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Abstract. A multi-view multi-hypothesis approach to segmenting and
tracking multiple (possibly occluded) persons on a ground plane is pro-
posed. During tracking, several iterations of segmentation are performed
using information from human appearance models and ground plane ho-
mography. To more precisely locate the ground location of a person, all
center vertical axes of the person across views are mapped to the top-
view plane and their intersection point on the ground is estimated. To
tackle the explosive state space due to multiple targets and views, it-
erative segmentation-searching is incorporated into a particle filtering
framework. By searching for people’s ground point locations from seg-
mentations, a set of a few good particles can be identified, resulting in low
computational cost. In addition, even if all the particles are away from
the true ground point, some of them move towards the true one through
the iterated process as long as they are located nearby. We demonstrate
the performance of the approach on several video sequences.

1 Introduction

Tracking and segmenting people in cluttered or complex situations is a chal-
lenging visual surveillance problem since the high density of objects results
in occlusion. Elgammal and Davis [20] presented a general framework which
uses maximum likelihood estimation and occlusion reasoning to obtain the best
arrangement for people. To handle more people in a crowded scene, Zhao and
Nevatia [9] described a model-based segmentation approach to segment individ-
ual humans in a high-density scene using a Markov chain Monte Carlo method.

When a single camera is not sufficient to detect and track objects due to
limited visibility or occlusion, multiple cameras can be employed. There are a
number of papers which address detection and tracking using overlapping or
non-overlapping multiple views, for example, [6, 7, 19]. M2Tracker [19], which
is similar to our work, used a region-based stereo algorithm to find 3D points
inside an object, and Bayesian pixel classification with occlusion analysis to
segment people occluded in different levels of crowd density. Unlike M2Tracker’s
requirement of having calibrated stereo pairs of cameras, we do not require strong
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calibration, but only a ground plane homography. For outdoor cameras, it is
practically very challenging to accurately calibrate them, so 3D points at a large
distance from a camera are difficult to measure accurately.

Our goal is to ‘segment’ and ‘track’ people on a ground plane viewed from
multiple overlapping views. To make tracking robust, multiple hypothesis track-
ers, such as particle filter [12], are widely used [17, 16]. However, as the numbers
of targets and views increase, the state space of combination of targets’ states in-
creases exponentially. Additionally, the observation processes for visual tracking
are typically computationally expensive. Previous research has tried to solve this
state space explosion issue as in [13, 1, 14, 8, 15]. We also designed our tracker to
solve this issue. Each hypothesis is refined by iterative mean-shift-like multi-view
segmentation to maintain mostly “good” samples, resulting in lower computa-
tional cost.

This paper is organized as follows. Sec.2 presents a human appearance model.
A framework for segmenting and tracking occluded people moving on a ground
plane is presented in Sec.3. In Sec.4, the multi-view tracker is extended to a multi-
hypothesis framework using particle filtering. We demonstrate the experimental
results of the proposed approach on video sequences in Sec.5. Conclusion and
discussion are given in the final section.

2 Human Appearance Model

First, we describe an appearance color model as a function of height that assumes
that people are standing upright and are dressed, generally, so that consistently
colored or textured color regions are aligned vertically. Each body part has its
own color model represented by a color distribution. To allow multimodal den-
sities inside each part, we use kernel density estimation.

Let M = {ci}i=1...NM be a set of pixels from a body part with colors ci. Using
Gaussian kernels and an independence assumption between d color channels, the
probability that an input pixel c = {c1, ..., cd} is from the model M is estimated
as

pM (c) =
1

NM

NM∑

i=1

d∏

j=1

1√
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e
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�
cj−ci,j
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(1)

In order to handle illumination changes, we use normalized color (r= R
R+G+B ,

g = G
R+G+B , s = R+G+B

3 ) or Hue-Saturation-Value (HSV) color space with a
wider kernel for ‘s’ and ‘V’ to cope with the higher variability of these lightness
variables. We used both the normalized color and HSV spaces in our experiments
and observed similar performances.

Viewpoint-independent models can be obtained by viewing people from dif-
ferent perspectives using multiple cameras. A related calibration issue was ad-
dressed in [2, 5] since each camera output of the same scene point taken at the
same time or different time may vary slightly depending on camera types and
parameters. We used the same type of cameras and observed there is almost no
difference between camera outputs except for different illumination levels (due
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to shadow and orientation effects) depending on the side of person’s body. This
level of variability is accounted for by our color model.

3 Multi-camera Multi-person Segmentation and Tracking

3.1 Foreground Segmentation

Given image sequences from multiple overlapping views including people to
track, we start by performing detection using background subtraction to obtain
the foreground maps in each view. The codebook-based background subtraction
algorithm [18] is used. Its shadow removal capability increases the performance
of segmentation and tracking.

Each foreground pixel in each view is labelled as the best matching person
(i.e., the most likely class) by Bayesian pixel classification as in [19]. The posterior
probability that an observed pixel x (containing both color c and image position
(x, y) information) comes from person k is given by

P (k|x) =
P (k)P (x|k)

P (x)
(2)

We use the color model in Eq.1 for the conditional probability P (x|k). The
color model of the person’s body part to be evaluated is determined by the infor-
mation of x’s position as well as the person’s ground point and full-body height
in the camera view (See Fig.1(a)). The ground point and height are determined
initially by the method defined subsequently in Sec.3.2.

The prior reflects the probability that person k occupies pixel x. Given the
ground point and full-body height of the person, we can measure x’s height from
the ground and its distance to the person’s center vertical axis. The occupancy
probability is then defined by

Ok(hk(x), wk(x)) = P [wk(x) < W (hk(x))] = 1 − cdfW (hk(x))(wk(x)) (3)

where hk(x) and wk(x) are the height and width of x relative to the person k.
hk and wk are measured relative to the full height of the person. W (hk(x)) is the
person’s height-dependent width and cdfW (.) is the cumulative density function
for W . If x is located at distance W (hk(x)) from the person’s center at a distance
W , the occupancy probability is designed so that it will be exactly 0.5 (while it
increases or decreases as x move towards or move away from the center).

The prior must also incorporate possible occlusion. Suppose that some person
l has a lower ground point than a person k in some view. Then the probability
that l occludes k depends on their relative positions and l’s (probabilistic) width.
Hence, the prior probability P (k) that a pixel x is the image of person k, based
on this occlusion model, is

P (k) = Ok(hk, wk)
∏

gy(k)<gy(l)

(1 − Ol(hl, wl)) (4)
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Fig. 1. (a) Illustration of appearance model, (b) Bounding box detection

where gy(k) is the y-location of the ground point of k and x is omitted for
simplicity (i.e., hk = hk(x) and wk = wk(x)). The best class k∗ is determined
by maximum a posteriori (MAP) estimation: k∗ = argmax

k
P (k)P (x|k). Finally,

the foreground maps are segmented into the best matching persons based on
their appearance models and occlusion information.

3.2 Model Initialization and Update

Full automatic tracking is enabled by initializing the human appearance model
when a person is detected in a view by searching for isolated foreground blobs
(See Fig.1(b)). In order to get a bounding box of a person from the foreground
map, we used the object detection technique in [3]. The bounding boxes in the
figure were created when the blobs are isolated before. For the case when a
person does not constitute an isolated blob, a manual selection is employed.

The full-body height of a person is initialized upon model creation and is
updated during segmentation. In some cases, fixing the average height scaled
by the y-location of the ground point provides a robust height measurement
when the segmentation is unreliable. When the unclassified pixels (those hav-
ing a probability in Eq.1 lower than a given threshold) constitute a connected
component of non-negligible size, a new appearance model should be created.

3.3 Multi-view Integration

Ground Plane Homography. The segmented blobs across views are inte-
grated to obtain the ground plane locations of people. The correspondence of
a human across multiple cameras is established by the geometric constraints of
planar homographies. For NV camera views, NV (NV − 1) homography matrices
can possibly be calculated for correspondence; but in order to reduce the com-
putational complexity we instead reconstruct the top-view of the ground plane
on which the hypotheses of peoples’ locations are generated.

Integration by Vertical Axes. Given the pixel classification results from
Sec.3.1, a ground point of a person could be simply obtained by detecting the
lowest point of the person’s blob. However those ground points are not reliable
due to the errors from background subtraction and segmentation.
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Fig. 2. All vertical axes of a person across views intersect at (or are very close to) a
single point when mapped to the top-view

We, instead, develop a localization algorithm that employs the center vertical
axis of a human body, which can be estimated more robustly even with poor
background subtraction [11]. Ideally, a person’s body pixels are arranged more of
less symmetrically about a person’s central vertical axis. An estimate of this axis
can be obtained by Least Mean Squares of the perpendicular distance between
the body pixel and the axis as in 3© in Fig.2. Alternatively, the Least Median
Squares could be used since it is more robust to outliers.

The homographic images of all the vertical axes of a person across differ-
ent views intersect at (or are very close to) a single point (the location of that
person on the ground) when mapped to the top-view (See [11]). In fact, even
when the ground point of a person from some view is occluded, the top-view
ground point integrated from all the views is obtainable if the vertical axis is
estimated correctly. This intersection point can be calculated by minimizing the
perpendicular distances to the axes. Fig.2 depicts an example of reliable detec-
tion of the ground point from the segmented blobs of a person. The Nv verti-
cal axes are mapped to the top-view and transferred back to each image view.
Let each axis Li be parameterized by two points {(xi,1, yi,1), (xi,2, yi,2)}i=1...NV .
When mapped to the top-view by homography as in 4© in Fig.2, we obtain
{(x̂i,1, ŷi,1), (x̂i,2, ŷi,2)}i=1...NV . The distance of a ground point (x, y) to the axis
is written as d ((x, y), Li) = |aix+biy+ci|√

a2
i +b2i

where ai = ŷi,1 − ŷi,2, bi = x̂i,2 − x̂i,1,

and ci = x̂i,1ŷi,2 − x̂i,2ŷi,1. The solution is the point that minimizes a weighted
sum of square distances:

(x∗, y∗) = arg min
(x,y)

NV∑

i=1

w2
i d2((x, y), Li) (5)

The weight wi is determined by the segmentation quality (confidence level) of
the body blob of Li (We used the pixel classification score in Eq.2).
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If a person is occluded severely by others in a view (i.e., the axis information
is unreliable), the corresponding body axis from that view will not contribute
heavily to the calculation in Eq.5. When only one axis is found reliably, then the
lowest body point along the axis is chosen.

To obtain a better ground point and segmentation result, we can iterate
the segmentation and ground-point integration process until the ground point
converges to a fixed location within a certain bound ε. That is, given a set
of initial ground-point hypotheses of people as in 1© in Fig.2, segmentation in
Sec.3.1 is performed ( 2©), and then newly moved ground points are obtained
based on multi-view integration ( 4© and 5©). These new ground points are an
input to the next iteration. 2-3 iterations gave satisfactory results for our data
sets.

There are several advantages of our approach. Even though a person’s ground
point is invisible or there are segmentation and background subtraction errors,
the robust final ground point is obtainable once at least two vertical axes are
correctly detected. When total occlusion occurs from one view, robust tracking
is possible using the other views’ information if available; visibility of a person
can be maximized if cameras are placed at proper angles. Since the good views
for each tracked person are changing over time, our algorithm maximizes the
effective usage of all available information across views. By iterating the multi-
view integration process, a ground point moves to the optimal position that
explains the segmentation results of all views. This nice property is used, in the
next section, for a small number of hypotheses to explore in a large state space
that incorporates multiple persons and multiple views.

4 Extension to Multi-hypothesis Tracker

Next, we extend our single-hypothesis tracker to one with multiple hypotheses. A
single hypothesis tracker, while computationally efficient, can be easily distracted
by occlusion or nearby similarly colored objects.

As the number of targets and views increase, the state space of combination
of targets’ states increases exponentially. Additionally, the observation processes
for visual tracking are typically very expensive. We would, therefore, choose to
employ techniques that require small numbers of particles.

The iterative segmentation-searching presented in Sec.3 is naturally incor-
porated with a particle filtering framework. There are two advantages - (1) By
searching for a person’s ground point from a segmentation, a set of a few good
particles can be identified, resulting in low computational costs, (2) Even if all
the particles are away from the true ground point, some of them will move to-
wards the true one as long as they are initially located nearby. This does not
happen generally with particle filters, which need to wait until the target “comes
to” the particles.

Our final algorithm of segmentation and tracking is presented with a particle
filter overview and our state space, dynamics, and observation model.
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4.1 Overview of Particle Filter, State Space, and Dynamics

The key idea of particle filtering is to approximate a probability distribution by
a weighted sample set S = {(s(n), π(n))|n = 1...N}. Each sample, s, represents
one hypothetical state of the object, with a corresponding discrete sampling
probability π, where

∑N
n=1 π(n) = 1. Each element of the set is then weighted

in terms of the observations and N samples are drawn with replacement, by
choosing a particular sample with probability π

(n)
t = P (zt|xt = s(n)

t ).
In our particle filtering framework, each sample of the distribution is simply

given as s = (x, y) where x, y specify the ground location of the object in the
top-view. For multi-person tracking, a state st = (s1,t, ..., sNp,t) is defined as a
combination of Np single-person states. Our state transition dynamic model is
a random walk where a new predicted single-person state is acquired by adding
a zero mean Gaussian with a covariance Σ to the previous state. Alternatively,
the velocity ẋ, ẏ or the size variable height and width can be added to the state
space and then a more complex dynamic model can be applied if relevant.

4.2 Observation

Each person is associated with a reference color model q� which is obtained
by histogram techniques [16]. The histograms are produced using a function
b(ci) ∈ {1, ..., Nb} that assigns the color vector ci to its corresponding bin. We
used the color model defined in Sec.2 to construct the histogram of the reference
model in the normalized color or HSV space using Nb (e.g., 10 × 10 × 5) bins to
make the observation less sensitive to lighting conditions.

The histogram q(C) = {q(u; C)}u=1...Nb
of the color distribution of the sam-

ple set C is given by

q(u; C) = η

NC∑

i=1

δ[b(ci) − u] (6)

where u is the bin index, δ is the Kronecker delta function, and η is a normalizing
constant ensuring

∑Nb

u=1 q(u; C) = 1. This model associates a probability to each
of the Nb color bins.

If we denote q� as the reference color model and q as a candidate color
model, q� is obtained from the stored samples of person k’s appearance model
as mentioned before while q is specified by a particle sk,t = (x, y). The sample
set C in Eq.6 is replaced with the sample set specified by sk,t. The top-view
point (x, y) is transformed to an image ground point for a certain camera view
v, Hv(sk,t), where Hv is a homography mapping the top-view to the view v.
Based on the ground point, a region to be compared with the reference model
is determined. The pixel values inside the region are drawn to construct q.
Note that the region can be constrained from the prior probability in Eq.4,
including the occupancy and occlusion information (i.e., by picking pixels such
that P (k) > Threshold, typically 0.5). In addition, as done in pixel classification,
the color histograms are separately defined for each body part to incorporate the
spatial layout of the color distribution. Therefore, we apply the likelihood as the
sum of the histograms associated with each body part.
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Then, we need to measure the data likelihood between q� and q. The Bhat-
tacharyya similarity coefficient is used to define a distance d on color histograms:

d[q�,q(s)] =
[
1 −

Nb∑
u=1

√
q � (u)q(u; s)

] 1
2

. Thus, the likelihood (πv,k,t) of person

k consisting of Nr body parts at view v, the actual view-integrated likelihood
(πk,t) of a person sk,t, and the final weight of the particle (πk,t) of a concatena-
tion of Np person states are respectively given by:

πv,k,t ∝ e
�Nr

r=1 −λd2[q�
r ,qr(Hv(sk,t))], πk,t = ΠNV

v=1πv,k,t, πt = Π
Np

k=1πk,t (7)

where λ is a constant which can be experimentally determined.

4.3 The Final Algorithm

The algorithm below combines the particle filtering framework described before
and the iterated segmentation-and-search in Sec.3 into a final multi-view multi-
target multi-hypothesis tracking algorithm. Iteration of segmentation and multi-
view integration moves a predicted particle to an a better position on which all
the segmentation results of the person agree. The transformed particle is re-
sampled for processing of the next frames.

Algorithm for Multi-view Multi-target Multi-hypothesis tracking

I. From the “old” sample set St−1 = {s(n)
t−1, π

(n)
t−1}n=1,...,N at time t − 1,

construct the new samples as follows:
II. Prediction: for n = 1, ..., N , draw s̃(n)

t from the dynamics. Iterate Step
III to IV for each particle s̃(n)

t .
III. Segmentation & Search

s̃t = {s̃k,t}k=1...Np contains all persons’ states. The superscript (n) is
omitted through the Observation step.
i. for v ← 1 to NV do

(a) For each person k, (k = 1...Np), transform the top-view point
s̃k,t into the ground point in view v by homography, Hv (̃sk,t)

(b) perform segmentation on the foreground map in view v with
the occlusion information according to Sec2.

end for
ii. For each person k, obtain the center vertical axes of the person across

views, then integrate them on the top-view to obtain a newly moved
point s̃∗k,t as in Sec3.

iii. For all persons, if ‖s̃k,t − s̃∗k,t‖ < ε, then go to the next step. Otherwise,
set s̃k,t ← s̃∗k,t and go to Step III-i.
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IV. Observation
i. for v ← 1 to NV do

For each person k, estimate the likelihood πv,k,t in view v accord-
ing to Eq.7. s̃k,t needs to be transferred to view v by mapping
through Hv for evaluation. Note that qr(Hv (̃sk,t)) is constructed
only from the non-occluded body region.

end for
ii. For each person k, obtain the person likelihood πk,t by Eq.7.
iii. Set πt ← Π

Np

k=1πk,t as the final weight for the multi-person state s̃t.

V. Selection: Normalize {π
(n)
t }i so that

∑N
n=1 π

(n)
t = 1.

For i = n...N , sample index a(n) from discrete probability {π
(n)
t }i over

{1...N}, and set s(n)
t ← s̃a(n)

t .
VI. Estimation: the mean top-view position of person k is

∑N
n=1 π

(n)
t s(n)

k,t .

5 Experiments

We now present experimental results obtained on outdoor and indoor multi-view
sequences to illustrate the performance of our algorithm.

The results on the indoor sequences are depicted in Fig.3. The bottom-most
row shows how the persons’ vertical axes are intersecting on the top-view to
obtain their ground points. Small orange box markers are overlaid on the images
of frame 198 for determination of the camera orientations. Note that, in the fig-
ures of ‘vertical axes’, the axis of a severely occluded person does not contribute
to localization of the ground point. When occlusion occurs, the ground points
being tracked are displaced a little from their correct positions but are restored
to the correct positions quickly. Only 5 particles (one particle is a combination
of 4 single-person states) was used for robust tracking. Those indoor cameras
could be easily placed properly in order to maximize the effectiveness of our
multi-view integration and the visibility of the people.

Fig.4(a) depicts the graph of the total distance error of people’s tracked
ground points to the ground truth points. It shows the advantage of multiple
views for tracking of people under severe occlusion.

Fig.4(b) visualizes the homographic top-view images of possible vertical axes.
A vertical axis in each indoor image view can range from 1 to each maximum
image width. 7 transformed vertical axes for each view are depicted for visu-
alization. It helps to understand how the vertical axis location obtained from
segmentation affects ground point (intersection) errors on the top-view. When
angular separation is close to 180 degrees (although visibility is maximized),
the intersection point of two vertical axes transformed to top-view may not be
reliable because a small amount of angular perturbation make the intersection
point move dramatically.

The outdoor sequences (3 views, 4 persons) are challenging in that three peo-
ple are wearing similarly-colored clothes and the illumination conditions change
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frame362 frame407

deterministic
search only

general
particle filter

our method
Initially, all methods are good.

Fig. 5. Comparison on three methods: While the deterministic search with a single
hypothesis (persons 2 and 4 are good, cannot recover lost tracks) and the general
particle filter (only person 3 is good, insufficient observations during occlusion) fail in
tracking all the persons correctly, our proposed method succeeds with a minor error.
The view 2 was only shown here. The proposed system tracks the ground positions of
people afterwards over nearly 1000 frames.

over time, making segmentation difficult. In order to demonstrate the advan-
tage of our approach, single hypothesis (deterministic search only) tracker, gen-
eral particle filter, and particle filter with deterministic search by segmentation
(our proposed method) are compared in Fig.5. The number of particles used
is 15.

6 Conclusion and Discussion

A framework to segment and track people on a ground plane is presented. Human
appearance models are used to segment foreground pixels obtained from back-
ground subtraction. We developed a method to effectively integrate segmented
blobs across views on a top-view reconstruction, with a help of ground plane ho-
mography. The multi-view tracker is extended to a multi-hypothesis framework
using particle filtering.

We have illustrated results on challenging videos to show the usefulness of
the proposed approach. Segmentation of people is expedited by processing sub-
sampled foreground pixels and robust tracking is achieved without loss of accu-
racy; it was actually confirmed by the experiments with sub-sampling by factors
from 2 to 70.

In order to make our system more general, several improvements could be
considered, such as handling different observed appearances of an object across
views [2], extending the method to tracking in environments which are not pla-
nar, or including automatic homography mapping [10].
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