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ABSTRACT

This paper presents a novel solution to automatically count vehicles in a parking lot using images
captured by smart cameras. Unlike most of the literature on this task, which focuses on the analysis of
single images, this paper proposes the use of multiple visual sources to monitor a wider parking area
from different perspectives. The proposed multi-camera system is capable of automatically estimate
the number of cars present in the entire parking lot directly on board the edge devices. It comprises an
on-device deep learning-based detector that locates and counts the vehicles from the captured images
and a decentralized geometric-based approach that can analyze the inter-camera shared areas and
merge the data acquired by all the devices. We conduct the experimental evaluation on an extended
version of the CNRPark-EXT dataset, a collection of images taken from the parking lot on the campus
of the National Research Council (CNR) in Pisa, Italy. We show that our system is robust and takes
advantage of the redundant information deriving from the different cameras, improving the overall
performance without requiring any extra geometrical information of the monitored scene.
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1 Introduction

Traffic-related issues are constantly increasing, and tomorrow’s cities cannot be considered intelligent if they do not
enable smart mobility. Smart mobility applications, such as smart parking and road traffic management, are nowadays
widely employed worldwide, making our cities more livable and bringing benefits to the cities and, consequently, to our
lives.

Images are perhaps the best sensing modality to perceive and assess the flow of vehicles in large areas. Like no other
sensing mechanism, city camera networks can monitor large areas while simultaneously providing visual data to Al
systems to extract relevant information from this deluge of data. However, this application is often hampered by
the massive flow of data that must be sent to central servers or the cloud for processing. On the other hand, edge
computing is a recent paradigm that promotes the decentralization of data processing to the border, i.e., where the
data are generated, thus reducing the traffic on the network and the pressure on central servers. No wonder that the
combination of recent Computer Vision techniques like the deep learning-based ones and the edge computing paradigm
is an emerging trend, although they must face the limited computational resources on the disposable edge devices.

In this work, we propose a novel solution to automatically estimate the number of vehicles present in a parking lot
using images captured by smart cameras. This counting task is challenging as the process of understanding the captured
images faces many problems, such as shadows, light variation, weather conditions, and inter-object occlusions. Most of
the existing works concerning the vehicles counting task focus on the analysis of single images. However, in many
real-world scenarios, one can benefit from using multiple cameras to monitor the same parking lot from different
perspectives and viewpoints. Furthermore, multiple neighboring cameras can also be helpful to cover a wider area. At
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the same time, such an approach introduces issues related to merging the knowledge extracted from the single cameras
with partially overlapping fields of views (FOVs), as shown in Figure [T}

In this paper, we introduce a multi-camera system that combines a CNN-based technique, which can locate and count
vehicles present in images belonging to individual cameras, along with a decentralized geometry-based approach that
is responsible for aggregating the data gathered from all the devices and estimating the number of cars present in the
entire parking lot. Our solution performs the task directly on the edge devices (i.e., the smart cameras) without using
a central server or cloud, consequently reducing the communication overhead. The total count is built exploiting the
partial results computed in parallel by the single cameras and propagated through messages. Hence, our system scales
better when the number of monitored parking spaces increases. Moreover, our solution does not require any extra
information about the monitored parking area, such as the location of the parking spaces, nor any geometric information
about the camera positions in the parking lot. In short, it is a flexible and ready-to-use solution that allows a simple
“plug-and-play” insertion of new cameras into the system.

Figure 1: An example of two cameras monitoring the same parking area with partially overlapping fields of views. This
redundancy provides robustness and fault-tolerance but also raises the problem of aggregating knowledge extracted
from the individual cameras.

To train the CNN and validate our solution, we employ the CNRPark-EXT dataset [[Amato et al., 2017]], a collection of
images taken from the parking lot on the campus of the National Research Council (CNR) in Pisa, Italy. The pictures
are acquired by multiple cameras having partially overlapping fields of views and describing challenging scenarios, with
different perspectives, illuminations, weather conditions, and many occlusions. Since the annotations of this dataset
concern single images, we extended it by relabeling a part of it to be consistent with our algorithm that instead considers
the entire parking area. We conduct extensive experiments testing the generalization capabilities of the CNN-based
technique responsible for detecting vehicles in single images and the effectiveness of our multi-camera algorithm,
demonstrating that our system is robust and benefits from the redundant information deriving from the different cameras
improving the overall performance.

To summarizing, the main contributions of this work are the followings:

* We introduce a novel multi-camera system able to automatically estimate the number of cars present in the
entire monitored parking area. It runs directly on the edge devices and combines a deep learning-based detector
together with a decentralized technique that exploits the geometry of the captured images.

* We specifically extend the CNRPark-EXT dataset [[Amato et al., 2017]], a collection of images acquired by
multiple cameras having partially overlapping fields of views and describing various parking lots. We manually
re-label a subset of it, making it suitable with our considered scenario in which we consider the whole parking
area.

* We conduct experiments showing that our system is robust, flexible, and can benefit from redundant information
coming from different cameras while improving overall performance.
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We organize the rest of the paper as follows. Section [2|reports other works present in the literature related to our topic.
Section[3|describes our multi-camera counting algorithm. Section[d]states the experimental setup, describing the dataset,
the metrics, and the implementation details. Section [5|presents and discusses the experiments and the obtained results.
Finally, Section [6|concludes the paper with some insights on future directions.

2 Related Work

In this section, we overview some works related to our, organizing them into two categories. The first one concerning
the counting task, while the second one regarding multi-camera parking lot monitoring systems.

2.1 The counting task

The counting task estimates the number of object instances in still images or video frames
[Lempitsky and Zisserman, 2010]]. This topic has recently attracted much attention due to its inter-disciplinary
and widespread applicability and its paramount importance for many real-world applications. Examples include
counting bacterial cells from microscopic images [Xie et al., 2018]], estimate the number of people present at an event
[Boominathan et al., 2016]], counting animals in ecological surveys to monitor the population of a specific region
[Arteta et al., 2016] and evaluate the number of vehicles on a highway or in a car park [Amato et al., 2019]|.

In the last years, several machine learning-based solutions (especially supervised) have been suggested. Follow-
ing the taxonomy adopted in [Sindagi and Patel, 2018]], we can broadly classify existing counting approaches into
two categories: counting by regression and counting by detection. Counting by regression is a supervised method
that tries to establish a direct mapping (linear or not) from the image features to the number of objects present
in the scene or a corresponding density map (i.e., a continuous-valued function), skipping the challenging task
of detecting instances of the objects [Zhang et al., 2016} [Zhang et al., 2017, |Onoro-Rubio and Lépez-Sastre, 2016,
Ciampi et al., 2020, [Ciampi et al., 2021]]. Counting by detection is, instead, a supervised approach where we localize
instances of the objects, and then we count them [[Amato et al., 2018 |Ciampi et al., 2018|]. While regression-based
techniques work very well in a scenario where the objects are extremely overlapped, and the single instances are not
well defined due to inter-class and intra-class occlusions, they perform poorly in images with a large perspective and
oversized objects.

In this work, we estimate the number of vehicles present in a park area from images collected by smart cameras having
large perspectives. The cars close to the cameras are much larger than the ones far away from them. Therefore, we
employ a detection-based method. Most of the existing counting solutions do not directly deal with edge computing
devices and the consequent constraints due to the limited available computing resources. They use deep learning-based
approaches that typically require the use of a GPU and that are computationally expensive. Moreover, they consider
the images as single entities. They do not account for the possible benefits of monitoring the same lots from different
perspectives or covering a wider parking area with multiple cameras. Instead, our solution runs directly on the edge
devices connected to each other and can estimate the number of vehicles present in the entire parking lot.

2.2 Multi-camera parking lot monitoring

Parking lot monitor using visual data is not new, and other works already tackled it in the literature. In
[Amato et al., 2016} |Amato et al., 2017]], the same authors of the CNRPark-EXT dataset presented a deep learning-
based system for parking lot occupancy detection that can run in a Raspberry Pi directly on-board a smart camera.
In [Nieto et al., 2019]], authors directly dealt with the issues deriving from the adoption of a multi-camera system. In
particular, they applied a homography to project the detected vehicles from the plane of each camera to a common plane,
where they performed a perspective correction to correct matching between the vehicle detections and the parking spots.
Also, the authors in [[Vitek and Melnicuk, 2018]|| proposed a multi-camera system to classify parking spaces as vacant
or occupied. In this solution, the acquired images are processed on-board of Raspberry Pi devices. The extracted infor-
mation about the status of parking spaces is then transmitted to a central server, which evaluates the parking spaces in
the overlapping areas. Their algorithm is based on the histogram of oriented gradients (HOG)[Dalal and Triggs, 2005]
feature descriptor and support vector machine (SVM) classifier. Since the HOG feature descriptor cannot adequately
describe rotated vehicles, the authors have provided a descriptor with additional information about rotation to increase
the system accuracy.

However, these solutions rely on prior knowledge of the monitored scene, like the position of the parking spaces or
some geometric information of the scene. In essence, a preliminary annotation of the new areas and a new training
phase of the algorithm are often mandatory operations. As a consequence, these techniques are not very flexible. On the
other hand, we propose a simple yet effective solution that does not need any extra information about the monitored
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scene. The smart cameras can automatically localize and count the vehicles present in their field of view, propagating
the single results to the other edge devices through messages. A decentralized technique, again running directly on the
edge devices, is instead in charge of analyzing and merging these results, exploiting the captured images’ geometry, and
automatically outputs the number of cars present in the entire parking area.

3 Proposed approach

3.1 Overview

In this section, we describe our multi-camera counting algorithm. We based our system on the parallel processing of
each of the smart cameras followed by the fusion of their results to estimate the number of vehicles present in the entire
parking area.

Figure 2] shows an example of our multicamera-camera counting system, together with its graphical representation. We
model our system as a graph G, comprised of n nodes v; and one Sink node S, V = {vy,vs,...,v,, S}. Each node v;
represents an independent edge device, i.e., a smart camera in our case. Two nodes v; and v; are considered neighbors
if their FOVs overlap, and in this case, a directed edge of the graph connects them. Each edge device v; can capture
images, localize and count the vehicles present in its FOV exploiting a deep learning-based detector, and communicate
with its neighboring nodes through messages m,; containing the cars detections. Furthermore, each node v; can also run
a local counting algorithm in charge of computing partial counting results concerning the estimation of the number of
vehicles present in overlapped areas between its FOV and the ones belonging to its neighbors.

The fusion of the partial results is performed by the Sink node S, which is also in charge of providing the final result
and synchronizing all the algorithm steps through synchronization signals headed towards the other nodes v;. On the
other hand, the nodes v; can also communicate through messages with the Sink node. They can be of two types: 1)
messages 1); containing the number of cars captured by the node v; in its FOV, and ii) messages fi;,; representing the
partial counting estimation related to the overlapping area between two neighboring nodes v; and v;.

T
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Figure 2: An example of our multi-camera counting system, with n = 5 smart cameras. We model it as a graph G,
comprised of n nodes v; (one for each camera) and one Sink node S, V' = {vy,vs,...,1,,S}. Each node v; can
capture images, localize and count the vehicles present in its FOV, and communicate with its neighboring nodes through
messages m; containing these detections. Moreover, each node v; can run a local counting algorithm in charge of
computing partial counting results concerning the overlapped areas between its FOV and the ones belonging to its
neighbors, exploiting images’ geometry. These partial results are sent through messages to the Sink node S, which
is responsible for their fusion and provides the final result. Messages to S can be of two types: i) 7); containing the
number of cars captured by the node v; in its FOV, and ii) j1;; representing the partial counting estimation related to the
overlapping area between two neighboring nodes v; and v;.

In the following sections, we describe in detail all the steps of our algorithm. First, in Section [3.2] we outline the
automatic system initialization, performed by the smart-cameras themselves, in which they compute a homography
between the scene they are monitoring and the scene observed by the neighboring cameras. Then, in Section[3.3] we
describe the local counting algorithm that runs on each of the smart cameras. It combines a CNN-based counting
technique that can localize and estimate the number of vehicles present in their monitored scenes, together with a
geometric-based approach responsible for estimating the number of vehicles present in the overlapping areas between
the nodes and their neighbors. Finally, in Section[3.4] we depict the global counting algorithm responsible for the fusion
of these individual and partial results, and that finally outputs the number of cars present in the entire parking area.
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3.2 [Initialization

This step is aimed at automatically initializing the system, estimating the geometric relationship between each node
(i.e., each scene monitored by a smart camera) and its neighbors. The only hypotheses we impose are i) each smart
camera is aware of the IP addresses of its neighbors, i.e., the cameras having the field of view overlapped with its own;
ii) the Sink node S is aware of the IP addresses of all the smart cameras belonging to the system.

The Sink node S starts the initialization phase, sending a synchronization signal to all the other nodes. Once received,
each smart camera captures an image of the scene it monitors and sends it to all its neighbors. Once a smart camera ¢
receives an image from a neighboring camera j, it computes a homographic transformation H; ; between the image
7 and the image ¢ describing its monitored scene. This allows us to establish a correspondence between the points
belonging to the pair of images taken by the two cameras, which will be used subsequently in the algorithm. We
formalized the system initialization for a generic node v; in the Algorithm [T}

However, finding this homography can be challenging because neighboring cameras can have different angles of view,
leading to a perspective distortion between the images captured by them. Given a pair of neighboring nodes v;, v;, we
employ a procedure that starts in finding the SIFT key-points and feature descriptors of the images i, j
captured by the two nodes. Then, we match the two sets of feature descriptors performing the David Lowe’s ratio test
[Lowe, 2004]], and we further filter the matched feature descriptors by keeping only the pairs whose euclidean distance
is below a given threshold. Finally, we apply a random sample consensus (RANSAC [Fischler and Bolles, 1981])) to
these filtered feature descriptors. Figure [3|shows the concatenation of two neighboring images ¢ and j in which we
apply the found homographic matrix to the image ¢, to have the same perspective as the image j.

Algorithm 1 : Initialization
At each Initialization Signal by S, each node v; performs the following steps:

1: RECEIVEINITSIGNAL() > waits the initialization signal from .S
2: image; <~ CAMERACAPTURE()

3: foreach j € J do > .J is the set of neighboring nodes of node v;
4: SENDIMAGE(image;,v;) > sends image; to node v;
5: image; <— RECEIVEIMAGE() > receives image; from node v;
6: H;; = COMPUTEHOMOGRAPHY (image;, image;)

Figure 3: Example of concatenation of two images using a homographic transformation, where it is also visible the
overlapping area between them.

3.3 Local Counting Algorithm

This section describes the local counting algorithm that runs directly onboard the edge devices. It combines a CNN-
based counting technique in charge of the localization and the estimation of the number of vehicles present in the
acquired single images, i.e., the contents of the messages m; and the quantities 7; shown in Figure 2] together with a
geometric-based approach responsible of estimating the number of vehicles present in the overlapping areas between
the nodes and their neighbors, i.e., the quantities y; ; in Figure

A vehicle counting CNN on the Edge We base our vehicle counting technique on Mask R-CNN [He et al., 2017]],
a popular deep CNN for instance segmentation that operates within the ‘recognition using regions’ paradigm
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[Gu et al., 2009]. In particular, it extends the Faster R-CNN detector [Ren et al., 2017]] by adding a branch that
outputs a binary mask saying whether or not a given pixel is part of an object. Briefly, in the first stage, a CNN acts as a
backbone, extracting the input image features. Starting from this feature space, another CNN named Region Proposal
Network (RPN) generates region proposals that might contain objects. RPN slices pre-defined region boxes (called
anchors) over this space and ranks them, suggesting those most likely containing objects. Once RPN produces the
Regions Of Interests (ROIs), they might be of different sizes. Since it is hard to work on features having different sizes,
RPN reduces them into the same dimension using the Region of Interest Pooling algorithm. Finally, these fixed-size
proposals are processed by two parallel CNN-based branches: one is responsible for classifying and localizing the
objects inside them with bounding boxes; the second outputs a binary mask that says whether or not a given pixel is
part of an object. In the end, given an input image, the network produces per-pixel masks localizing the detected objects
together with the associated labels classifying them.

To make our counting solution able to run efficiently directly on the edge devices, we employ, as a backbone, the
ResNet50 architecture, a lighter version of the popular ResNet101 [He et al., 2016]. This simplification is also justified
because the more powerful version of Mask R-CNN based on the ResNet101 model was designed for more complicated
visual detection tasks than ours. Originally, Mask R-CNN was trained on the COCO dataset [Lin et al., 2014] to detect
and recognize 80 different classes of everyday objects. In our case, we have to localize and identify objects belonging to
just one category (i.e., the vehicle category). To this end, we further simplify the model by reducing the number of the
final fully convolutional layers responsible for the classification of the detected objects, making the model lighter. Once
we have localized the instances of the objects, we count them estimating the number of vehicles present in the scene.

Local counting The Sink node S starts this phase, sending a synchronization signal to all the smart cameras belonging
to the system. Once received the synchronization signal, each node v; captures an image belonging to its underlying
FOV, feeding the previously described CNN-based counting technique with it and obtaining as output a set of masks
masks; localizing the vehicles present in the scene. The cardinality of this set of masks corresponds to the number of
cars present in the image, i.e., the quantity 7);, that is sent through a message to the Sink node S. Then, the node v;
packs this set of masks masks; in a message m;, sending it to all its neighboring nodes v, and receiving from them their
corresponding set of masks masks; packed in a message m;. Once received a message m, the node v; is responsible
for analyzing the potential vehicles present in the overlapped area between its FOV and the one of the node v;. To
this end, it employs the homographic transformation H; ; computed during the system initialization, as described in
Section projecting the masks belonging to the set masks; into its image plane, filtering them and discarding the
ones that overlap with the masks belonging to the set masks; having a value of Intersection over Union (IoU) greater
than a threshold that we empirically found to be optimal at 0.2. These masks indeed localize vehicles already detected,
and that should not be considered a second time. On the other hand, the cars left after this filtering are vehicles that
were not detected in the FOV underlying the node v;, but instead found by the node v;, probably because of having
a better view of this object. Referring to our graph modeling the system and reported in Figure[2] the number of the
discarded cars after this filtering operation corresponds to the message (45 ;, that is sent to the Sink node S. We detail all
the described steps in the Algorithm [2]and in the Procedure 3}

Algorithm 2 : Local Counting
At each Computational Signal by S, each node v; performs the following steps:

1: RECEIVECOMPUTSIGNAL() > waits the computational signal from S
2: image; <— CAMERACAPTURE()
3: masks; +~ MASKRCNN(image;)
4: n; < |masks;|
5: SENDMESSAGE(7;, S) > sends 7); to Sink node S
6: m; < PACKMESSAGE(masks;) > builds message m,; containing masks;
7. for each j € J do > J is the set of neighboring nodes of node v;
8: SENDMESSAGE(m;, V;) > sends m; to node v;
9: m; <~ RECEIVEMESSAGE() > receives message m; from node v;
10: masks; < UNPACKMESSAGE(m) > unpacks m; containing masks;
11: 5, < COMPUTE_p(masks;, masks;, H; ;)
12: SENDMESSAGE((45,5, S) > sends j4; ; to Sink node S
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Algorithm 3 : Computation of 1
1 represents the num of cars detected by v; and already detected by v;
Each node v; performs the following procedure:

1: procedure COMPUTE_j(masks;, masks;, H; ;)

2 n_cars_already_detected < 0

3 for each mask € masks; do

4 mask;, < PROJECT(H ;, mask) > projects mask points on plane ¢
5: if mask;, falls within image; then

6: Maskpyax ¢ arg Max,, cpasks, 10U (masky, m)

7 if ToU(maskp, maskpax) > 7 then

8 n_cars_already_detected ++

9

return n_cars_already_detected

3.4 Global Counting Algorithm

In this section, we describe the global counting algorithm that runs on the Sink node S, responsible for the fusion of the
partial results coming from all the other nodes and that finally outputs the number of cars present in the entire monitored
parking area.

This phase starts when S receives all the n; and the y; ;, i.e., the number of vehicles estimated in the single FOVs and
the estimation of the number of cars already considered in the overlapping areas between neighboring cameras, from
all the nodes belonging to the system. In particular, for each overlapped area shared between a pair of nodes v;, v},
the node S receives two messages (i, ; and y; ;, the contents of which are computed by the two nodes employing two
homographic transformations H; ; and H; ;, respectively. These two quantities can be potentially different. We choose
the best value aggregating them, choosing between three different functions - max, min and mean, finding that the latter
is the best one. Finally, the node .S builds the final result, i.e., the estimation of the number of vehicles present in the
entire parking lot, by summing up all the 7;, and subtracting the aggregated values. We detail all these steps in the
Algorithm 4]

Algorithm 4 : Global Counting
The Sink node S performs the following steps:

1: for each (p; ;, ;) do
2: Lk < AGGREGATE(/LL]‘, ,U/j,i)
3: global_cars_count < ZnN:]_ M — Zle %
> N is the set of nodes, K is the set of aggregations

4 Experimental Setup

4.1 The CNRPark-EXT Dataset

In this work, we exploit the CNRPark-EXT public dataset introduced in [[Amato et al., 2017], a collection of annotated
images of vacant and occupied parking spaces in the campus of the National Research Council (CNR) in Pisa, Italy.
This dataset is challenging and describes most of the problematic situations that can be found in a real scenario: nine
different cameras capture the images under various weather conditions, angles of view, light conditions, and many
occlusions. Furthermore, the cameras have their fields of view partially overlapped. Since this dataset is specifically
designed for parking lot occupancy detection, it is not directly usable for the counting task. Indeed, each image, called
patch, contains one parking space labeled according to its occupancy status - O for vacant and 1 for occupied. Since this
work aims at counting the cars present in the parking area, we extended it by considering the full images and adapting
the ground truth to our purposes.

To train and evaluate the vehicles counting CNN based on Mask R-CNN, we created a suitable label set. In this
case, these labels correspond to binary masks, i.e., binary images identifying the polygons surrounding the vehicles
we want to detect. Since mask creation is a very time-consuming operation, differently from our previous work
[Ciampi et al., 2018]|], we considered the raw masks obtained directly from the bounding boxes localizing the occupied
parking spaces. The idea is that we do not need precise polygons that identify the vehicles we want to detect. Still, we
can use the region within the delimiters that identify the occupied parking spaces and the underlying part of the car.
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On the other hand, to validate our multi-camera algorithm, we considered some sequences of images belonging to
different cameras captured simultaneously. In other words, we took into account some snapshots of the whole parking
area picked up by the different views of the multiple cameras. We manually annotated these sequences, counting the
vehicles present in the scenes, considering them just once, and discarding them from the global count if they were
located in the overlapping areas. In particular, we accounted for six different sequences, two for each weather condition,
considering the images belonging from cameras to camerag. We did not consider camera; since it has a very different
view of the parking area compared to the other ones, covering a big portion of the whole parking lot already monitored
by the remaining cameras, and employing a very large perspective resulting in capturing images with very small cars
that sometimes are not well distinguishable.

4.2 Evaluation Metrics

Following other counting benchmarks, we exploit Mean Absolute Error (MAE), Mean Square Error (MSE), and Mean
Relative Error (MRE) as the metrics for the performance evaluation, defined as follows:

N
1
MAE = = > |ef! = | )
n=1
1 N
_ t red\2
MSE = 7 2 (e =) @)

N |C‘%t _ Cﬁred|

1
MRE = — — 3
N z:l num_spaces,, ©)

n

where N is the total number of the images, ¢y, ¢preq and num_spaces,, are the actual count, the predicted count,
and the total number of parking spaces of the n-th image, respectively. Note that as a result of the squaring of each
difference, MSE effectively penalizes large errors more heavily than small ones. Then MSE should be more useful
when large errors are particularly undesirable. On the other hand, MRE also considers the relation between the error
and the total number of objects present in the image.

4.3 Implementation Details

We report in this section some implementation details concerning the Mask R-CNN-based algorithm responsible for
the prediction of the number of vehicles in the single images. In particular, we trained the modified Mask R-CNN
initializing the weights of the ResNet50 backbone with the ones of a pre-trained model on /mageNet [Deng et al., 2009],
a popular dataset for classification tasks, and the remaining ones at random. We freeze the backbone for the firsts
10 epochs, and then we trained the whole network for 20 additional epochs. To prevent overfitting, we applied some
standard augmentation techniques to the training data: images are horizontally flipped with a 0.5 probability, then their
pixels are multiplied by a random value between 0.8 and 1.5, and finally, they are blurred using a Gaussian kernel with a
standard deviation of a random value between 0 and 5. Then, to support training multiple images per batch, we resized
all pictures to the same size. If an image is not square, we pad it with zeros to preserve the aspect ratio. In the end,
we obtained images of size 1024 x 1024. At inference time, images are resized and padded with zeros to get a square
picture of size 1024 x 1024, and no other augmentations take place.

5 Experiments and Results

In this section, we report the experiments and the obtained results. Firstly, we evaluate the performance against other
state-of-the-art solutions of the CNN-based technique responsible for estimating the vehicles in the single images
directly onboard the smart cameras, also stressing its generalization capabilities. Then, we validate the effectiveness of
our multi-camera algorithm, demonstrating that our system can benefit from the redundant information deriving from
the different cameras.

5.1 Experiments on the CNN-based counting solution on the edge
5.1.1 State-of-the-art comparison

We compare our solution with the results obtained in our previous work [Ciampi et al., 2018, where we presented a
centralized counting approach based on the original version of Mask R-CNN having the ResNet101 model as features
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extractor, which has been fine-tuned on a very small manually annotated subset of the CNRPark-EXT dataset, starting
from the model pre-trained on the COCO dataset. We filter the detections considering only the
predictions related to the car class, and we count them. Although this solution is very computationally expensive and
unsuitable for edge devices, it represents a direct comparison in terms of counting on the same dataset. We also compare
our technique against the method proposed in [[Amato et al., 2017]], an approach for car parking occupancy detection
based on mAlexNet, a deep CNN designed explicitly for smart cameras. This work represents an indirect method for
counting cars in a car park, as the counting problem is cast as a classification problem: if a parking space is occupied,
we increment the total number of cars, otherwise not. We illustrate the results in Tablem where we also report the
performance obtained using the Mask R-CNN network without a preliminary fine-tuning on the CNRPark-EXT dataset.
Our solution performs better than the other state-of-the-art considered methods, considering all three counting metrics.
In particular, our approach outperforms the solution introduced in [Ciampi et al., 2018]], despite the latter employs a
more deep and powerful CNN, and it is designed to be used as a centralized-server solution. This is explained by the
fact that in [Ciampi et al., 2018]] the authors fine-tuned the CNN using a tiny dataset. Consequently, the algorithm
overfits on the training data, and it cannot generalize over the test subset. It is also worthy of notice that our CNN also
outperforms the mAlexNet network, even though the latter knows the exact location of the parking spaces. Figure[4]
shows some examples of images belonging to different cameras and different weather conditions together with the
masks localizing them computed by our counting solution.

Table 1: Results obtained using our counting solution on the edge, compared with other state-of-the-art approaches. We
get the best results on all the three considered counting metrics.

Method MAE MSE MRE
mAlexNet [Amato et al., 2017]] 1.34 8.00 0.04
Fine-Tuned ResNet101 Mask R-CNN [Ciampi et al., 2018]| 1.05 441 0.03
ResNet50 Mask R-CNN 11.20 247.40 0.30
Our solution 0.49 1.04 0.01

(a) Image from Cameras (b) Image from Camerag

Figure 4: Two examples of the output of our counting method. Images are taken from the CNRPark-EXT dataset. We
report the predictions and the estimate of the number of vehicles present in the scene.

5.1.2 Generalization capabilities

Errors in vehicle detection and counting are due to many reasons, but critical points are different light conditions and
diverse perspectives. Weather conditions might produce significant illumination changes since puddles and wet floors
create a textural pattern that may lead to an error, and sunbeams can create reflections on the car windscreen, covering
the majority of the images with saturated patterns. When a CNN does not generalize well, it works well only in the
conditions where it was trained.

To measure the robustness of our approach to these scenarios, we performed two types of experiments: inter-weather
and inter-camera experiments. In the former, we trained our CNN with images taken in one particular weather condition,
and we computed the performance metrics obtained on images having different weather conditions. In particular,
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we performed three experiments, training respectively on the Sunny, Overcast and Rainy subsets of the CNRPark-
EXT dataset. In the latter, we trained our algorithm employing images from one camera, and then we computed the
performance metrics on pictures captured by another camera. In particular, we performed two experiments, training
with images coming respectively from camera; and camerag. We chose these two cameras because they are particularly
representative since one has a side view of the parking lot while the other has a pure front view.

We report the results of the two experiments in Figure 5] and Figure [6] respectively. The histograms compare the
counting performance metrics of the CNN trained on a specific scenario when tested over all the other possible scenarios.
We achieve a good generalization in both the considered scenarios. We experienced a larger amount of error when
the CNN is trained and tested on two opposite weather conditions, for instance, Sunny and Rainy, while the more
accurate model was the one trained on Overcast weather conditions. However, the performance difference is quite small.
On the other hand, in inter-camera experiments, the model trained on camerag is the best, and it has a slight drop in
performance only when tested on the camera; subset. The model trained on the camera; dataset performs in general
worse. This is probably due to a bias in the CNRPark-EXT dataset, where the majority of the images are captured from
a frontal viewpoint.

Mean Absolute Error Mean Squared Error .
Average Relative Error
== Sunny == Sunny 78 = sunny
.| HEE Overcast Emm Overcast BN Overcast
EE Rainy ‘| mm Rainy 0.020.02 0.02 == Rainy
0.96
0.84
'y o w
g 8. F
" 0.01 0.01
B 0.009
* Sunny Overcast Rainy * Sunny Overcast Rainy T sunny Overcast Rainy
(a) Mean Absolute Error (b) Mean Squared Error (c) Mean Relative Error

Figure 5: Results in terms of counting of the inter-weather experiments. The red bar represents the training on sunny
images, the blue bar the training on rainy images, and the green one the training on overcast images.
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Figure 6: Results in terms of counting of the inter-camera experiments. The yellow bar represents the training on the
Camera; images while the black bar the training on the Camerag images.

5.2 Experiments on the Multi-Camera Algorithm

Due to the absence of other works that consider the CNRPark-EXT dataset as a whole parking area, it is not possible to
make a quantitative comparison of our proposed multi-camera algorithm with respect to other state-of-the-art approaches.
However, we compare our solution against a baseline and a simplified version of our algorithm, highlighting the
improvements obtained by the use of the redundant information deriving from the multiple angles of view.

In particular, we compare our solution against a system that is not aware of the other cameras’ overlapped areas, and
so it just sums all the vehicles detected by all the cameras belonging to a sequence (Baseline B). Then, we consider
a more conservative approach, where the nodes employ the homographic transformations only with the purpose of
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black-masking the overlapped areas (Simplified algorithm S). This latter baseline then loses the ability to take advantage
of monitoring the same lots from different views. However, it is still aware of the locations of the overlapping areas,
and it considers the vehicles inside them only once.

Results are shown in Table 2} Our solution obtains the best results compared to the considered baselines in all the three
counting metrics and all the employed scenarios. We report the errors concerning the considered six sequences of the
CNRPark-EXT dataset, together with the MAE, MSE, and MRE, which summarize the mean results regarding all the
scenarios. As an example, in Figure[7] we also report the output of our multi-camera algorithm for a pair of images
belonging to two different cameras having a shared area in their field of view, where we highlight in red and blue the
masks projected from one camera to the other, using the previously computed homographic transformations.

Table 2: Results using our multi-camera counting algorithm, considering the entire parking lot. We compare our
solution against a baseline and a simplified version of our algorithm. We report the errors obtained on the six considered
sequences (two for each weather condition) of the CNRPark-EXT dataset that we extend on purpose.

Error Absolute Err. Squared Err. Relative Err. (%)

B S O B S O B S (0] B S (0]
Overcast-1 124 -33 2 124 33 2 15,376 1,089 4 716 19.0 1.2
Overcast-2 131 26 1 131 26 1 17,161 676 1 76.1 15.1 0.6
Rainy-1 80 -39 -5 80 39 5 6,400 1,521 25 47.6 232 29
Rainy-2 105 -44 -5 105 44 5 11,025 1,936 25 544 228 2.6
Sunny-1 117 -38 2 117 38 2 13,689 1,444 4  68.0 22.1 1.2
Sunny-2 113 -37 2 113 38 2 12,769 1,444 4  66.1 222 1.2
Mean 111.6 -36.1 -0.5 111.6 36.3 2.8 12,736.6 1,351.6 10.5 63.9 20.7 1.6

B = Baseline A; S = Simplified algorithm B; O = Ours (mean aggr., IoU Threshold 7 = 0.2)

(a) Image from Camerag (b) Image from Camerag

Figure 7: Example of the output of our multi-camera algorithm for a pair of images belonging to two different cameras
1, 7 having a shared area in their FOV. We report in green the masks localizing the vehicles detected by a camera in
its own FOV, while in red and blue, the masks projected from camera j to camera i and vice-versa, employing the
homographic transformations pre-computed during the system initialization.

6 Conclusion

This paper presented a distributed artificial intelligence-based system that automatically counts the vehicles present in
a parking lot using images taken by multiple smart cameras. Unlike most of the works in literature, we introduced a
multi-camera approach that can estimate the number of cars present in the entire parking area and not only in the single
captured images. The main peculiarities of this approach are that all the computation is performed in a distributed
manner at the edge of the network and that there is no need for any extra information of the monitored parking area,
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such as the location of the parking spaces, nor any geometric information about the position of the cameras in the
parking lot. We modeled our system as a graph, where the nodes, i.e., the smart cameras, are responsible for estimating
the number of cars present in their view and merging data from nearby devices that have an overlapping field of view.
Our solution is simple but effective, combining a deep-learning technique with a distributed geometry-based approach.
We evaluated our algorithm on the CNRPark-EXT dataset, which we specifically extended to show how we benefit
from redundant information from different cameras while improving overall performance.

There are multiple lines of future development that can help improve the proposed system. Although our multi-camera
algorithm is flexible, one limitation relies on computing the homographic matrix between images captured by cameras
placed in completely different locations, such as facing each other. In this case, the two perspectives are totally different,
and manual intervention is required to avoid the generation of an inaccurate geometric transformation.

Another interesting study that could be conducted is using the same approach in different scenarios, such as counting
people in crowds using techniques based on density maps.
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