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Abstract

Recent studies show significant progress in image-to-image
translation task, especially facilitated by Generative Adver-
sarial Networks. They can synthesize highly realistic im-
ages and alter the attribute labels for the images. However,
these works employ attribute vectors to specify the target
domain which diminishes image-level attribute diversity. In
this paper, we propose a novel model formulating disen-
tangled representations by projecting images to latent units,
grouped feature channels of Convolutional Neural Network,
to disassemble the information between different attributes.
Thanks to disentangled representation, we can transfer at-
tributes according to the attribute labels and moreover re-
tain the diversity beyond the labels, namely, the styles inside
each image. This is achieved by specifying some attributes
and swapping the corresponding latent units to “swap” the at-
tributes appearance, or applying channel-wise interpolation to
blend different attributes. To verify the motivation of our pro-
posed model, we train and evaluate our model on face dataset
CelebA. Furthermore, the evaluation of another facial expres-
sion dataset RaFD demonstrates the generalizability of our
proposed model.

Introduction

Image-to-image translation gains significant popularity in
recent years, benefiting from the progress of generative
models like Generative Adversarial Network (Goodfellow
et al. 2014) and Variational Auto-Encoder (Kingma and
Welling 2013). Generally speaking, image-to-image trans-
lation is defined as a task to translate an image from one
domain to another, with representative applications such
as colorization(Isola et al. 2017; Zhang, Isola, and Efros
2016), super-resolution(Ledig et al. 2017; Dong et al. 2016)
and facial attribute transfer(Choi et al. 2018; Bouchacourt,
Tomioka, and Nowozin 2018), etc.

We define a domain as a set of images sharing the same
attribute labels, where the term attribute is denoted as a
meaningful instance-level feature inherent in an image such
as hair color or style, gender or age, and smiles. For each
attribute, there can be different attribute labels such as
black/blond/brown for hair color, or male/female for gender.
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(a) Attribute swapping

(b) Attribute blending

Figure 1: An illustration of the motivation for our proposed
model. We want to change the source image on the upper
left, a lady with blond hair, to target images with brown
hairs in the upper row. Give the target label, brown hair,
previous methods like StarGAN (Choi et al. 2018) can only
change the hair color to one style. However, for our pro-
posed method, the target attribute is specified with another
image, i.e., the hair color is transferred from the topmost im-
ages, and the color shade is retained, as shown in the second
row. Besides, we can blend different attribute values by in-
terpolating hidden units, changing hair color from golden to
brown gradually.

Furthermore, beyond the attribute label, there can be image-
level diversity in the style of different image instances with
the same attribute label which can not simply be depicted by
labels. For example, bang hairs may vary in directions, and
smiles can have different attitudes. We call this diversity as
concept, which can be formulated as a distribution of certain
attribute appearance.

Previous works have explored a lot in image-to-image
translation topic and achieved significant progress (Zhu et
al. 2017; Isola et al. 2017; Choi et al. 2018; Xiao, Hong, and
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Ma 2017). However, these works either are only capable of
mapping between a paired domains with poor flexibility for
multi-domain translation or employing attribute vectors to
specify the target domain which diminishes image-level at-
tribute diversity.

In this paper, we propose a method which conducts at-
tributes translation by transferring attributes from one im-
age to another and keep the styles for each image at the
same time. We implement our model using an auto-encoder,
training on labeled input data pairs by swapping designated
parts of embeddings. The transfer process is implemented
via embedding images in disentangled representations and
substituting the corresponding part of the embeddings. A dis-
entangled representation can be defined as one where sin-
gle latent units are sensitive to changes in single genera-
tive factors while being relatively invariant to changes in
other factors (Higgins et al. 2017; Bengio, Courville, and
Vincent 2013). The disentangling process aims at learning
dimension-wise interpretable representations from data, and
the attributes which are independent of each other can be
disentangled into a well-defined feature space. For exam-
ple, given an image dataset of human faces, the generative
factors in the aforesaid definition is equivalent to the inter-
pretable attributes like facial expression, and disentangling
should produce representations or embeddings for each part
corresponding to the attribute. Thanks to disentangled rep-
resentations, we formulate our model with a manipulable
and interpretable representation of images, transferring at-
tributes from one to another and keep the image-level diver-
sity in the style of attributes.

Specifically, our model differs from the previous image-
to-image translation and disentangling models in the follow-
ing aspects, which are also shown in Figure 1:

• We propose a model that learns disentangled represen-
tations for multiple different attributes, implementing a
function that user can select some specific attributes and
swap the corresponding parts of embeddings to “swap”
the attributes, or apply embedding interpolation to manip-
ulate different attributes;

• By disentangling different attributes, we synchronously
transfer the attributes and retain the intra-attribute diver-
sity, preserving the styles of each image;

• Experiments show that we provide qualitative results on
selected datasets with high quality synthesized images
and disentangled representation.

Related Works

In this section, we review several previous works for image-
to-image translation applications which are closely related to
our proposed method, especially for those which are based
on Generative Adversarial Network and Disentangled Rep-
resentation.

Image-to-image transformation applications (Gong et al.
2018; Chang et al. 2018; Isola et al. 2017; Zhu et al. 2017;
Choi et al. 2018; Yan et al. 2016) progress rapidly with
the help of Generative Adversarial Network (GAN)(Good-
fellow et al. 2014) and Variational Auto-Encoder (VAE)

(Kingma and Welling 2013) frameworks. Thanks to the re-
cent progress (Arjovsky, Chintala, and Bottou 2017; Gulra-
jani et al. 2017; Miyato et al. 2018), GAN has now achieved
improved stability and better performance. Pix2Pix (Isola et
al. 2017) converts images from source style to destination
style, using conditional GAN trained with pair-wised exam-
ples. Cycle-GAN (Zhu et al. 2017) breaks the limitation of
pair-wised data by training mapping and reverse mapping
networks cross two domains, but still suffering from limited
flexibility for multi-domain transformation since one model
can only deal with a single pair of domains. StarGAN (Choi
et al. 2018) framework trains a multi-domain model using
only one single model which further improve the scalability
and efficiency of image-to-image translation tasks. However,
these aforementioned methods translate images according to
the specified target attribute labels, while image-level vari-
ances for attributes are dropped for synthesized images.

The goal of Disentangled Representation (Bengio,
Courville, and Vincent 2013) is to extract explanatory fac-
tors of the data in the input distribution and generate a more
meaningful representation. Recently, there are many excit-
ing works based on this topic (Jha et al. 2018; Mathieu et al.
2016; Hadad, Wolf, and Shahar 2018; Donahue et al. 2018;
Huang et al. 2018), here we will discuss some classic and
related methods. InfoGAN (Chen et al. 2016) utilizes GAN
framework and maximizes the mutual information between
a subset of the latent variables to learn disentangled repre-
sentations in an unsupervised manner. β-VAE (Higgins et al.
2017) . Although these unsupervised methods are unable to
learn specific meaningful attributes, they provided elegant
baselines for the later works to learn to disentangle repre-
sentations for annotated attributes. ML-VAE (Bouchacourt,
Tomioka, and Nowozin 2018) separates the latent represen-
tation into semantically meaningful parts, i.e., style and con-
tent. The content is common for a group, while the style
can differ within the group. DC-IGN (Kulkarni et al. 2015)
was proposed to disentangle factors by changing a single
attribute and constraining other factors by feeding other at-
tributes with average attribute values.

Some previous works share similar inspiration with our
proposed model. DSD (Feng et al. 2018) constructs an
“encoding-swap-decoding” process where shared attributes
are swapped to disentangle different attributes with paired
labels, which is similar to our model while DSD can only
swap the attributes that have the same attribute values. DNA-
GAN (Xiao, Hong, and Ma 2017) also formulates a swap-
ping strategy to disentangle different attributes via GAN
framework. However, DNA-GAN is not capable of reserv-
ing image-level feature details or handling the attributes with
more than two label values like hair color (e.g., black, blond,
and brown). In Gonzalez-Garcia, van de Weijer, and Ben-
gio (2018), the authors combine the disentanglement objec-
tive with image-to-image translation between a pair of do-
mains by disentangling the embeddings into three parts: one
domain-invariant part and two domain-specific parts corre-
sponding to two domains. Different from the above works,
our framework can disentangle multiple attributes simulta-
neously within only one model and generate images with
high quality.
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Figure 2: (a). An illustration of the training pipeline of our work. Given two input images (xa, xb), we encode each of them
into embeddings (ea, eb), and divide each embedding into latent units as the filled rectangles in the diagram. Each unit in green
indicates the information of a specific attribute from xa, blue for xb and orange for attribute-irrelevant parts. Subsequently, we
select and swap some of the units and decode the embeddings into synthesized images. The whole process will be repeated to
reconstruct the input images with the same encoder and decoder. (b). An illustration of the structure of Attribute Verification

Loss. We compute and optimize attribute verification loss for four pairs of embeddings. For each pair, say ea and ẽ′b, we
calculate the absolute difference between the two selected embeddings. Then a binary classification loss will be applied to each
latent unit pair to recognize whether the two units are representing attribute information from the same input image.

Method

The goal of our model is to exchange some of the attributes
between a pair of images. To this end, an auto-encoder ar-
chitecture G = (Enc,Swap,Dec) first project images to
embeddings which comprise different latent units, such that
attribute exchanging can be accomplished by swapping the
corresponding latent units, and then decodes the embeddings
to synthesize images. To synthesize plausible images, we
employ a discriminator D to formulate a cycle-consistent
GAN framework for our model. The overall pipeline of our
proposed model is shown in Figure 2.

Define a dataset of multi-label images X with a set of
labels Y . k denotes the number of different attributes in Y
that for any x ∈ X there is a label y = (y1, . . . , yk) ∈ Y
with k different attribute annotations. Given two images
(xa, xb) ∈ X 2 with label (ya, yb) ∈ Y2, Enc encodes
(xa, xb) into attribute embeddings (ea, eb), where ea (and
the same for eb) can be further divided into k+1 different la-
tent units ea = (a1, a2, . . . , ak, za). Each of the unit, which
consists of a specific number of channels of feature map,

represents a single attribute in all k attributes (a1, . . . , ak)
or attribute-irrelevant part za such as image background. Af-
ter encoding the images into embeddings, Swap is applied.
We select some of the attributes following specific strate-
gies and swap the corresponding latent units, transforming
(ea, eb) to (ẽa, ẽb). Afterwards, a decoder Dec is adopted to
generate synthetic images (x̃a, x̃b), taking (ẽa, ẽb) as input.
For discriminator network D : x 7→ {Dadv(x), Dcls(x)},
Dadv is introduced to enhance the quality of the synthetic
images while Dcls ensures the swapped units do affect their
corresponding attributes properly. Dadv and Dcls share the
same network structure and parameters except for the last
output layer. Moreover, our model is trained under the cycle-
consistency constraint, which means we repeat the forego-
ing encode-swap-decode process with the same encoder and
decoder on image pair (x′

a, x
′

b) to swap back the selected
attributes and reconstruct the original image pair (xa, xb).
Specifically, Enc, for this time, encodes the synthetic im-

ages (x̃a, x̃b) to new embeddings denoted as (ẽ′a, ẽ
′

b), then
the pre-selected latent units are re-swapped back to (e′a, e

′

b).
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Finally we apply Dec to (e′a, e
′

b) and generate two recon-
structed images (x′

a, x
′

b). To attain disentanglement of the
mutual information between different attributes and con-
strain the generated images with given attribute information,
we design four different losses: adversarial loss, attribute
classification loss, attribute verification loss and reconstruc-
tion loss.

Attributes Swapping Strategy

Before we describe the losses we used to train our model,
let’s see how we swap the attributes for training. For two
input images xa and xb, labeled as ya = (y1a, . . . , y

k
a) and

yb = (y1b , . . . , y
k
b ) and embedded as ea = (a1, . . . , ak, za)

and eb = (b1, . . . , bk, zb), we have two different strategies to
choose an attribute set S and swap the units corresponding
to all attributes in S , changing the attribute embeddings to
(ẽa, ẽb) and the labels to (ỹa, ỹb). We divide all the attributes
into two sets P = {i|yia = yib} and N = {j|yia 6= yib}.
Then randomly choose one swapping strategy from the fol-
lowings:

• Randomly choose an subset A ⊆ P and let S = A ∪ N ,
then ỹa = yb and ỹb = ya.

• Randomly choose an subset A ⊆ P and let S = A, then
ỹa = ya and ỹb = yb;

These two choices ensure that after Swap, the new em-
beddings labels ỹa and ỹb satisfy ỹa ∈ Y and ỹb ∈ Y . Un-
der this circumstance, the generator G can only synthesize
images with observed attribute label combinations, which
means that the real and the synthesized image will have the
same attribute label distribution, making the whole GAN
framework more robust. Note that the background embed-
dings z will never be swapped and the two strategies are
chosen with equal probability during training.

Adversarial Loss

GAN(Goodfellow et al. 2014) loss is involved in our frame-
work to improve the quality of images generated by the gen-
erator G. We leverage WGAN (Arjovsky, Chintala, and Bot-
tou 2017) with gradient panelty (Gulrajani et al. 2017) which
is a variation of GAN framework and also PatchGAN (Isola
et al. 2017) which discriminate whether local patches are
real or fake. The loss function is defined as

Ladv = LD +LG +λgp Ex̂[(||▽x̂D(x̂)||2 − 1)2]

LD = Ex[ReLU(1−Dadv(x))] + Ex̃[ReLU(1 +Dadv(x̃))]

LG = −Ex̃[Dadv(x̃)], (1)

where x and x̃ represent real and synthesized images and
x̂ = ǫx + (1 − ǫ)x̃, the random number ǫ ∼ U [0, 1]. Hinge
loss is adopted to stabilize the training process. For techni-
cal details of GAN frameworks please refer to Gulrajani et
al. (2017); Isola et al. (2017); Arjovsky, Chintala, and Bot-
tou (2017). Note that LD only optimizes D while LG only
optimizes G.

Attribute Classification Loss

Attribute classification loss (Odena, Olah, and Shlens 2017)
is introduced to help G generate images with corresponding

attribute labels properly which will ensure that our model
swaps the attributes correctly, also preserve and disentangle
the information for different latent units. To achieve this goal
we first train a standard classifier by applying binary cross-
entropy losses to optimize D with the real images (xa, xb)
and their attribute labels (ya, yb)

LD
cls = Ex,y[−logDcls(y|x)] (2)

then optimize G with synthesized images (x̃a, x̃b) and
swapped attribute labels (ỹa, ỹb)

LG
cls = Ex̃,ỹ[−logDcls(ỹ|x̃)]. (3)

Note that we learn a classifier and a discriminator with a
shared weights network. It has been proved in Odena, Olah,
and Shlens (2017); Choi et al. (2018) that it is stable to train
and synthesize high-quality images using shared weights for
the classifier and discriminator.
Claim of Disentanglement. The attribute classification loss
guarantees that attribute labels keep unchanged for un-
swapped attributes. Hence we can say the swapped units
will not affect the attribute appearance that corresponds to
un-swapped ones.

Cycle-Consistency Loss

The aforementioned adversarial loss and attribute losses are
merely beneficial to the reality and attribute exactitude of
synthesized images, whereas they are unable to preserve de-
tailed information in the original images including details of
attributes and attribute-irrelevant part. Inspired by the previ-
ous work (Zhu et al. 2017), we apply a cycle consistency loss
to incentivize the generator to retain pixel-wise information.
Suppose input images (xa, xb) are translated to (x̃a, x̃b) af-
ter a Enc-Swap-Dec process with a specific attribute swap-
ping choice s, we re-apply the same process with the same
attribute swapping choice s to (x̃a, x̃b), thus synthesizing
reconstructed images (x′

a, x
′

b). Then the cycle-consistency
loss is defined as

Lrec = ||xa − x′

a||1 + ||xb − x′

b||1. (4)

where L1 loss is adopted as the reconstruction loss. Note that
(xa, xb) and (x′

a, x
′

b) share the same attribute labels respec-
tively since the same latent units are swapped during the two
Swap steps.

Attribute Verification Loss

To further disentangle information among different at-
tributes and preserve image-level style diversity within a do-
main, We introduce the attribute verification loss to verify
whether a pair of two latent units corresponding to the same

attribute (e.g., a1 and ã′
1
) are extracted from the same im-

age . An illustrative structure of attribute verification loss is
shown in Figure 2(b). This attribute verification loss imposes
a style aspect constraint to our framework, and it focuses on
the style details instead of semantic labels. A unit pair that
has the same label and comes from different images will be
pushed far away from the unit pairs and pulled close to the
ones from the same images. The motivation is that embed-
dings should reflect the difference of styles between images,
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like the difference of labels, to avoid a trivial embedding
which only contains the information of attribute labels and
lose the intra-attribute diversity.

We compute and optimize attribute verification loss on

four pairs of attribute embeddings: (ea, ẽ′a), (ea, ẽ
′

b), (eb, ẽ
′

a)

and (eb, ẽ′b). For each pair, channel-wise absolute difference
is calculated between the paired latent units. Then we apply
a fully-connected layer within each unit pair outputting the
predicted verification label, and optimize a binary classifica-
tion loss with logistic regression.

The verification label li is defined as 1 for latent unit pairs

(ai, ã′i) and (bi, b̃′i), and 0 for latent unit pairs (ai, b̃′i) and

(bi, ã′i), where i ∈ {1, ..., k}. Note that for those unit pairs
with same attribute labels but from different images, namely

(ai, b̃′i) with yia = yib, the attribute verification process is
supposed to classify them as the unit pairs with different at-
tribute labels. The attribute verification loss between ea and

ẽ′b can be defined as:

V (ea, ẽ′b) =
1

k

k∑

i=1

[−lilog(pi)− (1− li)log(1− pi)]. (5)

Where pi is the predicted label corresponding to the
groundtruth label li. Then the equation for the attribute ver-
ification loss is the sum of the verification loss for four dif-
ferent pairs of attribute embeddings:

Lver = V (ea, ẽ′a)+V (ea, ẽ′b)+V (eb, ẽ′a)+V (eb, ẽ′b). (6)

Since the latent unit pair from the same image, like (ai, ã′i),
is expected to be identical after a Enc-Dec process (in con-
trast to the unit pairs from different images). The attribute
verification loss can also be partially viewed as an embed-
ding reconstruction loss, which promotes robustness of the
auto-encoder.
Claim of Disentanglement. With attribute verification loss,
the feature embeddings extracted from synthesized images

(i.e., ẽ′) can reflect the attribute changes in corresponding la-
tent units. Hence the unit pairs containing these units come
from different images will be pushed away with different
verification labels, even if two latent units in a pair have the
same attribute labels. The latent units corresponding to those
unchanged attributes tend to be relatively invariant with the
same verification labels, which is reminiscent of the afore-
mentioned definition of disentangled representation. This
loss ensures that the changes in attributes indeed affect and
only affect the corresponding latent units, which enhances
the disentanglement of latent units.

Full Objective and Implementation Details

Finally, we combine all these losses as the objective function
to optimize our model,

L = Ladv +λcls Lcls +λver Lver +λrec Lrec . (7)

We use λcls = λver = 0.1 and λrec = 10 in our experi-
ments. We followed the network structure proposed by Zhu
et al. (2017); Choi et al. (2018), which contains two down-
sampling blocks in Enc an six residue blocks similar to the

model proposed in He et al. (2016). We use Adam optimizer
(Kingma and Ba 2014) with β1 = 0.5 and β2 = 0.999.
Random horizontal flip are applied for data augmentation.
We set batchsize to 16 and train our model with 200000 it-
erations with learning rate 0.0001. Spectral Normalization
Layers (Miyato et al. 2018) and Batch Normalization Lay-
ers (Ioffe and Szegedy 2015) are applied to boost and sta-
bilize the convergence of the network. We perform the up-
date to G and D with the same frequency. We assign 16
channels of feature map for each latent unit and 160 chan-
nels for attribute-irrelevant parts. The whole traning process
takes about one and a half days on a single NVIDIA Tesla
P100 GPU.

Experiments

In this section, we show the experimental results of our pro-
posed model. To demonstrate the effectiveness and gener-
alizability of our proposed model, we train the model on a
large public face dataset CelebA and test on CelebA and an-
other facial expression dataset RaFD.

CelebA Dataset The CelebFaces Attributes (CelebA) (Liu
et al. 2015) contains 202599 face images of celebrities
around the world. Each of the images is annotated with 40
binary attributes. The original image size is 178 × 218, we
apply center crop with the size of 178 × 178 and resize the
image to 128 × 128. Following the setting of (Choi et al.
(2018), we randomly select 2000 images from the whole
dataset as the test set and the rest images are used for train-
ing. We select two attributes to transfer: hair color and smil-
ing, which are clearly two attributes that can be represented
in a disentangled fashion.

RaFD Dataset The Radboud Faces Database (RaFD)
(Langner et al. 2010) contains 4824 images collected from
67 different persons. There are eight different facial expres-
sions from 3 different gaze directions and camera angles
captured from each person. We affine all the images accord-
ing to the midpoint of the eyes of each image and crop the
image with the size of 512 × 512 then resize the image to
128× 128

Qualitative Results for CelebA Dataset

Note that all the results are generated by a single model,
showing that we can disentangle different attributes and
deal with multi-domain transfer with one single model. We
only swap the specific latent units in the image embeddings
and keep the other units (e.g., attribute-irrelevant part) un-
changed to show the experimental results of attribute trans-
lation. Figure 3(a), Figure 3(b) and Figure 3(c) show the syn-
thetic images after transferring a single facial attribute or a
combination of two attributes. The leftmost column and the
topmost row of each figure are real input images, and the 5x5
grid in the center of each figure exhibits synthesized images
after transferring the specified attributes in the leftmost real
images to the topmost ones.

Figure 3(a) shows the results of transferring hair color. As
is shown in Figure 3(a), the proposed method achieves hair
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(a) CelebA: hair color (b) CelebA: smiling

(c) CelebA: hair color and smiling (d) RaFD: hair color and smiling

Figure 3: Qualitative results for our model transferring the attributes from the leftmost real images to the topmost ones.

color transfer and generate sharp images with remarkable
quality. Notably, all the other attributes remain intact, un-
affected by the hair color transfer. In particular, the details
of ears, skin color and background are perfectly preserved
without any brightness variation. The experimental results
validate that our multi-attribute transfer framework indeed
facilitates the disentangling of different attributes. Although
different persons have different hairstyles, our model only
change the hair color in the image, indicating that the hair
color attribute is well disentangled from other attributes.

For Figure 3(b), the attribute smiling is transferred at this
time. As seen in Figure 3(b), synthesized images retain more
detailed information beyond the attribute label, smiling or
not smiling. We can also observe the difference between
the smile, beam and grin in the figure. The reason is that
our model clearly retains image-level details by use of at-
tribute verification loss, preserving the style diversity within
the same domain.

Figure 3(c) demonstrates the synthesized results of trans-
ferring two different attributes, smiling and hair color. Com-
pared with Figure 3(b), the corresponding synthesized im-
ages are identical in every detail except for hair color. The
style diversities of each attribute are preserved respectively,
and we can say that the attributes of generated faces are
swapped independently. Furthermore, the transfer of multi-
attribute does not incur any background variation in the syn-
thesized images, consistent with the previous experimental
results. These results confirm the disentanglement of our ex-
planatory feature representation.

Interpolation of the Latent Units

To demonstrate that we can manipulate different attributes
independently with the help of the proposed framework, we
conduct an interpolation experiment. In the experiments of
interpolation, we first swap a specific latent unit and keep
other units fixed to generate a synthetic image with only one
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Figure 4: Example results for interpolation of latent units
for the hair color attribute. The real images are put on the
left side.

attribute label changed. Then we apply channel-wise linear
interpolation to this latent unit between the real and synthe-
sized image, which turn the discrete label value into a con-
tinuous one. Three more images are generated with different
attribute styles from each interpolation process. In Figure 4,
we display two results on the interpolation of latent units.
The leftmost column is the input real images and the right-
most column shows the synthesized images with different
hair color label. In the first row, we transfer blond hair to
brown hair and change brown to blond in the second row.
Three columns in the middle show the result of linear in-
terpolation of the latent units learned by our model. All the
other attributes and attribute-irrelevant parts stay unaltered
during the linear interpolation process, while the hair color
changes smoothly between blond and brown. This interpola-
tion experiment provides one more evidence to confirm that
our framework embeds the image to an explanatory disen-
tangled representation.

Qualitative Results for RaFD Datset

To further prove the generalizability of our proposed model,
we evaluate the model on the facial expression dataset
RaFD. The model used for evaluation is trained on face
dataset CelebA without any fine-tuning process.

The results of generated images are shown in Figure 3(d).
The quality of images in Figure 3(d) is comparable to the
experimental results of dataset CelebA. The appearance of
unchanged attributes and background is consistent in each
column and swapped latent unit leads to a proper attribute
transfer. We also employ the squared image matrix as exper-
iments on CelebA to illustrate that the proposed method can
achieve attribution transfer between every image pair with-
out any constraints. The synthesized images show the im-
pressive generalizability of our model. Note that the results
are not as good as CelebA. There are domain shifts issues
between CelebA (i.e., the source domain) and RaFD (i.e.,
the target domain). In particular, backgrounds are complex
while in RaFD backgrounds are pure white. It is well-known
that the model trained on the source domain may perform
much worse on the target domain when the data distribu-
tions between the two domains are considerably different
(Torralba and Efros 2011).

Quantitative Results

Here we put quantitative results to show the performance
comparisons between our model and the others. We only

Methods StarGAN DNA-GAN Ours

FID 78.90 76.08 45.23

Table 1: Comparison among our method and other methods.

λver 0 0.01 0.1 1 10

FID 55.15 52.39 45.23 60.98 70.72

Table 2: Ablative studies for attribute verification loss.

choose Star-GAN (Choi et al. 2018) and DNA-GAN (Xiao,
Hong, and Ma 2017) which are designed for facial expres-
sion transfer task. We split the test set of CelebA into two
parts A and B with equal quantity and construct pairs based
on one-to-one matching between part A and part B. For
StarGAN: We swap the attribute values for the images in
A with the corresponding attribute values for the images in
B, and vice versa. We use Frechet Inception Distance (FID),
which is a sound measurement to evaluate the image qual-
ities for GANs and introduced in (Heusel et al. 2017), to
evaluate the models. For more details, please refer to the pa-
per. Note that for smaller FID indicates better performance.
For DNA-GAN: For all the images in A we swap the at-
tributes which have different attribute values compared with
the corresponding images in B, and vice versa. For ours: we
swap the attributes with the same rule as for DNA-GAN.
Since DNA-GAN is not able to transfer hair color attribute,
we choose three other independent attributes to train: bangs,
smiling and eyeglasses. The results are shown in Table 1, we
can see that we significantly improved the quality of synthe-
sized images compared with StarGAN and DNA-GAN.

To show the effect of the attribute verification loss, we
also run experiments to conduct ablative studies by changing
λver. The results are shown in Table 2, we can see that veri-
fication loss does help our model improve the quality of syn-
thesized images because our model is not able to fully pre-
serve the intra-attribute diversity without verification loss.
And λver = 0.1 is about the optimal hyper-parameter.

Conclusions

In this work, we proposed a novel model for image-to-image
attributes transfer via disentangling image representations.
Instead of specifying the target domain by attribute label, we
project images to hidden units, i.e., grouped feature channels
of Convolutional Neural Network, such that the specified at-
tributes can be transferred by substituting corresponding la-
tent units. On the one hand, the substituting process allows
us to retain the diversity beyond the attribute labels, namely,
the style inside each image. On the other hand, the disen-
tanglement of hidden units assures that only the specified
attributes are changed while the others remain intact. Exper-
iments on face datasets CelebA and RaFD demonstrate that
our proposed model is able to transfer attributes from one
image to another with intact attribute patterns and synthe-
size highly realistic images.
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