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invasion-associated variant of desmoplastic
reaction involving INHBA, THBS2 and COL11A1
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Abstract

Background: Despite extensive research, the details of the biological mechanisms by which cancer cells acquire
motility and invasiveness are largely unknown. This study identifies an invasion associated gene signature shedding
light on these mechanisms.

Methods: We analyze data from multiple cancers using a novel computational method identifying sets of genes
whose coordinated overexpression indicates the presence of a particular phenotype, in this case high-stage cancer.

Results: We conclude that there is one shared “core” metastasis-associated gene expression signature
corresponding to a specific variant of stromal desmoplastic reaction, present in a large subset of samples that have
exceeded a threshold of invasive transition specific to each cancer, indicating that the corresponding biological
mechanism is triggered at that point. For example this threshold is reached at stage IIIc in ovarian cancer and at
stage II in colorectal cancer. Therefore, its presence indicates that the corresponding stage has been reached. It has
several features, such as coordinated overexpression of particular collagens, mainly COL11A1 and other genes,
mainly THBS2 and INHBA. The composition of the overexpressed genes indicates invasion-facilitating altered
proteolysis in the extracellular matrix. The prominent presence in the signature of INHBA in all cancers strongly
suggests a biological mechanism centered on activin A induced TGF-b signaling, because activin A is a member of
the TGF-b superfamily consisting of an INHBA homodimer. Furthermore, we establish that the signature is
predictive of neoadjuvant therapy response in at least one breast cancer data set.

Conclusions: Therefore, these results can be used for developing high specificity biomarkers sensing cancer
invasion and predicting response to neoadjuvant therapy, as well as potential multi-cancer metastasis inhibiting
therapeutics targeting the corresponding biological mechanism.

Background
There is currently great interest in identifying the biolo-

gical mechanisms for the acquisition of motility and inva-

siveness in cancer. It has been hypothesized [1,2] that

they often involve some form of epithelial-mesenchymal

transition (EMT), significant involvement of the tumor

microenvironment [3,4] and the presence of activated

fibroblasts in the “reactive” desmoplastic stroma of

tumors, referred to as “cancer associated fibroblasts”

(CAFs) [5,6].

A study [7] of serous papillary ovarian carcinomas,

comparing the gene expression profiles of primary vs.

omental metastatic tumors, identified 156 differentially

expressed genes. To investigate the significance of these

genes in an independent rich data set we performed

hierarchical clustering, using only these genes, on The

Cancer Genome Atlas (TCGA) gene expression data set

consisting of 377 ovarian cancer samples containing sta-

ging information. The resulting heat map revealed a

prominent block of about 100 highly overexpressed

genes in 94 samples (Additional file 1). Remarkably, we

found that none of the 41 samples from tumors of

stages IIIb and below were among the 94 samples. This

cannot be due to chance (p = 4 × 10-6), leading to the

hypothesis that coordinated overexpression of these
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genes implies that the tumor has progressed to at least

stage IIIc.

To further validate this hypothesis and test if similar

versions apply to other cancers, we developed a compu-

tational technique identifying in an unbiased manner

coordinatedly overexpressed genes associated with a

phenotype (such as transition to a particular stage). Our

results consistently rediscover the same “core” signature

of overexpressed genes, confirming the hypothesis. We

found that the signature is present in multiple cancers,

each of which has its own features involving additional

genes, but the core signature is common.

As evidenced by the presence of FAP (fibroblast activa-

tion protein) and ACTA2 (actin, alpha 2, also known as

a-SMA, alpha-smooth muscle actin) in the set of overex-

pressed genes, the signature suggests a variant of stromal

desmoplastic reaction. As further evidence, it is known

([6], p. 546) that activated fibroblasts (myofibroblasts) con-

struct the desmoplastic stroma through the secretion of

large amounts of collagen, fibronectin (FN1) and proteo-

glycans, and they secrete various proteases such as uroki-

nase plasminogen activator (PLAU) and matrix

metalloproteinases (MMPs). This list precisely describes

most of the genes appearing in the signature, and its pre-

cise composition (e.g., having COL11A1 as the prominent

collagen, MMP11 as the prominent metalloproteinase, and

CDH11 as the prominent cadherin) points to a particular

variant of CAFs, to which we refer as “metastasis asso-

ciated fibroblasts” (MAFs). Indeed, the resulting proteoly-

tic remodeling at the invasive edge of the tumor is

thought to facilitate the initial invasive stage of the meta-

static process by “excavating passageways” ([6], p. 621)

through the extracellular matrix for the cancer cells to go

through. Accordingly, in the following we refer to the cor-

responding gene expression signature and biological

mechanism as “the MAF signature” and “the MAF

mechanism,” respectively.

Methods
List of data sets

The list of data sets in the paper is given in Table 1. They

were identified by searching for rich data sets focused on

a specific cancer in two public databases, The Cancer

Genome Atlas and the Gene Expression Omnibus data

depository. Furthermore, for the data sets initially used to

infer the gene signature we required that they have well

annotated staging information associated with the sam-

ples and that they contain a significant number of sam-

ples in both lower and higher stages so that we could

compare the expression profiles across stages.

Extreme Value Association (EVA)

Since we aim to discover a set of genes that are coordi-

nately overexpressed only in a subset of the “high stage”

samples, we developed a special measure of association

between the gene and the binary (“high stage” vs. “low

stage”) phenotype that naturally fits this description,

ignoring the expression levels of the genes outside the

region of overexpression, which we call “extreme value

association” (EVA). The same measure can identify

coordinately silenced genes, but we did not find any

such genes across various cancer types.

The EVA metric is the minimum p-value of biased

partitions over all subsets of samples with highest

expression values of the gene. In other words, suppose

that there are totally M samples, out of which N are

“low stage” and M - N are “high stage,” and we select

the m samples with the highest gene expression values,

out of which n are “low stage” and m - n are “high

stage.” Under the assumption that gene expression

values are uncorrelated with the phenotype, the prob-

ability that there will be at most n “low stage” samples

among the selected m samples is given by the cumula-

tive hypergeometric probability h(x ≤ n; M, N, m). The

EVA metric is then defined as equal to -log10 of the

minimum of these probabilities over all possible choices

of m, in which m ranges from 1 to M (note that

n depends on m). For example, assume that there are

250 high-stage samples and 50 low-stage samples for a

total of 300 samples. Furthermore, assume that the 100

samples with the highest values of a particular gene con-

tain 99 high-stage samples and one low stage sample. In

that case, h(x ≤ 1;300,50,100) can be evaluated using the

MATLAB function hypercdf (1,300,50,100) = 5 × 10-9,

resulting in the EVA metric for that gene of at least

-log10(5 × 10-9) = 8.3. If the 101th sample is also high-

stage, then the EVA metric of the gene will be even

higher. Note that, once the highest value is reached, the

sorting arrangement of the remaining samples is irrele-

vant, reflecting the hypothesis that only the extreme

values are associated with the phenotype. Figure 1

shows the values of the cumulative hypergeometric

probability for the COL11A1 gene using the TCGA

ovarian cancer data set and the staging threshold for the

definition of the binary phenotype set between IIIb and

IIIc. The maximum (8.31) occurs when m = 133.

We then developed a mechanistic and unbiased (only

dependent on the phenotype) algorithm, which, when

given a gene expression data set for a number of sam-

ples labeled “high stage” or “low stage,” leads to a selec-

tion of genes that are coordinatedly overexpressed only

in high-stage samples, ignoring the effect of the rest,

thus precisely reflecting the observed phenomenon. We

first select the top 100 genes that rank highest according

to the EVA metric criterion using a mixture analysis

(selecting the minimum p-value) of both overexpressed

and silenced genes. Using this set of genes only, we per-

form k-means clustering with gap statistic [8]. At that
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step, if indeed the genes are coordinately overexpressed,

they will align well in the heat map. This leads to the

selection of the samples belonging to the cluster most

associated with the high/low stage phenotype - call this

the set of “EVA-based samples.” Next, we define a

“clean” MAF phenotype, contrasting the samples that

are: (a) both “EVA based” and “high-stage” against (b)

the samples that are both “non EVA-based” and “low

stage.” If the number of samples is sufficiently large, this

“clean” phenotype provides the sharpest way by which

we can identify the genes that are most associated with

the observed phenomenon of metastasis-associated

coordinated overexpression. We then rank the genes

and compute their multiple-test-corrected p-values

Table 1 Lists of Data sets in the paper

Data set name Source Site GEO Accession Affymetrix platform Sample size

TCGA Ovarian Cancer The Cancer Genome Atlas HT_HG-U133Aa 377

CCR Ovarian Cancer Gene Expression Omnibus GSE9891 HG-U133_Plus_2b 285

CCR Colon Cancer Gene Expression Omnibus GSE14333 HG-U133_Plus_2 290

Moffitt Colon Cancer Gene Expression Omnibus GSE17536 HG-U133_Plus_2 177

Singapore Gastric Cancer Gene Expression Omnibus GSE15459 HG-U133_Plus_2 200

CCR Breast Cancer Gene Expression Omnibus GSE7390 HG-U133Ac 198

Wang Breast Cancer Gene Expression Omnibus GSE2034 HG-U133A 286

Samsung Lung Cancer Gene Expression Omnibus GSE8894 HG-U133_Plus_2 138

Bild Lung Cancer Gene Expression Omnibus GSE3141 HG-U133_Plus_2 111

Neuroblastoma tumor Gene Expression Omnibus GSE3960 HG_U95Av2 102

Neoadjuvant Breast Cancer Gene Expression Omnibus GSE4779 U133_X3P [65] 102e

Postmortem - normal Gene Expression Omnibus GSE3526 HG-U133_Plus_2 353

Human body index - normal Gene Expression Omnibus GSE7307 HG-U133_Plus_2 504 [677]f

aAffymetrix HT Human Genome U133A Array.
bAffymetrix Human Genome U133 Plus 2.0.
cAffymetrix Human Genome U133A.
d270 out of 341 samples are tumor samples.
e65 out of 102 are ER-negative samples.
f504 out of 677 samples are normal samples.

Figure 1 Evaluation of the EVA metric for gene COL11A1 in the TCGA ovarian cancer data set.
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using a Wilcoxon rank-sum test using the “clean”

phenotype and select the genes for which p < 10-3 after

Bonferroni correction. Finally, we find the intersection

of these selected gene sets over all cancer expression

data sets and rank them in terms of fold change.

For a data set with n samples and m genes, the EVA

algorithm computes cumulative hypergeometric distri-

bution probabilities nm times. This can be computation-

ally intensive, so we devised a low-complexity

implementation algorithm described in Additional file 2.

Mutual Information and Synergy

Assuming that two variables, such as the expression

levels of two genes G1 and G2, are governed by a joint

probability density p12 with corresponding marginals p1
and p2 and using simplified notation, the mutual infor-

mation I(G1 ; G2) is a general measure of correlation

and is defined as the expected value E
p

p p
log 12

1 2








. The

synergy of two variables G1, G2, with respect to a third

variable G3 is [9] equal to I(G1, G2; G3) - [I(G1; G3) +

I(G2; G3)], i.e., the part of the association of the pair G1,

G2 with G3 that is purely due to a synergistic coopera-

tion between G1 and G2 (the “whole” minus the sum of

the “parts”). We used a 3rd order B-spline-based mutual

information estimator dividing the observation space

into six equally spaced bins in each dimension.

P-value estimation for mutual information and synergy

We applied a permutation-based approach accounting

for multiple test correction: We did 100 permutation

experiments of the class labels, saving the corresponding

100 highest values after doing exhaustive search in each

permutation experiment. Using the set of these 100

highest value scores, we obtained the maximum likeli-

hood estimates of the location parameter and the scale

parameter of the Gumbel (type-I extreme value) distri-

bution, resulting in a cumulative density function F. The

p-value of an actual score x0 is then 1 - F(x0) under the

null hypothesis of no association with phenotype. Simi-

larly, for the synergistic pair, we found the top-scoring

synergy in 100 data sets that were identical to the origi-

nal except that the phenotype values were randomly

permuted on each, and the top permuted synergy scores

were modeled, as above, with the Gumbel distribution.

Results
Identification of MAF signature genes from staging

information in four data sets

We performed the EVA algorithm on four rich gene

expression data sets, two from ovarian cancer, the one

from TCGA and another one [10], and two from color-

ectal cancer [11,12] accompanied by staging

information. We performed the algorithm multiple

times using the different possible cutoff thresholds

defining the phenotype, finding that, in all cases, it is

defined as exceeding stage IIIb in each of the ovarian

data sets and stage I in each of the colorectal data sets.

Interestingly, several among the “metastasis-associated

genes” identified in [7] as present in omental metastasis

of ovarian cancer were also identified in [10] as belong-

ing to a subtype of ovarian cancer characterized by

extensive desmoplasia, which contains the MAF

signature.

Remarkably, we found that there were 137 genes (listed

in Additional file 3), each of which had Bonferroni-cor-

rected p < 10-3 in all four data sets. Table 2 shows a list

of these genes with average log fold change greater than

2. The top ranked gene was COL11A1 (probe 37892_at).

Again, these genes were found purely as a result of their

association with the staging phenotype in all four cancers.

Gene Ontology enrichment testing of these genes identi-

fied cell adhesion, extracellular matrix and collagen fibril

organization. It turns out that use of other standard cor-

relation measures instead of the EVA measure in the

same algorithms leads to the same results, because the

overall correlation of these genes with the phenotype is

strong merely as a result of the genes’ overexpression in

some high-stage samples alone. The EVA method has the

additional advantage of providing an estimate of the size

of that subset of high-stage samples.

We then did an extensive literature search aimed at

identifying other studies in which at least some of these

genes were identified as differentially expressed in var-

ious stages of other cancers. We even scrutinized studies

in which none of the genes were mentioned in the main

text, by looking at their supplementary data and re-

ranking particular columns of genes in terms of their

fold changes, from genes containing numerous genes.

Although most of our results were negative, we were

able to produce cancer gene lists with striking similarity

(Table 3) to our own list (Table 2) in three studies of

breast [13], gastric [14] and pancreatic [15] cancer.

Specifically, a breast cancer study [13] comparing duc-

tal carcinomas in situ (DCIS) with invasive ductal carci-

noma (IDC) had a list of genes upregulated in IDC that

had similarities to those we had identified, and the top-

ranked gene was again COL11A1 (probe 37892_at) with

log fold change of 6.50, while the next highest (4.08)

corresponded to another probe of COL11A1, followed

by a probe of COL10A1. Second, a study [14] comparing

early gastric cancer (EGC) with advanced gastric cancer

(AGC) - roughly separating stages I and II - also identi-

fied a similar differentially expressed gene list of which

again COL11A1 (probe 37892_at) was at the top (log

fold change: 4.26) followed by COL10A1 and FAP.

Third, a study of pancreatic ductal adenocarcinoma [15]
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identified a list of genes overexpressed in whole tumor

tissue versus normal pancreatic tissue, in which

COL11A1 (probe 37892_at) is again prominent and the

top entry (log fold change 5.15) was INHBA, supportive

of our hypothesis of activin A induced TGF-b signaling.

The presence of the MAF signature in the latter study

indicates that pancreatic cancer had already become

invasive in most cases before the biopsy. The prominent

desmoplastic reaction in pancreatic cancers (which con-

tains the MAF signature) has recently been increasingly

recognized as a “foe” [16] that could lead to new thera-

peutic strategies targeting stromal cells to inhibit cancer.

Finally, we realized that COL11A1 has been identified as

a potential metastasis-associated gene in other types of

cancer as well, such as in lung [17], and oral cavity [18],

suggesting that the MAF signature may be present in a

subset of high stage samples of most if not all epithelial

cancers.

Using COL11A1 as proxy for the MAF signature in the

absence of staging information

In those cases as well as in our own findings, there was pro-

minent presence of COL11A1 (probe 37892_at). This

remarkable consistent strong association of COL11A1 with

the staging phenotype (specific to each cancer type) sug-

gests that it could be used as a “proxy” of the MAF signa-

ture. This would allow us to improve on the gene list of

Table 2 by making use of numerous publicly available gene

expression data sets of cancers of many types, even without

any staging information, as long as the MAF signature is

present in a sizeable subset of them, aiming at finding the

“intersection” of the associated factors in these sets, reveal-

ing the “core” of the MAF biological mechanism.

As a first step for this task, we identified the genes

that are consistently highest associated with COL11A1.

Additional file 4 shows a listing of genes in nine cancer

data sets, while Table 4 shows an aggregate list of the

top 100 genes ranked in terms of their association

(mutual information) with COL11A1. The list is similar

to the phenotype-based gene ranking (Table 2). In addi-

tion to a few collagens of type XI, X, V, and I, the top

ranked genes are thrombospondin-2 (THBS2), inhibin

beta A (INHBA), leucine rich repeat containing 15

(LRRC15), versican (VCAN), fibroblast activation protein

(FAP), and matrix metallopeptidase 11 (MMP11) aka

stromelysin 3. The presence of FAP indicates a general

desmoplastic reaction and is not, by itself, sufficient for

inferring the MAF signature.

Furthermore, contrary to all other genes, COL11A1 was

uniquely not associated with any of these genes in non-

cancerous samples, further supporting the hypothesis

that it can be used as a proxy for the MAF signature. Our

results indicate that THBS2 and INHBA, top ranked in

Table 4 except for collagens, are the most important

players in the MAF mechanism. Figure 2 demonstrates

this striking coexpression in data sets of cancer samples,

but not in noncancerous samples, in the form of scatter

plots. We have consistently validated this behavior in the

cancerous and noncancerous data sets we tested.

As a second step, we identified gene pairs that are

highest associated with COL11A1 jointly, but not indivi-

dually, and therefore they would not appear in the pre-

vious list. For this task we ranked gene pairs according

to their synergy [9] with COL11A1, using the

Table 2 Top-ranked genes associated with carcinoma

stage in four ovarian and colorectal cancers

Probe Seta Gene Log FC

37892_at COL11A1 3.94

217428_s_at COL10A1 3.55

204320_at COL11A1 3.39

210809_s_at POSTN 3.14

206439_at EPYC 3.12

219087_at ASPN 2.99

205941_s_at COL10A1 2.88

203083_at THBS2 2.81

209955_s_at FAP 2.73

215446_s_at LOX 2.63

204051_s_at SFRP4 2.53

210511_s_at INHBA 2.52

215646_s_at VCAN 2.50

218469_at GREM1 2.48

209758_s_at MFAP5 2.42

218468_s_at GREM1 2.35

212353_at SULF1 2.34

221730_at COL5A2 2.34

211571_s_at VCAN 2.33

204619_s_at VCAN 2.33

205713_s_at COMP 2.31

221731_x_at VCAN 2.27

204620_s_at VCAN 2.26

201150_s_at TIMP3 2.25

221729_at COL5A2 2.24

212354_at SULF1 2.23

212489_at COL5A1 2.22

213790_at ADAM12 2.21

212488_at COL5A1 2.20

201147_s_at TIMP3 2.19

204457_s_at GAS1 2.17

206026_s_at TNFAIP6 2.14

202952_s_at ADAM12 2.12

202766_s_at FBN1 2.08

212344_at SULF1 2.07

202311_s_at COL1A1 2.05

209335_at DCN 2.01

aAffymetrix probe sets.

All genes have Bonferroni corrected p < 10-3 in each of the four data sets.
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computational method in [19], which could further facil-

itate biological discovery. For example, the scatter plots

in Figure 3 show that genes ECM2 and TCF21 are

jointly, but not individually, strongly associated with

COL11A1 (p < 10-6, see Methods) in the two ovarian

cancer data sets. Such findings are useful for developing

biological hypotheses, e.g. in this particular case they

suggest that in ovarian cancer the extracellular matrix

protein 2 is associated with the MAF signature only

when the TCF21 gene (a known mesenchymal-epithelial

transition mediator) is downregulated.

The MAF signature exists even in non-epithelial can-

cers. Indeed, we confirmed that neuroblastoma also car-

ries the MAF signature consistently associated with high

stage: As shown in Additional file 5, none of 21 stage I

samples have the signature (p = 4 × 10-4), based on the

genes highest associated with COL11A1.

MicroRNAs and Methylated sites

We only had miRNA and methylation data available for

the TCGA ovarian data set. Using as measure the

mutual information with COL11A1, we found many

Table 3 Gene lists produced from information provided in the corresponding papers for other cancers

Breast Cancer, Shuetz et ala Gastric cancer, Vecchi et alb Pancreatic cancer, Badea et alc

Probe Setd Gene Symbol Log FC Probe Setd Gene Symbol Log FC Probe Setd Gene Symbol Log FC

37892_at COL11A1 6.50 37892_at COL11A1 4.26 227140_at INHBA 5.15

204320_at COL11A1 4.08 217428_s_at COL10A1 4.15 217428_s_at COL10A1 5.00

217428_s_at COL10A1 4.07 209955_s_at FAP 3.40 1555778_a_at POSTN 4.92

213764_s_at MFAP5 3.73 235458_at HAVCR2 3.30 212353_at SULF1 4.63

213909_at LRRC15 3.61 204320_at COL11A1 3.28 226237_at COL8A1 4.60

205941_s_at COL10A1 3.52 205941_s_at COL10A1 3.21 37892_at COL11A1 4.40

210511_s_at INHBA 3.44 204052_s_at SFRP4 2.90 225681_at CTHRC1 4.38

202766_s_at FBN1 3.43 226930_at FNDC1 2.85 202311_s_at COL1A1 4.12

212353_at SULF1 3.35 227140_at INHBA 2.77 203083_at THBS2 3.97

218468_s_at GREM1 3.35 209875_s_at SPP1 2.77 227566_at HNT 3.90

215446_s_at LOX 3.22 205422_s_at ITGBL1 2.63 204619_s_at CSPG2 3.87

221730_at COL5A2 3.22 226311_at — 2.63 229802_at WISP1 3.80

218469_at GREM1 3.20 222288_at — 2.62 212464_s_at FN1 3.69

212489_at COL5A1 3.08 231993_at — 2.50 205713_s_at COMP 3.53

203083_at THBS2 2.99 226237_at COL8A1 2.48 221729_at COL5A2 3.38

201505_at LAMB1 2.97 223122_s_at SFRP2 2.47 209955_s_at FAP 3.37

209955_s_at FAP 2.96 210511_s_at INHBA 2.43 229218_at COL1A2 3.16

209758_s_at MFAP5 2.92 203819_s_at IMP-3 2.39 209016_s_at KRT7 3.13

202363_at SPOCK 2.91 212464_s_at FN1 2.36 210004_at OLR1 3.03

213241_at NY-REN-58 2.90 212353_at SULF1 2.35 219773_at NOX4 3.02

205479_s_at PLAU 2.89 227995_at — 2.34 218804_at TMEM16A 2.90

206584_at LY96 2.88 225681_at CTHRC1 2.30 238617_at — 2.87

204475_at MMP1 2.83 204457_s_at GAS1 2.27 224694_at ANTXR1 2.82

202952_s_at ADAM12 2.83 216442_x_at FN1 2.25 228481_at COX7A1 2.77

201792_at AEBP1 2.81 223121_s_at SFRP2 2.23 226311_at ADAMTS2 2.76

204114_at NID2 2.81 211719_x_at FN1 2.23 201792_at AEBP1 2.68

213790_at ADAM12 2.80 204776_at THBS4 2.18 203021_at SLPI 2.65

209156_s_at COL6A2 2.77 210495_x_at FN1 2.15 227314_at ITGA2 2.58

219179_at DACT1 2.74 202800_at SLC1A3 2.13 205499_at SRPX2 2.44

212488_at COL5A1 2.73 214927_at — 2.11 226997_at — 2.41

219087_at ASPN 2.73 212354_at SULF1 2.09 219179_at DACT1 2.36

204619_s_at CSPG2 2.70 238654_at LOC147645 2.06 203570_at LOXL1 2.30

204337_at RGS4 2.69 213943_at TWIST1 2.06 201850_at CAPG 2.25

204620_s_at CSPG2 2.69 236028_at IBSP 2.05 222449_at TMEPAI 2.19

212354_at SULF1 2.68 228481_at POSTN 2.00 227276_at PLXDC2 2.16

aBreast cancer list indicates genes overexpressed in invasive ductal carcinoma vs. ductal carcinoma in situ.
bGastric cancer list indicates genes overexpressed in early gastric cancer vs. advanced gastric cancer.
cPancreatic cancer list indicates genes overexpressed in pancreatic ductal adenocarcinoma vs. normal pancreatic tissue.
dAffymetrix probe sets.
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statistically significant miRNAs, among them hsa-miR-

22 and hsa-miR-152, as well as differentially methylated

genes, such as SNAI1 and PRAME, suggesting a particu-

larly complex biological mechanism (correlation with

the MAF phenotype led to essentially the same lists

with lower significance). Table 5 contains a list of the

miRNAs, while Table 6 contains a list of the methylated

genes (multiple test corrected p < 10-16 in both cases,

see Methods). SNAI1 (snail) methylation is particularly

important as the gene is known as one of the most

important EMT-related transcription factors. Instead,

the strongest MAF-associated transcription factor is

AEBP1. Many of the other EMT-related transcription

factors, such as SNAI2, TWIST1, and ZEB1 are often

overexpressed in the MAF signature, but SNAI1 is not

(and, at least in ovarian carcinoma in which we have

methylation data, this is due to its differentially methy-

lated status). We believe that the lack of SNAI1 expres-

sion is a key distinguishing feature of the MAF

signature, in which we observed neither SNAI1 overex-

pression nor CDH1 (E-cadherin) downregulation, at

least on the mRNA level.

Drug response

Significantly, we also found that, at least in ER negative

breast cancer, the MAF signature is associated with

resistance to neoadjuvant FEC. This was demonstrated

in [20] where a stromal “metagene” signature of 50

genes was defined based on DCN (decorin). Although

some of the MAF key genes (such as COL11A1 and

THBS2) were not among these 50, the metagene signa-

ture used in that study has a significant intersection

with the MAF signature and was found resistant to

neoadjuvant chemotherapy. To compare the drug

response performance of the DCN metagene set with

that of the MAF signature, we used the top 50 genes

of the MAF signature in terms of their association

with COL11A1 from various cancers (the top genes

shown in Table 4) in the same data set. Shown in

Additional file 6 and Additional file 7 are two cluster-

ing heat maps of expression profiles, one with the

MAF signature genes and one with the DCN metagene

set, respectively. High expression of the MAF signature

genes correlates with lack of response to therapy (iden-

tifying 14 samples out of which 12 have lack of

response) more than high expression of the DCN

metagene set (identifying 12 samples out of which 10

have lack of response), suggesting that the presence of

the core genes of the MAF signature provide at least

as good indicator of resistance to neoadjuvant che-

motherapy. The reason for the drug resistance may

simply be that the invasiveness sensed by the MAF sig-

nature does not allow the size or extent of the cancer

to be reduced prior to surgery.

Table 4 Aggregate list of top genes associated with

COL11A1

Probe Seta Gene MI

37892_at COL11A1 0.727 218469_at GREM1 0.231

204320_at COL11A1 0.640 201261_x_at BGN 0.228

203083_at THBS2 0.418 213125_at OLFML2B 0.228

217428_s_at COL10A1 0.386 201744_s_at LUM 0.228

205941_s_at COL10A1 0.373 202998_s_at ENTPD4 0.223

221729_at COL5A2 0.370 201438_at COL6A3 0.223

210511_s_at INHBA 0.368 212344_at SULF1 0.222

221730_at COL5A2 0.367 209596_at MXRA5 0.221

213909_at LRRC15 0.342 213764_s_at MFAP5 0.221

212488_at COL5A1 0.337 204589_at NUAK1 0.216

204619_s_at VCAN 0.326 217762_s_at RAB31 0.216

209955_s_at FAP 0.323 213905_x_at BGN 0.214

202311_s_at COL1A1 0.322 201150_s_at TIMP3 0.214

221731_x_at VCAN 0.320 221541_at CRISPLD2 0.214

203878_s_at MMP11 0.319 217763_s_at RAB31 0.212

212489_at COL5A1 0.318 217430_x_at COL1A1 0.212

210809_s_at POSTN 0.315 205422_s_at ITGBL1 0.210

202310_s_at COL1A1 0.314 201147_s_at TIMP3 0.209

204620_s_at VCAN 0.312 218468_s_at GREM1 0.209

202404_s_at COL1A2 0.304 217764_s_at RAB31 0.208

202952_s_at ADAM12 0.300 213765_at MFAP5 0.206

213790_at ADAM12 0.297 211668_s_at PLAU 0.203

203325_s_at COL5A1 0.296 207173_x_at CDH11 0.202

215076_s_at COL3A1 0.295 213338_at TMEM158 0.201

215446_s_at LOX 0.293 209758_s_at MFAP5 0.199

210495_x_at FN1 0.291 202363_at SPOCK1 0.195

201792_at AEBP1 0.291 201148_s_at TIMP3 0.195

216442_x_at FN1 0.286 204051_s_at SFRP4 0.193

212464_s_at FN1 0.286 207172_s_at CDH11 0.192

201852_x_at COL3A1 0.286 202283_at SERPINF1 0.191

212353_at SULF1 0.285 209335_at DCN 0.189

211719_x_at FN1 0.285 204298_s_at LOX 0.189

211161_s_at COL3A1 0.283 219655_at C7orf10 0.189

202403_s_at COL1A2 0.278 219561_at COPZ2 0.189

202766_s_at FBN1 0.272 219773_at NOX4 0.187

212354_at SULF1 0.266 204464_s_at EDNRA 0.186

219087_at ASPN 0.260 200974_at ACTA2 0.186

200665_s_at SPARC 0.258 202273_at PDGFRB 0.185

215646_s_at VCAN 0.257 61734_at RCN3 0.185

211571_s_at VCAN 0.256 213139_at SNAI2 0.183

202450_s_at CTSK 0.254 220988_s_at AMACR 0.182

206026_s_at TNFAIP6 0.253 205713_s_at COMP 0.181

202765_s_at FBN1 0.247 201105_at LGALS1 0.181

203876_s_at MMP11 0.240 213869_x_at THY1 0.180

212667_at SPARC 0.239 202465_at PCOLCE 0.174

222020_s_at HNT 0.239 208851_s_at THY1 0.174

206439_at EPYC 0.235 209156_s_at COL6A2 0.173

201069_at MMP2 0.234 221447_s_at GLT8D2 0.172

205479_s_at PLAU 0.234 204114_at NID2 0.171

206025_s_at TNFAIP6 0.232 205991_s_at PRRX1 0.171

aAffymetrix probe sets.
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Discussion
A direct clinical application of these findings is the

development of a high-specificity invasion-sensing bio-

marker product detecting coordinated overexpression of

a few top-ranked genes, such as COL11A1, INHBA, and

THBS2, as shown in the scatter plots of Figure 2. A

positive result in seemingly low-stage primary tumors

will indicate that the disease has obtained the stromal

signature and thus has already reached an invasive stage.

As described above, the same product can also be used

to predict resistance to neoadjuvant chemotherapy.

Of course, the most significant clinical application

would be to develop metastasis-inhibiting therapeutics

using targets deduced from the biological knowledge pro-

vided by the MAF signature. Our top ranked genes

strongly suggest that they are produced by myofibroblasts

Figure 2 Scatter plots confirming coexpression of INHBA, THBS2, COL11A1 in cancerous but not healthy data sets. The expression of

COL11A1 is color-coded). As shown, COL11A1 is consistently coexpressed with INHBA and THBS2 in cancerous, but not in noncancerous samples,

two of which are shown on the right side.

Figure 3 Example of a synergistic pair of genes in two ovarian cancer data sets.
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or myofibroblast-like cells activated by activin A-induced

TGF-b signaling and leading to some form of altered pro-

teolysis [21], which results in extracellular matrix remo-

deling. Supporting this hypothesis are the facts that both

INHBA and THBS2 are involved in TGF-b signaling:

Activin A (INHBA homodimer) is a TGF-b superfamily

member (ligand) and THBS2 inhibits activation of TGF-

b by THBS1, which is also present in the MAF signature.

Remarkably, activin A is already known to facilitate fibro-

blast-mediated collagen gel contraction [22]. The role of

gene LRRC15 (aka LIB) appears important but unclear,

though it has already been recognized as promoting

migration through the extracellular matrix [23]. Versican

(VCAN) is an extracellular matrix proteoglycan already

known to play a role in metastasis, while MMP11 is one

of several matrix metalloproteinases involved in the

breakdown of extracellular matrix.

Although each of the MAF signature molecules could

serve as a potential therapeutic target, the hypothesis

that activin A signaling is at the heart of the MAF

mechanism immediately suggests that follistatin (activin-

binding protein) could serve as a metastasis inhibitor,

which is exactly what recent research [24] indicates.

Specifically, lung cancer cell lines transfected with follis-

tatin and injected into immunodeficient mice markedly

inhibited metastasis compared with non-transfected cell

lines, but the authors of the study recognize that the

role of follistatin in cancer metastasis is totally unknown

[25]. Our work provides an explanation and suggests

that the same could be true for other cancers as well.

Further support is provided by the fact that follistatin

virtually abolished the fibroblast-mediated collagen gel

contraction mentioned earlier [22].

There are several reasons that the core MAF signa-

ture has not yet been discovered as a multi-cancer

metastasis-associated signature. First, it is essential to

identify the correct phenotypic staging threshold

recognizing that the signature only exists in a subset of

tumors that exceed that particular stage. Indeed, if the

threshold in breast cancer was put between stage I and

stage II, or between stage II and stage III, rather than

between in situ and stage I, the signature would not be

apparent. Second, each cancer type may have its own

additional features accompanying the MAF signature.

For example, in ovarian cancer it is accompanied by

sharp downregulation of genes COLEC11, PEG3 and

TSPAN8, which is not the case in other cancers.

Indeed, the main contribution of our work is the iden-

tification of the common multi-cancer “core” signature,

from which a universal metastasis-associated biological

mechanism can be identified. Third, the MAF signa-

ture may be reversible, perhaps as a result of the dis-

appearance of many of the stromal cells in the mature

desmoplastic stroma when it is replaced by “acellular”

matrix [6]. The presence of the signature in high-stage

samples may even paradoxically be associated with

longer survival if its reversal is required for further dis-

tant metastases (see below).

An important topic of further research is the deter-

mination of the precise biological event of interaction

of cancer cells with the microenvironment that gives

Table 5 Top-ranked miRNAs in MAF signature in the

TCGA ovarian cancer data set

miRNA MI Up/Down
Regulated

hsa-miR-22 0.204 Up

hsa-miR-514-1|hsa-miR-514-2|hsa-miR-514-3 0.193 Down

hsa-miR-152 0.187 Up

hsa-miR-508 0.168 Down

hsa-miR-509-1|hsa-miR-509-2|hsa-miR-509-3 0.164 Down

hsa-miR-507 0.152 Down

hsa-miR-509-1|hsa-miR-509-2 0.147 Down

hsa-miR-506 0.146 Down

hsa-miR-509-3 0.144 Down

hsa-miR-214 0.128 Up

hsa-miR-510 0.116 Down

hsa-miR-199a-1|hsa-miR-199a-2 0.115 Up

hsa-miR-21 0.112 Up

hsa-miR-513c 0.108 Down

hsa-miR-199b 0.103 Up

All miRNAs have multiple test corrected p < 10-16 in terms of their association

with COL11A1.

Table 6 Top-ranked methylation sites in MAF signature

in the TCGA ovarian cancer data set

Methylation site MI Hyper-/Hypomethylated

PRAME 0.223 Hyper

SNAI1 0.183 Hyper

KRT7 0.158 Hyper

RASSF5 0.157 Hyper

FLJ14816 0.155 Hyper

PPL 0.155 Hyper

CXCR6 0.153 Hypo

SLC12A8 0.148 Hyper

NFATC2 0.148 Hyper

HOM-TES-103 0.147 Hypo

ZNF556 0.147 Hyper

OCIAD2 0.146 Hyper

APS 0.142 Hyper

MGC9712 0.139 Hyper

SLC1A2 0.136 Hyper

HAK 0.131 Hypo

C3orf18 0.13 Hyper

GMPR 0.13 Hyper

CORO6 0.128 Hyper

All methylated genes have multiple-test corrected p < 10-16 in terms of their

association with COL11A1.
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rise to the stromal MAF signature and associated inva-

siveness. Because of the recognized similarities with

the mechanisms of wound healing [26], it is likely that

this event uses existing wound healing response path-

ways. For example, it appears to occur very early in

breast cancer, late in ovarian cancer, and never in glio-

blastoma (which is reasonable, because glioblastoma

metastasizes extremely rarely). The late appearance of

the MAF signature in ovarian cancer and its presence

in omental metastases can be explained by the fact

that ovarian cancer initially progresses by disseminat-

ing locally across mesothelial surfaces and that, con-

trary to hematogenously metastasizing tumors, initial

metastasis is probably carried by the physiological

movement of peritoneal fluid to the peritoneum and

omentum [27].

Several of the top-ranked genes in the MAF signature

(such as thrombospondins, decorin, INHBA itself) are

known to be potent anti-angiogenesis mediators. The

reversal of the MAF signature would thus facilitate

further metastatic dissemination to distant sites. In

other words, (a) the desmoplastic MAF signature and

(b) angiogenesis, are two independent biological events.

The former appears to be based on activin A signaling,

as several of the MAF proteins in addition to INHBA

are also known inhibitors of the standard TGF-b ligand.

The reversal of the MAF signature would allow the

standard ligand to take over in TGF-b signaling, and

may thus facilitate further metastasis. These observa-

tions provide explanations for the seemingly contradic-

tory observed roles of TGF-b signaling inhibiting early

cancer but facilitating metastasis.

The possible reversibility of the MAF signature leads

to the intriguing hypothesis that perhaps all metastases

have, at some point temporarily been there, which

explains why we only observe it in a subset of them.

This would be particularly exciting, because in that case

any metastasis-inhibiting therapeutic intervention target-

ing the MAF mechanism would be widely applicable to

low-stage tumors.

Conclusions
In conclusion, we have shown that, using purely computa-

tional analysis of publicly available biological information,

systems biology has revealed the core of a multi-cancer

metastasis-associated gene expression signature. In the

near future, a vast amount of additional information will

become available, including next generation sequencing,

miRNA and methylation information for many cancers,

which will allow additional computational research build-

ing on this work and clarifying the details of the underly-

ing invasion-associated complex biological process.
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