(w)
M,w ⊧ i ⇔ w ∈ N(i)
M,w ⊧ ¬ϕ ⇔ M,w /⊧ ϕ

M,w ⊧ ϕ ∧ψ ⇔ M,w ⊧ ϕ &M,w ⊧ψ

M,w ⊧ ◻=ϕ ⇔ ∀v ∶ w ∼ v ⇒ M,v ⊧ ϕ

M,w ⊧ ◻≠ϕ ⇔ ∀u ∈ ⋃{[v]V ∣ w ∼ v} ∶M,u ⊧ ϕ

M,w ⊧ ◻<ϕ ⇔ ∀v ∶ w ≺ v ⇒ M,v ⊧ ϕ

M,w ⊧Uϕ ⇔ ∀v ∶M,v ⊧ ϕ

A name i ∈ Nom refers to an object o and, semantically, is true at
a world w that identifies the object o, i.e. w ∈ o. A name thus is
a special kind of operator that is true in all worlds that identify a
certain object, and false in all other worlds. We can express that an
object i has a property ϕ by Eiϕ = E(i∧ϕ). As we have E(i) as
a validity and the worlds that identify the corresponding object o
are copies of each other, we have Eiϕ ↔Uiϕ for objective ϕ . This
shows that an object is coherent in the sense that an object has a
consistent set of objective properties and can be uniquely identified
by this set.

The language also allows us to express properties that concern com-
parison of objects. For example, U(i→◇< j) expresses that for ev-
ery property of object i object j has a property that is strictly better.
The formula E( j∧¬◇≤ i) expresses that object j has a property
that object i cannot match, i.e. i has no property that is strictly bet-
ter than this property of j. We have E( j∧¬◇≤ i) →U(i→◇< j)
in multi-attribute preference logic. This validity is based on the
assumption that the pre-order in models for Lpref is total.

Recall that the binary preference operator ϕ <∀∀ ψ can be defined
as U(ψ→◻≤¬ϕ). Using <∀∀ it is possible to define property rank-
ings and express that a property ψ is ranked higher than property
ϕ . Using the truth definitions for Uϕ , ◻=ϕ and ◻<ϕ and the defi-
nition of ◻≤ϕ as ◻=ϕ ∧◻<ϕ , it can be shown that ϕ <∀∀ ψ has the
following truth definition:

M,w ⊧ ϕ <∀∀ ψ ⇔∀u,v ∶M,u ⊧ ϕ &M,v ⊧ψ ⇒ u ≺ v

The intuitive reading of ϕ <∀∀ ψ is that every ψ-state is ranked
higher than every ϕ-state (cf. [7]). Returning to the comparison
of objects again, i <∀∀ j expresses that object j is preferred over i.
The preference expressed in this way is a very strong kind of pref-
erence, however. It requires that all of object j’s relevant properties
are considered more important than objects i’s properties, which
corresponds with the definition of i <∀∀ j by U( j→◻≤¬i). In con-
trast, multi-attribute preference logic is able to specify principles
that allow to derive preferences over objects from their properties
in a weaker sense. It enables, for example, to specify orderings
where object j is preferred over object i even when object i has at
least one property that is considered more important than a prop-
erty that object j has (compare e.g. object c and f in Figure 2). The
logic thus facilitates the specification of different ordering strate-
gies, and, given such a specification, provides the means to derive a
preference of one object over another from a property ranking and
an additional specification of the objects’ properties.

Proposition 6 supports our claim that multi-attribute preference lo-

gic extends binary preference logic as all listed axioms of this logic
are valid in multi-attribute preference logic as well (cf. [7], p. 66).
We have listed only those axioms that can straightforwardly be ex-
pressed without the need to introduce additional definitions of other
binary preference operators; all of the remaining axioms are valid
as well in multi-attribute preference logic when such definitions are
added. Below we use that ∧ and ∨ bind their arguments stronger
than→ to be able to remove some brackets.

PROPOSITION 6. We have the following validities:
1. ⊧ Eiϕ ↔Uiϕ for ϕ ∈ L0.
2. ⊧ ϕ <∀∀ ψ ∧U(ξ →ψ) → ϕ <∀∀ ξ

3. ⊧ ϕ <∀∀ ψ ∧U(ξ → ϕ) → ξ <∀∀ ψ

4. ⊧ ϕ <∀∀ ψ ∧ψ <∀∀ ξ ∧Eξ → ϕ <∀∀ ξ

5. ⊧U¬ϕ ∨U¬ψ → ϕ <∀∀ ψ

6. ⊧ ϕ <∀∀ ψ →U(ϕ <∀∀ ψ)

What multi-attribute preference logic adds to binary preference lo-
gic are names for objects, and most importantly, the ◻≠ operator
that allows us to define clusters (see Section 2.2) that represent de-
sirable attributes. All of the modal operators ◻=,◻<,◻≠ and U are
normal modal operators and satisfy the K axiom. In addition, we
prove some properties of the ◻= and ◻≠ operators (some of the
more obvious axioms have not been listed below). Proposition 7.3
shows that multi-attribute preference logic is related to the logic of
only knowing, see [8].

PROPOSITION 7. We have:
1. ⊧ ◻=◻≠ ϕ ↔◻≠ϕ

2. ⊧ ◻=◻< ϕ ↔◻<ϕ

3. ⊧ ◻=ϕ →¬◻≠ ϕ where ¬ϕ ∈ L0 is consistent

PROOF. We prove item 3. Suppose ◻=ϕ is true at world w.
Then ϕ is true in all worlds v ∼ w. Since the truth of objective
formulae is the same within an object, ϕ is also true in every world
u ∈ {[v]V ∣ w ∼ v}. Since ¬ϕ is a consistent objective formula and
all valuations are present in the model, ¬ϕ must be true in some
world in the model. So there must be some world in {[v]V ∣ w ∼ v}
that satisfies ¬ϕ , so we have ¬◻≠ ϕ at world w.

2.2 Clusters
The total pre-order ≾ in a multi-attribute preference model induces
a strict linear order on sets of worlds, which we call clusters. For-
mally, a cluster is an equivalence class induced by ≾. Intuitively,
such clusters represent the properties or attributes considered rele-
vant for deriving object preferences. The order on clusters induced
by ≾ represents a property ranking, i.e. the relative importance of
one property compared to another. The relation between objects
and properties may now be clarified as follows. The idea is that if
an object has a particular property it should be represented within
the cluster of worlds that represents the property. Technically, this
is realized by making sure that (at least) one of the copies of a world
that identifies the object is an element of the cluster that represents
the property. The worlds that identify an object act as representa-
tives for the object within a certain cluster and thus indicate that the
object has that property. As clusters are disjoint and objects may
have multiple properties, this also explains the need for introducing
copies of worlds.

DEFINITION 8. (Cluster)
Let ≾ be a total pre-order on W . A cluster c is an equivalence class
induced by ≾, i.e. c = [w]≾ = {v ∣ w ∼ v} for some w ∈W .
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Figure 2: Visualization of an MPL model

EXAMPLE 9. The relation between clusters (properties) and sets
of copies (objects) is visualized in Figure 2 (this is a model of the
theory in Example 18). The ellipses (columns) represent the clus-
ters or properties and the boxes (rows) represent objects. Objects
in this case are supposed to be houses. For example, the house la-
belled b consists of two worlds, w4 and w5. As these worlds are
part of the same object, they must be copies of each other. One of
these worlds, w4, is also part of the cluster representing the prop-
erty of being affordable. This means that house b is affordable, as
affordable is true at w4 (and thus also at w5). Similarly, it follows
that house b is close to work, a property that is true at w5 (and thus
at w4). As there is no world that is part of object b as well as in the
cluster representing the property large, house b is not large. The
ranking of the properties is indicated by the ≺ symbol: property af-
fordable is more important than close to work which in turn is more
important than large. As a result, in any natural preference order-
ing based on this ranking one would expect house b to be preferred
over house c.

The modality ◻= can be used to express a property of a cluster. For
example, E ◻= ϕ expresses that there is a cluster where ϕ is true
everywhere. ◻=ϕ expresses that at least ϕ is true in the cluster. In
Figure 2, for example, in the third cluster we have that ◻=large is
true. This means that every object that is represented by a world in
this cluster is large. But we also want every object that is large to be
represented in the cluster. To specify this, we use the modality ◻≠.
We can now explain why simply defining the truth of ◻≠ϕ in terms
of truth of ϕ in all worlds that are not equally ranked to the current
one does not work. The point is that there may be copies v of worlds
w that have a different ranking than world w. As copies have the
same truth assignment, at such copies a propositional formula ϕ

would be assigned the same truth value. This is illustrated in Figure
3, where large is true in all worlds in the shaded area. The key
observation here is that worlds of a particular ranking identify a set
of objects, i.e. copies of these worlds which must be part of these
objects (by Definition 3 of an object). This is why ◻≠ϕ evaluates
ϕ at all objects, or, more precisely, the worlds that define these
objects, that are not identified by any of the worlds that have the
same ranking as the current one.
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Figure 3: Visualization of an MPL model. All worlds where
large is true are in the shaded section.

By combining both operators we are able to characterize a cluster.
For the third cluster in Figure 2, we have that ◻=large∧◻≠¬large
where large exactly characterizes the cluster. The characterization
of a cluster by ϕ is abbreviated as Cϕ , and defined by:

Cϕ ∶∶= ◻=ϕ ∧◻≠¬ϕ

ϕ is true for all objects identified by (worlds in) the cluster and
not true in all worlds that identify other objects. As an object may
consist of several copies to represent that it has various properties
represented by different clusters, copies of such worlds outside the
cluster need to be excluded in the evaluation of ¬ϕ which explains
the truth condition for ◻≠.

Proposition 10 shows that properties and objects are related in such
a way that object preferences can be derived. The first item of the
proposition states that if there is an object that has property ϕ and
the current world identifies a cluster characterized by ϕ , then within
the cluster there is a world that is named i, i.e. identifies the object
i. The second item states that the converse is true for an object that
does not satisfy a property ϕ that characterizes a cluster. That is, if
object i does not satisfy ϕ and the current world identifies a cluster
characterized by ϕ , then no world that identifies the object labelled
i is part of that cluster. The third item generalizes the first item.
It states that if there is a cluster characterized by ϕ , and there is
an object named i that satisfies ϕ , then there is an i-world in that
cluster. The last item states that when a world satisfies C(ϕ), then
all worlds within the same cluster satisfy C(ϕ).

PROPOSITION 10. We have:
1. ⊧C(ϕ)∧Eiϕ →◇=i
2. ⊧C(ϕ)∧¬Eiϕ →¬◇= i
3. ⊧ EC(ϕ)∧Eiϕ → EiC(ϕ)
4. ⊧C(ϕ) → ◻=C(ϕ)

PROOF. We prove item 1. Suppose M,w ⊧C(ϕ)∧Eiϕ . This
means that M,w ⊧ ◻≠¬ϕ . By the truth definition for ◻≠, this is
equivalent to ∀u ∈ ⋃{[v]V ∣ w ∼ v} ∶M,u ⊧ ¬ϕ . By the definition
of Eiϕ we must also have a world u′ such thatM,u′ ⊧ i∧ϕ . This
means that we cannot have u′ ∈ ⋃{[v]V ∣ w ∼ v} and we have that



u′ ∈ ⋃{[v]V ∣ w ∼ v}. It follows that u′ ∈ [v]V for some v ∼ w; as u′

must be a copy of v this means that we haveM,v ⊧ i and, by the
truth definition for ◇=, we haveM,w ⊧◇=i.

The operator C provides exactly what we need to define property
rankings. Semantically, we have already seen that the pre-order
≾ induces a strict linear order on clusters. The formula Cϕ al-
lows us to express that a cluster is characterized by a formula ϕ .
Using this operator and the binary preference operator <∀∀ we
can express that property ψ (represented by a cluster) is ranked
higher than another property ϕ (represented by another cluster) by
Cϕ <∀∀ Cψ . For example, in Figure 2, we have C(large) <∀∀
C(closeToWork) <∀∀C(affordable). By combining this with spec-
ifications of particular preferences orderings and statements that an
object has a particular property (cf. Proposition 10), this will allow
the derivation of object preferences from a property ranking.

3. PREFERENCE ORDERINGS
In this Section, we show how to use multi-attribute preference logic
to define multi-attribute preference orderings derived from property
rankings. Coste-Marquis et al. [6] describe three frequent order-
ings based on prioritized goals: best-out, discrimin and leximin
ordering. Brewka [4] defines a preference language in which dif-
ferent basic preference orderings can be combined and identifies
four ‘fundamental strategies’ for deriving preferences from what
he calls a ranked knowledge base: ⊺, κ , ⊆ and #. As best-out is
the same as κ , discrimin is ⊆, and leximin is #, we will base the
remainder of our discussion on Brewka [4].

We first informally introduce these orderings and then present def-
initions for each of them in the logic. Section 4 presents the defini-
tions of [4] and a proof that the definitions in multi-attribute prefer-
ence logic match those provided in [4]. The advantage of defining
preference orderings in a logic instead of providing set-theoretical
definitions is that it formalizes the reasoning about object prefer-
ences. From a practical point of view, the logic allows us to provide
rigorous formal proofs for object preferences derived from property
rankings. From a theoretical point of view, it provides the tools
to reason about preference orderings and allows, for example, to
prove that whenever an object is preferred over another by the ⊺
strategy it also is preferred by the # strategy (see Proposition 12
below).

The two orderings ⊆ and # first consider the most important prop-
erty. If some object has that property and another does not, then the
first is preferred over the second. So in the example, both house1
and house2 would be preferred over house3. If two houses both
have the property or if neither of them has it, the next property
is considered. house1 and house2 are both affordable, but house1
is close to work and house2 is not, so house1 would be preferred
over house2. Note that although house3 satisfies two properties and
house house2 only satisfies one property, house2 is still preferred
over house3 because the single property of house2 is considered
more important than both properties of house3. The ⊆ and # order-
ings only differ if multiple properties are equally important. As we
will make the assumption that no two properties can have the same
importance, we will not discuss the difference and only refer to the
# ordering in the following.

The ⊺ ordering looks at the highest ranked or most important prop-
erty that is satisfied. If that property of one object is ranked higher
than that of another object, then the first object is preferred over the

second. If those properties are equally ranked, then both objects are
equally preferred. In our running example, house1 and house2 are
both preferred over house3, since the property ranked highest that
is satisfied by both house1 and house2 is affordable, and this prop-
erty is ranked higher than the highest ranked property satisfied by
house3, i.e. closeToWork. Since the most important property satis-
fied by house1 is the same as the most important property satisfied
by house2, house1 and house2 are equally preferred.

The κ ordering looks at the most important property that is not
satisfied. If that property of one object is less important than the
property of another object, then the first object is preferred over
the second. If those properties are equally important, then both
objects are equally preferred. In our running example, the high-
est ranked property that is not satisfied by house1 is large, that
of house2 is closeToWork and that of house3 is affordable. Since
large is the least important property of these properties, house1 is
preferred over both other houses. As closeToWork is less important
than affordable, house2 is preferred over house3.

All preference orderings introduced can be defined in multi-attri-
bute preference logic. We use pre f s

∼(i, j) to stand for: object i is
weakly preferred over object j according to strategy s, where s is
one of ⊺, κ and #; pre f s(i, j) is used to express strict preference.

DEFINITION 11. (Preference Orderings)
pre f κ(i, j), pre f κ

∼ (i, j), pre f #(i, j), pre f #
∼(i, j), pre f ⊺(i, j) and

pre f ⊺∼ (i, j) are defined by:

pre f ⊺(i, j) ∶∶= E(i∧¬◇= j∧◻<(¬i∧¬ j))
pre f ⊺∼ (i, j) ∶∶= pre f ⊺(i, j)∨

U((◇=i∧◻<¬i)↔ (◇= j∧◻<¬ j))
pre f κ(i, j) ∶∶= E(i∧¬◇= j∧◻<(◇=i∧◇= j))
pre f κ

∼ (i, j) ∶∶= pre f κ(i, j)∨
U((¬◇= i∧◻<◇= i)↔ (¬◇= j∧◻<◇= j))

pre f #(i, j) ∶∶= E(i∧¬◇= j∧◻<(◇=i↔◇= j))
pre f #

∼(i, j) ∶∶= pre f #(i, j)∨U(◇=i↔◇= j)

To understand these definitions, recall that we say that a world iden-
tifies an object when it is part of that object and the object consists
of copies of one and the same world. These copies are used to rep-
resent that an object has a property present in a property ranking.
In Figure 2, for example, world w7 is a representative of object c
for the property large. Thus, the formula Ei¬◇= j may be read
as ‘object i has a property that object j does not have’. Similarly,
◇<i can be read as ‘there is a more important property (than the
current one) that object i has’. These readings may help explain
the definitions. pre f ⊺(i, j) may be read as ‘there is a property such
that i has it and j does not, and for all more important properties,
neither i nor j has any of them’. The second disjunct in the defini-
tion of pre f ⊺∼ (i, j) defines when two objects are equally preferred
with respect to ⊺, and may be read as ‘if there is a property that i
has, but i does not have any more important properties, then j has
that property too and does not have any more important properties
either, and vice versa’. Similar readings can be provided for the
other preference operators.

Proposition 12 shows that the relation between weak and strict pref-
erence is as usual, and, moreover, a strict preference according to ⊺
or κ implies a strict preference according to #.



PROPOSITION 12. We have:
1. ⊧ pre f s(i, j)↔ pre f s

∼(i, j)∧¬pre f s
∼( j, i) for s ∈ {⊺,κ,#}.

2. ⊧ pre f ⊺(i, j) → pre f #(i, j)
3. ⊧ pre f κ(i, j) → pre f #(i, j)

EXAMPLE 13. Given the model of Figure 2, we can derive that
pre f #(b,d). By definition, this is the case when E(b∧¬◇= d ∧
◻<(◇=b↔◇=d)) is true. This means that there must be a world
w that is named b that has no equally ranked world named d, and,
moreover, for every higher ranked world v there is an equally ranked
world named b if and only if there is an equally ranked world with
name d. By inspection of Figure 2, world w5 fits the description.

4. MPL DEFINES RANKED KNOWLEDGE
BASES

Here we prove that the preference orderings of Definition 11 define
those of Brewka [4]. Brewka [4] calls property rankings ranked
knowledge bases, defined as follows:

DEFINITION 14. (Ranked Knowledge Base)
A ranked knowledge base (RKB) is a set F ⊆ L0 of objective for-
mulae together with a total pre-order ≥ on F . Ranked knowledge
bases are represented as a set of ranked formulae ( f ,k), where f is
an objective formula and k, the rank of f , is a non-negative integer
such that f1 ≥ f2 iff rank( f1) ≥ rank( f2). That is, higher rank is
expressed by higher indices.

In the setting of [4], comparing objects given a ranked knowledge
base means comparing truth assignments which represent these ob-
jects, analogously to the representation of the three houses used in
Figure 1. It is easy to see that this example is represented by the fol-
lowing ranked knowledge base: {(affordable,3), (closeToWork,2),
(large,1)}.

Object preferences can be derived in multiple ways from a ranked
knowledge base. In order to define these strategies, some auxil-
iary definitions are introduced next. Below, Kn(m) denotes the set
of properties of a certain rank n that are satisfied with respect to
truth assignment m; maxsatK(m) denotes the highest rank asso-
ciated with the properties that are satisfied by assignment m, and
maxunsatK(m) denotes the highest rank associated with the prop-
erties that are not satisfied by m.

DEFINITION 15.
Let K be a ranked knowledge base and m ∈ 2At .

Kn(m) ∶∶= { f ∣ ( f ,n) ∈ K,m ⊧ f}
maxsatK(m) ∶∶= −∞ if m /⊧ fi for all ( fi,vi) ∈ K,

max{i ∣ ( f , i) ∈ K,m ⊧ f} otherwise
maxunsatK(m) ∶∶= −∞ if m ⊧ fi for all ( fi,vi) ∈ K,

max{i ∣ ( f , i) ∈ K,m /⊧ f} otherwise

Using these auxiliary definitions, preference orderings m1 ≥K
s m2

are defined which mean that object (truth assignment) m1 is (weak-
ly) preferred over object m2 according to strategy s.

DEFINITION 16. (Preference Orderings)
Let K be a ranked knowledge base. Then the following preference

orderings over truth assignments are defined:
● m1 ≥K

⊺ m2 iff maxsatK(m1) ≥ maxsatK(m2).
● m1 ≥K

κ m2 iff maxunsatK(m1) ≤ maxunsatK(m2).
● m1 ≥K

# m2 iff ∣Kn(m1)∣ = ∣Kn(m2)∣ for all n, or there is n s.t.
∣Kn(m1)∣ > ∣Kn(m2)∣, and for all j > n ∶ ∣K j(m1)∣ = ∣K j(m2)∣.

To simplify, we make the assumption here that different properties
cannot have the same ranking. In that case, the set of all satisfied
properties of a given rank is a singleton set or the empty set, we
have that ≥ is a strict linear order on F - also denoted by >, and, as
a result, the ⊆ and # orderings coincide. We also assume that prop-
erties in a ranked knowledge base are consistent. Finally, we may
assume that a ranked knowledge base does not contain logically
equivalent properties with different ranks since such occurrences
except for the one ranked highest can be discarded as it has no in-
fluence on any of the preference orderings.

DEFINITION 17. (Translation Function)
The function τ translates ranked knowledge bases K = ⟨F,≥⟩ and
truth assignments m to formulae and is defined by:
● τ(K) ∶∶= ⋀{EC(ϕ) ∣ ϕ ∈ F}∧

U(⋁{C(ϕ) ∣ ϕ ∈ F or ϕ = ¬⋁{χ ∣ χ ∈ F}})
⋀{C(ϕ) <∀∀ C(ψ) ∣ ϕ,ψ ∈ F & ψ > ϕ}∧
⋀{C(¬⋁{ϕ ∣ ϕ ∈ F}) <∀∀ ψ ∣ ψ ∈ F}∧

● τname(m) ∈ Nom
● τ(m) ∶∶= ⋀{Eiϕ ∣ m ⊧ ϕ}∪{¬Eiϕ ∣ m /⊧ ϕ} with i = τname(m)

The translation of a ranked knowledge base K expresses that for
each property ϕ in K, there exists a corresponding cluster by Cϕ ,
that there are no other clusters than those specified by the proper-
ties, and one extra cluster for the case in which none of the prop-
erties is satisfied. It forces the ranking of these clusters to be the
same as the property ranking induced by K, with the added extra
cluster as least important one. The translation also associates an
object name with a truth assignment and states for each property
whether the object (truth assignment) has the property or not.

EXAMPLE 18. Using the translation function, and assuming that
τname(house1) = b, τname(house2) = d and τname(house3) = e, the
RKB {(affordable,3), (closeToWork,2),(large,1)} translates into:
1. E(C(affordable))∧E(C(closeToWork))∧E(C(large))
2. U(C(affordable)∨C(closeToWork)∨C(large)∨
C(¬(affordable∨closeToWork∨ large)))
3. C(¬(affordable∨closeToWork∨ large)) <∀∀
C(large) <∀∀ C(closeToWork) <∀∀ C(affordable)
4. Eb(affordable)∧Eb(closeToWork)∧¬Eb(large)
5. Ed(affordable)∧¬Ed(closeToWork)∧¬Ed(large)
6. ¬Ee(affordable)∧Ee(closeToWork)∧Ee(large)

A model of this theory is shown in Figure 2. Although only objects
b, d and e are specified in the theory, for illustrative reasons this
model contains all possible objects (there is a world, and hence
an object, for every possible valuation of the three propositional
atoms). Every property has its own cluster, which means that every
object satisfying that property has a world in that cluster, and that
every world in that cluster satisfies that property. No worlds exist
outside the four specified clusters, and the order among clusters is
fixed. The only ways a model of this theory can be structurally
different from the one shown are by removing objects that are not
b, d or e (but then all worlds belonging to that object have to be



removed at once), or by adding more worlds, but only at the same
‘places’ as the worlds shown.

Theorem 19 shows that every multi-attribute preference model that
is a model of the translation of a particular RKB yields the same
preference ordering as the original RKB.

THEOREM 19. m1 ≥K
s m2 iff

⊧ τ(K)∧τ(m1)∧τ(m2) → pre f s
∼(τname(m1),τname(m2))

where s ∈ {⊺,κ,#}.

PROOF. Assume that τname(m1) = i and τname(m2) = j, and ob-
serve that the translation of K = ⟨F,≥⟩ is equivalent to:
(1) C(¬( f1∨ . . .∨ fn)) <∀∀ C( f1) <∀∀ . . . <∀∀ C( fn),
(2) ∀ f ∈ F ∶ E(C( f )) and
(3) U(C( f1)∨ . . .∨C( fn)∨C(¬( f1∨ . . .∨ fn))).
For brevity, we only prove the left to right direction for the case
m1 >K

κ m2. Then we have maxunsatK(m1) < maxunsatK(m2) and
maxunsatK(m2) > −∞, so there is a formula fk in F such that
(4) m2 /⊧ fk,
(5) m1 ⊧ fk and
(6) ∀ f ′ > fk ∶m1 ⊧ f ′ & m2 ⊧ f ′.
Applying the translation function τ , we then get:
(4) ¬E j fk,
(5) Ei fk and
(6) ∀ f ′ > fk ∶ Ei f ′∧E j f ′.

From (5), (2) and Prop. 10.3 it then follows that
(8) EiC( fk).
From (8), (4) and Prop. 10.2 it follows that
(9) Ei¬◇= j∧C( fk).
And from (6) and Prop. 10.1 it follows that
(10) ∀ f ′ > fk ∶ ◇=i∧◇= j.
Using (1) and (3) we obtain
(11) C( fk) → ◻<(C( fk+1)∨ . . .∨C( fn)).
From (10) and (11) we obtain
(12) C( fk) → ◻<◇= i∧◻<◇= j.
Then (9) and (12) can be combined into E(i∧¬◇= j∧◻<(◇=i∧
◇= j)), which is the definition of pre f κ(i, j).

EXAMPLE 20. We now show how to formally derive a prefer-
ence statement from the formulae obtained by translating a ranked
knowledge base in Example 18. As an illustration, we show that
pre f κ(b,d) can be derived.
From (18.4) Eb(closeToWork), (18.1) E(C(closeToWork)) and Pro-
position 10.3 we obtain
(1) EbC(closeToWork).
From (18.5) ¬Ed(closeToWork) and Proposition 10.2 it follows
that
(2a) C(closeToWork) → ¬◇= d.
From 18.3 and 18.2 we can derive that
(2b) C(closeToWork) → ◻<C(affordable).
By combining (1), (2a) and (2b) we derive
(3) Eb(¬◇= d∧◻<C(affordable)).
Now, from Proposition 10.1, (18.4) Eb(affordable) and (18.5)
Ed(affordable), we derive
(4a) C(affordable) →◇=b and
(4b) C(affordable) →◇=b.
Using (3), (4a), and (4b), we obtain Eb(¬◇=d∧◻<(◇=b∧◇=d)),
which is the definition of pre f κ(b,d).

5. CONCLUSION
In this paper we introduced a modal logic for qualitative multi-
attribute preferences. The logic is based on Girard’s binary pref-
erence logic [7], but extends this logic with objects and clusters
that introduce the possibility to reason explicitly about multiple at-
tributes. We showed that multi-attribute preference logic is expres-
sive enough to define various natural preference orderings based on
property rankings [4, 6]. The additional value of the logic is that
it is possible to reason about these different preference orderings
within the logic. This means we cannot only reason about which
objects are preferred according to a certain ordering, but also about
the relation between different orderings as is shown in Proposition
12.

One possible extension to multi-attribute preference logic is the
introduction of indices for different agents. In this way, distinct
preference orderings for several agents can be expressed. This in-
troduces the possibility to reason about properties such as pareto-
optimality of objects (an object is pareto-optimal if there is no other
object that is better for at least one agent and not worse for the other
agents), which is useful in the context of e.g. joint decision making
or negotiation.

We have made the assumptions that attributes are binary, and that
priority orderings are total linear orders. In future work we plan to
investigate how we can loosen these assumptions. For example, if
multiple attributes can have the same importance, the # and ⊆ or-
derings will differ and we will be able to encode trade-offs between
attributes.

Our main concern in this paper has been the expressiveness of
multi-attribute preference logic. Other questions such as a com-
plete axiomatization of the logic, succinctness and complexity re-
main future work. We plan to develop a reasoning system in which
agents can reason about qualitative multi-attribute preferences in
various settings. In our future work we will focus more on the
reasoning mechanism and how different domains can be modelled
accurately in our approach.

A more detailed comparison of multi-attribute preference logic with
other preference logics such as Qualitative Choice Logic [5] is
planned. Other areas for future work concern the representation of
dependent properties and the relation of multi-attribute preference
logic to e.g. CP-nets [3].
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