
Multi-Attribute Queries: To Merge or Not to Merge?

Mohammad Rastegari
University of Maryland
mrastega@cs.umd.edu

Ali Diba
Sharif University of Technology

diba@ce.sharif.edu

Devi Parikh
Virginia Tech
parikh@vt.edu

Ali Farhadi
University of Washington

ali@cs.uw.edu

Abstract

Users often have very specific visual content in mind that

they are searching for. The most natural way to communi-

cate this content to an image search engine is to use key-

words that specify various properties or attributes of the

content. A naive way of dealing with such multi-attribute

queries is the following: train a classifier for each attribute

independently, and then combine their scores on images to

judge their fit to the query. We argue that this may not

be the most effective or efficient approach. Conjunctions

of attribute often correspond to very characteristic appear-

ances. It would thus be beneficial to train classifiers that

detect these conjunctions as a whole. But not all conjunc-

tions result in such tight appearance clusters. So given a

multi-attribute query, which conjunctions should we model?

An exhaustive evaluation of all possible conjunctions would

be time consuming. Hence we propose an optimization ap-

proach that identifies beneficial conjunctions without ex-

plicitly training the corresponding classifier. It reasons

about geometric quantities that capture notions similar to

intra- and inter-class variances. We exploit a discrimina-

tive binary space to compute these geometric quantities ef-

ficiently. Experimental results on two challenging datasets

of objects and birds show that our proposed approach can

improve performance significantly over several strong base-

lines, while being an order of magnitude faster than exhaus-

tively searching through all possible conjunctions.

1. Introduction

We often find ourselves searching for images with very

specific visual content. For instance, if we witness a

crime we might help law enforcement agents search through

mugshots of criminals to find the specific individual we saw.

Victims of disasters may search through hospital databases

to find missing loved ones. Graphic designers may search

for illustrations of specific styles. Bird watchers may search

for photographs of birds with a particular appearance to

�������

����

	
����

����

	
����

����

����

	
���

���

Figure 1. In a multi-attribute image search, some combinations of

attributes can be learned jointly, resulting in a better classifier. In

this paper, we propose a model to predict which combinations will

result in a better classifier without having to train a classifier for

all possible cases. For example, when looking for dog, furry, ear,

our method selects to train a furry-dog classifier and fuse it with

an ear classifier. We compare this selection with the default case

where one classifier is trained per attribute. Here we show top five

retrieved images.

identify its species. In such scenarios, the most natural way

for users to communicate their target visual content is to

describe it in terms of its attributes [3, 7] or visual proper-

ties. Given the specificity of the desired content, the user

typically needs to specify multiple attributes in order to ap-

propriately narrow the search results down.

A common way of dealing with such multi-attribute

queries is to train classifiers for each of the attributes in-

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.425

3308

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.425

3308

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.425

3310

dividually and combine their scores to identify images that

satisfy all specified attributes. If a user is interested in im-

ages of white furry dogs, one would run three classifiers

and combine them (white & furry & dog) to indirectly get

a white-furry-dog classifier. However this may not be the

most effective or most efficient solution. White furry dogs

may have a very characteristic easy-to-detect appearance,

and running just one white-furry-dog classifier trained to

directly detect only white furry dogs could result in more

accurate and faster results. But there may not be enough

white furry dog examples to train such a classifier. Or,

white furry dogs may look a lot like the rest of the dogs

leading to a harder classification problem and poorer perfor-

mance than combining three independent classifiers. Given

a multi-attribute query such as white furry dog, it is criti-

cal to determine which combinations of classifiers should

be trained to ensure effective and efficient retrieval results:

white-furry & dog, or white-furry-dog, or white & furry &

dog, etc. This is the problem we address in this paper.

An exhaustive solution to this problem would involve

training all possible combinations of the multiple attributes

involved (5 combination in the case of white furry dogs),

and evaluating their accuracy on a held out set of images to

determine the optimal combination. This would be compu-

tationally expensive especially as the number of attributes

in the query grows, and requires sufficient amount of vali-

dation data. In this paper we propose an optimization ap-

proach that given a multi-attribute query, efficiently iden-

tifies which components would be beneficial i.e. which at-

tributes should be merged, without having to enumerate and

train all possible combinations. We use the intuition that

geometric notions that capture the compactness (∼intra-

class variance) of the set of images that satisfy a combi-

nation (e.g. white-dog), and the margin of these images

from other distractor images (∼inter-class variance) pro-

vide good proxies for the likely effectiveness of a classi-

fier trained to recognize the combination. We show that

these geometric quantities can be evaluated efficiently in

a discriminative binary space. We evaluate our algorithm

on aPascal and Bird200 datasets and show that our method

can find combinations that are both more accurate and faster

than independent classifiers.

2. Related Work

We now describe the connections of our work to exist-

ing work on dealing with multi-attribute queries and visual

phrases. We also briefly mention other uses of binary spaces

in literature.

Multi-attribute queries: Attributes or semantic concepts

are often used for improved multimedia retrieval [17, 10,

9, 22, 1, 19, 14]. Fewer works have looked at the chal-

lenges that arise in multi-attribute queries in particular. Sid-

diquie et al. [16] model the natural correlation between at-

tributes to improve search results. For instance, if a face has

a mustache then it is likely to be a male face. Scheirer et

al. [15] recently proposed a novel calibration method to

more effectively combine scores of independent multiple at-

tribute classifiers. Our work is orthogonal to these efforts.

We are interested in identifying which attributes should be

merged to then train a classifier directly for the conjunction

for improved search results. Note that we identify benefi-

cial conjunctions for each given multi-attribute query, and

do not reason about global statistics of pre-trained attribute

classifiers.

Visual phrases: The attribute combinations we reason

about can be thought of as being analogous to the notion

of visual phrases introduced by Sadeghi et al. [12]. They

showed that some object combinations correspond to a very

characteristic appearance that makes detecting them as one

entity much easier. For instance, one can detect a person

riding a horse more accurately if modeled as one entity,

than detecting the person and horse independently and then

combining their responses. They used a pre-defined vo-

cabulary of visual phrases. Our work is distinct in that it

deals with attribute combinations rather than object compo-

sitions. More importantly, the goal of our work is to iden-

tify which combinations should be trained on a per query

basis. Li et al. [8] proposed an approach to identify which

groups of objects should be modeled together. They reason

about consistent spatial arrangements of objects in images.

This would be analogous to reasoning about ground truth

attribute co-occurrence patterns when dealing with multi-

attribute queries. In contrast, in our work we explicitly rea-

son about the variation in appearances of images under the

different attribute combinations. As a result, the combina-

tions we identify are grounded to the appearance features of

images, which significantly affect the accuracy of resultant

classifiers.

Binary spaces: There has been significant progress in re-

cent years in mapping images to binary spaces. One might

learn a mapping that preserves correlations between se-

mantic similarities and binary codes [13], or local simi-

larities [4, 20, 5]. Recently, discriminative binary codes

have shown promising results in mapping images to a bi-

nary space where linear classifiers can perform even bet-

ter than sophisticated models [11]. We use this mapping

to project images to a binary space where computing sim-

ple geometric measures like compactness or diameters of

a group of images and their margins from other images is

very efficient.

3. Our Model

Given a multi-attribute query, our goal is to figure out

which combinations of attributes would be better to use

without having to train classifiers for all possible combina-

tions. What makes a combination desirable? The most im-

portant criteria is the learnability of a combination. In other

words, we should learn a classifier for a combination of two

attributes if it results in a better classifier for the conjunc-

tion than combining scores of independent attribute classi-

330933093311

fiers post-training. For three attributes like white and furry

and dog1, a combination can include multiple components

like white and furry-dog. We argue that geometric reason-

ing in terms of the tightness and margin of each component

in a combination is a reasonable proxy for what would have

happened if we would have trained a classifier for each com-

ponent in the combination. Geometrically speaking, a good

combination should have components that occupy tight re-

gions of the feature space and have large margins. Figure 2

shows an illustration where purple instances are the ones

that have both blue and red attributes. What justifies learn-

ing a red-blue classifier instead of red and blue classifiers

independently is that purple instances occupy a tight area in

the feature space with big margins from other blue and red

instances. If it was not the case, then we could have learned

separate red and blue classifiers; they are more widely ap-

plicable and would not sacrifice training data. To efficiently

compute these geometric measurements we propose to map

the images from the original feature space into a binary

space where discriminative properties are preserved. In this

section we assume that such a mapping exists. Later in the

experiments we show that our formulation is not very sen-

sitive to the choice of the mapping as long as discriminative

properties are preserved/enhanced in the binary space. This

is not a restrictive condition as most existing binary map-

ping approaches in literature meet this criteria.

We estimate the learnability of a combination based on

the diameter of the components in the combination and

the margin within and across components. To setup no-

tations, let’s assume there are n attributes involved in a

given multi-attribute query, A = {a1, ..., an}. For ex-

ample, {white,furry,dog}. There are 2n different ways

to form components. For instance, {white}, {furry,dog},

{white,dog}, {furry}, etc. The set of all possible com-

ponents is the powerset of A, which we call S =
{S1, S2, ·, Sm},m = 2n. A combination is a subset of S
that covers A e.g. {{white,furry}, {dog}}, which we write

as {white-furry,dog} in shorthand. We define the learnabil-

ity of a combination C as

L(C) =
∑

c∈C

[
∑

c′∈C,c′ �=c

K(c, c′) +
∑

a∈c

K(c, c \ a)−D(c)]

where c indexes components in the combination C, a in-

dexes attributes in each component, D(c) is the diameter of

each component defined as maxx,y∈c d(x, y) where x and y

are images that belong to a component and d is the distance

between them. The diameter captures the range of visual

appearances of images within a component. The higher the

variety of appearances, the less learnable the corresponding

component. K(c, c′) is the margin between two components

c and c′ defined as minx∈c,y∈c′ d(x, y). This captures how

distant the images belonging a component are from images

1For generality of discussion, we treat all words involved in a query as

“attributes”

��

��

Figure 2. What makes merging two attributes desirable? When

instances that satisfy both attributes occupy a tight region in the

feature space and have enough margin to the instances that have

one of the attributes. This figure depicts a case where training a

merged red-blue classifier is beneficial. Because purple dots (in-

stances that have both red and blue attributes) have small diameter

(D) and enough margins (K) with the rest of blue and red dots.

of other components. The more distant they are, the easier it

is to learn a classifier for the component. Finally, K(c, c\a)
is the margin between images that satisfy all attributes of a

component, and those that satisfy all but one attribute. For

example the margin between purple and red in Figure 2. For

components that consist of only one attributes the within

component margins are zero.

We are interested in finding the optimal combination C∗

that obtains best learnability score and covers all members

of A without being inefficiently redundant . We can formu-

late this problem as the following integer program:

max
x

L(S ⊙ x)− λ|x|

ZTx ≥ 1

x ∈ {0, 1}m

(1)

where ⊙ is the set selection operator, Z is an m × n bi-

nary set system matrix indicating which attributes appear

in which component, λ is the trade off factor between the

number of components in a combination (efficiency) and the

learnability score, and x is the indicator vector that identi-

fies which components will make it to the final combination.

Set covering problem can be reduced to our problem.

The optimization 1 is harder than standard weighted set cov-

ering problem because our learnability function L defines

over all component in a combination. The corresponding

weighted set cover formulation requires the weighting func-

tion to be defined over each component independently. The

interdependencies between components in our learnability

function make this optimization NP-hard. However, our

learnability function doesn’t face an interdependency issue

in case of two attributes. This suggests defining a gain func-

331033103312

tion for pairs of attributes that takes into account the same

measurements (diameter and margins) as in our learnability

function:

G(ai, aj) = K(aiaj , ai) +K(aiaj , aj)−D(aiaj)

Given two attributes, positive values for the gain function

recommend merging the two attributes and negative values

encourage training separate classifiers for each attribute and

then merging their scores. The higher the gain function the

higher is the reward for merging two attributes. Our gain

function exposes an interesting property that helps prune

the search space drastically.

Lemma 1. If attributes ai and aj are merged because

G(ai, aj) ≥ 0 then for any other attribute ak, G(aiaj , ak) ≥
G(ai, ak) or G(aj , ak)

Proof. It’s simple to show that if A ⊂ B then D(A) ≤
D(B), and if C ⊂ D then K(A,C) ≥ K(B,D).
We can show that G(aiaj , ak) = K(aiajak, aiaj) +
K(aiajak, ak) − D(aiajak)+ > K(aiajak, aiaj) +
K(aiajak, ak)−D(aiak)+ > K(aiak, ai)+K(aiak, ak)−
D(aiak)+ = G(ai, ak). The same holds for G(ai, aj).

What this lemma implies is that once two attributes are

merged, we need not consider merging any other attribute

with either of these attributes individually. This suggests

the following recursive greedy solution to find the highest

scoring and covering combination.

Our greedy solution starts with computing the gain for

all pairs of attributes. It picks the pair with the highest gain.

If the highest gain is positive, then we merge those attributes

and add a new merged-attribute to our set of attributes and

remove the two independent ones. Meaning that if ai and aj
provide the biggest positive gain we add aiaj as a new at-

tribute to A and remove ai and aj from the set. The Lemma

above shows that it is safe to remove the independent at-

tribute from the set as no other attribute can join either of ai
or aj independently and result in higher scoring combina-

tion. The new A now has n−1 elements. We can recursively

repeat this procedure till we cover all attributes. If there is

no pair with positive gain, we move to triplets. This never

happened in our experiments.

Efficient Computation of Geometric Measurements:

Margins and diameters can be computed efficiently in a bi-

nary feature space; O(NK) where N is the number of im-

ages and k is the dimensionality of bit vectors. The core part

for computing both margin and diameter is to compute the

average of all pairwise distances. A naive algorithm would

be to go over all pairs and compute their distances and get

mean of them. But since we are using binary codes for each

dimension of the binary codes we can compute number of

zero bits and number of one bits. Then the sum of the dis-

tance of any given bit to all other bits can be computed in

O(constant). Algorithm 1 explains this algorithm more

formally.

Algorithm 1 Efficient Sum of Pairwise Hamming Distances

Input: B1 , B2 are a binary matrix of size N ×K.

Output: S: sum of hamming distances between all pairs of rows in B1
and B2.

1: for k = 1 → K do

2: Z(k) ←

∑
k
B2(:, k) Comment: Counting Number of zeros in

kth dimension of B2
3: O(k) ←

∑
k
¬B2(:, k) Comment: Counting Number of ones in

kth dimension of B2
4: end for

5: for i = 1 → N do

6: for k = 1 → K do

7: if B1(i, j) = 0 then

8: P (i, j) ← O(k)
9: else

10: P (i, j) ← Z(k)
11: end if

12: end for

13: end for

14: S ←

∑
P Comment: Sum of all elements in P

4. Experimental Results

We evaluate our method in several different settings. We

conduct experiments on two challenging datasets: the aPas-

clal [3] and the Caltech Bird200 dataset [18]. We compare

our method with four different baselines described later. We

also test our method with different binary code mapping

methods and show that our method is robust to the choice

of binary mapping. We also evaluate the impact of different

binary code sizes on the performance of our approach. In

addition to accuracy, we also compare the running time of

our method to that of baselines. We find that our low com-

plexity O(NK) gives us one order of magnitude speed up.

We also present qualitative results and analysis that reveal

the tendencies of different attributes to merge with other at-

tributes.

4.1. Datasets

aPASCAL [3]: This dataset contains the 20 PASCAL

object categories. On average each category has 317 im-

ages. Each image is labeled by 64 attributes that describe

different object properties such having a particular body

part, types of materials, etc. We experiment with the low-

level features provided by the author of [3] on the data set

website and also train/test splits provided with the dataset.

The features and attribute annotations are not labeled for

entire image. They are computed only for bounding box of

the objects.

Caltech-UCSD Bird200 [21] This data set is a challeng-

ing subordinate recognition dataset. It includes 200 differ-

ent species of North American birds with on average 300

images per category. Each image is annotated with 312 bird

attributes such as color and shapes of wings, beaks, etc. We

used the low-level features provided by [2] describing color,

shape and contours. Similar to aPascal, here, we don’t use

entire image, we ony use the area that the bounding box of

the image specifies for a bird in that image. We devide each

331133113313

category in half and took one haf as train set and the other

half as test set.

4.2. Baseline Methods

We compare our method with four different baseline ap-

proaches for selecting the combinations to be trained for a

given multi-attribute query: Default (DEF): As the name

suggestions, this approach uses the most natural strategy of

training classifiers for each of the attribute independently

and then combining the result scores. Random Selec-

tion (RND): This approach randomly selects a combina-

tion from all possible combinations and learns a classifier

for each component of that combination. Upper Bound

(UPD): Here we exhaustively train all possible combina-

tions, evaluate their performance on the test set, and select

the best one. The resultant performance corresponds to the

upper bound one can hope to achieve by picking the op-

timal combinations to train. Of course, our proposed ap-

proach avoids training all possible combinations, and se-

lects a good combination very efficiently. A comparison

to this upper bound informs us of the resultant loss in per-

formance by trading it off for efficiency. Best Attribute

First (BAF): Intuitively, if an attribute predictor is accurate

enough (in the limit, perfect), there is no benefit to merging

it with another attribute. This baseline is based on this in-

tuition. It determines which attributes to merge by looking

at their prediction accuracies on the test set. Attributes with

an accuracy higher than a threshold are left alone, while the

rest are merged. We search for a threshold that gives us

highest overall accuracy on all the queries.

4.3. Evaluation

Having identified the best combination (e.g. {white-

furry,dog}), we train a classifier for each of the components

{white,furry} and {dog} using (with C = 1). All train-

ing images that are both white and furry are positive ex-

amples to train a white-furry component classifier, and all

remaining images are negative examples. Given a test im-

age, we compute its score for each of the component clas-

sifiers. A naive way of combining these component classi-

fiers would be to threshold the scores and compute a logical-

AND. However in practice, the scores of the different clas-

sifiers are not calibrated. We use [6] to calibrate the scores,

which fits a weibull distribution to the scores of a classifier

to generate probability estimates. We later show the bene-

fits of this calibration. We threshold the calibrated proba-

bilities and compute the logical-AND to determine if a test

image is positive (relevant to the multi-attribute query) or

not. Varying the threshold gives us a precision-recall curve.

One might argue that by taking the product of the calibrated

scores and then thresholding that we may get better perfor-

mance. But in our experments it drops the performace re-

markably. In order to report results across multiple queries,

we average the recall across all queries for fixed precision

values to obtain an “average” precision-recall curve.

Figure 3. We evaluate our method on retrieving images in aPas-

cal test set using 3-attribute queries. We compare it with three

baselines and also the best possible upper bound. We use 512-

dimensional bit codes for this experiment. Each point in this plot

corresponds to average recalls over selected combinations on sev-

eral fixed precisions. The threshold for BAF is 0.7.

Comparison with Baselines: We generated 500 random

3-attribute queries that had atleast 100 corresponding im-

ages in the train and test splits. We also generated another

set of 500 3-attribute queries that had between 5 and 50 ex-

amples in the train and test splits. This allows us to evaluate

our approach on queries with sufficient as well as few ex-

amples. Figure 3 shows our results for the aPascal. We see

that our method outperforms all baselines, and is not signifi-

cantly worse than the upper-bound, especially at high recall.

For these experiments we used 512 bits codes extracted us-

ing Discriminative Binary Codes [11]. Figure 4 shows re-

sults using 4-attribute queries, with similar trends. Figure 5

shows our results on the Birds dataset with queries of length

3. Our method outperforms the baselines by large margin.

The effects of different parts in learnability function at 0.2

precision is as follow: Recall .15 .45 .61. K(c, c′): 102 170

213. K(c, c \ a): 23 56 79. D(c): 162 106 62. Increase

in the margin and decrease in the diameter results in better

recall.

Binary Code Length: We now investigate the effect

of different length of binary codes on the performance of

our method. Figure 6 shows results aPascal using the same

length 3 queries described earlier. Using fewer bits hurts

performance. Figure 7 shows similar trends on the Birds

dataset.

Sensitivity to Binary Mapping Methods: We now

evaluate our model using binary codes generated by differ-

ent methods. We chose two state-of-the-art binary mapping

methods DBC [11] and ITQ [5] and also classical LSH [4].

Table 1 compares the performance of our approach using

these three methods on the aPascal dataset. Here we use

mean of the average recalls over all fixed precisions (MAR)

331233123314

Figure 4. We evaluate our method on retrieving images in aPascal

test set using 4-attribute queries. Experimental setup is similar to

that of Figure 3. The threshold for BAF is 0.82 .

Figure 5. We evaluate our method on retrieving images in Bird test

set using 3-attribute queries. Experimental setup is similar to that

of Figure 3.

Figure 6. We investigate the effects of the dimensionality of binary

space on our performance on the aPascal dataset.

as a measure for comparison. We used 512 bits for all of the

methods. DBC perform slightly better because DBC pre-

serves categorical similarities between images. We trained

DBC on the whole train set of aPascal dataset. To make the

most of ITQ we used the attribute labels of the train set to

learn ITQ coupled with CCA. The binary codes produced

Figure 7. We investigate the effects of the dimensionality of binary

space on our performance on the Bird dataset.

Method MAR

Upper Bound 0.4007

DBC-512bits 0.3348

ITQ-CCA-512bits 0.3257

LSH-512bits 0.3071

Table 1. Comparison between different binary mapping methods

in terms of Mean Average Recall.

by ITQ-CCA are expected to preserve pairwise similarities.

For both cases we use their publicly available MATLAB

code. Our model is not sensitive to the choice of binary

mapping (compare DBC and ITQ) as long as discriminative

properties can be preserved.

Running Time Evaluation: Here we report the run time

of our approach. First, we only consider the average time

required to find the best combination for a given query. Ta-

ble 2 compares our method with UPD on 1000 queries of

length 3 on the aPascal dataset. Our method is one order

of magnitude faster than UPD which verifies that our al-

gorithm for computing the sum of pairwise distance in the

binary space is very fast and efficient. Second, we consider

the entire retrieval task which involves identifying the best

combination, learning the corresponding component classi-

fiers and finally evaluating them on test images. Table 3

compares our model with UPD and DEF. Interestingly, our

method is also faster than DEF. This is because in DEF we

always need to train n(n: query length) classifiers but in

our model on average we need to learn 1.4 classifiers. This

comparison assumes that no computations are being done

off line. One advantage of DEF over our method is that

training and testing in DEF can be done off line.

Calibration Effect: As discussed earlier, calibration is

very important when combining multiple component clas-

sifiers. Figure 8 empirically verifies this by comparing the

performance of UPD with and without calibration on the

aPascal data set. Without calibration the performance is al-

most 5% worse.

Qualitative Evaluation: Finally, we look at some qual-

331333133315

Method Time(Second)

Upper Bound 35.325

Ours 0.508

Table 2. Time for finding best combination: Trying all possible

combinations of attributes and picking the best one is very expen-

sive. This table compares the time needed to compute the upper

bound versus the time that our algorithm needs to decide which

combination to pick.

Method Time(Second)

Upper Bound 167.68

Default 42.56

Ours 22.34

Table 3. Average Retrieval Time : Comparisons between the entire

time needed to perform the default case, our method, and the upper

bound. This table assumes that no classifiers for the default case

are trained off line.

Figure 8. Calibration Effects

itative retrieval results comparing our approach to DEF and

UPD. Figure 10 presents top five images retrieved by differ-

ent methods for several multi-attribute queries.

We now look at which attributes tend to merge with other

attributes often, and which ones typically stay un-merged.

We created a wordle using wordle.net as seen in Figure 9.

The bigger the font size of a word, more likely is the corre-

sponding attribute to merge with other attributes.

5. Conclusion

We address the task of image search using multi-attribute

queries. We argue that given a query, the default strategy of

training independent classifiers for each attribute and com-

bining their scores to find images that satisfy the query may

not be the most effective or efficient strategy. The appear-

ances of images that simultaneously satisfy some combina-

tion of attributes may be significantly more consistent than a

Figure 9. Some attributes have the tendency to be merged and

some prefer to stay separated. The bigger the names in this figure

the higher the tendency of the attribute to merge. It is interesting to

see that attributes like occluded tend to merge frequently. This is

probably because of the fact that the appearance of attributes like

this varies a lot as they appear with other attributes. On the other

side, attributes like beak and furniture leg tend to be separated as

their appearance does not change in combinations.

group of images that all satisfy a single attribute. This moti-

vates the use of classifiers that directly detect combinations

of attributes. However, not all combinations result in con-

sistent appearances. In this paper we proposed a novel op-

timization approach that given a multi-attribute query effi-

ciently identifies which attributes should be merged without

exhaustively training classifiers for all possible combina-

tions. Results on two challenging datasets demonstrate the

superiority of our approach over strong baselines in terms

of performance and run time.

Acknowledgements: This work was partially supported

by MURI from the Office of Naval Research under the

Grant N00014-10-1-0934.

References

[1] M. Douze, A. Ramisa, and C. Schmid. Combining attributes and

fisher vectors for efficient image retrieval. In CVPR, 2011. 2

[2] K. Duan, D. Parikh, D. J. Crandall, and K. Grauman. Discovering

localized attributes for fine-grained recognition. In CVPR, 2012. 4

[3] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing Objects

by their Attributes. In CVPR, 2009. 1, 4

[4] Gionis, Indyk, and Motwani. Similarity search in high dimensions

via hashing. 1999. 2, 5

[5] Y. Gong and S. Lazebnik. Iterative quantization: A procrustean ap-

proach to learning binary codes. CVPR ’11, 2011. 2, 5

[6] M. P. Kumar, B. Packer, and D. Koller. Self-Paced Learning for

Latent Variable Models. In NIPS, 2010. 5

[7] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect

unseen object classes by between-class attribute transfer. In CVPR,

2009. 1

[8] C. Li, D. Parikh, and T. Chen. Automatic discovery of groups of

objects for scene understanding. In CVPR, 2012. 2

331433143316

���

����

����

������

������

�������

������

������

�������

������

������

�������

��������

������

������

��

������

������

��������

���

����

����

������

����������

�� !"�

��

��� !"�

������

��� !"

�������

������

������������

����������

��� !"�

����������

������

�� !"�

�������

�������������

���

����

����

�����

���#�

�����

�����

���#�

�����

�����

�����

���#�

�����

�����

���#�

������

���#�

�����

����

���#�

����

���

����

����

��$�

����

�����

����

��$

����

�����

����

�����

��$�

�����

����

��$�

���

����

����

������

������

�������

�������

�!%���

������

������

�������

�������

�!%���

�!%���

������

���

����

����

���&��

'� !"��

������

���&��

���&��

� !"��'�

������

���&��

������

'� !"��

������

���&��

'� !"��

������

���������

���������

������������

Figure 10. Qualitative comparisons between our method, the default case and the upper bound. Green boxes correspond to merged

classifiers and red ones are for independent classifiers. It is interesting to see that when considered beak, wing and bird independently,

retrieved images are mixed between planes and birds. This is due to the labeling in aPascal that both birds and planes wing and beaks are

labeled with the same label. Once merged with bird the classifier can find the right images.

[9] M. Naphade, J. Smith, J. Tesic, S. Chang, W. Hsu, L. Kennedy,

A. Hauptmann, and J. Curtis. Large-scale concept ontology for mul-

timedia. IEEE Multimedia, 13(3), 2006. 2

[10] N. Rasiwasia, P. Moreno, and N. Vasconcelos. Bridging the gap:

Query by semantic example. Trans Multimedia, 9(5), Aug 2007. 2

[11] M. Rastegari, A. Farhadi, and D. A. Forsyth. Attribute discovery via

predictable discriminative binary codes. In ECCV (6), 2012. 2, 5

[12] M. A. Sadeghi and A. Farhadi. Recognition Using Visual Phrases. In

CVPR, 2011. 2

[13] R. Salakhutdinov and G. Hinton. Semantic hashing. Int. J. Approx.

Reasoning, 2009. 2

[14] B. Saleh, A. Farhadi, and A. Elgammal. Object-centeric anomaly

detection by atribute-based reasoning. In CVPR, 2013. 2

[15] W. Scheirer, N. Kumar, P. N. Belhumeur, and T. E. Boult. Multi-

attribute spaces: Calibration for attribute fusion and similarity

search. In The 25th IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), June 2012. 2

[16] B. Siddiquie, R. S. Feris, and L. S. Davis. Image Ranking and Re-

trieval based on Multi-Attribute Queries. In CVPR, 2011. 2

[17] J. Smith, M. Naphade, and A. Natsev. Multimedia semantic indexing

using model vectors. In ICME, 2003. 2

[18] A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and Y. Ma.

Towards a Practical Face Recognition System: Robust Alignment

and Illumination by Sparse Representation. IEEE PAMI, 2011. 4

[19] X. Wang, K. Liu, and X. Tang. Query-specific visual semantic spaces

for web image re-ranking. In CVPR, 2011. 2

[20] Y. Weiss, R. Fergus, and A. Torralba. Multidimensional spectral

hashing. In ECCV (5), 2012. 2

[21] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and

P. Perona. Caltech-UCSD Birds 200. Technical report, California

Institute of Technology, 2010. 4

[22] E. Zavesky and S.-F. Chang. Cuzero: Embracing the frontier of in-

teractive visual search for informed users. In ACM MIR, 2008. 2

331533153317

