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Abstract

In this paper, we propose a real time system for tracking targets across

blind regions of multiple cameras with non-overlapping fields of views (FOVs)

using camera topology, and targets’ motion and shape information. Kalman

filters are used to robustly track each target’s shape and motion in each cam-

era view and the common ground plane view composed of all camera views.

The target’s track in the blind region between cameras is obtained using

Kalman filter predictions. For multi-camera correspondence matching we

compute the Gaussian distributions of the tracking parameters across cam-

eras for the target motion and position in the ground plane view. Matching of

targets across camera views uses a graph based track initialization scheme,

which accumulates information from occurrences of target in several consec-

utive frames of the video. Probabilistic matching is carried out by using the

track parameters for new tracks obtained from the graph in a camera view

with the parameters of the terminated tracks learnt by Kalman filters in the

other camera views and ground plane view. We obtain 85% accuracy for

corresponding matching while tracking vehicles observed from two cameras

monitoring a highway.

1 Introduction

Tracking objects in multiple cameras is of interest for wide area video surveillance sys-

tems. Multi-camera tracking with non-overlapping fields of view (FOV) involves the

tracking of targets in the blind region and the correspondence matching of targets across

cameras. We consider these problems in this paper.

In the blind regions between the cameras, we track the targets in a common ground

plane view which has the different camera views mapped onto it using homography. For

homography to work it is required that the surfaces being mapped be planar, or it should

at least be possible to decompose a non-planar surface which is to be mapped into several
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Figure 1: Schematic block diagram of the multi-camera tracking system.

planar patches. Even in the latter case, the Kalman filters used for tracking and corre-

spondence matching gives good results. When targets are not in the FOV of any of the

cameras, the Kalman filter continues to track the most likely path of the target in the

ground plane view. When the target reemerges in the FOV of another camera, a new track

for this target is constructed using a graph theoretic approach. Correspondence matching

for cameras with non-overlapping FOVs is done using cues like location of the cameras,

the topography, and information of the targets such as shape and motion. Figure 1 shows

an overview of our system. The parameters of new tracks in each camera view are com-

pared with the parameters of the terminated tracks learnt in the previous camera views.

We use Gaussian distributions to model the error in position and shape parameters of the

targets across camera views, so that the probability of match for two targets in different

views can be calculated. The parameters of the Gaussian distributions are obtained using

a training data set.

The rest of the paper is organized as follows: In Section 2, we review some prior

works in multi-camera tracking for cameras with non-overlapping FOVs. Next, in Sec-

tion 3 for completeness, we briefly discuss the single camera tracking system which is

a pre-requisite for our system and the graph algorithm for new track initialization in a

single camera view. Section 4 describes our multi-camera tracking and correspondence

matching scheme for targets across camera views. Section 5 shows the results of a two

camera tracking system and finally, we conclude the paper in Section 6.

2 Related Work

Most of the work on multi-camera surveillance assumes overlapping camera views and

the focus is on using color information of the objects and camera calibration. Kettnaker

et al. [6] make use of the corridor topology and usual walking speed of people to form

expectations about the time windows and the locations in which people will reappear

next. They also make use of color information of the targets to achieve correspondence

matching by histogram comparisons after normalizing for lighting. Javed et al. [3] au-

tomatically estimate the line where the feet of pedestrians should appear in a secondary



camera when they exit the reference camera. They make use of the relationship between

the camera FOV boundaries to establish correspondence between views of the same ob-

ject in multiple cameras. In [4] the authors make use of Parzen windows to estimate the

inter-camera space-time probabilities from the training data i.e. probability of an object

entering a certain camera at a certain time given the location, time and velocity of its exit

from the other cameras.

Kettnaker et al. in [5] use a Bayesian formalism for the correspondence task, where

the optimal solution is the set of object paths with highest posterior probability given the

observed data. Huang et al. [2] also use a probabilistic model for finding correspondence

between vehicles on a highway in which the transition times of the objects between two

cameras are modeled as Gaussian distributions. They make use of the velocity, location,

size and color information of the vehicles to achieve correspondence matching. In [10],

Porikli et al. make use of the camera topography. The correlation between camera layout

and likelihood of the objects appearing in a certain camera after they exit from another one

is formulated by using a probabilistic Bayesian network where cameras form the nodes

and the edges represent the transition probabilities i.e. the likelihood of a person mov-

ing from one camera to another. Color calibration between cameras is done by forming

a matrix of histogram bin distances. In [7], Khan et al. design a system that discov-

ers spatial relationships between the camera FOVs and use this information to make the

correspondence between different perspective views of the same person. However, this

system assumes overlapping camera FOVs. In [9], Markis et al. automatically learn the

camera topology and the entry/exit zones of a network of non-calibrated cameras with

overlapping as well as non-overlapping FOVs.

3 Single Camera Tracking

Firstly, a robust real-time single camera target tracking system is implemented, which uses

background subtraction to detect moving foreground objects as segmented patches (SPs).

The SPs are approximated by fitting ellipses around them. Kalman filters are employed

to track the position and motion of targets as in [8]. This system is robust to merges,

splits and occlusions. Each target has the following ellipse parameters for representation:

the major axis a, minor axis b, and the centroid (Xc,Yc). Data association is done using

shape and location information of the targets. We define a match measure Ds for data

association between target 1 in the previous frame and target 2 in the current frame as:

Ds = c1 ×|â1 −a2|+ c2 ×|b̂1 −b2|+ c3 ×|X̂1c −X2c|+ c4 ×| ˆY1c −Y2c| (1)

where â1, b̂1, X̂1c and ˆY1c are the Kalman predicted values of the major axis, minor

axis, and centroid, respectively, of target 1 for the current frame while a2, b2, X2c and

Y2c are the corresponding measured values of target 2 in the current frame. c1...c4 are

constants that determine the weight of each component in the match measure. In our

experiments we used c1 = c2 = 0.8 and c3 = c4 = 1. Less weight is given to the shape

parameters since they are noisy due to foreground segmentation errors.

A Kalman filter is used to track the shape parameters of a target. For shape tracking,

the measurement vector of the SP for the kth target in the nth frame can be written as:

SPn
k = [an

k ,b
n
k ,Sa

n
k ,Sb

n
k ]



where a and b are the major and minor axes of the ellipse and Sa
n
k , Sb

n
k are the parameters

for shape change which are obtained as:

Sa
n
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an
k

an−1
k

, Sb
n
k =

bn
k

bn−1
k

(2)

3.1 Track Initialization

Figure 2: Structure of the attributed graph used for track initialization.

Robust track initialization is achieved using a graph based method similar to that in

[8, 12]. New targets are initialized for tracking only when a target’s measurements are

reliably available in the past τ frames. This makes the initialization accurate and the

tracker stable.

Automatic initialization of target tracks is done by using an attributed graph of the

SPs in τ frames, as shown in Figure 2. The attributes of each node in the graph are: 1. the

frame number, 2. the centroid, 3. shape parameters, 4. parent id and child id. Edges are

present between nodes whose frame number differ by 1 as shown in Figure 2. The weights

of these edges is the value of match measure Ds between the nodes. The nodes with frame

number 1 are considered as source nodes and nodes with frame number τ are considered

as destination nodes. From all source nodes the shortest paths to all destination nodes are

computed using Dijkstra’s algorithm. Amongst these shortest paths, different paths have

different sum-of-weights. Of these paths the one with smallest sum-of-weights is chosen

as a valid target track and is called the path of least sum-of-weights. The nodes of this

path are removed from the graph to give rise to a new graph with reduced number of nodes

and edges. The same process is repeated until there is no node in any one of the τ frames

in the graph or the path of least sum-of-weights amongst the computed shortest paths at

any iteration is greater than a heuristic threshold. For new targets which enter the FOV

when tracking of other targets is in progress, another attributed graph for SPs which have

no match with the targets being tracked is maintained. The path of least sum-of-weights

amongst all the shortest paths from the source nodes to the destination nodes is computed

as described earlier. The source nodes are from the first layer formed by the unmatched

SPs in frame (n− τ +1), where n is the current frame number. The destination nodes are

the unmatched SPs in frame n. A track for a new target is confirmed by appearance of



least sum-of-weights path amongst all the shortest paths possible from the source nodes

to the destination nodes.

4 Multi-camera Target Tracking

The task of multi-camera tracking is to reconstruct the paths taken by the targets that

appear in the FOVs of multiple cameras and also to find the correspondence between

targets in the different FOVs. To track objects in the blind region of the cameras we

transform the views from each camera to a common ground plane view containing all

the camera views using homography and also use a Kalman filter in this common ground

plane view to track the targets. To compute the homography transform matrix H at least

4 corresponding points between each camera view and ground plane is required. We

use more than four point correspondences, obtained manually, to compute H using least

squares. To find the H matrix, we make actual measurements to find the co-ordinates

of points on the ground. This H matrix then gives the transformation of the points in

the FOV of the camera to the points on the horizontal ground plane. H can be seen as

a transformation from the camera image to a planar image of the ground as seen from a

camera high above the ground (see Figure 3) with the blind region shown as black.

Thus if there are n cameras in the multi-camera setup, there will be n transforma-

tion matrices H1, H2...Hn where the ith transformation matrix Hi gives the homography

transformation between the FOV of the ith camera and the ground plane view.

4.1 Tracking in blind regions between cameras

A Kalman filter for target motion maintains a state vector which consists of the co-

ordinates of the centroid of the target and its velocity in the common ground plane view.

The state vector of the Kalman filter for the kth target in frame n is written as:

Sn
k = [Xn

ck
,Y n

ck
,V n

xk
,V n

yk
]T (3)

where Xc and Yc are the co-ordinates of the centroid and Vx and Vy are the x and y com-

ponents of the target velocity in the ground plane view. We assume a constant velocity

model for the targets with the state equation:

Sn+1
k = A Sn

k +ωk (4)

where A is a 4×4 identity matrix and ωk is 4×1 zero mean process noise vector.

The position and motion measurement Zn
k is given by the measurement equation:

Zn
k = N Sn

k +δ k (5)

where N is a 4×4 identity matrix and δ k is a 4×1 zero-mean measurement noise vector.

Suppose the centroid of the target in the FOV of camera 1 are (xc, yc). Then the

co-ordinates of the corresponding point in the ground plane view is given as:
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Xc = X ′
c/λ
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In every frame the target centroid (Xc, Yc) is found and the Kalman filter associated with

that target is updated using these measurements. Thus the filter learns the motion of the

target in the ground plane view. If the target is present in the FOV of camera 2, H2 is used

in (6).

When the target exits the FOV of a camera, the Kalman filter continues to predict the

movement of the target in the inter-camera region in the ground plane view without any

further measurements, yielding the most likely path of the target. Now if a target enters

the FOV of another camera, the problem of correspondence matching is to determine if

this target is the same as a target which exited from the FOV of camera 1. We present a

Gaussian formulation for this correspondence matching problem.

4.2 Gaussian formulation for correspondence matching

When a new target enters the FOV of a camera the parameters of the target track are

obtained using the graph algorithm discussed in Section 3.1. The track parameters are: Xc,

Yc, the target centroid; Vx, Vy, the Kalman filter estimates of the velocity of the target; W ,

the width of the target; L, the length of the target; and t, the time of observation in frame

numbers. The width and length of the target are the major and minor axes of the fitting

ellipse obtained from each camera view and not the ground plane view. For any target in

the FOV of a camera, we define an observation vector O using target measurements, as:

O = [X ,Y,Vx,Vy,W,L, t] (7)

Here X , Y , Vx, Vy, W , and L are treated as independent random variables for obtaining

a probabilistic match measure for target identity.

Let ∆X be the displacement of the target from its original position during time ∆t.

Since we assume a constant velocity model, ∆X can be written as:

∆X = Vx ×∆t (8)

However, the velocity of the target may vary a little over the distance in which case

(8) will not be exactly satisfied. We model ∆X as Gaussian distributed random variable

with mean equal to Vx ×∆t and a variance of Varx obtained using training data.

Thus

∆X ∼ N(Vx ×∆t,Varx) (9)

Or

∆X −Vx ×∆t ∼ N(0,Varx) (10)

Similarly we model ∆Y as a Gaussian distributed random variable with mean equal to

Vy ×∆t and variance of Vary so that:

∆Y −Vy ×∆t ∼ N(0,Vary) (11)

Suppose a target a is observed in the FOV of camera 1 and some time later a target b

is observed in the FOV of camera 2. These give rise to observation vectors Oa
1 and Ob

2:

Oa
1 = [Xa

1,Ya
1,V 1

xa
,V 1

ya
,Wa

1,La
1, ta

1] (12)

Ob
2 = [Xb

2,Yb
2,V 2

xb
,V 2

yb
,Wb

2,Lb
2, tb

2] (13)



The changes in width and length of the targets as seen from the individual camera FOVs

are also modeled with Gaussian distributions. The observed width and length of the target

in one camera may be different from the width and length of the same target in the other

camera. Assuming fixed location and orientation of the cameras, the change in length and

width of the target from camera 1 to camera 2 can be written as:

Wb
2 = Cw12

×Wa
1 (14)

Lb
2 = Cl12

×La
1 (15)

where Cw12
and Cl12

are constants for camera pair 1 and 2. These constants are deter-

mined from training data for the multi-camera setup. Since the location of the cameras are

fixed, when an object enters the FOV of one camera after exiting from the FOV of another

camera, its width and length in the second camera can be related to its width and length

in the first camera by constants of proportionality, which are Cw12
and Cl12

, respectively.

Equation (14) and (15) will not always hold exactly due to noise. This noise can be

due to the measurement noise and the noise from foreground segmentation errors. We

model Wb
2 as Gaussian distributed with mean Cw12

×Wa
1 and variance Var12

w , and Lb
2 as

Gaussian distributed with mean Cl12
×La

1 and variance Var12
l , or equivalently:

∆W 12
ab = (Wb

2 −Cw12
×Wa

1) ∼ N(0,Varw
12) (16)

∆L12
ab = (Lb

2 −Cl12
×La

1) ∼ N(0,Var12
l ) (17)

We define a vector O12
ab for a target a which exits the FOV of camera 1 at ta and has

newly appeared as target b in camera 2 at time tb as

O12
ab , [∆X12

ab ,∆Y 12
ab ,∆W 12

ab ,∆L12
ab] (18)

where

∆Xab
12 , Xb

2 −Xa
1 (19)

∆Yab
12 , Yb

2 −Ya
1 (20)

We define a match measure M in terms of likelihoods to determine if a vector O12
ab

from targets a and b in different camera views are of the same target as follows:

M(a = b/O12
ab) , |log2{Lx(∆X12

ab )Ly(∆Y 12
ab )Lw(∆W 12

ab )Ll(∆L12
ab)}| (21)

where ∆X12
ab ∼N(Vxa ×(tb−ta),Var12

xab
), ∆Y 12

ab ∼N(Vya ×(tb−ta),Var12
yab

), and ∆Wab
12

and ∆Lab
12 are distributed as in (16) and (17), respectively.

Our interest is to determine if the target entering the FOV of one camera is the same

as the one that exited the FOV of another camera. Thus we calculate M for a new object

that enters the FOV of any camera in the ground plane view. We use the observations

of the targets at the entry/exit locations to get the observation vectors. By using a suit-

able threshold on M, the correspondence matching problem between the cameras can be

solved. The number of correct matches in the multi-camera tracking system largely de-

pends on the threshold selected for the value of M in (21), obtained using training data.

In our system we have used M = 350.



5 Tracking results

The proposed system is implemented and tested for a two-camera system monitoring

traffic from two sides of an over-bridge. Figure 3 shows the FOVs of two cameras in

(a), (b) and (d), (e) and the derived ground plane views in (c) and (f). The latter also

show the tracking results. Figure 4 shows another example of target tracking results. The

track for carrier van in Figure 3(a) is shown. It has been correctly tracked in the blind

region across the camera views and correct correspondence matching has been achieved

in spite of significant change in target size and color information due to change in camera

angle. The figures show successful tracking of another car and van. Even though the

roads in Figures 3(a) and 3(b) are sloping downwards the tracking results are still good.

Our system is a real time system as it processes 12 frames/second (for each camera, frame

size is 352×288) for a two camera setup on a Pentium 4 3.06 GHz machine. The success

rate of our system for correspondence matching is 85%.

(a) (b) (d) (e)

(c) (f)

Figure 3: (a) and (d) are the views from camera 1. (b) and (e) are the views from camera

2. (c) and (f) shows the ground plane view constructed using the homography transform.

The vehicles in the FOVs of the cameras are being tracked in the ground plane view (The

vehicles are not shown in the ground plane view since it is computationally intensive to

calculate the ground plane view for every frame). The trajectories of the car and truck are

assigned tracks as seen in (c). When the car and truck exit the FOVs of the cameras, their

path in the blind region is tracked as seen in (f).



(a) (b) (d) (e)

(c) (f)

Figure 4: (c) shows the tracking results after the correspondence matching is done using

the proposed Gaussian formulation for the car and truck in Figure 3. The Kalman filter

tracks the vehicles in the blind region between the cameras. (f) shows some more tracking

results.

6 Conclusion

In this paper we have proposed a solution for multi-camera correspondence matching and

tracking of targets in cameras with non-overlapping FOVs. For this, a robust graph based

single camera target track initialization algorithm was proposed which gathers informa-

tion over multiple frames before matching the targets across cameras. The parameters

for correspondence matching were obtained by tracking the shape of the target in the

camera view and motion of the targets in the common ground plane view. The common

ground plane view was obtained by computing the homography of each camera view with

the ground plane. Shape and motion Kalman filters were used to track the targets in the

individual camera FOVs while a motion Kalman filter was used to track the targets in

the ground plane view. The change in position and shape parameters of the same target

across cameras were modeled as Gaussian distributions and we used the latter to compute

the likelihoods for correspondence matching. When the target exits the FOV of a camera,

the motion Kalman filter continues to track the target in the blind region. In [2] the so-

lution is specifically for a system of two widely separated cameras on a highway. Their

main goal was to achieve the correspondence matching of the vehicles on the highway



and the movement of the vehicles in the blind regions between the cameras was not of

interest. Target tracking in the blind region has applications in traffic surveillance sys-

tems to predict the most likely position of a vehicle in the blind region of the surveillance

cameras. Also, the complete path of a vehicle, including its motion in the blind regions

can be visually represented for a network of non-overlapping cameras.

The computations in target matching across cameras can be significantly reduced by

using the knowledge of camera topology. Camera topology can be computed using meth-

ods as in [1, 11]. The robustness of correspondence matching across camera views can

be further improved by using color calibration of the cameras and then using the color

information along with shape and motion to match the targets across cameras.
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