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Abstract

Membrane computing models are parallel and distributed natural computing models. These models are often referred to as P systems. This

paper proposes a novel multi-behaviors co-ordination controller model using enzymatic numerical P systems for autonomous mobile robots

navigation in unknown environments. An environment classifier is constructed to identify different environment patterns in the maze-like en-

vironment and the multi-behavior co-ordination controller is constructed to coordinate the behaviors of the robots in different environments.

Eleven sensory prototypes of local environments are presented to design the environment classifier, which needs to memorize only rough in-

formation, for solving the problems of poor obstacle clearance and sensor noise. A switching control strategy and multi-behaviors coordinator

are developed without detailed environmental knowledge and heavy computation burden, for avoiding the local minimum traps or oscillation

problems and adapt to the unknown environments. Also, a serial behaviors control law is constructed on the basis of Lyapunov stability theory

aiming at the specialized environment, for realizing stable navigation and avoiding actuator saturation. Moreover, both environment classifier

and multi-behavior coordination controller are amenable to the addition of new environment models or new behaviors due to the modularity of

the hierarchical architecture of P systems. The simulation of wheeled mobile robots shows the effectiveness of this approach.

Keywords. Membrane computing, reactive navigation, autonomous mobile robot, behaviors coordination.

1. Introduction

P systems (PS) are bio-inspired parallel distributed

computing models [40,48]. Many variants of P sys-

tems have been introduced, inspired by biological

phenomena such as the functioning and inter-cellular

communication of cells and neurons [50,38]. The

computing power and complexity aspects of these

models have been studied extensively [2,11,26,36,58].

Moreover, membrane computing models with parallel
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distributive architecture and membrane creation, dele-

tion and division operations can generate exponential

workspace and these variants can solve computation-

ally hard problems, i.e., the NP-complete, PSPACE-

complete problems in polynomial time or even in lin-

ear time [2,11,44,37].

In recent years the use of the membrane comput-

ing models to solve many real-life problems has also

gained interest, especially to solve engineering prob-

lems [34]. Some variants such as spiking neural P sys-

tems [39,66] have been used for fault diagnosis of the

power systems [70,71,52] and image processing [53].

Spiking neural P systems are an important paradigm

of Membrane Computing that combines spiking neural

networks [17,18,6,16,21]. Also numerical P systems



have been used in robotics [8,41,61] and tissue P sys-

tems have been used in image segmentation [10,45].

Another important application of P Systems is to solve

optimization problems [69]. Some important studies

are in parameter optimization problems in manufac-

turing [68] and combinatorial optimization problems

[71].

Among the many variants of P Systems, Numer-

ical P Systems (NPS) [49] and Enzymatic Numeri-

cal P Systems (ENPS) [61] are amongst the most suc-

cessful due to their high performance in robots’ con-

trol applications [7,8,41,63,13], especially for modu-

lar and complex tasks of autonomous mobile robots

(AMR), see also [12,42,65,47,3]. The success of NPS

and ENPS in robotics is due to the inherent parallel

and distributed nature of these P systems along with

their powerful numerical computation power [43].

One of the most fundamental problems in robotics

is to obtain a path for the robot from the starting point

to the goal [59,62]. When a robot moves in a com-

plex and unknown environment, it faces many possi-

bilities. To reach the goal by overcoming various dif-

ficulties is the main challenge. These problems can be

solved by recognizing the environment patterns, plan-

ning a path, positioning and executing the navigation

safely and efficiently [55,64,72,29]. The concept of

controllers based on numerical P systems was intro-

duced in [8] and has been further discussed in [63] to

design controllers of autonomous mobile robots using

ENPS and to solve simple navigation tasks. This work

investigates the navigation of the robots in more com-

plex environments by means of controllers based on

ENPS. We aim at studying ENPS controllers for au-

tonomous robots which can identify multiple environ-

ment prototypes and coordinate the behaviors of the

robots within them.

In this study, an environment classifier and a novel

multi-behaviors control approach based on ENPS are

proposed to enhance the reactive navigation perfor-

mance of the AMR. The novelty of this approach is

mainly in three aspects: (1) 11 prototypes of com-

prehensive topological maps describing the local en-

vironments are considered together to design the

classifier for environment identification module; (2)
A multi-behavior coordination membrane controller

(MBCMC) is presented for behavior coordinator mod-

ule; (3) A serial control algorithm is developed to

guide AMR to avoid obstacle, tend to target and follow

a wall, etc.

In order to reduce the error impact of sensor noise

and poor obstacle clearance, the membrane classifier is

designed based on the "binarized rough model" to pro-

duce the precisely desired environment pattern, which

is used as the input of the behavior coordinator mod-

ule. Behavior coordinator uses an enzymatic numeri-

cal P system to integrate specific behaviors by a well-

thought out local path planning ( i.e., path planning in

an unknown or partially unknown environment) strat-

egy, without large memory size and heavy computa-

tion burden. The specific behavior control algorithm

is designed based on the Lyapunov stability theory to

produce the precisely desired velocity. Furthermore,

the effectiveness of the introduced control approach is

verified by applying the simulated AMR.

The remainder of this article is organized as fol-

lows. Section 2 describes Multi-Behaviors Dynamic

Selection Problems (MBDSP). In Section 3, we de-

pict the proposed behavior based membrane controller

in detail for solving MBDSP of AMR reactive navi-

gation. Section 4 presents simulation results. Conclu-

sions are drawn in Section 5.

2. Multi-Behaviors Dynamic Selection Problems

and ENPS

The autonomous robots are capable of self-judgment

and independent navigation in an unknown environ-

ment. We describe the AMR mechanical system, and

MBDSP in the following sections.

2.1. AMR description and Problem Statement

In this study, the AMR mechanical system schematic

graph, which is shown in Figure 1(a) consists of

two actuated wheels and a back unpowered universal

wheel. The passive wheel does not affect the degree of

freedom of the kinematic model, and can work with

the nonholonomic constraints as follows:

.
y ·cosθ +

.
x ·sinθ = 0 (1)

The posture of AMR in global coordinates frame

XOY is represented by using the Cartesian coordinate

vectors with three degrees of freedom p = {x,y,θ}T .
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(a) mobile robot schematic

(b) AMR getting trapped in a U-
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Figure 1. AMR description and getting trapped in U-shape trip

The positive direction of θ is anti-clockwise, which is

used to guide the angle of a robot. The motion posture

of AMR is determined by linear velocity v and angular

velocity ω , which is denoted by vector V = (v,ω)T .

Note that, the two wheels are driven by independent

torques from two DC motors, where the radius of two

wheels are represented by r, while the distance be-

tween two driving wheels is denoted by 2R. It is as-

sumed that the AMR mass center is located at Oc and

mounted with non-deformable wheels. The kinematic

model for AMR can be represented as in (2) below,

where vr and vl are the linear velocities of the left and

right wheel, respectively, see [51].





ẋ

ẏ

θ̇



 =





(vr + vl)∗ cosθ
/

2

(vr + vl)∗ sinθ
/

2

(vr − vl)
/

2R



 (2)

Now we discuss what Multi-Behaviors Dynamic

Selection Problems (MBDSP) are. Let us imagine that

a robot wants to reach some destination in an unknown

environment. At first, the robot follows the planned

path and will avoid if some obstacle is blocking the

path. If the obstacle is very large, it may decide to walk

along the periphery of the obstacle. So there can be

many unknown situations in front of the robot and it

must have the ability to handle the movements safely

and effectively. Hence a group of distinct behavior

modes is supposed to help the robot to co-ordinate at

each time instant. This is the so-called Action Selec-

tion Problem in robotic reactive navigation [46], which

we have referred to as the MBDSP. The reactive nav-

igation is one of the most challenging problems in

AMR. The behavior-based systems are proved to be

very responsive to an unknown environment, and the

performance of reactive navigation greatly relies on

its behavior selection mechanism module. Moreover,

there are several aspects about MBDSP which should

be paid more attention to

(1) Behavior control law model: current con-

trollers usually implement processing of sense-plan-

action separately, and do not consider the unity kine-

matic control law model of different behaviors delib-

erately, while robots need to wander free not only in

maze but also in outdoor and indoor unknown environ-

ment;

(2) Control architecture mode: current action

based architecture is not clear about designing an ar-

chitecture which allows the dynamic switching among

different types of behavior (such as reactive or reflec-

tive behavior) selection strategies;

(3) Multi-behaviors coordination mode: AMR

can very easily fall into the local minima trap when re-

active navigation has no prior knowledge of the com-

plex environment. It is also likely to be caused by

the first two factors. But an excellent coordinator pre-

vents from these faults. Hence, the dynamic switch-

ing strategy, subdivision of different types of behaviors

and designing of the corresponding control law are in-

troduced. Furthermore, the behaviors that are usually

needed for AMR to wander free in an unknown envi-

ronment (including outdoor, indoor and maze) are de-

fined clearly in the following:

* Environment classification;

* Path tracking;

* Goal reaching;

* Obstacle avoidance;

* Wall following;

* Corridor walking;

* Emergency U-turn;



* Self rotation;

* ...;

2.2. Related Work

The world’s first intelligent mobile robot Shakey [20]

was developed at Stanford in 1960’s. Following these

methods, more and more advanced modern control

approaches have been proposed and successfully ap-

plied to AMR in industrial contexts [63]. These control

approaches can be classified into the following cate-

gories according to different control theories:

(1) artificial potential field (APF) [23],

(2) vector field histogram methods [30],

(3) virtual target approaches [67],

(4) dynamic window approaches [19],

(5) fuzzy logic control (FLC) [25],

(6) neural network methods [56],

(7) bug methods [28], and many others. Among

the various local or reactive navigation methods, some

problems continue to bother them, such as local min-

imum trap, complex scenarios, lack of prior knowl-

edge, etc.

The well-known traditional APF [23] and its ex-

tended methods [24,25,72] are suitable for underlying

on-line control in dynamic environments and low pro-

cessing needs, but it has a problem of local minima

[72], which needs to resort global knowledge of the

environment at a higher layer. The Bug family meth-

ods [15,28] are inspired by bug’s behavior on crawling

along the obstacle. These approaches are well known

for local navigation with minimum sensor, and also for

shorter timing, shorter path planning, a simpler algo-

rithm and better performance. But the performance of

these approaches depends on the shape of the obsta-

cles in the environment and need some global visual

information. Moreover, the Bug family algorithm usu-

ally ignores robotic’s practical setting (e.g., for kine-

matic or dynamic constraints). FLC is indeed one of

the most fundamental methods and widely used to co-

ordinate numerous basic tasks involved in path plan-

ning of behavior-based robots. Many FLC approaches

with other complementary techniques were developed

to solve some of mobile robot navigation problems in

obstacle avoidance [25,27], path tracking [4] and be-

havior coordination [22,60]. Although FLC rules of-

fer possible implementations of human knowledge and

experience which do not require a precise analytical

model of the environment, they cannot obtain the op-

timal solution and mostly fail while dealing with trap

situations and complex scenarios [31].

AMR behavior based reactive navigation usually

involves many aspects such as environment identifi-

cation, control structure, dynamic behavior selection

strategies, robot physical setting, etc. The study of

MBDSP [31,32,33,35,51] usually emphasizes on one

or two aspects and the other properties are simplified

or ignored.

In this study, most of them are carefully con-

sidered to obtain the desired behaviors of the corre-

sponding environment models and reduce the influ-

ence of the local minimum traps of complex unknown

environments. Unlike APF and bug family methods

[15,24,72], which do not care about the robotic phys-

ical characteristics completely. But in this paper, the

kinematic behaviors are considered to be designed by

Lyapunov theory in accordance to robotic character-

istics which are suitable for indoor and outdoor en-

vironments. Design of the specialized behaviors con-

trol law is beneficial for multi behaviors co-ordination.

This study also uses an enzymatic numerical P sys-

tem to improve the parallel computation performance

of the environment classifier and behavior coordina-

tor. Thus, the computations are flexible and are in ac-

cordance with reactive navigation. For analogy, some

studies emphasising the advantages models of paral-

lelisation are reported in [57,54,1].

2.3. Enzymatic numerical P systems

ENPS are naturally distributed and parallel computing

models, in which numerical variables store informa-

tion. Also a set of evolving rules in each membrane

region can iterate simultaneously according to the ac-

tivation conditions, and transmit information between

the nodes (membranes). A standard ENPS is as fol-

lows [61]:

Π = (m,H,µ,(Var1,E1,Pr1,Var1(0)),
. . . ,(Varm,Em,Prm,Varm(0)))

(3)

where

1. m is the number of membranes, m ≥ 1;

2. H is an alphabet that contains m symbols;



3. µ is a membrane structure;

4. Vari is the set of variables from membrane i,

and Vari(0) is the initial values for these vari-

ables;

5. Ei is a set of enzyme variables from membrane

i, i.e., Ei ⊂Vari;

6. Pri is the set of programs (rules) in membrane

i, composed of a production function and a

repartition protocol, which have the following

two forms.

• Enzymatic form: the jth program

Pr j,i = (Fj,i(x1,i, ...,xki,i),et,i,c j,1|v1 + ...+
c j,ni

|vni
), where et,i ∈ Ei, Fj,i(x1,i, ...,xki,i) is

the production function; ki is the number of

variables in membranes i; c j,1|v1+ ...+c j,ni
|vni

is the repartition protocol; ni is the number

of variables contained in membranes i plus

the number of variables contained in chil-

dren and parent membrane of i; the value

q =
Fj,i(x1,i,...,xki ,i

)

∑
ni
n=1 c j,n

, denotes “unitary portion"

to be distributed to variables v1, ...vni
, where

these variables can be calculated according to

their corresponding coefficients c j,1, ...,c j,ni
at

time t;

• Non-enzymatic form, which is just like the

standard NPS:

Pr j,i =(Fj,i(x1,i, ...,xki,i),c j,1|v1+ . . .+c j,ni
|vni

).

1M

1,1 11 31 21 11 11 31Pr : * ( )1 | 2 |x x x e x x+ ® +

2M

11 21 31 11 21[2], [4], [1], [5], [3]x x x e e

2,1 21 31 21 21 23Pr : 3* ( )1| 1 |x x e x x+ ® +

2,2 12 22 32 21 22Pr : 2* 3* 1| 2 |x x x x x+ + ® +

1,2 12 22 12 12 31Pr : 2* 4* ( )1| 3 |x x e x x+ ® +

13 23 13[5], [4], [3]x x e
3M

1,3 13 23 12 13 21Pr : 2* 3* ( )2 | 1|x x e x x+ ® +

12 22 32 12[4], [2], [1], [5]x x x e

 

Figure 2. A membrane with an enzyme variable

Inspired by the catalyzing reactions of the biolog-

ical enzymes, the enzymatic action in ENPS model is

to select the valid rules. Here we illustrate how the

ENPS works in Figure 2,where there are four variables

x11[2],x21[4],x31[1] and e11[5], one production func-

tion x11 ∗ x31 + x21(e11 →) and one repartition pro-

tocol 1|x11 + 2|x31 inside the membrane M1. In this

case, e11 > min(x11,x21,x31) and the amount of en-

zyme is more than the number of variables, which in-

dicates that reaction can take place. Then, function

Fj,i(x1,i, ...,xki,i) = 2∗1+4 = 6 is computed, followed

by the the sum of these repartition coefficients calcu-

lation: C j,i = ∑
ni
n=1 c j,n = 2 + 1 = 3. The value q =

Fj,i(x1,i,...,xki ,i
)

C j,i
= 6

3
= 2, denotes “unitary portion" to be

distributed to variables v1, ...vni
, where these variables

can be calculated according to their corresponding co-

efficients c j,1, ...,c j,ni
at time t +1. So in this case the

new value is x11 = q∗1 = 2 and x31 = q∗2 = 4.

ENPS have flexible computing feature. Because

of the hierarchical membrane structure with multiple

rules in one region characteristics, enzyme variables

can be used for conditional transmembrane transport

and decide on the rules of evolution direction. The ac-

tive rules are performed simultaneously inside their

membranes, but unnecessary rules are not carried out

and the results are distributed in globally uniform way.

The computing power of the ENPS, and efficiency of

the membrane structure representation for designing

robotic behaviors have been investigated in [61] and

[8], respectively.

3. Design of Environment Classifier and Behavior

Coordination Controller

3.1. Design of Environment Classifier

In order to respond according to the appropriate be-

havior, AMR should know the relationship between its

current status and the local environment at first. The

output of the environment prototype will work as the

features of the essential environment for navigation,

and need not store or deal with unnecessary details.

3.1.1. Local environment prototype:

Based on our understanding of the outdoor or indoor

navigation, there are ten cases [56] for a robot, such

as: following a left-side wall, wandering in open area,

crossing a corridor or meeting a right-side obstacle,

etc. Figure 3 lists these ten cases. At the first row of

Figure 3 five following cases have been shown: left



wall (LW), right wall (RW), hallway wall (HW), left

corner wall (LC) and right corner wall (RC). The five

cases of meeting an obstacle are defined at the second

row of Figure 3, i.e., front wall (FW), left side (LS),

right side (RS), two side (TS) and dead end (DE).

Left wall

(LW)

Right wall

(RW)

Left corner

(LC)

Hall way

(HW)

Dead end

(DE)

Right corner

(RC)

Front wall

(FW)

Left side

(LS)

Right side

(RS)

Two side

(TS)

Figure 3. Ten prototypes/cases of local environment robots may

meet
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2G

0G

5G

4G 3G

e-puck sensors (top view)

(a)

obstacle meeting and sensor group

(b)

1G6G

Figure 4. IR sensors placement for the e-puck

Before classification of the various local environ-

ments by sensor, the robot’s sensor feature must be

defined. In order to reduce the cost of a sensor de-

vice, e-puck has only eight 8 Infra-red(IR) distance

sensor around the body in Figure 4(a). The Figure 4(b)

shows the sensors IR1···8 layout and the probing direc-

tion from the top of the robot. The values from the 8 IR

are grouped into (G0,G1, . . . ,G6) as they meet some

obstacle or follow some wall. For instance in Figure

4(b), the values for the groups (G4, G5) and (G1, G2)

will be bigger than the other groups when they meet

the left wall and right side obstacle conditions (big-

ger value means smaller distance to obstacle), respec-

tively. Figure 5 shows the 11 sensory patterns regis-

tered for the entire prototype environment which cor-

respond to the 10 cases of maximum possibility ac-

cording to the assumptions in Figure 3 and NO repre-

sents there is no obstacle in the environment.
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Figure 5. Sensory patterns for 11 cases

3.1.2. Environment classifier design based on ENPS:

In this paper, we propose a local environment classifier

based on ENPS to quickly identify the sensory patterns

when AMR is surrounded by obstacles. Fast and ac-

curate environment classification is beneficial for the

response to the appropriate behavior.

As shown in Figure 6, the environment classifier

is designed by using a membrane system with a hi-

erarchical membrane structure containing four mem-

branes. The inner membrane Compute Environment

Model is used to match the 11 case environment

model. According to the sensor data, it has 11 vari-

ables, where s j

[

(

sensor j − pi
j

)2
]

, ( j = 1 · · ·8) repre-

sent the 8 infrared sensor match errors.

The pi
j (i = 1 · · ·11) represent the 11 cases of en-

vironment patterns in Figure 5. The enzyme Ec [vin]
has the threshold input value vin as the initial value,

and it is used to decide whether the rules Pri_ j,sensor j

should be executed according to the values of the vari-

able of s1···8.

Rule Pri_ j,sensor j is executed when sensor j is

matched with i-th environment pattern patti_ j success-



fully and the variables sumi [0] and Sumall [0] are as-

signed with value 1 simultaneously.

Again, sumi is used to store the number of suc-

cessful match of the ith pattern (i = 1 · · ·11), where

larger value represents higher match degree. Then, the

numbers are sorted from big to small. The Variable

Sumall is proposed to store the total number of suc-

cessful matches in 11 sensory patterns, which is fur-

ther used to understand the accelerated sorting instead

of traditional sorting method (such as Bubble Sorting,

Hill sorting, etc).

The inner membrane Find Out Several Possible

Pattern is designed to find out several more likely pat-

terns with nine variables, where

(1) Saver [0] is the set of average time of total suc-

cessful match through rule Pr1, patterni (i.e., first pro-

gram for pattern i = 1,2, . . . ,11).

(2) The variable pati [0] represents the distance

difference between pati [0] and Saver [0] though the rule

Pr2, patterni.

(3) The Enzyme Eaver [0] is combined with pati in

Pr3, patterni to verify whether this rule is applicable

or not.

The execution of this rule means, this sensory pat-

tern is a matching environment prototype and the next

rules are applicable. The Enzyme Emax [0] is set to 9 in

Pr3, patterni. Since the pattern variable sumi must be

less than 9, the rule Pr4, patterni can be applied, and

the enzyme Epat_i [0], Epatt_i [0] are set to pattern value

sumi. The pattern sum variable Msum [0] also accumu-

late one copy of sumi. Then the rule Pr5, patterni is

executed and the initial value 1 of variable numi [1] ac-

cumulate to the sum variable Numsum [0] which works

as a counter.

The innermost membrane Find Out Optimal Model

has two variables. The average variable Spat_i [0] is as-

signed to the number of the group pattern whose val-

ues are bigger than Saver in membrane Find Out Sev-

eral Possible Pattern. So, Spat_i must be larger than

Saver, and it can decide whether rule Pr2 can be acti-

vated while combined with the enzyme Epatt_i. It can

also find out the optimal pattern and the output of the

most possible result in the i-th pattern is stored into

No. Note that, the enzyme EH in skin membrane Out-

put Environment Model No must be assigned to double

value of ith. For instance, if the most possible pattern

happens at i = 1 and EH only get one part value of ith,

then Pr2,main in skin membrane cannot be activated

because of the initial value of variable CT being 1, and

the computing cannot be finished. It is used to ensure

that the rule Pr2,main in the skin membrane must be

executed and the computing is terminated. Meanwhile,

the variable Outno in the skin membrane collects the

output result of the computation.

3.2. Dynamic Multi-Behavior Coordination

In order to explore complex and unknown environ-

ments, AMR not only needs to be promptly reactive,

it also must act safely and smoothly. Moreover, AMR

can break away from local minima trap and arrive

at the goal finally. This section describes how to co-

ordinate with these behaviors by dynamic selection

mechanism. It should be noted that the control law de-

sign for all behaviors in this article is described in de-

tail in Appendix.

3.2.1. Multi-behavior coordination strategy

The proposed flow chart of dynamic multi-behavior

selection is depicted in Figure 7. In Figure 7, Flag =
1 means AMR is moving towards the goal until

some "obstacles" are detected, where dgr is the dis-

tance between goal and robot. It is defined as dgr =
√

(xg − xr)
2 +(yg − yr)

2
, where (xg,yg) and (xr,yr)

represents the coordinate of goal and robot, respec-

tively. It should be getting smaller and smaller while

running towards to the goal, but in contrast, if it is be-

coming bigger, it means that the obstacle avoidance

or wall following mode is operated and the robot has

moved far away. AMR can determine the accurate sta-

tus relationship between itself and the obstacle by en-

vironment classifier at once.

The "obstacles" can be grouped as

(1) obstacle cases, i.e., FW, LS, RS,

(2) wall follow cases, i.e., LW, RW, HW, LC, RC

(corridor walking also classified as this case), and

(3) the dead end cases, i.e., TS, DE.

AMR might fall into the trap while avoiding the

obstacle or following the wall. In order to resolve the

local minimum problem, AMR must solve the prob-

lems such as positional relationship among goal, ob-

stacle, wall and robot. Also must investigate whether

the distance dgr is minimal and what kind of obstacle
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Figure 6. Membrane classifier for 11 environment patterns
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Figure 7. Flow chart of multi behavior coordination controller

is around? For instance, if some obstacles or walls are

located at the right side of the AMR according to the

environment model case, then the goal is located at the

left side of the robot, and dgr is the minimal distance.

Also, AMR should enter the goal reaching mode. On

the other side, if the goal and obstacle are located on

the same side of AMR, then even if dgr is minimal,

the goal reaching mode cannot be activated. In another

example, in order to go out of the maze, if the robot

has just passed the wall (obstacle) and entered into the
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Figure 8. Dynamic multi-behavior coordination membrane controller

open area, it should go to the judge state and select

goal reaching mode directly or self-rotation mode to

follow wall again.

In this work, an interesting dynamic multi-behavior

selection strategy is constructed to speed up the be-

havior coordination by parallel processing. Moreover,

the corresponding co-ordination controller based on P

system is shown in Figure 8.

3.2.2. Multi-behavior coordination membrane

controller design:

MBCMC is shown in Figure 8. It is designed by us-

ing a P system with a hierarchical membrane struc-

ture containing eight membranes. The skin membrane

Main has 27 variables.

(1) Ci =
[

(inputno − i)2
]

, i = 1,2, . . . ,11 are the

environment case variables. These variables have the

initial value (inputno − i)2
, inputno and it is one of the

11 patterns from environment model membrane clas-

sifiers.

(2) Agr1

[

inputangle

]

and Agr2

[

−1∗ inputangle

]

are

the angle variables and have the input value θ = θR −

θG as initial value, which depicts the positional rela-

tionship between robot and goal. θ < 0 means that the

goal is located at the left hand of robot and vice versa

(Figure 17(b)).

(3) Com
le f t
ob [0],Com

right
ob [0] and Com

f ront
ob [0] are

left, right side and front obstacle avoidance behavior

control output variable, respectively. Again, Com
le f t
w f [0],

Com
right
w f [0] and Comhall

w f [0] are left, right wall fol-

lowing and hall crossing behavior computation output

variable, respectively.

(4) The variable Comde [0] is the U-turn output

variable for dead end case and Comgr [0] is the goal

reaching output variable. Moreover, Comrs
no [0] is the

self-rotation behavior control output variable.

All of the output variables have the initial value 0,

but when some of the behavior gets triggered, then the

corresponding variable value is set to 1.



(5) The variable T h [1] is the threshold variable

with initial value 1 and Dmin [0] is the minimal distance

variable with initial value 0.

(6) The enzyme variable Ea [0] and ET [0] have the

initial value 0, but when ET is not equal 0, the con-

troller is terminated.

(7) The Out putdist
min

[0] is the minimal distance out-

put variable which has initial value 0.

The inner membrane Judge Environment Model

has five enzyme variables, where

(1) Eno [0], Ede [0], Eob [0] and Ewa [0] work as trig-

ger enzymes for not any obstacle case, meet dead end

case, meet obstacle case and wall case, respectively.

(2) Enzyme Ec has initial value 1, and is used

to decide whether the 11 rules Pri=1,...,11,case should

be executed or not according to the environment case

variables Ci=1,...,11. For instance, if inputno = 9, then

the initial value of C11 = (9−11)2 = 4 and hence en-

zyme Ec < C11. So, the rule Pr11,case can not be ac-

tivated. On the contrary, for rule Pr9,case, the initial

value of C9 = 0, hence Ec > C9, and rule Pr9,case is

executed. Moreover, Comde has set value 1, U-turn be-

havior is selected, ET is set to 1 and controller ends.

The inner membrane Judge Distance If Minimal

has two variables.

(1) The enzyme Emin
dist

with the input value inputmin
dist ,

which is also the minimum distance of all the distances

between the robot and goal.

(2) The variable Dcur has the input value inputcur
dist

as the initial value, which is the current distance be-

tween the robot and goal.

Both of these variables decide whether the rules

Pr1,distmin and Pr2,distmin should be applied or not. If

Dcur < Emin
dist , both rules are activated and the minimal

distance variable Dmin [0] is set to 1. Meanwhile, the

minimal current distance variable Dcur is collected as

the output of the variable Out putdist
min

[0].
The inner membrane Select Goal Reaching Case

has two enzyme variables, i.e., Esr
no [0] and E

gr
no [0] with

initial value 0. This membrane will be activated by

enzyme Eno = 1 as case 11 (no obstacle around the

robot).

Rule Pr1,not_any is used to judge the robot. If

there is any reverse movement away from the goal,

then the value of Dmin is equal to 0. It means that the

robot has just left the obstacle or wall case. The rule

Pr2,not_any is activated when Esr
no = 1 and Comsr

no is

set to 1. The robot will implement the rotation mode.

It will turn left or right according to the previous be-

havior case. For instance, the robot will turn left when

the previous case is left obstacle avoidance or left side

wall following, and vice versa. This mode helps the

AMR to find the wall or obstacle surface again while

running around the maze or to avoid the U shape ob-

stacle. Rule Pr3,not_any will let enzyme E
gr
no be equal

to 1 as Dmin = 1 (trend to goal movement). Again,

E
gr
no = 1 will activate the rule Pr4,not_any and the

robot will obtain the goal reaching mode. Moreover,

ET is set to 1 and the controller ends.

The inner membrane Select Obstacle Avoidance

Case has two enzyme variables E lr
ob [0] and ERS

ob [0] and

one sub membrane. This membrane is activated by the

enzyme Eob = 1 as in case 6,7,8 (front, left or right

obstacle).

Rule Pr1,obstacle is also used to judge the robot

whether there is any reverse movement away from the

goal like rule Pr1,not_any in membrane Select Goal

Reaching Case, and rule Pr2,obstacle, Pr3,obstacle or

Pr4,obs tacle is activated according to the values of

C6, C7 and C8. For instance, if C8 = 0, then the rule

Pr4,obstacle is executed, Com
right
ob is set to 1 and the

robot implements right side obstacle avoidance. More-

over, ET is set to 1 and the controller ends. On the other

side, rule Pr5,obstacle assigns ERS
ob = 1 as Dmin = 1

(trend to goal movement), and it activate the rules in

sub membrane Judge Robot State Obstacle.

Judge Robot State Obstacle has 5 enzyme vari-

ables and 4 common variables.

(1) Enzymes Eogle f t [0], Eogright [0], EOGlr [0],
EOGlr [0], EOGrl [0] have initial value 0 and Eog [−1]
has initial value −1.

(2) The common variables Ole f t [−1] and Oright [−1]
are used to mark the obstacle and locate it at the left

or right side of the robot by changing the initial value

from −1 to 1.

(3) Go
le f t

[−1], Go
right

[−1] are used to record the

goal and locate it at the left or right side of the robot.

The rule Pr1,obstaclers is activated when C6 = 0

(case 6: the obstacle is located at the front of the robot)

and both Com
f ront
ob and ET are set to 1.

The AMR should compute the obstacle avoid-

ance at once and without any further analysis. Rule

Pr2,obstaclers should be activated as case 7, two con-

tribution is assigned to Ole f t , one contribution is as-



signed to Oright , then Ole f t = −1 + 2 = 1, Oright =
−1+1= 0 (means obstacle is located at left side of the

robot). It is same as rule Pr2,obstaclers to represent the

right side of the obstacle. Both rules Pr4,obstacleers

and Pr5,obstacleers are used to judge the location of

the goal at the left side or right side of the robot ac-

cording to the variables Agr1 and Agr2.

Enzyme Eog can obtain contribution from rules

Pr2,...,5,obstacleers. Also if Eog is large enough (2 is

obtained in this controller), then it will activate rules

Pr6,obstacleers and Pr7,obstacleers. Moreover, both

the rules are used to judge whether the obstacle and

goal are located on both sides of the robot.

If rule Pr8,obstacleers or Pr9,obstacleers is acti-

vated, and both of Comgr and ET are set to 1, then the

AMR should be able to compute the goal reaching. On

the contrary, if the rules Pr10,...,13,obstacleers are ex-

ecuted while the obstacle and target are located at the

same side of the robot, Com
le f t
ob or Com

right
ob is set to

1. So, AMR continues to maintain obstacle avoidance

despite closer to the goal.

The operating mechanism of inner membrane Se-

lect Wall Follow Case and its sub membrane Judge

Robot State Wall for wall following are similar to ob-

stacle avoidance. To restrict the length of the paper, we

do not expand the description further.

4. Simulation Results

In this section, the performance of the proposed envi-

ronment model classifier and dynamic multi-behavior

co-ordination controller is verified based on the Mat-

lab simulation. Furthermore, the simulation under We-

bots (robot simulation software) environment is used

to test the performance of mobile robot navigations in

different environment models. All the simulations are

conducted on the PC with CPU 2.8GHz, 4GB RAM,

and the software platform MATLAB7.4 and Windows

7 OS. E-puck robot has 8-infrared sensors and Max

IR value is 4096. The size of the robot is 70 mm in

diameter and 55 mm in height with 2 stepper motors.

4.1. Performance metrics

A good selection of the metrics is very important

for the control performance. The autonomous robot

should reach to the target safely and smoothly in min-

imum time with the shortest distance. In this section

we will introduce some metrics that evaluate the per-

formance of robot motion methods.

1)Time to reach the goal: Ttog is the total time to

approach to the goal. Less time means better perfor-

mance.

2)Path length: Ltog is the total length of the path

from start point to goal point. Shorter length is desir-

able for better performance. Ltog can be represented by

equation (4).

Ltog =
∫ sn

s0

(1+( f
′
(s))2)1/2ds (4)

3)Minimum distance overruns: Dmin
obs used to mea-

sure and record the number of times the sensor value

of any channel is less than the minimum safety dis-

tance Dsa f e from obstacle. Dmin
obs can be represented by

equation (5).

Dmin
obs =

{

0.1 i f Min(si)≤ Dsa f e

0 otherwise
(5)

4)Mean distance to obstacles: Dmean
obs is the mean

value of the distance between the obstacle and the

robot’s sensors in each execution cycle of the entire

walking process. Higher values means the walking

will be safe.

5)Number of collisions: Ncoll is the number of

times the robot hit an obstacle. The number of the col-

lisions also indicates a degree of safety.

6)Mission failures: N f ail is the number of times

the mission failed to reach the end. The more times the

task fails, the worse the algorithm adaptability.

7)Number of oscillation: Tosc is the frequency of

change towards the forward direction of the robot dur-

ing walking, three consecutive switching clocks to-

wards the forward direction are one oscillation be-

havior, such as left-right-left, or right-left-right. The

smaller the value, the smoother will be the walk of the

robot. Tosc can be obtained by equation (6).

Timeosc =

{

0.1 i f therobot oscillates

0 otherwise
(6)



4.2. Simulation for Environment Classifier

Since the navigation environment is usually unpre-

dictable, complex and partially unknown, a single en-

vironment model membrane classifier can hardly take

charge of the whole task. If a single membrane clas-

sifier (SMC) is used, it must have a complex struc-

ture with many internal parameters to solve the prob-

lems of navigation in complex environment. There-

fore, a multi-membrane classifier (MMC) (in this pa-

per, two or three) has been employed to identify the

environment model with good fault-tolerance capabil-

ities. Since the MMC uses the SMC modules (each

covering a specific local environment), it can quickly

and easily find good local solutions.

The simulations on e-puck robot with 8 infra-red

sensors around have been shown in Figure 4(a). In or-

der to reduce the impact of sensor noise, the sensor’s

value is filtered with a given threshold before being

sent to the membrane classifier. All values smaller than

70 are ignored. At the same time, in order to simplify

the environmental identification model, once the value

of some sensor is greater than 70 (close to the obsta-

cle), it activates this channel and is set to 1. Otherwise,

is set to 0.
Using aforementioned informations, three kinds

of SMC can be constructed in the following manner:
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Figure 9. Binary encoding of C1,C2 and C3 modular

Note that row 1, . . . ,11 of the binary encoding of

C1, C2 and C3 modular represent the 11 environment

patterns shown in Figure 5. The last row is all zeros

that represents not any obstacle is around the robot.

Figure 10 shows that the actual paths are taken by

SMC and MMC. SMC uses C1 and MMC uses C1 and

C2.

 

(a)

 

(b)

(c)

Figure 10. Escape from a local minimum in a complex environment

There are several local minimum traps in Figure

10(a) and (b). As shown in Figure 9, MMC can break

away from both of the local minimum trap and arrive

at the destination successfully as in Figure 10(a) and

(b). But SMC can not struggle to break away from

the local minimum trap (A) point in Figure 10(a), and

sometimes can not break away from the local mini-

mum trap (A) or (B) in Figure 10(b). SMC alternately

judge the environment patterns by switching from case

2 to 7 constantly while reaching the edge of the trap.

The environment pattern changes to case 3 (Hall way)

while reaching the bottom of the neck trap. But if the

robot size is bigger than the spacing of the hall way, it



Table 1. Performance comparisons between SMC and MMC while

escape from local minimum

Nmodule N f ail Ttog (s) Ltog (mm) Dmin
obs Ncoll

Figure 10(a) SMC 1 10 fail fail fail fail

MMC 2 0 48.7 355.3 1.3 0

Single NN [56] 1 10 fail fail fail fail

M-NN [56] 5 0 49.1 357.6 1.3 0

Figure 10(b) SMC 1 4 64.2 564.2 1.5 4

MMC 2 0 57.1 528.3 1.6 1

MMC 3 0 56.9 526.9 1.7 0

will fall into the trap and the robot speed will become

zero while the left and right wheel are still running.

But MMC can move away from the trap successfully

because MMC judge this pattern as 9 cases and would

activate U-turn behavior to break away from the trap.

Figure (c) shows the operation-related parameters of

the robot when it gets out of the local minimum trap

in Figure (b) and reaches the target, where left wheel

torque and right wheel torque are the left and right

wheel driving torques of the differential robot.

Under the same obstacle configuration as in Fig-

ure 10, we have changed the start and goal positions

and ran the simulation ten times. For the same nav-

igation task, Table. 1 is listed in the performance of

SMC and MMC. The Nmodule is the number of modu-

lar and N f ail is the number of failures. Whenever SMC

fall into the trap in Figure 10(a) every time, N f ail is

10. But MMC can have better identification of the en-

vironment and can move away from the trap success-

fully, where N f ail is 0 and Ttog is the total execution

time. Since MMC has a low elapsed time, it has bet-

ter performance than SMC. The Ltog is the total length

of the path and SMC has the longer path length than

MMC because it walks a duplicate path due to the en-

vironment model identify error. The number of colli-

sions Ncoll indicates a safe navigation. The results in

Table.2 show that MMC has a better performance than

SMC. In addition, unlike in [56] where “5-by-1" mod-

ular neural network (M-NN) environment classifier is

required to replace single NN classifier to realize suc-

cessful navigation in Figure 10(a). This paper consid-

ers only two kinds of modular (C1, C2) to achieve the

same task. As shown in Table.2, the performance of

different sizes of MMC(2,3) for Figure 10(b) is not

obvious. So, the number of modules used depends on

the specific local environment. Furthermore, NN en-

vironment classifiers need larger and greater amount

of samples to train the controller. There is a need for

about 3000 ultrasonic patterns to train NN classifiers

[56] and 50,000 samples with speed of 4.5 hours for

training the navigation reservoirs [5]. On the contrary,

SMC or MMC based on ENPS does not need to train

any processing and is simple to initialize the environ-

ment model.

4.3. Simulation for Multi-Behavior Coordinator

Several behavior coordination schemes are employed

to evaluate the performance, such as fuzzy logic ap-

proach [35], expert fuzzy cognitive map (FCM)-based

approach [31], fuzzy discrete event systems FDES-

based approach [22], optimized modular NN approach

[56]. Throughout the simulations, we have adopted

modular C1 as in MMC in Test I, (C1, C2) as in Test

II and Test III, modular (C1,...,C3) as MMC in Test IV.

The cruising speed of the robot is set to 30 mm/sec

and the minimum safety distance Dsa f e = 24mm. The

translation cycle of robot is set to 50 ms. The follow-

ing simulation tests are carried out for validating the

proposed approach.

Test I: Unstructured environment: Figure 11

shows navigation of different trajectories by the pro-

posed MBCMC and NN controller [56]. In the en-

vironment of Figure11, multiple obstacles of differ-

ent shapes and sizes are randomly distributed, and set

up three different groups in an unstructured environ-

ment with the same obstacle layout. Contrast experi-

ments between the starting point and the target point

are shown in Figure11 (a)-(f). Considering the ran-

domness of the autonomous robots in exploring the

unknown external environment, under the same start-

ing point and target point conditions, the autonomous

robot performs computer simulations of ten naviga-

tion respectively, and the average of each performance

metrics in ten experiments is used as the navigation

performance. Table.2 shows the comparison results of

the performance metrics of the three groups of exper-



iments. It can be seen that the MBCMC method has

better performance than the NN approach. MBCMC

has a smooth trajectory, less time overhead, and fewer

oscillations.

  

(a)                  (b)                  (c)  

  

 (d)                  (e)                   (f)  

Figure 11. MBCMC (a)-(c) and NN [56] (d)-(f) trajectories in un-

structured environment

Test II: G-shape and snail shape environment:

Figure 12 shows the expected results as previously de-

picted in MBCMC. In [35], a new fuzzy logic con-

troller for robot navigation has been developed, which

has adopted an actual-virtual target to escape from the

local minimum by defining a sum of turning angles.

If the sum of turning angles throughout the way is

near 0o, the robot would decide to go toward the real

target.

If the total amount of turning angles is negative,

then the robot will have a counterclockwise motion to

compensate the amount at the opening point.

Since the sum of turning angles is −360o at point

“(B)" in Figure 12(a), the robot will not execute goal

reaching and will turn counterclockwise to continue

following the wall until the point “(B)". But MBCMC

will switch the control scheme and run towards the

goal directly. Although after breaking away from the

G-shape obstacle [35], it will spend more time and run

more distance than MBCMC to get goal point.

Snail shape in Figure 12(b) is more complicated

trap than G-shape. The distance between the corri-

dors of the snail must be wide enough. The robot

in [35] after encountering the first wall (left side or

(a) G-shape (b) snail shape

Figure 12. Escape from a G-shape and snail shape environment

right side), follow the left side or right side wall and

then break away from the snail shape obstacle suc-

cessfully. But the snail shape environment in this pa-

per has a very narrow corridor and with a dead end.

Hence, it will effect the definition of the virtual target

[35] and event weights of the expert-FCM graph [31].

Also, the robot falls into a trap at dead ends “(A)" as

shown in Figure 12(b). Since hall way and dead end

are in the general definition of environment patterns

and MBCMC can identify those cases in this paper.

Moreover, the wall following method is also modified

by equation (33) to a suitable corridor environment.

The results of Figure 12(b) prove that the robustness

of the proposed approach is better than the approaches

in [35,31], whether it is a wide corridor or narrow cor-

ridor.

Test III: Building environment: The robot starts

in room 1 and navigates to the goal at room 2. Figure

13 shows that both MBCMC and M-NN [56] started

at room 1, crossed the narrow corridor and arrived at

the turning point “(A)". MBCMC can implement self-

rotation strategy according to the environment model

and aim the room 2 as the goal. But the robot (M-NN

[56]) failed to enter through the “door" at (A), because

it was confused by the corridor module and the left

turn module (adopt the competitive coordination). The

robot ([56]) can break away the dead end “(B)" in Fig-

ure 13, but it spends more time to reach the goal than

the proposed approach.

Test IV: Maze environment: The performance of

MBCMC was examined in the similar environments

([22]) with more complex mazelike traps in Figure 15.

Figure 15(b) shows the similar navigation scenarios of

the robot moving in the maze environment with irregu-

lar obstacles. FDES-based approach [22] employs su-

pervisory control theory of fuzzy discrete event sys-



Table 2. Performance comparison of MBCMC and NN [56] under the same obstacle distribution

Method Ltog(mm) Ttog(s) Tosc Dmin
obs

First group Figure (a) MBCMC 636 23.5 1.5 1.2

Figure (d) NN in [56] 692 25.4 2.2 1.6

Second group Figure (b) MBCMC 552 20.6 1.8 0.7

Figure (e) NN in [56] 573 21.2 2.4 0.9

Third group Figure(c) MBCMC 688 25.2 1.7 1.1

Figure(f) NN in [56] 703 26.3 2.2 1.5

Figure 13. Robot starts at room 1 and goes to room 2

tems to model and control several navigation task of

a mobile robot. Two deliberative behaviors ("Go to

Target"(GT) and "Route Follow" (RF)) and three re-

active behaviors ("Wall Follow"(WF), "Avoid Obsta-

cle"(AO) and "Avoid Dead ends"(AD)) are weighted

through FDES and navigate the robot to the final target

successfully. In this method, target seeking is based

on following a series of immediate sub-targets (way-

point). GT is used for path optimization and aims to

find the next nearest waypoint. RF is used to navi-

gate the robot through way points. Therefore the robot

can trace a collision-free path with optimum distance

towards the actual target in maze-like environments.

Unlike in [22], the start and end points are identified

and moreover the waypoints are given manually. The

robot in this paper only knowns the start point and goal

point and also can identify the surrounding unknown

environments by MMC accurately. The dynamically

chosen reasonable behaviors by MBCMC, the AMR

can help to walk out of the maze safely. Figure 15

shows the traveled trajectory with these environments,

where both MBCMC and FDES-based approach have

the similar path. Also, Figure 16 depicts the Yaw angle

between robot direction and goal, environment pattern,

left and right wheel driving torque and robot speed re-

sults of MBCMC related to the complex maze-like en-

vironment in Figure 15.

Figure 14 depicts autonomous robot’s trajectory

in different structured / unstructured maze environ-

ments using the proposed MBCMC approach. These

different types of maze environments have many dif-

ferent types of local minimum traps. But the robot

does not fall into the traps and the trajectory is

smoother while maintaining a certain safety distance

from obstacles. It shows that MBCMC can well adapt

to navigation tasks in different complex environments

and find an optimal path to the goal. Table.3 depicts the

performance evaluation of the proposed MBCMC with

the existing approach in different kinds of environ-

ment. Moreover the trajectory is smoother and safer

than other methods, the oscillation times of MBCMC

is also the smallest. This is due to both the behavior

selection strategy and computational efficiency of the

membrane controller, as well as the detailed design of

each behavior.

5. Conclusions

In this paper, a simple and effective environment pat-

tern membrane classifier is constructed based on par-

allel distributive computing models known an ENPS.

It can be identified by eleven environment patterns and

can build or modify environment modules quickly. It

is observed that the proposed MMC and MBCMC are

able to provide a robust and successful navigation with

a smooth path in different type of environments. The

proposed bio-inspired controllers are validated on sim-

ulated mobile robots and comparison with neural net-

work controller and fuzzy logic controller has been

provided The proposed approach eases the design of

the behavior-based hybrid control architectures with



Table 3. Performance comparison for the three test environments

Test Method Ttog(s) Ltog(mm) Dmean
obs (mm) Dmin

obs Ncoll Tosc

Test II (G - shape) Fuzzy logic [35] 58.3 1682 17.9 1.5 2 1.2

MBCMC 31.1 897 18.5 0.9 0 0.5

Test III (Room) Neural Network [56] 90.2 2515 14.2 9.1 6 6.3

MBCMC 85.5 2308 16.8 7.3 0 4.5

Test IV (Maze2) FDES [22] 108.9 3157 15.8 7.6 0 8.7

MBCMC 112.7 3278 16.1 6.9 0 6.5

 

  

Figure 14. Unstructured environment

the higher modularity which is obtained by associating

P systems. Moreover, MMC with binary environment

model is able to cope with sensor imprecision and am-

biguous situations.

Also, introduction of more behaviors to the mem-

brane hybrid control architecture is easily performed

by adding more environment models to MMC and

events to MBCMC. To address the more complex nav-

igation tasks, studies on decentralized and modular

membrane controller can be carried out in the future.
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6. Appendix

6.1. Multi-Behavior Design

In order to adapt to the local environment, AMR re-

flective behavior and reactive behavior are properly

designed according to the physical characteristics of

the robot.
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Figure 17. Defining Path tracking and Goal reaching

6.1.1. Goal reaching:

Goal reaching is a behavior that orders the robot to

move from the current position to a destination by re-

ceiving the desired goal position from the top of the

deliberative layer. The description for goal reaching is

shown in Figure 17. The current position of AMR with

respect to the goal position is expressed in form of

the polar coordinates where d represents the distance

between goal point G1 and AMR current point Oc.

Again, ds specifies the safety distance of goal reach-

ing, and θ is the angle error between the current robot

heading vector θR and goal vector θG, θ = θR − θG.

Let the robot safety distance and AMR speed limited

are as depicted in Figure 17, then the kinematic equa-

tions [14] of AMR can be described by the following

equations

ḋ =−v∗ cosθ ; θ̇ =−ω + v∗sinθ
d

(7)

where v and ω represent the robot’s linear and angu-

lar velocities, respectively. First, select the Lyapunov

candidate function

Vgr = θ 2
/

2+
∫ d

0
S (τ)τdτ (8)

which is a positive definite function and the time

derivative of equation (8) is

V̇gr = θ ∗ θ̇ +S (d)∗d ∗ ḋ (9)

When we substitute (7) into (9), we obtain

V̇gr = θ ∗
(

−ω + v∗sinθ
d

)

+S (d)∗d ∗ (−v∗ cosθ) =
= V̇ 1

gr +V̇ 2
gr

(10)

The control law of linear velocity is

v = vmax ∗S (d)∗ cosθ (11)

where vmax is the maximum of linear speed and S func-

tion is defined below

S (d) =

{

1, d > ds

1−
(

ds−d
ds

)2

, 0 < d ≤ ds

(12)

The variable ds in (12) decides the deceleration

distance of AMR while reaching the goal. When the

robot is far from the goal (i.e.,d > ds), AMR ap-

proaches the target as fast as possible, and begins to

slow down while reaching the desired target. Substi-

tuting (11) into the second partial V̇ 2
gr of (10), since



vmax > 0, d > 0, one gets the semidefinite negative

function

V̇ 2
gr =−vmax ∗d ∗S2 (d)∗ cos2θ ≤ 0 (13)

Then, substituting (11) into the first partial of (10),

V̇ 1
gr rewriting as

V̇ 1
gr = θ ∗

(

−ω + vmax∗S(d)∗cosθ∗sinθ

d

)

(14)

The control law of angular velocity is proposed as

ω = k ∗θ + vmax∗S(d)∗cosθ∗sinθ

d
(15)

where k is a proportional constant and k > 0. Substitut-

ing (15) into (14) which results in another semidefinite

negative function V̇ 1
gr = −k ∗ θ 2 ≤ 0. Hence, one can

conclude that the first derivative of the Lyapunov func-

tion (16) is the semidefinite negative function, d = 0

and θ = 0, which results in V̇gr = 0, i.e.,

V̇gr = V̇ 1
gr +V̇ 2

gr ≤ 0 (16)

The proposed controller guarantees that v ≤ vmax

for all t ≥ 0, and drives the states d(t) and θ(t) asymp-

totically to zero. In addition, the goal reaching strat-

egy is based on the Lyapunov function which utilizes

the target distance information, has good portability.

Moreover, it is inclusive and is applied to design con-

trol laws of obstacle avoidance, wall following, corri-

dor walking with a unified "virtual target". In addition,

the control laws take into account the safety distance

close to the target and the maximum speed of AMR,

for which it has better performance of efficiency and

safety.

6.1.2. Obstacle avoidance:

This controller is responsible for avoiding the obsta-

cles that may appear randomly when AMR is moving

towards the target or following a wall. It is a reflective

action and is designed by the goal reaching method de-

scribed above. When an obstacle is detected, we sup-

pose that a dynamic goal will appear ahead of the robot

motion direction to lead it to walk around obstacle

smoothly. In Figure 18, an obstacle is around the robot

and the environment classifier accurately judge it to lo-

cate it on the right side of the robot. Thus, one should

set a new "virtual target" on the left side of the robot

to make ARM turning left in order to prevent the col-

lision. First, it must select the appropriate sensor IRi

(since several sensors detect the obstacle simultane-

ously, we must select the suitable ones to define the

reference direction of "virtual target" ). Since the ob-

stacle is located at the right side of the robot, first find

the non-zero value sensors (represent obstacle detec-

tion) from the front of left side layout sensor IR6 to

the front of right side ones IR3 (IR6 → IR7 → IR8 →
IR1 → IR2 → IR3). If the obstacle is located at left side

of the robot, then find the first non zero sensors from

IR3 to IR6 (IR3 → IR2 → IR1 → IR8 → IR7 → IR6).
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Figure 18. State describe for obstacle avoidance

In this case, IR1 is found as the candidate sen-

sor, where dmax is the maximum measurable distance

of sensor, dsa f ety is the safety turning distance of the

robot, dIR_1 is the distance reading of IR1. The virtual

pressure radius is denoted by Rv and Rv = dmax−dIR_1,

dos is the distance between Oo and Os, where Oo is the

contact point from the ray of sensor IR1 to the surface

of the obstacle. In fact, dos = dIR_1 − dsa f ety. So, the

virtual turn angle of robot θT is

θT = arctan

(

Rv

dos

)

= arctan

(

dmax −dIR_1

dIR_1 −dsa f ety

)

(17)



The direction of the new goal Onew is parallel to

the line segment OrOs. Thus, the desired new goal po-

sition can be given by

Onew =

[

xg

yg

]

=

[

xr + k ∗dw ∗ cosθNew

yr + k ∗dw ∗ sinθNew

]

(18)

where dw is the desired distance of the new goal ("vir-

tual target"), k is the proportional coefficient and the

variable θNew is the orientation of new goal Onew at-

tached on the robot platform centroid Oc measured

from the horizontal axis (OX).Moreover, θoa, the ob-

stacle avoidance angle between the current robot head-

ing line and the straight line connecting the points of

Onew and Oc, is obtained by using the following equa-

tion:

θoa = θNew −θR = θT −θIR1

θNew = θe +θT

θe = θR −θIR1

(19)

where θR is the orientation of the robot measured from

the horizontal axis (OX), and θIR1 is the mounted angle

of the sensor IR1 attached to the robot local coordinate

frame (u,Oc,v). Hence, θe is equivalent to the angle of

the sensor vector (IR1) relative to the horizontal axis

(OX).

Then, the kinematic equations of AMR for obsta-

cle avoidance can also be described by using the fol-

lowing equations

ḋw =−voa ∗ cosθoa;

θ̇oa =−ωoa +
voa∗sinθoa

dw

(20)

where voa and ωoa represent the robot’s linear and an-

gular velocities for obstacle avoidance, respectively.

Select the Lyapunov candidate function

Voa =
1

2

(

θ 2
oa +d2

w

)

(21)

Equation (18) defines a local new goal ahead of

the robot motion direction, precisely it converts the

repulsive force field of the obstacle into a gravita-

tional field of "virtual target". Obviously, as the robot-

obstacle distance starts decreasing, θT will become

bigger and the new goal of the robot is shifted to the

opposite direction rapidly. Then, a deviation control

signal of angular velocity ωoa and line velocity voa are

generated by goal reaching methods

voa = κoa ∗dw ∗ cosθoa

ωoa = koa ∗θoa +κoa ∗ sinθoa ∗ cosθoa
(22)

where koa and κoa are the proportional coefficients.

The reaction capability of the controller is regulated

by a proper pre-definition of those constants. Hence,

one can conclude the derivative of Lyapunov function

(21) is the semidefinite negative function as

V̇oa = dwḋw +θoaθ̇oa =
=−κoacos2θoad2

w − koaθ 2
oa ≤ 0

(23)

In this way, the proposed obstacle avoidance con-

troller can stably avoid obstacles.

6.1.3. Wall following:
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Figure 19. State describe for wall following

Wall following is the robot’s ability to follow a

wall. These abilities are intended to complement other

reflective behaviors in narrow spaces and corridors.

The basic objective of the wall following is the genera-

tion of a reference trajectory, parallel to a wall (even to

a bigger obstacle surrounding). If the distance and an-

gular information between the robot and wall are con-

sidered, it can use the goal reaching method to design



the wall following controller. In [14,9], the wall of the

surface followed by the robot is supposed to be paral-

lel or perpendicular and the coordinates (X ,O,Y ) are

used in order to simplify the design. Consider a more

practical situation as in the wall in Figure 19 which is

an arbitrary arrangement. The angle θrw between the

direction of robot motion and the parallel line of the

wall can be computed by the angles between the in-

frared sensors ray and wall surface. In Figure 19, envi-

ronment classifiers judge the wall located at the right

side of the robot. So, several right side group of sen-

sors (G1,G2,G3) in Figure 4(b) are used to compute

θrw. In this case, G1 is used to get θG1. For instance,

G1 has two sensors IR1 and IR2. The θIR1 is the angle

between the vector of IR1 and wall surface. Moreover,

L1 and L2 are the line length from the centroid Oc to

the wall surface through sensors IR1 and IR2, respec-

tively. Again, L1 = dIR_1 +R, L2 = dIR_2 +R, where

dIR_1 and dIR_2 are the reading data of IR1 and IR2 and

R is the robot’s radius. Hence, θIR1 can be given by

θIR1 = arctan
(

L3
L4

)

;L3 = L2 ∗ sinθ12;

L4 = L1 −L2 ∗ cosθ12

(24)

where, θ12 is the angle between sensor IR1 and

IR2, θ01 is the angle between the sensor IR1 and the

robot motion direction. So, θG1 is represented by

θG1 = θIR1 −θ01 (25)

The error angle between the robot motion direc-

tion and the wall surface is θrw, and hence we can get

θrw =

n

∑
i=1

θGi

n
(26)

where n is the number of effective group sensors,

and by effective group it means that both the sensors

can be obtained from the distance information, θGi,

also can be obtained by equation (24) and (25).

In this case, if the assumed AMR walk along the

wall at uniform speed vw f , then the kinematic equation

is reduced to

ḋer = vw f ∗ sinθrw; θ̇rw = ωw f (27)

where der is the error distance between the robot

centroid Oc and reference trajectory. Select the Lya-

punov candidate function for wall following as

Vw f =
1

2

(

d2
er +θ 2

rw

)

(28)

Then, the control law of the angular velocity ωw f is

obtained in the following manner

ωw f =−kw f ∗θrw −der ∗ vw f ∗
sinθrw

θrw
(29)

where kw f is the positive proportional coefficients.

Again, der = dpw−drw, dpw is the distance of the given

reference trajectory to wall, drw is the distance from

the robot centroid Oc to the right side wall and can be

represented by

drw =

n

∑
i=1

dGi

n
+R (30)

dGi =
dIR_i1 +dIR_i2

2
(31)

where dIR_i1 and dIR_i1 are the distance datas of

two sensors in right side effective group Gi, respec-

tively.

Then, the first derivative of Lyapunov function

(28) is the semidefinite negative function as

V̇w f = derḋer +θrwθ̇rw

= dervw f sinθrw − kw f θ 2
rw −dervw f sinθrw

=−kw f θ 2
rw ≤ 0

(32)

Thus, the proposed wall following controller can

stable trending to reference trajectory.



6.1.4. Corridor walking:

This case is similar to the wall following: the reference

trajectory is the middle line of the corridor. The control

law can be extended to solve the corridor walking as

considered in Figure 3. For this case (i.e., HW), both

the left and right side group sensors get the distance

data. If ∑
4
i=1 dIR_i > ∑

8
i=5 dIR_i, it means that the robot

is closer to the right side wall and hence it should fol-

low the right side wall. Otherwise, follow the left side

wall. In order to let the robot running in the middle of

the hallway as far as possible, dpw is reset to

dpw =
drw +dlw

2
(33)

where dlw is the distance from the robot centroid

Oc to the left side wall and can be obtained by equation

(30) and (31). The Lyapunov candidate function is also

treated as equation (28).

6.1.5. Self rotation:

When the robot comes to the corner of the wall, the

ending point of the corridor, local trap points, or other

similar situations, the robot will have self-rotation in

a clockwise/counterclock mode. Suppose the expected

rotation angle is θ ∗, and the kinematic equations of

self rotation is defined as θ̇sr = ωsr. The deviation of

the actual angle from the expected angle and its first

derivative are

θsr_d = θsr −θ ∗

θ̇sr_d = θ̇sr − θ̇ ∗ = ωsr
(34)

The control law of angular velocity is proposed as

ωsr =−ksr (θsr −θ ∗) (35)

where ksr is the proportional coeffi-cients. Define the

Lyapunov candidate function for self rotation and get

its first derivative as following

Vsr =
1
2
θ 2

sr_d

V̇sr = θsr_d θ̇sr_d =−ksrθ 2
sr_d ≤ 0

(36)

Thus, the control law of self rotation is also stable.

6.1.6. Emergency U-turn:

The emergency U-turn means that the robot should do

a U-turn while meeting the environment mode, as in

the case of (DE) in Figure 3. It is activated when the

distance between the robot and the obstacle becomes

smaller than a certain value. Also, after U-turn, the

robot continue the navigation module according to the

environment classification. U-turn can be treated as a

special case of self-rotation, where θ ∗ = π .

6.2. Stability analysis of multi-behavior coordination

controllers

To accomplish a goal navigation, it may need to ac-

tivate one of the multi-behaviors (goal reaching, ob-

stacle avoidance, wall following, corridor walking,

self rotation and emergency U-turn) in stages several

times. Thus, the Lyapunov candidate function V of the

whole system can also be composed of the combina-

tion of the six behaviors. Due to the unknown charac-

teristics of the navigation environment, the Lyapunov

candidate function V of the whole system cannot be

predetermined for a specific navigation task. Nonethe-

less, according to the conclusions in [14], the proposed

phased multi-behavior coordination controllers guar-

antee can that the robot can always reach the expected

position.


