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Abstract
The current sanitary emergency situation caused by COVID-19 has increased the interest in
controlling the flow of people in indoor infrastructures, to ensure compliance with the estab-
lished security measures. Top view camera-based solutions have proven to be an effective
and non-invasive approach to accomplish this task. Nevertheless, current solutions suffer
from scalability problems: they cover limited range areas to avoid dealing with occlusions
and only work with single camera scenarios. To overcome these problems, we present an
efficient and scalable people flow monitoring system that relies on three main pillars: an
optimized top view human detection neural network based on YOLO-V4, capable of work-
ing with data from cameras at different heights; a multi-camera 3D detection projection and
fusion procedure, which uses the camera calibration parameters for an accurate real-world
positioning; and a tracking algorithm which jointly processes the 3D detections coming
from all the cameras, allowing the traceability of individuals across the entire infrastructure.
The conducted experiments show that the proposed system generates robust performance
indicators and that it is suitable for real-time applications to control sanitary measures in
large infrastructures. Furthermore, the proposed projection approach achieves an average
positioning error below 0.2 meters, with an improvement of more than 4 times compared to
other methods.

Keywords Crowd monitoring · Multi-camera tracking · 2D-3D projection · COVID-19

1 Introduction

Since the rise of COVID-19 in December 2019, numerous studies have emerged to help
stop the disease spreading, tackling the problem from different perspectives [12, 27]. Most
of these studies focus on preventing the spread of the virus by proposing health and social
measures, and methods to ensure its compliance. Among these prevention measures, like
improving the ventilation in indoor areas [1] and using medical masks [35, 36], one key
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measure that has been adopted by all the governments is social distancing (Fig. 1). Recent
research has confirmed the evidence that maintaining a social distance of 1.6 to 2 meters
highly reduces the disease spreading [38, 39], as shown in Fig. 2.

Thus, an important need has arisen to create applications that are capable of monitor-
ing people in indoor and outdoor infrastructures to guarantee a safe interpersonal distance,
respect the indoor capacity limitation, know the most crowded time intervals or track
subjects who violate the established measures.

A full variety of solutions have been proposed, addressing the problem from different
perspectives, such as using wi-fi signals [40], wearable devices [10], drones [33], mobile
robots [31], etc.

Among all these methodologies, camera-based solutions have proven to be an effec-
tive, non-invasive and affordable alternative to accomplish this task. Furthermore, these
methods can take advantage of the camera infrastructure already available in smart cities,
facilitating their scalability and sustainability. Within the camera-based solutions, we find

Fig. 1 Visual example of the proposed system operation. For each 2D detection, the best fitting 3D cylinder
is estimated in real-world coordinates. After a 3D tracking step, the desired metrics are computed
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Fig. 2 Gaussian distribution of infection transmission rate for a given population, with and without social
distancing obligation. This figure was originally presented in [30]

different approaches, such as face recognition [7, 14, 22] or crowd density estimation
[13, 41, 46]. However, for the considered use case, the approach that works best is the one
that combines human detection and tracking [25, 26, 30, 34, 37, 43], since it allows cover-
ing wider areas than with face recognition, and makes it possible to collect spatio-temporal
information about the individuals who are violating the measures (unlike solutions based
on density estimation). Nevertheless, most of the systems based on this methodology only
work with side or frontal view perspectives. In this setup, cameras still produce an impor-
tant amount of occlusions, especially when dealing with very large and crowded surfaces
(e.g. airports or shopping centers). These occlusions reduce the accuracy of the tracking
algorithms and of the 3D detection projection, which are crucial for computing COVID-
19-related performance indicators (PIs), such as the interpersonal distance or the indoor
capacity limitation.

These problems can be mitigated by using algorithms that detect people on the Bird’s-
Eye-View (BEV) domain and omnidirectional cameras. Thus, the number of occlusions are
minimized and the covered area is maximized, as the cameras are placed in the ceiling.
Therefore, the top-view perspective makes this approach suitable for applications related
with the compliment of the COVID-19 sanitary measures. Although there is some recent
research [4, 6], this topic still remains underexplored, as the proposed solutions only work
with single-camera scenarios and for very limited monitoring areas.

For this reason, we present a multi-camera BEV people flow monitoring system, capable
of extracting reliable real-time PIs in extremely large infrastructures, such as airports or
shopping centers. The proposed system relies on three main pillars: an optimized top view
human detection neural network based on YOLO-V4, capable of working with data from
cameras at different heights; a multi-camera 3D detection projection and fusion procedure,
which uses the camera calibration parameters for an accurate real-world positioning; and a
tracking algorithm which jointly processes the 3D detections coming from all the cameras.

We highlight two novel contributions in this work:

• A modification in the traditional pipeline that allows our system to operate efficiently
in multi-camera environments. Unlike the rest of the proposed methods, we move the
projection step to real world coordinates just after the detection step for each camera
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(instead of applying it after the tracking step). Then, thanks to an initial multi-camera
calibration procedure, we are able to track the subjects uninterruptedly all over the
monitored area using just a single tracker instance for processing all the detections.
Furthermore, this approach allows using cameras installed at different heights, since it
does not take into account the detection bounding box for the multi-camera fusion but
the real position in meters.

• A 3D projection and multi-camera fusion procedure. Using the intrinsic and extrinsic
parameters of the involved cameras, it estimates the best fitting 3D cylinder for each
detected bounding box and fuses the cylinders of the overlapping regions of the camera
views that belong to the same person. This corrects possible occlusion problems and
allows us to expand the useful range of the cameras.

We conduct different experiments to demonstrate that the proposed system generates
robust PIs and that it is suitable for real-time applications to control sanitary measures, such
as guaranteeing a safe interpersonal distance, respecting the indoor capacity limitations,
identifying the most crowded time intervals or tracking subjects who violate the established
measures. Furthermore, the proposed projection approach achieves an average position-
ing error below 0.2 meters, with an improvement of more than 4 times compared to other
methods. An example of the proposed system operation is shown in Fig. 1.

The rest of the paper is organized as follows. First, we present a review of the related
work in Section 2. Section 3 describes the proposed method. In Section 4 we provide exper-
imental results. A discussion about the method and the results is presented in Section 5
Finally, conclusions are given in Section 6.

2 Related work

2.1 Social distancemonitoring

In recent months, several methods aiming to monitor compliance with sanitary measures
have been proposed, specially for social distance monitoring [23, 24], addressing the prob-
lem from different perspectives. For example, in [31] the authors developed a mobile robot
for social distance monitoring in crowded scenarios. It was equipped with an RGB-D camera
and a 2D lidar to make collision-free navigation in mass gatherings. They used YOLO-
V3 Deep Neural Network (DNN) [29] along with Deep SORT algorithm [42] for detection
and tracking of individuals, respectively. However, the limited field of view of the robot
and the cost of acquiring and maintaining several robots make this solution unsuitable for
large infrastructures. In [33], the authors use a drone to deploy a social distance monitoring
system. The drone detect human heads in realtime and then calculate the social distancing
between pedestrians on UAV images using a DNN that follows the PeleeNet as backbone
and further incorporates the multi-scale features and spatial attention to enhance the fea-
tures of small objects. In [28], another drone-based method for social distance monitoring
was proposed. Relying on the drone’s camera and YOLO-V3 algorithm, the system was
able to detect people from side or frontal-view images and to monitor if the social distance
was respected and if subjects were wearing masks. Nevertheless, these drone-based solu-
tions are only valid for outdoor environments and they have a high associated cost due to the
drone acquisition and maintenance. On the other hand, in [10] the authors used a wearable,
oscillating magnetic field-based proximity device for social distance monitoring. Despite
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this solution achieves excellent results in indoor and outdoor environments, it is unfeasible
as it requires all subjects to wear the device.

Among all these innovative solutions, systems using vision-based human detection have
proven to be the best value for money, as they only need a monocular camera and a GPU-
enabled server for real-time people monitoring and they can cover wide areas. Furthermore,
they are also less intrusive than other methods mentioned before. Rezaei and Azarmi [30]
proposed a pedestrian-detection-based social distance monitoring system. Using the YOLO-
V4 [11] model pretrained with COCO dataset and SORT tracking algorithm [9] they were
able to operate accurately in real-time. In [26] and [43], the authors also proposed a social
distance monitoring system based on YOLO-V3 DNN with Deep SORT tracking algo-
rithm and YOLO-V4 respectively. Su et al. [37] follow the same pipeline and combine the
euclidean distance with spatio-temporal information about the trajectory of the pedestri-
ans to better understand the scene. Shorfuzzaman et al. [34] propose to add a perspective
transformation to bird-eye-view to determine the ROI in which social distancing will be
monitored, but they do not add a tracking step. However, all these systems suffer from the
same problem. Pedestrian occlusions are very common when dealing with large or crowded
scenarios and using frontal or side-view images.

This problem can be mitigated by using a BEV perspective with omnidirectional cam-
eras. Thus, the occlusions are minimized in the central area of the camera and the covered
area is maximized. This approach was adopted in [6] and [4]. Nevertheless, their proposed
systems works only with the central area of a single camera, where the occlusions need
not to be considered. Therefore, for covering wide areas, an important number of cameras
would be needed. This increases the hardware requirements and the cost of the system, and
makes it unsuitable for large infrastructures. Furthermore, the question of joining tracks
across camera views would have to be addressed too.

To overcome these problems, our proposed multi-camera BEV people flow monitoring
system uses a multi-camera detection fusion procedure. The 2D detections received from
the detection DNN are projected to real-world coordinates and the best-fitting 3D cylinder
is estimated for every given detection. Then, the detections of the overlapped cameras are
fused, correcting possible occlusion problems and allowing us to expand the useful range of
the cameras. Finally, the 3D trajectories are effectively computed by our online 3D version
of the tracking algorithm proposed in [21]. This way, we only need to use a single tracker
for all the cameras to track the subjects over the entire monitored area, no matter in which
camera’s view is detected.

2.2 Overhead human detection-based tracking

In recent years, several tracking algorithms have been proposed to deal with overhead peo-
ple detections. Ahmed and Adnan [3], proposed rHOG, an overhead tracking algorithm
which uses the variable size bounding boxes with different orientations, with respect to the
radial distance of the center of the image. In [5], the authors proposed a people tracking
algorithm for industrial environments that works with motion blobs gathered by an overhead
camera. This algorithm, based on rHOG, uses the history of already imaged population with
the anticipated blob position of the person observed. Other works base their algorithms on
Kalman [2] or particle filters [16].

Although these algorithms work well with a single camera, they are not suitable for
multi-camera scenarios, as they are not able to merge data coming from multiple over-
lapped cameras. We could add a fusion stage after the tracking process, but that would
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require having multiple tracking instances calibrated for each camera, which is inefficient
and complicates the system installation process.

For this reason, we propose to alter the order of the stages: first, to project all the detec-
tions in the real world and combine the ones in the overlapping areas and, then, to apply
a single 3D tracking process. Thus, we adapt the 3D offline algorithm presented in [21]
for the considered use case, resulting in an online version optimized to work with human
detections described in Section 3.7.

3 Proposedmethod

3.1 Problem definition

We consider the problem of efficient monitoring of a set of established security measures
in large infrastructures using non-invasive technology. More specifically, we aim to cre-
ate a video-surveillance system capable of monitoring compliance with social distance and
capacity limitation measures, as well as tracking the offenders or the possibly infected
subjects. Therefore, the system must be capable of merging the information coming from
multiple cameras to track subjects all over the monitored region. We use overlapped camera
views to track people across views.

For this task, the system will extract the necessary information from a set of cameras
placed on the ceiling of the monitored infrastructure. The number of cameras depends on the
area to be covered and on the height of the ceiling. The set up needs to guarantee that all the
areas of interest are visible by the cameras with a minimum resolution (limited by the capa-
bilities of the human detection network). The omnidirectional cameras with fish-eye lenses
have a wide field of view, which makes them appropriate for monitoring large areas with a
minimum number of sensors. Intrinsic and extrinsic parameters of all the cameras need to
be available for an accurate distance measuring. An image illustrating the considered use

Fig. 3 Illustration of the considered scenario. Multiple omnidirectional cameras with a small overlap cover
the monitored area. The cameras are connected to a central GPU-enable server
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case is presented in Fig. 3. The system must be able to report reliable and real-time infor-
mation about the state of measures compliance using minimum processing requirements,
preferably a single-GPU server.

3.2 System overview

An overview graphical diagram of the proposed workflow is shown in Fig. 4 and a flowchart
in Fig. 5.

The system requires an initial camera calibration process (Section 3.3). First, the images
are grabbed from each configured camera. Then, they are preprocessed in parallel using
CUDA library and fed into the pruned version of YOLO-V4 detector, implemented in Ten-
sorRT framework (Section 3.4). Therefore, from the original (distorted) images, a set of

Data analysis

2D detection 3D cylinder
estimation Detection fusion

3D tracking

Fig. 4 Overview graphical diagram of the proposed workflow. Note that the rectified images (in the lower
row) are generated only for visualization purposes and are not necessary for fusing the detections, tracking
or data analysis
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Fig. 5 Overview flowchart of the proposed workflow. Note that until the cylinders fusion step, the detections
of each camera are processed separately

detections is obtained for each camera c at each frame t , Dc = {Dc,t,i}. Each detection is
modeled as a 4-point rectangle in image coordinates D = (x0, y0, x1, y1, x2, y2, x3, y3).

As discussed in Section 2.2, we alter the typical order of the tracking and projec-
tion stages for two reasons: it is easier to estimate the trajectory using world coordinates
than image coordinates from an omnidirectional camera (where the bounding box varies
rapidly); and we only need a single tracker instance to process all detections in world coor-
dinates. Thus, from detections Dc a fitting process yields the desired 3D cylinder shapes
Cc = {Cc,t,i}, where each cylinder is encoded as C = (X, Y,H, r), where (X, Y ) is the
center point in the XY plane and (H, r) represent its height and radius, respectively. Fitting
process is explained in Section 3.5. Then, a fusion mechanism determines which cylinders
correspond to the same object for cameras with overlapped fields of view. Let’s denote
fused cylinders as C, where we have removed the c sub-index, as now all cylinders are
expressed in global 3D coordinates and not related anymore to any specific camera. Fusion
procedure is presented in Section 3.6. Next, the tracking stage takes these cylinders, apply-
ing a constant-velocity predicting model, plus managing appearance and disappearance of
objects, miss-detections, etc. The tracking mechanism is explained in Section 3.7. Note that
tracks are expressed as follows: T = {Tk}, where T = (X, Y,H, r, Ẋ, Ẏ , Ẍ, Ÿ ) to account
for the derivative dimensions for prediction phase. Finally, the output time-consistent tracks
are analysed to extract the necessary information for the monitoring of the established
security measures (Section 3.8).

3.3 System calibration

When the system is set up, and prior to the first operation, a calibration step is needed in
order to compute the intrinsic and extrinsic parameters. The estimated camera parameters
are used for mapping the image coordinates to the 3D world coordinates and for locating
each camera with respect to the others. Consequently, we are able not only to get the real
position of each person detected in the scene but also to detect when they move from one
camera to another and to merge the detections from overlapped cameras.

The well-known fish-eye camera model is used in this project, where the projection pro-
cess is governed by a fish-eye distortion vector k = (k1, k2, k3, k4) and a linear projection
matrix K which holds the focal length and principal point parameters. As a result of the
calibration, for each camera, the intrinsic (K , and k) and extrinsic (rotation matrix R and
translation t) are obtained. The pose of each camera is expressed with respect a common
3D point used as world reference.
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Any 3D point in the world X = (X, Y,Z, 1)� expressed in homogeneous coordinates
can then be projected into any of the images. First by representing the point with respect to
the camera coordinate system, Xc = PcX, where Pc = (R|t; 0|1) is the 4×4 corresponding
pose matrix. The fish-eye distortion model is then applied on the 3D rays joining Xc and
the camera optical center, by defining a = Xc/Zc and b = Yc/Zc, and r2 = a2 + b2. The
longitude angle θ = arctan(r). The distortion vector k is then applied to obtain the angle
of incidence θd = θ(1 + k1θ

2 + k3θ
4 + k3θ

6 + k4θ
8). The point in the normalized domain

is then obtained as (x′, y′) = (aθd/r, bθd/r), and its projection into the image domain as
(u, v, w) = K(x′, y′, 1)� (pixel values are obtained as x = u/w and y = v/w).

The calibration can be used as well to re-project any point in the image plane (x, y)
into a 3D ray starting from the optical center of the camera, applying r = (u′, v′, w′) =
K−1(x, y, 1)� and normalizing so ||r|| = 1. Then, if a 3D world plane is selected (e.g.
Z = 0), the intersection of the 3D ray with the plane determines a 3D point in the world.
This is useful to re-project 2D image points of objects in the ground plane to obtain their
position in the XY plane in world coordinates (note this assumption holds true only if the
2D image point correspond to an object or part of object which is touching or at the ground
level).

Retrieving the 3D ray r from pixels (x, y) implies inverting the fish-eye distortion vector,
which can be accomplished using iterative minimization processes (we are using OpenCV’s
implementation). In addition, to speed up the re-projection process, it is recommended to
create remap functions by pre-computing the mapping relation between points in the images
and the 3D space, giving as a result the ability to create rectified and Bird’s-eye View (BEV)
of multiple cameras in a single step.

3.4 People detection using overhead cameras

Similar to [8], we train YOLO-V4 object detection Convolutional Neural Network (CNN)
to detect people directly in overhead images from fish-eye cameras. We use this single-
stage detector because it provides a good balance between accuracy and inference time. In
a multi-camera system it is important to guarantee a fast inference for a real-time analy-
sis. Compared to previous versions, YOLO-V4 includes detections at three scales, which
improves the small object detection accuracy.

Our aim is to design a system capable of working with a camera installed 3 to 10 meters
high, so that it is suitable for different large space scenarios. Consequently, our detector
should work on this height range. Even if the YOLO-V4 model provides detections at dif-
ferent scales, the objects’ scale varies considerably for such a big range. In order to ensure
the robustness of the model no matter the height of the camera, we add an image scaling
step previous to the detection, which resizes the image to guarantee that the people size in
the center of the image is stable no matter the installation height (approximately 20 × 20
pixels). In addition, we train two models, one targeted for the lowest heights (3-6 m) and
another for the highest installations (6-10 m).

As there is no public dataset with top-view fish-eye images of large spaces focused on
human detection and multi-camera systems, we use several recordings to build our training
dataset. We set up two omnidirectional cameras installed at 3.3 meters and another cam-
era at 8 meters. We capture 10,000 images for the lower height range and 10,000 images
for the upper one. In addition, to augment both ranges’ data variety we add 5,600 synthetic
images from the Advanced Synthetic Dataset presented in [8] to each of the datasets. We
manually annotate the captured data. As shown in [45], rotation and histogram equalization
are some of the most efficient image augmentations for training accurate object detection
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CNNs. Consequently, we apply rotations, flipping and histogram equalization augmenta-
tions (CLAHE) to our images. We randomly combine these augmentations and generate 4
new samples for each image. The images are resized to 512 × 512 for the models training.

We train both models on a NVIDIA Tesla P100 using Darknet framework [11]. We ini-
tialize the models with pre-trained weights on the MS COCO dataset [19] and train them
for 40,000 iterations with a learning rate of 0,001 and a weight decay of 0,0005. We use the
stochastic gradient descent optimizer with a batch size of 64 images.

To further increase the performance of the model we apply two optimization processes.
First, we apply the weight pruning procedure described in [44]. It is an iterative process
with three stages in each iteration:

• Network training penalizing the scaling weights of the batch normalization layers in
the cost function.

• Network pruning percentage of convolutional filters corresponding to the lowest batch
normalization scaling weights.

• Pruned network fine-tuning without penalization.

This procedure is repeated until the desired balance between precision and speed is reached.
In our case, we pruned each network 3 times eliminating 50%, 50% and 70% of the
remaining filters, keeping at least 10% of filters in each layer.

Finally, the pruned models are ported to TensorRT framework to apply hardware-level
optimizations. With these optimizations we are able to reduce the inference time almost a
90% for each model, from 22 fps to 110 fps.

3.5 3D cylinder estimation

The next stage consists of transferring detections Dc from the 2D domain of all camera
images to the 3D real world domain using the intrinsic and extrinsic camera parameters.
More specifically, for each 2D detection Dc,t,i we estimate the 3D cylinder Cc,t,i whose
projection on the image best fits the original bounding box. For this task, we adopted a
Greedy Algorithm approach [20].

For each detection Dc,t,i , a regular grid of 3D points G = {Gx,y} corresponding to
possible cylinder center-points at the XY plane is generated, Gx,y = (x, y, 0). The grid
center is the 3D re-projection of the point of the bounding box closest to the center of the
image. We choose this point because, for cameras with fish-eye lenses, the furthest point
from the camera of a vertical object (i.e. the feet position of a person) corresponds to the
object point closest to the center of the generated image (see Fig. 6-A). The grid is defined
with two parameters: the maximum distance to the center and a distance step between points.
We estimate that the maximum distance to the center of the grid cannot be greater than
0.5 meters and that a distance of 0.1 meters between points is sufficient to cover the space
accurately (see Fig. 6-B).

Once G is defined, a set of cylinders {Ck} is generated using each grid point as the center
of the cylinder at the XY plane. For each grid point, several cylinders are created, varying
their diameter (min 0.5, max 1.0, step 0.15 m), and height (min 1.5, max 1.9, step 0.2 m),
creating a regular sampling of the space of the cylinder Cc,t,i . The selected values have
been chosen as a trade-off between the sampling density and the feet positioning error. In
addition, the cylinder model is refined to better represent human shapes by reducing the
upper circle radius by a constant factor (we have used 0.6 in our experiments) with respect
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A) Grid center selection B) Grid generation

C) IOU computation D) 3D cylinder estimation

Fig. 6 Different steps for the 3D cylinder estimation. The initial red bounding box corresponds to the 2D
detection and the green point in the first image corresponds to the selected grid center

to the lower circle. As a consequence, the cylinder becomes a truncated cone or frustrum.
Since the factor is constant, it is not included into the state vector representations.

The fitting stage consists of a maximum likelihood estimator (MLE) process. A cost
function is created to measure the likelihood of a given cylinder Cj = (X, Y, H, r) to
fit into detection Dc,t,i . The ideal cost function would be to project the cylinder outline
points into the image and compute an IoU (Intersection over Union) value. For the sake of
computational efficiency, the cylinder is simplified to its outer 3D cuboid, which is defined
as 8 points Cj,k , k = 1..8, that can be projected into image points as cj,k = PcCj,k using
homogeneous coordinates (see Fig. 6-C).

Using this cost function, the MLE estimator is obtained as the weighted sum of the grid
cylinders:

C∗
c,t,i = 1

N

N∑

j=1

IoU(b{cj,k},Dc,t,i )Cj (1)
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where N is the total number of cylinders in the grid, spanning the three considered parame-
ters (center, diameter and height), b is the bounding rectangle for the projected 2D points of
the cuboid, and IoU is the Intersection Over Union function, obtaining the MLE estimator
(see Fig. 6-D).

Although the number of occlusions is greatly reduced in BEV images from fisheye cam-
eras, partial occlusions of the lower half of the body may appear (see Fig. 7-A). When this
type of occlusions occur, the estimated cylinder C∗

c,t,i is wrong and its upper part protrudes
noticeably from the bounding box by the part furthest from the center of the image (see
Fig. 7-B). This protrusion is measurable and thus an occlusion can then be detected if the
salient part exceeds a certain threshold. We define the threshold value as the 10% of the dis-
tance between the points of the bounding box furthest and closest to the center of the image,
which is inversely proportional to the occlusion level. Therefore, assuming that the upper
point of the head, corresponding to the point of the bounding box furthest from the center of
the image, is not occluded, we rebuild the cylinder from the upper center using an average
human height value of 1.7 meters (see Fig. 7-D). Although the real height is likely to differ
from this average height, the error produced by the occlusion is substantially reduced.

As a consequence, we can then assume that the lower center point of the person cor-
responds to the lower center of the estimated cylinder. In Section 4.2, we compare the
proposed projection method with other approaches, such as the one used in the related
works [4, 6, 26, 30, 43], consisting of projecting the center of the detection bounding

A) Partial occlusion B) Wrong cylinder estimation

C) Occlusion verification D) New cylinder estimation

Fig. 7 Cylinder correction from a partially-occluded detection. Note that in Figure C the distance between
the points of the bounding box being furthest and closest to the image center is depicted in blue and the
salient part of the cylinder is represented by the red line. The ratio between these two distances relates to the
occlusion level of the detection
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A) Detection fusion B) No detection fusion

Fig. 8 Detection fusion procedure examples. In the left image, the positions of a subject captured by two
overlapped cameras are fused, as the distance between the feet points is less than the defined threshold. In
the right image, the cylinders belong to different subjects occluding each other to their opposite camera. In
this case, the detections are not merged, as their distance is greater than the threshold

box. The results show that the proposed method achieves more accurate estimations and,
consequently, better results in the evaluation.

3.6 Multi-camera detection fusion

Once all detections Dc,t,i have been mapped to 3D world coordinates as cylinders Cc,t,i , we
search for duplicate detections in the overlap areas between two or more cameras and fuse
them. The procedure consists of selecting detections that fall inside the overlapping region,
and comparing them with the detections of the other camera. Two detections from different
cameras are then merged if the 3D distance in the XY plane between their center points
is below a certain threshold (see Fig. 8). The threshold is defined taking into account the
accuracy of the calibration parameters and the average positioning error of the detections.
For our experiments we selected a threshold of 0.45 meters.

From this step onwards, cylinders are no longer attached to any particular camera, and
thus treated as 3D objects Ct,i in the world coordinate system.

3.7 3D people tracking

The proposed 3D tracking algorithm is based on a data-association multi-object tracking
approach [21]. The original algorithm was created to track cuboids belonging to different
types of objects (vehicles and pedestrians). It is composed of two components: an online
tracker and an offline post-process to smooth the trajectories and the shape of the cuboids.

35007Multimedia Tools and Applications (2023) 82:34995–35019



We modify the original algorithm taking into account the following three requirements: we
only want to estimate the trajectory of people; the shape of the person is not important,
it only matters that the position of their feet is precise; and the algorithm must be online.
According to the latest requirement, we remove the offline cuboid smoothing component.

The remaining online tracker component consists of three stages: prediction, association
and estimation. In the prediction stage, the value of the variables of each track Tk is updated
based on its history using a constant-acceleration model. Such model would be useful for
vehicles or even for people in scenarios where the trajectories are more steady (such as park-
ing lots or roads). However, in scenarios such as shopping centers or airports, trajectories
are more chaotic and the acceleration in one time step can vary enormously. Therefore, we
decided to adopt a constant-velocity model.

During the next stage, an association matrix is created with the association likelihood
between predicated tracks {T −

k } and detections {Ct,i}. The likelihood function compares
the cylinders the same way as described for the multi-camera detection fusion approach
(based on the distance between the feet points of the cylinders). Finally, the estimation stage
updates the state of each track fusing the positioning information of the prediction and the
associated cylinder following the procedure described in the original work. In order to avoid
generating erroneous tracks due to false positives in the detection stage, we do not consider
a track as active until it accumulates 3 or more associated detections. In the same way, to
avoid removing active tracks due to false negatives in the detection stage, we keep a track
as active until it has no associated detections for 5 consecutive frames.

3.8 Data analytics

The tracks generated in the previous stage contain all the necessary information for moni-
toring the compliance with the main sanitary measures against COVID-19. Moreover, this
information can also be used to carry out other types of tasks, such as crowd behavior under-
standing [17], monitoring the entry and exit of zones, the size of the waiting queues, register
the most visited stands etc. In this work we focus on three tasks:

• Social distance monitoring: for this task, the Euclidean distance between the current
position of each tracked subject and that of the rest is calculated and compared with the
limit established by the authorities.

• Indoor capacity limitation: the number of active tracks is checked in every time step to
ensure the capacity limits are not exceeded.

• Tracking of individuals who violate the sanitary measures.

An example of the results of the data analytics is presented in Fig. 9.

4 Experiments

In this section, we conduct a series of experiments to analyze the suitability of the proposed
system. Note that the goal of the experiments is not to demonstrate that we outperform the
rest of the methods in terms of accuracy, as improving the quality of the person detector
is not one of our main contributions. As stated in the introduction, the contributions of
this work are focused on overcoming the limitations of the existing alternatives regarding
the multi-camera scenarios, the monitoring range, and the scalability. Furthermore, we also
present an experiment comparing the proposed 3D cylinder estimation procedure with other
alternative 3D projection methods.
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Fig. 9 Example of the results of the data analytics procedure. The interpersonal distance is measured for
every pair of tracks. The red lines means that the defined safe distance is being violated. The colored dot
lines represents the trajectory of every track

The server used to carry out the experiments is equipped with an NVIDIA Tesla V100
GPU and an Intel Xeon Gold 6230 CPU. Regarding the programming language, the whole
system is implemented using C++.

4.1 System performance

The accuracy of the tasks mentioned in Section 3.8 is related to the correct detection and
tracking of all the individuals in the scene, and their position being accurately estimated.
For this reason, to evaluate the performance of the proposed system, we focus on measuring
the quality of the tracks and the accuracy of the positioning.
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To measure the quality of the generated tracks, we use the metrics described in [15],
developed to precisely compare different multi-object tracking methods in crowded scenes:

• Multi-object tracking accuracy (MOT A): evaluates the tracker performance combining
the information of three sources of errors (false negatives, false positives and ID swaps).

• Mostly tracked (MT ), partially tracked (PT ) and mostly lost (ML) tracks: A target is
mostly tracked if it is successfully tracked for at least 80% of its life span; and it is
considered as mostly lost if it has been tracked for less than 20% of its total length.

• Number of fragmentations (FM): counts how many times every ground truth trajectory
is interrupted (untracked).

• Fragmentation ratio (FR): relative number of fragmentations (FM/Recall).

Furthermore, to measure the accuracy of the positioning we adopt the following metrics:

• Precision (P ): measures the reliability of the detections taking into account the true
positives over the total positives.

• Recall (R): percentage of detected targets over the total number of targets.
• F1 Score (F1): harmonic mean of the precision and recall:

F1 = 2
P · R

P + R
(2)

• Average Positioning Error (APE): average difference in meters between the ground
truth and the estimated 3D feet positions of the people in the scene.

To evaluate the system, we consider using different public datasets [18, 32]. Neverthe-
less, none of them provides the intrinsic and extrinsic parameters of the involved cameras,
which are necessary for the 3D projection step. Furthermore, the available datasets only
cover single-camera scenarios with very limited monitoring areas. Therefore, we generate
7 sequences with different scenarios, number of cameras, heights, number of identities and
levels of occlusion. The details of each sequence are presented in the Table 1. In addition,
some examples of the different sequences are shown in Fig. 10.

For each sequence we manually annotate the identity and 3D center point on the ground
plane (feet point) of all individuals. With this ground truth we extract the selected met-
rics. For each sequence, a monitoring region is defined. If a subject abandons this region
and enters again it is considered as a new track. Therefore, the number of tracks may be

Table 1 Details of the different sequences considered for the system evaluation

Seq Sc NC Heights Rad Frame IDs Occ

1 1 2 3.3, 3.3 3.5 1610 3 1

2 1 2 3.3, 3.3 3.5 654 5 2

3 1 2 3.3, 3.3 3.5 750 5 3

4 1 2 3.3, 3.3 3.5 1083 4 4

5 1 2 3.3, 3.3 3.5 837 5 5

6 2 1 5.5 8 334 6 2

7 3 1 8.1 10 578 13 4

For each sequence we specify the scenario, number of cameras, camera heights in meters, radius of the
monitored area for each camera in meters, number of frames, number of identities, and occlusion level (from
1 to 5)
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A) Sequence 4 - cam 1 B) Sequence 4 - cam 2

C) Sequence 6 - cam 1 D) Sequence 7 - cam 1

Fig. 10 Several examples of the proposed evaluation sequences

greater than the number of identities. For multi-camera sequences we also evaluate the sys-
tem for each camera separately to be able to analyze the impact of the multi-camera fusion
procedure. The results are shown in Table 2.

From Table 2 it can be observed that, even in sequences with a high level of occlusions,
the quality of the tracks (measured by the MOT A metric) always remains above 90%. In
the sequences with more than one camera, the achieved MOT A values are very close to
those obtained by processing the cameras separately. This highlights the high 3D precision
obtained by 3D cylinders estimation and fusion, which allows merging detections from
different views using only the lower center point of the cylinder. Furthermore, in some cases
(e.g. in sequence 5), the MOT A values obtained in the multi-camera sequences outperform
the ones from the separate cameras. This is thanks to the multi-camera fusion procedure,
where the detection errors of one camera can be corrected with the information of other
overlapped cameras.

Apart from the MOT A metric, the robustness of the tracks is evident by the reduced
number of fragmentations. Even for sequence 5, with more than 800 frames and a high
level of occlusions (see Fig. 11), only 3 fragmentations occur when the two cameras are
processed together. People occluded in the furthest areas from the camera are detected by
the complementary camera and vice versa. Thus, the number of fragmentations is reduced
and the functional area of each camera is increased.
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Table 2 Results of the proposed method in the defined evaluation sequences

Seq Cam ID MOTA MT PT ML FRAG FRAG ratio P R F1 APE

1 1,2 1.000 8 0 0 0 0.000 1.000 1.000 1.000 0.094

1 1 1.000 7 0 0 0 0.000 1.000 1.000 1.000 0.089

1 2 1.000 8 0 0 0 0.000 1.000 1.000 1.000 0.069

2 1,2 0.994 12 0 0 0 0.000 0.994 1.000 0.997 0.151

2 1 1.000 9 0 0 0 0.000 1.000 1.000 1.000 0.071

2 2 0.993 11 0 0 0 0.000 0.993 1.000 0.997 0.063

3 1,2 0.965 5 0 0 6 0.061 0.998 0.977 0.987 0.136

3 1 0.973 9 0 0 8 0.081 0.999 0.984 0.991 0.084

3 2 0.966 10 1 0 2 0.021 0.999 0.975 0.986 0.077

4 1,2 0.966 5 0 0 6 0.061 0.983 0.989 0.986 0.155

4 1 0.997 25 0 0 1 0.010 1.000 0.999 0.999 0.085

4 2 0.983 22 1 0 6 0.061 1.000 0.986 0.993 0.095

5 1,2 0.975 10 0 1 3 0.031 0.999 0.984 0.991 0.186

5 1 0.952 7 1 0 11 0.115 0.999 0.957 0.978 0.097

5 2 0.991 12 1 0 1 0.010 1.000 0.993 0.996 0.085

6 1 0.982 6 0 0 3 0.031 0.999 0.983 0.991 0.089

7 1 0.935 13 1 0 15 0.157 0.986 0.957 0.971 0.112

The considered metrics, described in Section 4.1, measure the quality of the generated tracks and the accuracy
of the positioning. For multi-camera sequences, we also run the system for each camera separately

On the other hand, attending to the metrics considered to evaluate the precision of the
positioning, it can be observed that in all the scenarios an F1 Score higher than 97% is
obtained, which means that there are hardly any false positives and negatives even in the
sequences with a high level of occlusions. Thus, the system is able to successfully estimate
the occupancy of the monitored area. As for the APE, for sequences with a single camera
it remains below 10 centimeters, while for multi-camera sequences it increases to 15-19
centimeters. This is because the calibration between cameras is not perfect and the positions
estimated for the same detection from different cameras do not exactly match.

4.2 3D projection performance

In this section we present an experiment comparing the performance of the proposed method
using three different 3D projection approaches:

• Projecting the center of the detection bounding box. This is the approach followed in
the related works mentioned in Section 2.1 [4, 6, 26, 30, 43].

• Projecting the point of the bounding box closest to the center of the image. As men-
tioned in Section 3.5, for cameras with fish-eye lenses, the furthest point from the
camera of a vertical object (i.e. the feet position of a person) corresponds to the object
point closest to the center of the generated image (see Fig. 6).

• Estimating the 3D cylinder. This is the proposed approach presented in Section 3.5.
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Fig. 11 Examples of occlusions in sequence 5. People occluded in the areas furthest from the camera are
detected by the complementary camera. Thus, the number of fragmentations is reduced and the functional
area of each camera is increased

We repeat the previous experiments for each projection method. The results of the exper-
iments are presented in Table 3. In this table, we compare the metrics for measuring the
positioning accuracy: precision (P ), recall (R), F1 score (F1) and average positioning error
(APE). It can be observed that the central point approach notably achieves the worst results.
In addition, compared to the other approaches, with this method the number of false posi-
tives and negatives increases, reflected in the decrease in precision and recall. Finally, if we
compare the other two methods, the proposed approach achieves the best result by far, reduc-
ing the average positioning error by more than 4 times in most cases. It can be observed that,
when using the closest point to the image center, the precision for multi-camera sequences
worsens. These false positives are caused because the positioning using this method is not
accurate enough to fuse the detections of the overlapped cameras. Several examples of the
positions estimated by the evaluated approaches are shown in Fig. 12.

5 Discussion

In this section we want to analyze the results obtained in the experiments presented on
the previous section and highlight the strengths and weaknesses of the proposed method,
comparing it with other approaches mentioned in the related work. In [6] and [4], the authors

35013Multimedia Tools and Applications (2023) 82:34995–35019



Table 3 Comparison of the performance of the proposed method using different 3D projection approaches:
projecting the center of the bounding box; projecting the point closest to the center of the image; and
estimating the 3D cylinder (proposed approach)

S C Bounding Box Center Closest Point to Image Center 3D Cylinder Lowest Center

P R F1 APE P R F1 APE P R F1 APE

1 1,2 0.801 0.753 0.776 0.600 0.717 1.000 0.835 0.216 1.000 1.000 1.000 0.094

1 1 0.849 0.653 0.738 0.612 1.000 1.000 1.000 0.215 1.000 1.000 1.000 0.089

1 2 0.893 0.710 0.791 0.453 1.000 1.000 1.000 0.273 1.000 1.000 1.000 0.069

2 1,2 0.827 0.732 0.776 0.572 0.818 0.995 0.898 0.388 0.994 1.000 0.997 0.151

2 1 0.687 0.445 0.540 0.618 1.000 1.000 1.000 0.251 1.000 1.000 1.000 0.071

2 2 0.809 0.463 0.589 0.526 1.000 1.000 1.000 0.355 0.993 1.000 0.997 0.063

3 1,2 0.765 0.705 0.734 0.481 0.840 0.970 0.900 0.301 0.998 0.977 0.987 0.136

3 1 0.880 0.476 0.617 0.524 0.987 0.982 0.985 0.287 0.999 0.984 0.991 0.084

3 2 0.892 0.627 0.736 0.481 0.998 0.972 0.985 0.326 0.999 0.975 0.986 0.077

4 1,2 0.767 0.741 0.754 0.471 0.798 0.986 0.882 0.297 0.983 0.989 0.986 0.155

4 1 0.895 0.622 0.734 0.493 0.990 0.998 0.994 0.268 1.000 0.999 0.999 0.085

4 2 0.763 0.556 0.643 0.455 0.978 0.985 0.982 0.304 1.000 0.986 0.993 0.095

5 1,2 0.873 0.751 0.807 0.504 0.860 0.970 0.912 0.395 0.999 0.984 0.991 0.186

5 1 0.903 0.505 0.647 0.569 0.997 0.945 0.971 0.258 0.999 0.957 0.978 0.097

5 2 0.811 0.484 0.606 0.521 0.992 0.994 0.993 0.330 1.000 0.993 0.996 0.085

6 1 0.907 0.830 0.867 0.331 0.978 0.974 0.976 0.332 0.999 0.983 0.991 0.089

7 1 0.927 0.888 0.907 0.474 0.982 0.953 0.967 0.272 0.986 0.957 0.971 0.112

S stands for the sequence number and C for the camera IDs involved in the test

declare that they use overhead datasets for training and testing. However, we were unable
to find these datasets available online for comparison. The rest of the related works use
images with side or frontal perspectives, so it is not possible to make a fair comparison
with them. Furthermore, none of the test datasets they use include the necessary calibration
parameters to be able to carry out the projection. Finally, none of the mentioned methods is
publicly available, so we cannot make a comparison using our test sequences either. For this
reason, we focus on comparing the proposed projection method with the projection method
used in all other related works. All the mentioned methods that perform projection [4, 6,
26, 30, 43] use the central point of the bounding box to estimate the position of the subject.
As commented in the previous section, from the results of Table 3, it can be observed that
our method outperforms the the method based on central point projection, decreasing the
average positioning error by more than 4 times in most of the cases.

Main drawback is that estimating the 3D cylinder requires additional computing time.
More specifically, for the hardware used in the evaluation (Intel Xeon Gold 6230), the esti-
mation time for each cylinder is 0.6 ms. It is a despicable amount of time but it grows in
proportion to the number of detections. Nevertheless, this procedure would be easily par-
allelizable using multi-threading on CPU or GPU, since the estimation of each cylinder is
independent of the rest.
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Fig. 12 Several examples of the positions estimated by the 3D projection approaches compared in
Section 4.2. The red point corresponds to the center of the detection bounding box, the blue point to the point
closest to the center of the image, and the green point to the proposed method

Regarding the size of the monitored area, in [6] and [4] the authors do not give any
details about this topic. Analyzing the data and images provided in the articles, we estimate
that they cover an area with an approximate radius of 5 meters for a fisheye camera placed
6 meters high. If we compare this setup with the one of our evaluation sequence 6 (see
Table 1), it can be observed that, even though the camera is positioned at a lower height, the
radius of the area covered (8 meters) by our method is much higher.

Another strong point of the proposed method is its ease of adaptation to new environ-
ments. As we discussed in previous sections, the system is capable of working with cameras
positioned at different heights, thanks to the fact that the fusion of multi-camera detections
and tracking is carried out taking into account the position in real coordinates and not the
2D bounding box of the detection. This makes the method adaptable to any indoor envi-
ronment with the only requirements that there is a ceiling where to place the cameras, that
the cameras are placed perpendicular to the ground plane and that there is a small overlap
region between two consecutive cameras.

Finally, the proposed system is also easily scalable, allowing new cameras to be added
at any time. The newly added cameras only need to be calibrated to obtain the intrinsic and
extrinsic parameters referenced to the coordinate origin of the global system.
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6 Conclusions

The aim of this work was to create a system capable of monitoring people in large infrastruc-
tures, especially to guarantee compliance with the health measures imposed by COVID-19.
In order to algorithmically assess compliance with some of these measures, such as main-
taining social distance, a precise position estimation of the subjects is necessary and
complete occlusions must be avoided. Therefore, we decided to tackle the problem using
people detection from an overhead perspective. This is yet an unexplored topic and the few
solutions proposed only work in single camera scenarios and cover a very limited area.

To overcome these limitations, we present a multi-camera BEV people flow monitoring
system, capable of extracting reliable real-time performance indicators in extremely large
infrastructures, such as airports or shopping centers. The proposed system breaks with the
traditional pipeline, applying the projection step just after the detection stage. This modi-
fication allows tracking the subjects uninterruptedly all over the monitored area using just
a single tracker instance and using multiple cameras installed at different heights. Further-
more, we present a novel 3D projection and multi-camera fusion procedure. It estimates the
best fitting 3D cylinder for each detected bounding box and fuses the cylinders of the over-
lapping regions of the camera views that belong to the same person. This corrects possible
occlusion problems and allows us to expand the useful range of the cameras.

Conducted experiments, presented in Section 4, demonstrate that the proposed sys-
tem is suitable for real-time sanitary-measures-control applications, such as guaranteeing a
safe interpersonal distance, respecting the indoor capacity limitations, identifying the most
crowded time intervals or tracking subjects who violate the established measures. Further-
more, the proposed projection approach achieves an average positioning error below 0.2
meters, with an improvement of more than 4 times compared to other methods.

Future work will focus on extending the application of the system to other tasks such as
subject re-identification. For this task, the system should be able to fuse the information of
overhead and frontal cameras in order to identify the subject using facial recognition and
track it throughout infrastructure. The strengths of the proposed method lie in its ability to
monitor large areas in an efficient and scalable manner. It could be used in other applications
that require this capacity, such as for monitoring traffic in cities or dangerous vehicles that
have committed an infraction. We also think that it suitable for monitoring certain sports in
which the playing field is very wide, such as football or rugby, both for tracking the players
and the ball. Furthermore, we will also work on improving the accuracy of the detection net-
work to reduce the number of false positives and negatives and improve the performance of
the entire system. Finally, we will also focus on improving the data analytics logic to incor-
porate also temporal information for the distance monitoring, using the computed subject
trajectories.
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