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Abstract—This paper presents an overview of the theory
and currently known techniques for multi-cell MIMO (multiple
input multiple output) cooperation in wireless networks. In
dense networks where interference emerges as the key capacity-
limiting factor, multi-cell cooperation can dramatically improve
the system performance. Remarkably, such techniques literally
exploit inter-cell interference by allowing the user data to
be jointly processed by several interfering base stations, thus
mimicking the benefits of a large virtual MIMO array. Multi-
cell MIMO cooperation concepts are examined from differ-
ent perspectives, including an examination of the fundamental
information-theoretic limits, a review of the coding and signal
processing algorithmic developments, and, going beyond that,
consideration of very practical issues related to scalability and
system-level integration. A few promising and quite fundamental
research avenues are also suggested.

Index Terms—Cooperation, MIMO, cellular networks, relays,
interference, beamforming, coordination, multi-cell, distributed.

I. INTRODUCTION

A. Dealing with interference: conventional and novel ap-

proaches

F
ADING and interference are the two key challenges faced

by designers of mobile communication systems. While

fading puts limits on the coverage and reliability of any

point-to-point wireless connection, e.g., between a base station

and a mobile terminal, interference restricts the reusability of

the spectral resource (time, frequency slots, codes, etc.) in

space, thus limiting the overall spectral efficiency expressed in

bits/sec/Hz/base station. At least, so has been the conventional

view until recent findings in the area of cooperative transmis-

sion. Two basic scenarios are envisioned for cooperation in

wireless networks. The first one assumes a (virtual) MIMO

model for cooperative transmission over otherwise interfering

links and will be the focus of this paper, while in the second

relays are exploited. There exist interesting conceptual bridges

between the two setups however, as will be made clearer in

Section III and beyond.
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Relay-based cooperative techniques try to mitigate detri-

mental propagation conditions from a transmitter to a receiver

by allowing communication to take place via a third party

device (mobile or base) acting as a relay. Initially developed

relay-based cooperative transmission protocols have proved to

be instrumental in mitigating fading effects (both path loss and

multipath related) in point-to-point and point-to-multipoint

communications. So-called amplify-forward, decode-forward,

compress-forward cooperation schemes exploit available relay

nodes to offer a powerful extra diversity dimension [1].

While conventional diversity and relaying schemes greatly

improve the link-level performance and reliability, they do

little to increase the quality of service to users placed in

severe inter-cell interference-dominated areas, such as the

cell boundary areas of current cellular networks. Instead,

interference should be dealt with using specific tools such as

"virtual" or "network" MIMO, so as to maximize the number

of co-channel links that can coexist with acceptable quality of

service. In the high SNR regime (achieved in, say, a small cell

scenario), this figure of merit corresponds to the maximum

number of concurrent interference-free transmissions and is

referred to as the multiplexing gain of the network, or the

number of degrees of freedom in the information-theoretic

terminology.

The conventional non-cooperative approach to interference,

via spatial reuse partitioning, prevents the reuse of any spec-

tral resource within a certain cluster of cells. Typically, the

frequency re-use factor is much less than unity, so that the

level of co-channel interference is low. Thus, interference

is controlled by fixing the frequency reuse pattern and the

maximum power spectral density levels of each base station.

Current designs do allow for full frequency re-use in each

cell (typically for Code Division Multiple Access (CDMA) or

frequency hopping spread spectrum systems) but this results

in very severe interference conditions at the cell edge, causing

a significant data rate drop at the terminals and a strong lack

of fairness across cell users. Some interference mitigation is

offered by limited inter-cell coordination, which is convention-

ally restricted to scheduling or user assignment mechanisms

(e.g. cell breathing) or soft handover techniques. Inter-cell

interference is treated as noise at the receiver side and is han-

dled by resorting to improved point-to-point communications

between the base station (BS) and the mobile station (MS),

using efficient coding and/or single-link multiple-antenna tech-

niques [2]. This approach to dealing with interference may be

characterized as passive.

In contrast, the emerging view on network design advo-

cates a more proactive treatment of interference, which can
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be accomplished through some form of interference-aware

multi-cell coordination, at the base station side. Although

the complexity associated with the coordination protocols

can vary greatly, the underlying principle is the same: Base

stations no longer tune separately their physical and link/MAC

layer parameters (power level, time slot, subcarrier usage,

beamforming coefficients etc.) or decode independently of

one another, but instead coordinate their coding or decoding

operations on the basis of global channel state and user data in-

formation exchanged over backhaul links among several cells.

Coordination protocols can exploit pre-existing finite capacity

backhaul links (e.g., 802.16 WiMax, 4G LTE) or may require a

design upgrade to accommodate the extra information sharing

overhead. There are several possible degrees of cooperation,

offering a trade-off between performance gains and the amount

of overhead placed on the backhaul and over-the-air feedback

channels. The different possible levels of cooperation are

illustrated in detail in Section II.

B. From multi-user to multi-cell MIMO

The history of base station cooperation can be traced back to

previous decades, with the concept of macroscopic diversity

whereby one or more mobiles communicate their messages

through multiple surrounding base stations to provide diver-

sity against long-term and short-term fading. In conventional

CDMA networks, soft-handoff allows a mobile to communi-

cate simultaneously with several base stations, and selection

diversity is used to select the best of these connections at any

given time. Such selection diversity increases both coverage

and capacity [3], and combined with power control, it allows

full frequency re-use in each cell. However, full frequency

re-use comes at a price: CDMA capacity is then critically

constrained by inter-cell interference, and the per-cell capacity

in a network of interfering cells is much less than that of a

single isolated cell. This reduction in capacity is measured by

the so-called “f-factor” [4]. We will see that full base station

cooperation essentially removes this interference penalty.

By “full base station cooperation” we mean that all base

stations are effectively connected to a central processing

site, as depicted in Figure 1 for the downlink scenario. On

the downlink, the network is effectively a MIMO broadcast

channel with distributed antennas. First steps toward full

base station cooperation were taken in [5], [6], [7] for the

uplink, which is effectively a MIMO multiple access channel.

In these works, the base stations cooperate to decode each

user. In [6], the model is a CDMA network, with single-user

matched filter (SUMF) decoding, but the received signals from

a mobile, at each base station, are maximal ratio combined

before decoding. With such a global receiver there are no

wasted signals causing pure interference: All received signals

carry useful information for the global decoder, and hence

interference is exploited. In [6], it is shown that with the

optimal power control, such base station cooperation elim-

inates the inter-cell interference penalty. In other words, a

network of interfering cells has the same per-cell capacity

(in numbers of users) as a single, isolated cell. This result

was extended to CDMA networks with more sophisticated

multi-user receivers (decorrelator and MMSE receivers) in [7].

… …
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Fig. 1. A linear Wyner-type model with inter-cell interference spans Lℓ =
Lr = 1 and K = 3 MSs per cell.

Again, the interference is fully eliminated and the achievable

number of simultaneous users is same as if the cells were

isolated from each other, although in this case the per-cell

capacity benefits further from the more sophisticated multi-

user detection.

The story is not so clear-cut if we consider more fundamen-

tal, information-theoretic models, where particular physical

layers (e.g., CDMA) or receiver structures, are not assumed

a priori. Such information-theoretic results will be surveyed

in Section III. However, similar conclusions do hold at high

SNR, in terms of the degrees of freedom, as will be seen.

Pioneering work on the information-theoretic capacity of the

uplink of cellular networks with full base station cooperation

was done in the early 90s [8], [9]. In these works, it was shown

that with full base station cooperation, the traditional approach

of frequency re-use partitioning is inherently suboptimal.

Wyner [9] introduced a linear array model, and a hexagonal

cell model, which have become known as Wyner models of

cellular systems, and these are very tractable for information-

theoretic analysis. In [8], it was shown that at high SNR, the

capacity of a cellular system with fractional frequency re-use

is less than a system with full frequency re-use, by exactly

the re-use factor. This is equivalent to saying that full base

station cooperation reduces the inter-cell interference penalty

(or “f-factor”) to zero.

Although rich in content and ideas, [8], [9] stopped just

short of spelling out the connections between the multi-user

multi-cell channel and the MIMO channel. Communication

over the spatial modes of the point-to-point MIMO channel

(so-called spatial multiplexing) was formalized later in the mid

90s in [10], [11], then gradually extended to multi-user (MU-)

MIMO channels. It was at that stage only that the downlink

of the multi-cell cooperative channel, first investigated for the

downlink in 2001 [12], was recognized to be almost identical

to the so-called broadcast MIMO channel, if one ignores

the power constraint at the individual base stations. On the

uplink, there is no difference between ideal1 multi-cell MIMO

decoding and decoding over a multi-user MIMO channel.

Thus, a network of M ideally connected J-antenna base

stations can serve a total of MJ terminals in an interference-

1An ideal multi-cell MIMO channel is one where all base stations are
connected via infinite capacity backhaul links.
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free manner simultaneously, regardless of how strong the

interference is. To achieve this remarkable result, multi-user

spatial precoding and decoding is involved on the downlink

and uplink respectively, much akin to techniques used over

the MU-MIMO channel [13]. To date, progress in the area

of multi-cell MIMO cooperation continues to parallel that

realized in the more general MU-MIMO area. Nevertheless,

this domain of communications provides specific and tough

scientific challenges to communication theorists, although,

remarkably, it is already being considered within industry and

standardization fora.

C. Challenges of multi-cell MIMO

Despite their promise, multi-cell MIMO systems still pose

a number of challenges both theoretical and practical, sev-

eral of which are described in this paper. First, a thorough

understanding of the information-theoretic capacity of multi-

cell MIMO system accounting for fading and path loss effects,

even with an ideal backhaul, is yet to be obtained. As reviewed

in this paper, capacity results exist for simplified interference

models. Such results provide intuition for the general perfor-

mance behavior but are difficult to extend to general channel

models. Second, as multi-cell channels may involve a large

number of antennas and users, algorithm development work

is required to reduce the complexity of currently proposed

precoding and decoding schemes. Optimal precoding over the

broadcast (downlink) MIMO channel as well as optimal joint

decoding over the uplink involve non-linear computationally

intensive operations [14], [15] which scale poorly with the

size of the network. Third, the equivalence between multi-

cell systems and MIMO systems only holds in the case of

ideal backhaul conditions. Practical cooperation schemes must

operate within the constraints of finite capacity, finite latency,

communications links between base stations.
Deriving good theoretic performance bounds for MIMO

cooperation over a channel with limited information exchange

capability between the cooperating transceivers is a difficult

task. As shown in this paper some results are available for

a few simplified network models. From a practical point-of-

view, a major research goal is to find good signal processing

and coding techniques that approach ideal cooperative gains

while relying on mostly local channel state information and

local user data. This problem, referred to here as distributed

cooperation, is as challenging as it is important. Efficient

partial feedback representation methods building on classical

MIMO research [16] are also desirable. From a system-

level perspective, simulations indicate that substantial gains

in capacity and increased fairness across cell locations will

be accrued from the adoption of multi-cell MIMO techniques.

Yet, a number of important practical issues must be addressed

before a very realistic assessment of system gains can be made,

such as the impact of imperfect synchronization between base

stations, imperfect channel estimation at the receiver side, and

network latency. Such aspects are addressed at the end of the

paper along with a review of current field experiments.

D. Scope and organization of paper

The theoretical treatments of interference-limited channels

on the one hand, and of cooperation protocols on the other

hand, are still maturing, mostly due to the inherent complexity

of the problem. Nevertheless, the literature in these areas has

grown to be extremely rich. For this reason, we do not attempt

complete coverage of those domains of research. Instead, we

focus on the adaptation of multi-antenna processing principles

to the context of multi-cell cooperation. We refer to the

obtained framework as multi-cell processing (MCP).

In Section II, we begin with the mathematical models for

the network and signals, and the way that information is

exchanged between the cells. Basic notations for multi-cell

cooperation are given. Next, in Section III, key information-

theoretic results are surveyed that establish closed-form ex-

pressions for sum rate bounds for several important interfer-

ence and backhaul models. In Sec. IV, the focus is the design

of practical MCP techniques, assuming an ideal backhaul. Sec.

V deals with the problem of finite capacity backhaul and

considers the feasibility of scalable and distributed MIMO

cooperation, using such concepts as partial feedback, dis-

tributed optimization, Turbo base stations, and clustering.

Sec. VI addresses system-level implementation issues due to

expected imperfections at the physical layer. Initial tests with

prototypes are reported. Finally, Sec. VII provides perspectives

and suggestions for promising research avenues in this area.

Throughout this paper we adopt the following notations:

[x]k represents the kth element of vector k; 1N , and 0N are

N × 1 vectors of all ones and all zeros, respectively; [a, b],

where a ≤ b are integer, is the interval [a, ..., b]; (·)
†

represent

the conjugate transpose of its argument. I denotes the identity

matrix.

II. MODELLING MULTI-CELL COOPERATION

A. System model

We consider a multi-cell network comprising M cooperat-

ing base stations assigned with the same carrier frequency.

Each cell serves K users. The base stations are equipped

with J antennas each. Due to lack of space, we mostly

focus on base station-side interference control: The users have

single-antenna terminals, unless otherwise specified. Multiple

antenna terminals can be considered to allow for the spatial

multiplexing of mutiple data streams per user, or to give user-

side multi-cell interference cancellation capability. The latter

turns out to be useful especially in the context of interference

coordination. This scenario is addressed in Section IV, but

is otherwise excluded. The base stations can assume any

geometry, however, strongly structured cell models can help

the theoretical analysis of cooperation, as is discussed in

Section III.

In the uplink, the received signal at the mth BS, m ∈ [1, M ]
can be written as

ym =

M
∑

l=1

K
∑

k=1

hm,l,kxl,k + zm, (1)

where xl,k is the symbol transmitted by the k-th MS in the

lth cell, hm,l,k denotes the J element channel vector from the

k-th user of cell l towards the mth BS, z is the noise vector

containing additive noise and any inter-cell interference not

accounted for by the M cooperating cells alone, for instance

if the networks features more than M BSs.
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The model for the downlink can be easily obtained from the

one above. We will reuse some symbols, but their meaning will

be clear from the context. The signal received at the k-th user

in the m-th cell is written as:

ym,k =

M
∑

l=1

h
†
l,m,kxl + zm, (2)

where xl is the transmitter signal vector with J elements

transmitted from the l-th BS containing possibly precoded

(beamformed) information symbols for several users. Note

that, as a convention, the downlink channel vector from the

l-th BS towards the k-th user in the m-th cell is denoted

by the complex conjugated form of the corresponding uplink

channel hl,m,k. This is done to allow the exploration of

interesting duality results between uplink and downlink, as

seen in Sections III and IV. Note that this represents a con-

venient writing convention rather than an actual assumption

on physical reciprocity of the uplink and downlink channels.

Where/if such an assumption of reciprocity (e.g., TDD system)

is actually needed will be made clear in the paper.

B. The different levels of multi-cell cooperation

In this paper we distinguish simpler forms of multi-cell co-

ordination from those requiring a greater level of information

sharing between cells.
1) Interference coordination: The performance of current

cellular networks can already be improved if the BSs share the

channel state information of both the direct and interfering

links, obtained from the users via feedback channels (see

Fig 2). The availability of channel state information allows

BSs to coordinate in their signaling strategies, such as power

allocation and beamforming directions, in addition to user

scheduling in time and frequency. This basic level of co-

ordination requires a relatively modest amount of backhaul

communication and can be quite powerful if enough users

co-exist in the system (multi-user diversity) [17]. No sharing

of transmission data, or signal-level synchronization between

the base stations is necessary. We refer to such schemes as

interference-coordination. In this case, the downlink signal at

the l-th base, xl, is a combination of symbols intended for its

K users alone.
2) MIMO cooperation: On the other hand, when base

stations are linked by high-capacity delay-free links, they can

share not only channel state information, but also the full data

signals of their respective users (see Fig. 3). A more powerful

form of cooperation can be achieved. In this scenario, the con-

cept of an individual serving base for one terminal disappears

since the network as a whole, or at least a group of cells, is

serving the user. The combined use of several BS antennas

belonging to different cells to send or receive multiple user

data streams mimicks transmission over a MIMO channel and

is referred to here as MIMO cooperation. In principle, MIMO

cooperation transforms the multi-cell network into a multi-

user MIMO (MU-MIMO) channel for which all propagation

links (including interfering ones) are exploited to carry useful

data, upon appropriate precoding/decoding. In this case, the

downlink signal, xl, is a combination of symbols intended for

all MK users. In contrast, interference-coordination schemes

mobiles

base stations

Data 

router

1s 2s 3s

data symbols
321 ,, sss

1,1h 1,2h
2,1h

3,1h
1,3h

3,3h
3,2h

2,3h

Fig. 2. Illustration of interference coordination for the downlink. The BSs
acquire and exchange channel state information (but not the data symbols)
pertaining to all relevant direct and interfering links, so as to optimize
jointly their transmission parameters (time-frequency scheduling, power level,
beamforming

try to mitigate the generated interference, but they cannot

really exploit it. For instance, beamforming may be used

in each cell if the base stations are equipped with multiple

antennas. In this case the beams typically try to strike a

compromise between eliminating the inter-cell interference

and maximizing the received energy to/from the user within

the cell of interest. Ideally the choice of such beams across

multiple cells is coordinated.
Although some interference-coordination ideas are promis-

ing, they are touched upon rather briefly in this paper, mainly

in Section IV. MIMO cooperation schemes are the main focus

of our attention.
3) Rate-limited MIMO cooperation: In the intermediate

case, the base stations are linked by limited-capacity backhaul

links. Typically, channel state information is shared first, then

only a substream of user data or a quantized version of the

antenna signals are shared among the base stations, which

allows partial interference cancellation. Such hybrid scenarios

are investigated from an information-theoretic point of view in

Section III, then from an algorithmic perspective in Sections

IV and V.
4) Relay-assisted cooperation: Instead of cooperating

through backhaul links, it is also possible to consider channel

models in which a separate relay node is available to assist the

direct communication within each cell. Relay communication

is relevant to the multi-cell MIMO network because it can

be beneficial not only in strengthening the effective direct

channel gain between the BS and the remote users, but also in

helping with intercell interference mitigation. Relay enabled

cooperation is studied in Sec. III-E.

III. CAPACITY RESULTS FOR MULTI-CELL MIMO

COOPERATION

In this section, we address the impact of cooperation on

cellular systems from an information-theoretic standpoint. We

mostly focus on the performance of MCP but we also consider

the interplay of such techniques with cooperation in the form

of relaying at the Mobile Stations (MSs) level.
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Fig. 3. Illustration of multi-cell MIMO for the downlink. The BSs, each
equipped with J antennas, acquire and share channel state information and
user data, so as to mimic the behavior of a large MIMO array with MJ
antennas

A. Introduction

The analysis of MCP was started in the early works [8][9]

for the uplink and [12] for the downlink. The analysis in

these works is based on the assumption that the BSs are

connected via unrestricted backhaul links (error-free and un-

limited capacity) to a Central Processor (CP) and focuses on

models that, in information theoretic terms, can be seen as

symmetric Gaussian multiple-access or broadcast interference

channels. In these models, typically referred to as Wyner-type

models, a number of users per cell is served by a single-

antenna BS, as in a multiple access or broadcast channel,

and interference takes place only between adjacent cells, as in

partially connected interference networks [18]. Both models

where cells are arranged on a line or in a more conventional

bidimensional geometry can be considered, where the first

class may model systems deployed along a highway or long

corridor (see [19] for an implementation-based study), while

the second applies to more general scenarios.

In this section, we consider the multi-cell MIMO scenario of

Fig. 3 (i.e. with backhaul links allowing for some exchange of

CSI and data symbols information), however we will focus on

simplified cellular models that extend the Wyner-type models

considered in the initial works [8], [9], [12]. Specifically,

we consider the presence of limited-capacity and limited-

connectivity backhaul links, fading channels and the interplay

of MCP with relaying. We will focus on the per-cell sum-

rate as the criterion of interest. It should be noted that, while

the considered models capture some of the main features

and practical constraints of real cellular systems, such as the

locality of interference and constrained backhaul links, other

features such as user-dependent path loss are not accounted

for (see, e.g., [20]). Therefore, the models at hand can be seen

as useful simplifications of real cellular settings, that enable

insights and intuition to be obtained via analysis. It should be

also noted that the use of sum rate as a system metric may

mask other interesting features of multi-cell cooperation such

as improving the balancing of user’s quality of service from

cell center to cell edge.

B. The Linear Wyner Model

In this section, we review a basic system model for multiple

cell networks introduced in [8], [9]. We focus the attention

on linear Wyner-type models, as done in the original works.

Extension of the given results to planar models is possible,

though not always straightforward and we refer to [21] for

further discussion on this point. An extension of the model

to include relays is discussed in Section III-E of the present

paper. A linear Wyner-type model is sketched in Fig. 1. We

now present the corresponding signal models for uplink and

downlink.
1) Uplink: A general linear Wyner-type model is charac-

terized by M cells arranged on a line (as for a highway

or corridor), each equipped with a single-antenna (J = 1)

base station (BS) and K single-antenna MSs. In this class of

models, inter-cell interference at a given BS is limited to Lℓ

BSs on the left and Lr on the right. Considering the uplink,

the received signal (1) at the mth BS, m ∈ [1, M ], at a given

time instant t ∈ [1, n] (n is the size of the transmitted block)

can then be specialized as

ym(t) =

Lℓ
∑

l=−Lr

hT
m,m−l(t)xm−l(t) + zm(t), (3)

where xm(t) is the K × 1 (complex) vector of signals

transmitted by the K MSs in the mth cell, the K × 1 vector

hm,l(t) contains the channel gains {hm,l,k} towards the mth

BS from mobiles in the lth cell (see Fig. 1 for an illustration)

and zm(t) is complex symmetric Gaussian noise with unit

power and uncorrelated over m and time. We assume equal

per-user power constraints

1

n

n
∑

t=1

|[xm(t)]k|
2 ≤

P

K
, (4)

for all m ∈ [1, M ] and k ∈ [1, K], so that the per-cell

power constraint is given by P . Notice that model (3) assumes

full frame and symbol-level synchronization among cells and

users, even though extensions of the available results to the

asynchronous case may be possible following, e.g., [22].
The model (3) discussed above reduces to the following

special cases that will be referred to throughout this section:

• Gaussian Wyner model: This corresponds to a static

scenario with symmetric inter-cell interference and cell-

homogeneous channel gains, i.e., we have Lℓ = Lr = L
and hm,m−k(t) = αk1K with αk = α−k and α0 = 1.
By cell-homogeneous, we mean that the channel gains do

not depend on the cell index m, but only on the distance

between interfering cells (see also discussion below on

edge effects). Parameter L can be referred to as the inter-

cell interference span. Moreover, inter-cell gains αk ≥ 0,
k ∈ [1, L], are deterministic (no fading) and generally

known to all terminals. It is remarked that in this class

of models, all users in the same cell share the same path

loss. We also emphasize that the original model in [8],

[9] had L = 1, so that the system referred to here as

Gaussian Wyner model is to be seen as an extension of

[8], [9];

• Gaussian soft-handoff model: This corresponds to a

static cell-homogeneous system like the Gaussian Wyner
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model, in which, however, there is no symmetry in the

inter-cell channel gains. Specifically, we have inter-cell

interference only from the left cells as Lℓ = L, Lr = 0
and hm,m−k(t) = αk1, with α0 = 1, where, as above,

αk ≥ 0 are deterministic quantities. This model accounts

for a scenario in which users are placed at the border

of the cell so that inter-cell interference is relevant only

on one side of the given cell. In a number of works,

including [23], [24], the Gaussian soft-handoff model is

studied with L = 1, which can be seen as describing a

soft-handoff situation between two adjacent cells;

• Fading Wyner model: This model incorporates fading,

accounted for by random channel gains hm,k(t), in the

Gaussian Wyner model. In particular, we have Lℓ =
Lr = L and hm,m−k(t) = αkh̃m,m−k(t) where vectors

h̃m,m−k(t), t ∈ [1, n], are independent over m and k and

distributed according to a joint distribution πk with the

power of each entry of h̃m,m−k(t) normalized to one.
For simplicity, similar to the Gaussian Wyner model,

statistical symmetric inter-cell interference is assumed,

i.e., αk = α−k (and α0 = 1) and πk = π−k. As for

temporal variations, two scenarios are typical: (i) Quasi-

static fading: Channels h̃m,m−k(t) are constant over the

transmission of a given codeword (i.e., for t ∈ [1, n]); (ii)

Ergodic fading: Channels h̃m,m−k(t) vary in an ergodic

fashion along the symbols of the codeword. The ergodic

model was studied in [25] with L = 1;

• Fading soft-handoff model: This model is the fading

counterpart of the Gaussian soft-handoff model, and has

L1 = L, L2 = 0, and hm,m−k(t) = αkh̃m,m−k(t)
where h̃m,m−k(t) are independent and modelled as for

the fading Wyner model. This scenario was considered

in [26], [27] (under more general conditions on the joint

distribution of vectors h̃m,m−k(t)).

In order to remove edge effects, we will focus on the regime of

a large number of cells, i.e., M → ∞. This way, all cells see

exactly the same inter-cell interference scenario, possibly in a

statistical sense, as discussed above. An alternative approach,

considered, e.g., in [8], [23], would be to consider a system

in which cells are placed on a circle, which would exhibit

homogeneous inter-cell interference for any finite M. It is

noted that, however, the two models coincide in the limit of

large M and, in practice, results for the two models are very

close for relatively small values of M [21].

We now rewrite model (3) in a more compact matricial

form. We drop dependence on time t for simplicity. To

proceed, construct a M × MK channel matrix H such that

mth row collects all channel gains to mth BS, i.e., [hT
m,1,

hT
m,2, ...,h

T
m,m, hT

m,m+1, ..., hT
m,M ], where hT

m,m−k with

k /∈ [−Lr, Lℓ] are to be considered as zero. We can then

write the M × 1 vector of received signals y = [y1, ..., yM ]
T

as

y = Hx + z, (5)

where x = [xT
1 · · ·xT

M ]T is the vector of transmitted signals

and z the uncorrelated vector of unit-power Gaussian noises.

From the definition above, it is clear that, in general, H is a

finite-band matrix (in the sense that only a finite number of

diagonals have non-zero entries). Moreover, it is not difficult

cell number m - 1

base station

m m + 1

base station

(a)

(b)

CP

C
C

C

CC

Fig. 4. Backhaul models for MCP: (a) Central processor (CP) with finite-
capacity backhaul links (of capacity C); (b) Local finite-capacity backhaul
between adjacent BSs (of capacity C, uni- or bi-directional). Dashed lines
represent backhaul links.

to see that for Gaussian Wyner and Gaussian soft-handoff

models, matrix H has a block-Toeplitz structure, which will

be useful in the following.

2) Downlink: Define as ym the K × 1 vector of signals

received by the K MSs in the mth cell, y = [y
T

1 · · ·yT
M ]

T
,

and x as the M × 1 transmitted signal by the BSs. We then

have from (2)

y = H†x + z, (6)

where z is the vector of unit-power uncorrelated complex

Gaussian noise and channel matrix H is defined as above.

We assume a per-BS (and thus per-cell) power constraint
1
n

∑n

t=1 |[x(t)]m|2 ≤ P for all m ∈ [1, M ].

3) Multi-Cell Processing: For both uplink and downlink,

we will consider the two following models for the backhaul

links that enable MCP, see Fig. 4.

• Central processor (CP) with finite-capacity backhaul

(Fig. 4-(a)): In this case, all BSs are connected to a CP for

joint decoding (for uplink) or encoding (for downlink) via

finite-capacity backhaul links of capacity C [bits/channel

use]. Recall that the original works [8], [9], [12] assume

unlimited backhaul capacity, i.e., C → ∞;
• Local finite-capacity backhaul between adjacent BSs

(Fig. 4-(b)): Here BSs are connected to their neigh-

boring BSs only via finite-capacity links of capacity C
[bits/channel use], that may be uni- or bi-directional.

It is noted that two models coincide in the case of unlimited

backhaul capacity C → ∞. Also, we remark that another

popular model assumes that only BSs within a certain cluster

of cells are connected to a CP for decoding. This model will

be considered as well, albeit briefly, below.

C. Capacity Results for the Wyner Uplink Model

In the rest of this section, we elaborate on the per-cell

sum-rate achievable for the uplink of the Wyner-type models

without relays reviewed above. When not stated otherwise, we

will focus on the Gaussian Wyner model. Fading models are

discussed in Sec. III-C5. Throughout, we assume that channel

state information (CSI) on gains {αk} is available at all nodes.



GESBERT et al.: MULTI-CELL MIMO COOPERATIVE NETWORKS: A NEW LOOK AT INTERFERENCE 7

RSCP (P, F ) =

⎧

⎨

⎩

1
F

log2

(

1 + FP

1+2FP
P⌊L/F⌋

k=1
α2

kF

)

if F ≤ L

1
F

log2 (1 + FP ) if F > L
, (7)

1) Single-Cell Processing (SCP) and Spatial Reuse: Con-

sider at first a baseline scheme, where Single-Cell Processing

(SCP) is performed, so that each BS decodes individually its

own K users by treating users in other cells as Gaussian noise.

A standard technique to cope with inter-cell interference is

spatial reuse, that consists in activating at a given time (or

equivalently in a given subband) only one cell every F ≥ 1
cells. Parameter F is referred to as the spatial reuse factor.

SCP with special reuse is easily seen to achieve the per-cell

sum-rate in Eq. 7 where L is the inter-cell interference span.

Rate (7) is obtained by either letting all users in a given cell

transmit at the same time with power FP/K , which we refer

to as Wide-Band (WB) transmission, or by intra-cell TDMA,

whereby each user in a cell transmits with power FP for

a fraction of time 1/K. Notice that such power allocations

satisfy the per-block power constraint (4), due to the fact that

each cell transmits for a fraction 1/F of the time.

A few remarks are in order. First, as seen in (7), if the reuse

factor F is larger than the inter-cell interference span L, SCP

with spatial reuse completely eliminates inter-cell interference

and provides a non-interference-limited behavior with per-cell

multiplexing gain2 equal to 1/F , whereas otherwise the sys-

tem operates in the interference-limited regime [8], [9]. From

this, we conclude that the presence of inter-cell interference,

if handled via SCP, leads to a rate degradation with respect to

an interference-free system at high SNR given by a factor of

L [8]. In the low SNR regime, instead, where noise dominates

inter-cell interference, using the formalism of [28]3, it can be

seen that inter-cell interference does not cause any increase in

the minimum (transmit) energy-per-bit necessary for reliable

communications Eb/N0min, which equals ln 2 = −1.59dB, as

for interference-free channels. However, if one observes also

the slope of the spectral efficiency S0 [bits/s/Hz/(3dB)], which

accounts for a higher-order expansion of the spectral efficiency

as the SNR P → 0, the loss due to inter-cell interference is

seen also in the low-SNR regime. In fact, we have for rate

(7):

Eb

N0 min

= ln 2 and S0 =

{ 2

F
“

1+4
P⌊L/F⌋

k=1
α2

kF

” if F ≤ L

2
F

if F > L
,

(8)

where we recall that interference-free channels have S0 = 2.
The conclusions here are related to the analysis in [29] on the

suboptimality of TDMA for multiuser channels. As shown

2The per-cell multiplexing gain is defined as the limit
limP→∞ R(P )/ log P, where R(P ) is the given achievable per-cell
sum-rate. A system is said to be interference-limited if the multiplexing gain
is zero, and non-interference-limited otherwise.

3Reference [28] proposes to expand an achievable rate R as a function

of the energy-per-bit Eb = P/R as R ≃
S0

3dB

“

Eb
N0 dB

−
Eb
N0 min,dB

”

,

where N0 is the noise spectral density (normalized to 1 here) and
Eb
N0 min

=

1
Ṙ(0)

and S0 = (2 ln 2)
(Ṙ(0))2

(−R(0))̈
, where R(P ) is the considered rate (in

bits/channel use) as a function of the power P .

below, MCP allows to overcome the limitations of SCP and

spatial reuse discussed here.

2) Unlimited Backhaul: Assume at first unlimited backhaul

links to a CP, i.e., C → ∞. The per-cell sum-capacity

RMCP (P ) with MCP in this scenario (for any M ) is given

by [9]:

RMCP (P ) =
1

M
log2 det

(

IM +
P

K
HH†

)

(9a)

=
1

M

M
∑

m=1

log2

(

1+
P

K
λi(HH†)

)

(9b)

=

∫ ∞

0

log2

(

1+
P

K
x

)

dFHH†(x), (9c)

where λi(HH†) denotes eigenvalues of the argument matrix

and FHH†(x) is the empirical distribution of such eigenvalues:

FHH†(x) =
1

M

M
∑

m=1

1(λi(HH†) ≤ x). (10)

The per-cell capacity (9) is achieved by performing ideal

multi-user detection at the CP (which can in practice be

realized by following approaches such as [30]). Moreover, it

can be attained via both an intra-cell TDMA scheme where

users transmit with power P for a fraction of time 1/K
and by the WB scheme (whereby all users transmit with full

power P/K at all times). It is noted that the optimality of

TDMA is strictly dependent on the per-block power constraint

(4), and would not hold under more restrictive conditions,

such as peak or per-symbol power constraints. More general

conditions under which TDMA is optimal, under per-block

power constraints, can be found in [8]. For instance, from

[8], it is found that TDMA would generally not be optimal

in scenarios where users had different intra- and inter-cell

channel gains, such as in fading scenarios (see Sec. III-C5).

For the Gaussian Wyner model of interest here, using Szego’s

theorem, we get that for M → ∞ rate (9) can be written in a

simple integral form as [9]. Expression (11) can be interpreted

by considering the case K = 1 (without loss of generality,

given the optimality of intra-cell TDMA) and identifying the

signal received at the CP as the output (for each time instant)

of a Linear Time Invariant (LTI) filter, whose input is given

by the signals transmitted by the MSs and whose impulse

response is δm +
∑L

k=1 αkδm−k +
∑L

k=1 αkδm+k (δm is the

Kronecker delta). This integral cannot be evaluated in closed

form in general. It should be noted that in other scenarios,

such as the Gaussian soft-handoff model with L = 1, the

corresponding integral can be instead calculated in closed form

[23][24]. Notice that multiplexing gain of the MCP capacity

(11) is one, as for an interference-free scenario. Moreover, the

minimum energy-per-bit is given by

Eb

N0 min

=
ln 2

(1 + 2
∑L

k=1 α2
k)

, (12)
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RMCP (P ) =

∫ 1

0

log2

⎛

⎝1 + P

(

1 + 2

L
∑

k=1

αk cos(2πkθ)

)2
⎞

⎠ dθ (11)

showing an energy gain due to MCP with respect to SCP

and to an interference-free system given by (1 + 2
∑L

k=1 α2
k)

(parameter S0 is not reported here for lack of space but can

be obtained from [21]).
3) Limited Backhaul to the CP: Consider now the scenario

in Fig. 4-(a), where the BSs are connected to a CP via finite-

capacity links. At first, we remark that the achievable per-cell

sum-rate is limited by the cut-set upper bound

RUB(P, C) = min{C, RMCP (P )}. (13)

Moreover, here, the performance depends on the knowledge

of codebooks used by the MSs at the BSs. Assume at first

that the BSs are unaware of the codebooks used by the MSs

(oblivious BSs). In [31], this scenario is considered, and a

per-cell achievable sum-rate is derived for a strategy whereby

the BSs simply compress (to C bits/channel use) and forward

the received signals to the CP. Compression is followed by

(random) binning, exploiting the fact that the other BSs have

correlated information, according to standard techniques in

distributed source coding (see, e.g., [32]). Decoding at the

CP is done by jointly4 decompressing the signals forwarded

by the BSs and decoding the codewords transmitted by the

users. A simple expression is found for this achievable rate in

[31]:

ROBL(P, C) = RMCP (P (1 − 2−r)), (14)

where RMCP is defined in (11) and r is the solution of the

fixed-point equation:

ROBL(P (1 − 2−r)) = C − r. (15)

In other words, the finite-capacity links entail a SNR loss of

(1 − 2−r) with respect to the unlimited backhaul capacity

(11). It is noted that parameter r has the interpretation of

the amount of capacity C that is wasted to forward channel

noise to the CP [31], [32]. Also, we remark that rate (14)

does not match the upper bound (13) in general. However,

this is not always the case, and thus optimality of (14) is

proved, in the regimes with C → ∞ (in which compression

noise becomes negligible), on the one hand, and P → ∞
(in which the performance limited by C), on the other. It

is also interesting to point out that for low-SNR, the power

loss of the oblivious scheme at hand with respect to (11) is

quantified by calculating parameter Eb/N0min as Eb/N0min =
ln 2(1 + 2

∑L

k=1 α2
k)−1(1 − 2−C). Comparing this with (12),

one sees that in the low-SNR regime, the loss of (14) with

respect to (11) is neatly quantified by 1 − 2−C . As a final

remark, the optimal multiplexing gain of one is achieved if

the backhaul capacity C scales as log P, which coincides with

the optimal behavior predicted by the upper bound (13).
We now consider a different scenario where BSs are in-

formed about the codebooks used by the MSs both in the

4It is interesting to notice that while joint decompression/ decoding yields
no performance benefits for regular interference-free systems [33], this is not
the case in the presence of interference (see also [34], [35]).

same cell and in the interfering cells. In [31], a scheme is

considered where partial decoding is carried out at the BSs.

According to this approach, each MS splits its message and

transmitted power into two parts: The first is intended to be

decoded locally by the in-cell BS (with possible joint decoding

also of the signals from the interfering BSs) and transmitted

over the limited link to the CP, while the second part is

processed according to the oblivious scheme and is decoded by

the CP as discussed above. This scheme is shown to provide

advantages over the oblivious rate (14) when the inter-cell

interference is low (it is easy to see that it is optimal for

αk = 0, k > 0) and for small C. Another strategy that

exploits codebook knowledge at the BSs is the structured

coding scheme proposed in [36] and reviewed below.

In [36], it is proposed that the BSs, rather than decoding

the individual messages (or parts thereof) of the MSs as in

[31], decode instead a function of such messages or, more

precisely, of the corresponding transmitted codewords. The

key idea that enables this operation is the use of structured,

rather than randomly constructed, codes. Each MS employs

the same nested lattice code and the signal received at any mth

BS can be written from (11) as ym =
∑L

k=−L αkxm−k + zm.

Recalling that a lattice code is a discrete group, the (modulo5)

sum of the lattice codewords xm−k, weighted by integer

coefficients, is still a codeword in the same lattice code and

can thus be decoded by the mth BS. The problem is that

the channel coefficients αk are generally not integers. The

mth BS can however decode an arbitrary linear combination
∑L

k=−L bkxm−k with bk ∈ Z (and by symmetry bk = b−k)

and b0 �= 0 and treat the remaining part of the signal as

Gaussian noise. The index of the decoded codeword can

then be sent to the CP, that decodes based on all received

linear combinations. This leads to the achievable rate [36]

shown in (16) where B ={(b0, .., bL) ∈ Z : b0 �= 0 and

b2
0 + 2

∑L

k=1 b2
k ≤ 1 + P (1 + 2

∑L

k=1 α2
k)}. As shown in

[36], this rate may outperform (14) for low and high inter-

cell interference ([36] considers the case L = 1). Moreover,

[36] proves that rate (16) can be improved by superimposing

additional messages to the lattice codewords.

4) Local BS backhaul: In this section, we turn to the

model in Fig. 4-(b), where BSs are connected only to their

neighboring BS via finite-capacity links. At first, for reference,

we consider the related cluster-decoding setting of [37], where

each BS, say the mth, can decode based not only on the locally

received signal ym and also on the received signals from iℓ
BSs on the left (ym−k with k ∈ [1, iℓ]) and ir BSs on the

right (ym+k with k ∈ [1, ir]). Notice that this accounts for

a situation where unlimited capacity backhaul links connect

BSs, but only within a certain range of cells. Reference [37]

obtains the maximum multiplexing gain of this setting for

a Gaussian soft-handoff model with L = 1 with intra-cell

5The modulo operation is taken with respect to the coarse lattice forming
the nested lattice code.
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RLAT = min

{

C, max
(b0,..,bL)∈B

− log

(

b2
0 + 2

L
∑

k=1

b2
k −

P (b0 + 2
∑L

k=1 αkbk)2

1 + P (1 + 2
∑L

k=1 α2
k)

)}

, (16)

TDMA (or equivalently K = 1). The model of [37] also

assumes that MSs are aware, before choosing the transmitted

codewords, of the messages of the MSs in Jℓ cells on the left

and Jr cells on the right. This is a simple way to account for

cooperation at the MS level, and will be further discussed in

Sec. III-E. The maximum multiplexing gain is given by

Jℓ + Jr + iℓ + ir + 1

Jℓ + Jr + iℓ + ir + 2
, (17)

showing that with clustered decoding the multiplexing gain

is generally less than one, but larger than 1/2, as achievable

with SCP and spatial reuse (see Sec. III-C1). Moreover, this

shows that (for the soft-handoff model), left and right side

informations have the same impact on the multiplexing gain,

and the same applies to cooperation at the MSs or cluster

decoding. Multiplexing gain (17) is achieved by successive

interference cancellation at the BSs, where BSs exchange

information about the decoded signals (see also below), and

Dirty Paper Coding (DPC)-based cooperation at the users. It

is noted that this scheme requires knowledge of the codebooks

used in adjacent cells by both BSs and MSs. A model with

cluster decoding at the BSs, but no cooperation amongst the

mobiles, is considered in [38, Section IV], where similar

general conclusions about the multiplexing gain are obtained.

In the presence of finite-capacity backhaul, the inter-BS

links can be used to provide limited-rate information about

the received signal or a processed version thereof to adjacent

BSs. Such "relaying" has in general the double purpose of

providing information about the useful signal of the recipient

but also of the interference. This observation has also been

made in the context of interference relay channels (see review

in [39]). Along these lines, it is noted that the model and

techniques at hand are very related to interference channels

with "conferencing" decoders studied in [34], [40]. Consider,

as in [41], a soft-handoff model with L = 1 and unidirectional

backhaul links allowing information to be passed to the right.

Assuming knowledge of only the local codebook, a successive

decoding scheme can be devised in which each BS decodes

the local message and sends the quantized decoded codeword

to the neighboring (right) BS for interference mitigation. It is

not difficult to see that such scheme has zero multiplexing

gain since it is not able to fully mitigate the interference.

This is in contrast with the case where BSs have information

about the codebooks used in adjacent cells. In this case, as in

[37] (see discussion above), it becomes possible to perform

joint decoding of the local message and of (possibly part

of) the interfering message, and to use the backhaul link

to convey directly hard information (messages) rather than

soft information about the decoded codewords. This allows a

non-interference limited behavior to be attained: Specifically,

assuming that C grows like β log P, the multiplexing gain

min(1, 0.5 + β) can be attained [41].

5) Fading Channels: In this section, we discuss available

results on the sum-rate of fading Wyner and soft-handoff

models. We consider both quasi-static and ergodic fading

below.

a) Quasi-static Fading: With quasi-static fading, the

outage capacity is typically used as a performance criterion

[42]. This is, generally speaking, the maximum rate that guar-

antees reliable transmission for a given percentage of channel

realizations (the measure of whose complement is referred to

as outage probability). This setting implies either lack of CSI

at the users (so that rate adaptation is not possible) or inelastic

constant-rate applications. Using such a criterion in a large-

scale cellular system with MCP proves to be challenging: In

fact, on the one hand, defining outage as the event where

any of the users’ messages are not correctly decoded leads to

uninteresting results as the number of cells M grows large; On

the other hand, defining individual outage events, as studied in

[43] for a two-user MAC, appears to be analytically intractable

for large systems (see [44] for related work).

A tractable performance criterion is instead obtained by

considering the achievable per-cell sum-rate (9) for given

channel realizations in the limit as the number of users per

cell K and/or the number of cells M grow large, where

the limit is defined in an almost sure sense. It is noted that

such per-cell sum-rate is achievable by appropriate choice

of distinct rates by the MSs, and such choice depends on

the current realization of the channel matrices. The practical

significance of this criterion is thus limited to instances in

which, thanks to appropriate signaling, such rate adaptation is

possible. Therefore, we review these results below as they are

practically more relevant in the context of ergodic channels.

b) Ergodic Fading: With ergodic fading, the per-cell

sum-capacity is given by the expectation of (9c) with respect

to the distribution of H, i.e., Rerg
MCP (P ) = E[RMCP (P )]. It

is noted that such rate can be attained, due to the (stochastic)

symmetry of the considered model (neglecting edge effects by

taking the limit M → ∞) by equal rate allocation to all users.

Moreover, it is achieved by a WB scheme (all users transmit

at the same time), the rate of intra-cell TDMA being generally

smaller. This is in contrast with Gaussian (unfaded) models, as

discussed in Sec. III-C1, and is in line with standard results

for standard multiple access channels [45], [46]. It is also

noted that with SCP, when treating interference as noise as in

(7), intra-cell TDMA may instead be advantageous over WB

when intercell interference takes place and exceeds a given

threshold [46]. Some performance comparison between intra-

cell TDMA and spatial reuse in the presence of MCP for the

soft-handoff model with L = 1 and Rayleigh fading can be

found in [47].

To evaluate Rerg
MCP (P ), one can either use approximations

based on bounding techniques as in [25] or the fact that, if

FHH†(x) converges almost surely in some asymptotic regime

of interest to some limiting distribution (spectrum) F (x), then

Rerg
MCP (P ) converges to (9c) with FHH†(x) = F (x) (see, e.g.,

[48]). We discuss below two such regimes.

Consider first the asymptotics with respect to K and M
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Rerg
MCP (P ) =

∫ 1

0

log2

⎛

⎝

1 + P (1 − µ2)
(

1 + 2
∑L

k=1 α2
k

)

+Pµ2
(

1 + 2
∑L

k=1 αk cos(2πkθ)
)2

⎞

⎠ dθ (18)

(with the inter-cell interference span L kept fixed). Let us

assume that the distribution πk of vectors h̃m,k (recall Sec.

III-B) is such that each channel vector can be seen as a

realization of a stationary and ergodic process with unit power

and mean 0 ≤ µ ≤ 1 (and thus variance 1−µ2). In this case,

it can be verified that matrix HH† converges almost surely to

a deterministic Toeplitz matrix due to the strong law of large

numbers [8]. Now, using Szego’s theorem, similarly to (11),

we have that for K → ∞ and M → ∞ (taken in this order)

Eq. 18 [25].

Notice that we recover (11) for µ = 1, which corresponds

to an unfaded scenario. It can be proved, similarly to [25], that

(18) is decreasing in µ2, which implies that fading is beneficial

in the limit of a large number of users. It is remarked that this

may not be the case for a finite number of users K, as can

easily be seen by noticing that for K = 1 and no inter-cell

interference, one obtains a point-to-point link for which fading

is known not to increase the rate [25], [26]. It is noted that

the potential benefits of fading are related to the independence

of the fading gains towards different BSs and thus cannot be

mimicked by the MSs [25][23] (see also [8, Section 5.1.2]

for a discussion on the effect of fading on the multiplexing

gain, and on the power offset term). Moreover, from Jensen’s

inequality, it can be seen that (18) is an upper bound on the

ergodic per-cell capacity for any number of users K [25].

Finally, rate (18) does not depend on the actual (stationary and

ergodic) distribution πk but only on its first two moments.

Consider now a regime where K is fixed and M grows to

infinity. An approximation of the limiting spectrum F (x), and

thus of the per-cell rate Rerg
MCP (P ), has been obtained in [49]

for the fading Wyner model with L = 1 and Rayleigh fading

using free probability tools. Such approximation is seen to

be accurate only for small values of the interference gain α1.
In [26], [27], exact results on the convergence of per-cell rate

(9a) are studied for the fading soft-handoff model. Almost sure

convergence to a limit that depends on the Lyapunov exponent

of a certain product of matrices is shown (see also [50] for

related work). A central limit theorem is also proven in [27]

along with a corresponding large deviation result, providing

evidence to the fact that, given the limited randomness present

in matrix H (due to the banded structure), convergence is

slower than in classical random matrix theory (see, e.g., [51]).

Finally, [52] characterizes the high-SNR behavior (in the sense

of [53]) of (9a) as M grows large and K = 1 user and L = 1.

Performance bounds are also provided for K > 1. The result

shows that such behavior depends on the specific distribution

πk, lending evidence to the conclusion that, in the case of

finite-band matrices, the limit spectrum depends on the entries’

distribution, unlike standard random matrix theory [25], [48].

We also remark that in the fading soft-handoff model with

Rayleigh fading, L = 1, and intra-cell TDMA (or equivalently

K = 1), the ergodic rate Rerg
MCP (P ) can be found in a compact

integral form as shown in [54], [23]. Reference [47] obtains

related bounds for K > 1.

Finally, we point to [46], where the effect of fading on a

Wyner model with ideal cooperation only between adjacent

cell sites is studied.

c) MIMO Fading Models: Another extension is to con-

sider multiple antennas at the BS, with fading from each

antenna to each user. Uplink models comparing SCP to

MCP in this context are considered in [55], [56]. In [55]

an asymptotic regime is considered in which the number of

antennas at the base station, and the number of mobiles, grow

large together, in a circular Wyner model. It is shown that the

degrees of freedom depend on the system loading (number of

users per base station antenna), but, if SCP and MCP are both

optimally loaded (respectively), then MCP gains over SCP by

a factor of three, but the gap can be reduced to a factor of

two via the use of a re-use factor of two, with even and odd

cells in separate bands.

d) Channel uncertainty: Channel uncertainty has not

been adequately treated in the network MIMO literature to

date. Its importance can be seen from the point to point

MIMO channel where it is known that the number of transmit

antennas should not exceed the number of symbols in the

coherence block [57]. The reason is that part of the block of

symbols must be used for training so that the MIMO channels

can be measured at the receiver. If the coherence time is long

relative to the symbol period then the number of antennas

can be large, but if the coherence time is one symbol duration

then one antenna is optimal. Note that the limiting asymptotics

discussed in c) implicitly assume that the coherence time is

growing with the number of users. Thus, channel uncertainty

has implications for MIMO scalability, and we will discuss

this issue further in Section V.

6) Numerical Results: We now focus on a numerical ex-

ample for a Gaussian Wyner model with L = 1. Fig. 5 shows

the per-cell sum-rate achievable by the techniques discussed

above, namely SCP with spatial reuse F = 1 and F = 2
(7), ideal MCP (11), oblivious processing at the BSs (14)

with backhaul capacity C = 5 and lattice coding (16) with

C = 5. We have P = 15dB and the inter-cell interference

power gain α2
1 is varied. It can be seen that SCP with spatial

reuse F = 1 provides interference-limited performance, while

with F = 2 inter-cell interference is eliminated, but at the

cost of possibly reducing the achievable rate. MCP provides

remarkable performance gains, and can potentially benefit

from larger inter-cell power gains α2
1. When the backhaul

capacity is restricted to C = 5 (which is of the order of the

per-cell achievable rates at hand), it is seen that by choosing

the best between the oblivious BS scheme and the lattice-

based scheme, one performs fairly close to the bound of

ideal MCP. Moreover, lattice-based coding has performance

advantages over oblivious processing for sufficiently large or

small interference, large P (not shown here) and moderate C.

Increasing the capacity C to say C = 8, leads to an almost
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Fig. 5. Uplink of a Gaussian Wyner model with L = 1: Per-cell sum-rate
achievable by SCP with spatial reuse F = 1 and F = 2 (7), ideal MCP
(11), oblivious processing at the BSs (14) with backhaul capacity C = 5 and
lattice coding (16) with C = 5 versus the inter-cell interference power gain
α2

1 (P = 15dB).

ideal rate with the oblivious strategy (consistently with its

asymptotic optimality for P → ∞), while lattice coding does

not improve its performance.

D. Capacity Results for the Wyner Downlink Model

In this section, we review corresponding results for the

downlink. Reference results using SCP and frequency reuse

are similar to Sec. III-C1 and need not be discussed here.

We focus, as for the uplink, on Gaussian models and briefly

discuss the impact of fading in Sec. III-D3.
1) Unlimited Backhaul: Consider first the case of unlimited

backhaul. Reference [12] derives achievable rates based on the

linear precoding dirty paper coding strategy of [58]. The per-

cell sum-capacity is instead derived in [23] using the uplink-

downlink duality results of [59] as

RMCP (P ) =
1

M
min
Λ

max
D

log2

det
(

Λ + P
K

HDH†
)

det (Λ)
, (19)

with Λ and D being diagonal MK ×MK matrices with the

constraints tr(Λ) ≤ M and tr(D) ≤ M. This rate is known to

be achieved by dirty paper coding at the CP. For the Gaussian

Wyner (circulant) model, it can be shown that the per-cell sum-

capacity (11) is exactly equal to the corresponding capacity for

the uplink (11) for M → ∞. It follows that, as for the uplink,

intra-cell TDMA, where only one user is served per-cell, is

optimal with Gaussian (unfaded) channels.
2) Limited Backhaul to a CP: Similarly to the uplink,

strategies to be used in the presence of limited backhaul to a

CP depend on the level of codebook information available at

the BSs. For oblivious BSs, reference [60] proposes to perform

joint DPC under individual power constraint at the CP and then

send the obtained codewords to the corresponding BSs via the

backhaul links. The BSs simply transmit the compressed DPC-

codewords. Since the transmitted quantization noise decreases

the overall SNR seen by the MSs, joint DPC at the CP is

designed to meet lower SNR values and tighter power con-

straints than those of the unlimited setup [23]. The resulting

per-cell rate is shown to be equal to (11) but with a degraded

SNR

P̄ =
P

1 +
1+P(1+2

PL
k=1

α2

k)
2C−1

(20)

due to quantization noise. Similarly to the corresponding result

(14) for the uplink, this rate is generally suboptimal but it

achieves cut-set bound (13) (which is still a valid bound

also for the downlink) for C → ∞ (where the compression

noise is dominant). However, unlike for the uplink, this rate

is not optimal for P → ∞: This fact can be understood

by noticing that in the high-SNR regime, the compression

noise dominates the performance, and, in the downlink, the

compression noise is dealt with independently by each MS,

unlike in the uplink, where decompression is performed jointly

at the CP. Interestingly, for low-SNR the power loss in terms

of Eb/N0min turns out to be exactly the same as for the uplink,

being given by (1 − 2−C). Moreover, as for the uplink rate

(14), optimal multiplexing gain of 1 per-cell is achieved if

C ∼ log P.
Reference [60] also considers the case where the BSs

possess codebook information about adjacent BSs belonging

to a given cluster and proposes to perform DPC within the

given cluster. The main conclusion of [60] is that the oblivious

scheme is the preferred choice for small-to-moderate SNRs or

when the backhaul capacity C is allowed to increase with

the SNR. On the other hand, for high SNR values and fixed

capacity C, a system with oblivious BSs is limited by the

quantization noise, and knowledge of the codebooks at the

BSs becomes the factor dominating the performance.

3) Fading Channels: Following the discussion in Sec.

III-C5, here we focus on the ergodic fading scenario. For this

setting, the per-cell sum-capacity is given by Rerg
MCP (P ) =

E[RMCP (P )] with (19). Evaluating this quantity is not an

easy task due to the min-max operation involved. In [23],

upper and lower bounds on Rerg
MCP (P ) are derived for the

fading soft-handoff model with L = 1 and Rayleigh fading,

along with asymptotic SNR characterizations. An important

finding from such analysis is that, for large number K of users

per cell, the per-cell sum-rate capacity scales as log log K ,

which is the same type of scaling as for interference-free

systems. A suboptimal scheme is then proposed in [61] based

on zero-forcing (ZF) beamforming and a simple user selection

(scheduling) rule whereby one user is served in each cell at

any given time in an intra-cell TDMA fashion. It is found

that, even this suboptimal scheme is able to achieve the same

optimal scaling law of log log K with Rayleigh fading.

An illustration of the achievable per-cell rates in a fading

Wyner model with L = 1 and α2
1 = 0.4 is shown in Fig.

6. Specifically, the per-cell achievable rates with SCP and

spectral reuse F = 1 and F = 2 (obtained similarly to Sec.

III-C1), with ideal MCP (shown is the upper bound of [23])

and with the ZF beamforming and scheduling scheme of [61]

are plotted versus the power P and for K = 50 users per

cell. The interference-limited behavior of SCP with F = 1
is apparent and so is the performance gain achievable via
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MCP. It is also interesting to notice that the suboptimal ZF

beamforming scheme performs relatively close to the upper

bound set by ideal MCP.

E. Relay-aided Models

In modern cellular systems, the presence of dedicated

relays is considered to be instrumental in extending coverage

by enabling multi-hop communications or, more generally,

cooperation at the MS level [62]. Here, we briefly review a

model that accounts for the presence of dedicated relays, one

per cell, in a Wyner-type setting (first considered in [63]). We

focus on the uplink for simplicity and assume that the users

are sufficiently far from the BSs so that the direct link from

MS to BS can be neglected. We thus end up with two Wyner-

type models, one from the users to the relays and one from the

relays to the BSs (see Fig. 7). We will refer to these as first

and second hop, respectively. We assume that the relays are

full-duplex so that they can transmit and receive at the same

time. The protocols we consider, except when stated otherwise,

work by pipelining transmission on the two hops: The mobiles

send a new message to the relays in every block, while the

relays transmit to the BSs a signal obtained by processing the

samples received in the previous block. Given the assumption

of no direct link between mobiles and BSs, it is easy to see

that results with half-duplex relays are immediately derived

by halving the spectral efficiencies obtained for the full-duplex

case (a new message can only be sent once every two blocks).

Denoting as Lℓ and Lr the maximum inter-cell interference

spans on the left and right, respectively, for the two hops, we

can write the signal model, similar to (5), as follows. The

M × 1 signal received at the relays can be written as

yR= Hx + TxR + zR, (21)

where H is defined as in (5), and contains the channel gains

for the first hop (MSs-relays), x is as in (5) and zR is the

Gaussian noise. The new element here is the M ×1 signal xR

transmitted by the relays. The possible interference among

relays in different cells is accounted for by matrix T. Here,

we assume that there is interference only between relays in

adjacent cells, and that such interference is symmetric, so that

T is a symmetric Toeplitz matrix with first row equal to [0
µ 0T

M−2], where µ represent the inter-relay gains. Finally, the

signal received at the BSs is given by

y = HRxR+z, (22)

where now HR is the matrix containing the channel gains

from relays to BSs and is defined similarly to H (see also Fig.

7). We assume per-relay (and thus per-cell) power constraint
1
n

∑n
t=1 |[xR(t)]m|2 ≤ Q, for m ∈ [1, M ].

Consider now the performance of cooperation in cellular

networks in the presence of dedicated relay stations, following

the uplink model discussed above. Depending on whether

one assumes SCP or MCP, the system can be seen as an

interference network with relays or as a multiple access

channel with multiple relays and a multiple-antenna receiver,

respectively. We remark that, in both cases, general conclusive

results are unavailable even in the simple two-user cases con-

sidered in [39], [64]. Analysis, in terms of achievable per-cell

sum-rate and corresponding upper bounds, has been pursued

by assuming different transmission strategies and intra-cell

TDMA (or equivalently K = 1). Specifically, reference [63]

considers half-duplex amplify-and-forward (AF) processing at

the relays, [65] studies half-duplex decode-and-forward (DF)

relays, [66] full-duplex AF operation, [67] full-duplex DF and

[68] full-duplex compress-and-forward, CF. In the following,

we briefly review some results for the full duplex case.

In [66], the performance of AF with both SCP and MCP

is studied. Relays simply delay the received symbol by at

least one time unit, amplify and forward it, sample by sample.

Closed-form analytical expressions are obtained for the per-

cell sum-rate based on the observation that the received signal

can be seen as the output of a two-dimensional LTI channel

via Szego’s theorem. The performance of both SCP and MCP

is shown to be independent of the time-delay applied by

the relays. It is observed that the rates of both schemes

are decreasing with the intra-relay interference factor µ. It

is also shown that using the full power Q of the relays is

unconditionally optimal only for the MCP scheme, while this

is not the case with SCP.

In [68], CF relaying with SCP and MCP is studied. Here,

the relays operate in blocks, as explained in Sec. III-B, by

collecting a number of received samples and compressing

the received signal using a vector quantizer. Each BS for

SCP, or the CP for MCP, decodes based on the quantized

signals received from either the local relay (for SCP) or all

the relays (for MCP). For MCP, due to the correlation among

the received signals at the relays, distributed compression

techniques are applied similarly to [31]. Moreover, the CF

scheme with MCP exploits side information available at the

CP regarding the signals transmitted by the relays (which are

in fact decoded at the CP). It is proved that the scheme can

completely remove the effect of the inter-relay interference. It

is noted that, in the nomenclature of the standard IEEE 802.16j

[62], both CF and AF, which are non-regenerative relaying
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Fig. 7. Relay-aided linear Wyner models with inter-cell interference spans
Lℓ = Lr = 1 and K = 3 MSs per cell.

schemes, classify as transparent relaying strategies in that no

knowledge of their presence is required at the mobiles. Also,

the relays do not require information regarding the codebooks

used by the terminals.

Finally, in [67], a regenerative relaying scheme based on

DF is considered. Here, codebook information is required

at the relays and generally the proposed schemes are non-

transparent. The idea is to use rate splitting at the mobile

in a similar manner to the standard technique for interference

channels [69] so that each relay decodes not only the message

of the local mobile (recall that we are assuming intra-cell

TDMA), but also part of the message of the adjacent mobiles.

This way, the relays can cooperate while transmitting towards

the BSs by beamforming the common information.

A comparison among the performance of the schemes

described above is shown in Fig. 8 versus the ratio Q/P
between the power constraint at the relays (Q) and that at

the MSs (P ). A first observation is the interplay between SCP

or MCP (i.e., cooperation at the BSs) and cooperation via

dedicated relays through different strategies. Specifically, it

can be seen that if SCP is deployed, DF is advantageous with

respect to CF, and also with respect to AF, if the power of

the sources is sufficiently larger than that of the relays. It

is noted that CF performs very poorly due to its inability to

beamform the users’ signals towards the BSs, unlike DF and

AF. However, if MCP is in place, the situation is remarkably

different in that DF is outperformed by both CF and AF unless

the sources’ power is sufficiently larger than that of the relays.

This is because DF is limited by the performance bottleneck

due to the need to decode at the relay stations, which prevents

the system from benefiting from MCP. Finally, it is seen that

the proposed CF scheme performs close to optimal if the relay

power is sufficiently large.

We finally recall a different model for cooperation at

the mobile level that does not involve dedicated relays but

inter-mobile transmission. Namely, [70] models the inter-user
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Fig. 8. Per-cell sum-rates achieved by different relaying schemes with SCP
or MCP versus the ratio Q/P between the power constraint at the relays (Q)
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links as orthogonal to the main uplink channel, whereas a

generalized feedback model (in the sense of [71]) is considered

in [67].

F. Conclusions from the Information-Theoretic Models

This section has illustrated, via information-theoretic ar-

guments, the advantages of cooperation in cellular systems.

Cooperation among the BSs (or MCP) has been shown to be

able to potentially increase the sum-capacity of the network

by an amount proportional to the inter-cell interference span

(i.e., number of BSs interfered by a local transmission) with

respect to standard single-cell strategies with spatial reuse.

While initial work demonstrated such benefits under idealistic

conditions, in terms of, e.g., absence of fading and perfect

backhaul, more recent research has confirmed the promises of

MCP under more practical conditions.

In this section, we have reviewed more recent research

that includes practical constraints such as limited backhaul

bandwidth, localized base station clustering, and the effect

of fading. We conclude that with oblivious BSs there is an

Eb/N0min penalty incurred by limited backhaul, but the capac-

ity is unaffected provided that the backhaul bandwidth scales

as log SNR. Not surprisingly, the impact of BS clustering is

not significant provided that the clusters are sufficiently large,

see equation (17). On the other hand, the effect of fading is

somewhat surprising. As well known for general MIMO links,

fading provides the degrees of freedom. But with MCP, it turns

out that with a large number of users and BSs, the capacity

is increasing in the variance of the fading.

The performance benefits of cooperation at the MS level

have been reviewed as well, along with considerations re-

garding the strong interplay between the design of relaying

strategies and MCP techniques. Here, there is much scope

for further research, and most of the results reported are of

a preliminary nature: Even the simple relay channel is an



14 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 9, DECEMBER 2010

open problem in information theory. But achieveable rates can

easily be calculated for particular schemes such as AF, CF, and

DF. We conclude that for sufficiently powerful relays, CF is

the best technique under MCP. These results show that the

MCP model with relays is stimulating new efforts in network

information theory.

The presentation has also briefly touched upon the potential

gains achievable by exploiting novel transmission strategies

such as structured codes. Other advanced techniques, not dis-

cussed here, such as interference alignment are also expected

to have an important role to play in cooperative cellular

systems (see, e.g., [72]). Other related issues of interest are

the impact of imperfect channel state information and robust

coding strategies [73]. This area remains an active and fertile

field for research and is briefly addressed in the next sections.

IV. TRANSMISSION AND CODING TECHNIQUES

This section provides an overview of transmission and

signaling strategies for practical multi-cell MIMO networks,

in which the base-stations cooperate. The nature of coop-

eration (interference coordination or MCP) determines the

suitable strategies in various cases. Some of these strategies

are straightforward extensions of traditional MIMO signaling

techniques, while many others require novel and nontrivial

ideas. This section also reviews the possible optimization

methods. The optimization space involves scheduling, power

allocation, transmit and receive beamforming, as well as

choices of transmission strategies. One of the objectives of

this section is to highlight the difference between single-cell

MIMO techniques and multi-cell techniques. When appropri-

ate, the possible distributed implementation of an algorithm is

mentioned, since distributed processing is a primary challenge

for the design of multi-cell MIMO networks. However this

issue is visited in greater detail in Section V. Below we

distinguish between the techniques involving CSI exchange

only (interference coordination) and the MCP schemes which

require both CSI and user data exchange, and provide an

overview of coding, precoding and optimization strategies in

each of these cases.

A. Interference coordination strategies

Consider first a basic level of coordination where only the

channel state information of the direct and interfering channels

are shared among the BSs, a setup illustrated earlier in Fig.

2. The availability of channel state information allows the

transmission strategies across the different cells to adapt to

the channel state jointly. Transmission strategies can include

scheduling, power control, beamforming, as well as advanced

coding methods specifically designed for interference mitiga-

tion.

1) Coordinated power control: In an interference-limited

cellular network, joint power control and scheduling across

the multiple BSs that adapts to the channel condition of the

entire network can bring improvement over traditional per-

cell power control. This is especially evident when cellular

topology is such that cells significantly overlap.

The resource allocation problem in the multi-cell setting

has been studied extensively in the literature [74], [75], [76],

[77], [78], [79], [80]. In the following, we consider a simple

scenario where both the BS and the remote users are equipped

with a single antenna to illustrate the main challenge in multi-

cell power control. In this setting, there is a surprising result

for the special case of an arbitrary two-cell set-up where the

optimum sum-rate maximizing power allocation policy is in

fact binary, i.e. the optimum strategy involves either both

cells operating at maximum allowed power or one cell being

completely shut down [74]. This result does not extend to

more than two cells however.

In a more general setting, consider an orthogonal frequency-

division multiple-access (OFDMA) system in which multiple

users within each cell are separated in the frequency domain.

Note that the multiple access across the multiple cells is not

orthogonal since we allow for full reuse of the frequency

tones from a cell to the next. The joint power control and

scheduling problem is that of deciding which user should be

served and how much power should be used on each frequency

tone. Mathematically, in a multi-cell network with M cells,

K users per cell, and N OFDM tones, let hn
l,m,k denote the

channel response between the lth BS and the kth user in the

mth cell in tone n. Let Pn
l denote the power allocation at the

lth BS and nth tone. The multi-cell downlink weighted rate

maximization problem is

max
M
∑

l=l

K
∑

k=1

αlkRlk (23)

s.t. Rlk =
∑

n∈Nlk

log

(

1 +
Pn

l |hn
l,l,k|

2

∑

j �=l Pn
j |hn

j,l,k|
2 + 1

)

where Nlk denotes the set of frequency tones in which the kth

user in the lth cell is scheduled. Here, αlk signals the priority

of each user, whose value is typically determined by higher-

level protocols, and the background noise variance is assumed

to be one without loss of generality. Further, either peak or

total power constraints are typically imposed in addition.

Numerically finding the global optimal solution to the above

optimization problem is known to be a difficult problem [81].

No convex reformulation of the above problem is known,

even in the simpler case of fixed scheduling. In [82], [78],

[79], [83], an approach which iterates between scheduling and

power allocation has been proposed, but the core difficulty,

namely the nonconvexity of the signal-to-interference-and-

noise (SINR) expression remains.

One approach for solving the power allocation problem is

to let each cell independently optimize its own transmission

power in a game theoretical model, where the multiple cells

eventually converge to a competitive optimum (e.g., [84], [85],

[86]). However, further performance gain can be obtained if

cells cooperate.

One idea is to encourage an interfering transmitter to lower

its transmit power whenever it causes too much interference

to neighboring transmitter-receiver pairs. Toward this end, a

promising approach is to devise a mechanism to measure the

impact of each transmitter’s interference on its neighbors’

transmissions, then to coordinate BSs based on the exchange
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of these measures. This idea is called interference pricing,

which has been proposed for the power spectrum adaptation

problem for the wireless ad-hoc network [87], [88], [89],

[90], the digital subscriber line network [91], and is also

applicable to wireless multi-cell networks [79], [83]. As shown

in these studies, coordinating power control can already yield

appreciable improvement in the overall sum rate as compared

to a non-coordinated system.
2) Coordinated beamforming: When the BSs are equipped

with multiple antennas, the availability of additional spatial

dimensions allows the possibility of coordinating beamform-

ing vectors across the BSs, further improving the overall

performance. This idea has been explored in [92], [77], [93],

[94], [95].

The optimization problem associated with multi-cell joint

scheduling, beamforming and power allocation inherits the

nonconvex structure of the multi-cell power control problem

discussed above. However, there is a particular formulation

that enjoys efficient and global optimal solution — this is

when the problem is formulated as the minimization of the

transmit power across the BSs subject to SINR constraints in

a frequency flat channel for the case where the remote users

are equipped with a single antenna only. This formulation is

most applicable to constant bit-rate applications with fixed

quality-of-service constraints.

Let wl,k be the downlink transmit beamforming vector for

the kth user in the lth cell, the downlink SINR for the kth

user in the lth cell can be expressed as:

Γl,k =
|h†

l,l,kwl,k|2

∑

n�=k |h
†
l,l,kwl,n|2 +

∑

j �=l,n |h†
j,l,kwj,n|2 + 1

(24)

where hj,l,k is now the vector channel from the jth BS to the

kth user in the lth cell. Let γl,k be the SINR target for the

kth user in the lth cell. We can formulate, for example, a total

downlink transmit power minimization problem as follows:

minimize

M
∑

l=1

K
∑

k=1

||wl,k||
2 (25)

subject to Γl,k ≥ γl,k, ∀l = 1 · · ·M, k = 1 · · ·K

where the minimization is over the wl,k’s, which implicitly

include both transmit direction and transmit power optimiza-

tion. For simplicity, we assume that the set of SINR targets

are feasible.

Intuitively, coordinating beamforming vectors across the

BSs are beneficial when the number of BS antennas exceeds

the number of simultaneous users in each cell, in which

case the BS has spare spatial dimensions for interference

mitigation. In the case where the number of spare dimensions

exceeds the number of dominant interferers in every cell, a

complete nulling of interference within each cell is possible

using a per-cell zero-forcing solution. Insight into the optimal

cell loading under coordinated beamforming has been obtained

in [96] using large systems analysis.

The key challenge to coordinated beamforming is to co-

ordinate the BSs in such a way as to enable them to find an

optimal solution jointly without excessive exchange of channel

state information. This turns out to be possible using a tool

known as uplink-downlink duality.

The transmit downlink beamforming problem for the multi-

cell system is first considered in the classic work of [97],

where an algorithm for iteratively optimizing the beamforming

vectors and power allocations is proposed. The key idea is to

consider a virtual dual uplink network with transmitters and re-

ceivers reversed (so that the uplink channels are the Hermitian

transpose of the original downlink channels). The algorithm of

[97] proposes to use the optimal uplink receiver beamformers

(which are easy to find using the minimum mean-squared error

(MMSE) criterion) as the downlink transmit beamformer, then

to iterate between the beamformer update step and the power

update step to satisfy the target SINRs. The optimality of this

algorithm can be established for the single-cell network using

several different techniques based on convex optimization

methods [98], [99], [100], [101], [102]. In particular, the

semidefinite relaxation approach of [99] and the second-order

cone programming reformulation of [102] also lead to new and

more efficient numerical algorithms for finding the optimal

beamformers and powers. Further, it is possible to show that

uplink-downlink duality is an example of Lagrangian duality

in optimization [59].

The use of convex optimization ideas for establishing dual-

ity and for optimal beamforming can be extended to the multi-

cell setting [103], [93]. One consequence of the duality result

is that it suggests a way of implementing optimal multi-cell

beamforming and power control in a distributed fashion for a

time-division duplex (TDD) system, where channel reciprocity

guarantees that the actual uplink channels are identical to the

virtual dual uplink channels. In this case, the optimal transmit

beamformers for the downlink can just simply be set as the

MMSE receive beamformers for the uplink. Together with

a distributed downlink power control step, this provides a

distributed and optimal solution to the problem (25) [93].

The duality result can be further extended to account for the

optimization objective of minimizing per-BS or per-antenna

powers. The idea is to set up the optimization problem as that

of minimizing the weighted sum power, where the weights can

be adjusted to tradeoff powers among different BS antennas,

and where the weights enter the dual channel as scaling

factors for the dual virtual noise variances [59], [93]. In

addition, duality also holds for the case where the remote

users are equipped with multiple receive antennas as well

[104]. However, the iterative updating of transmit beamformer,

receive beamformer and the power is no longer guaranteed to

converge to the global optimal solution; only a local optimal

solution is guaranteed in this case.

Finally, duality holds not only for the power minimization

problem formulated in (25), but also for the complementary

problem of rate region maximization subject to power con-

straints (e.g., [105], [106]). This latter problem is of interest

in variable rate-adaptive applications. However, as both uplink

and downlink networks are MIMO multi-cell interference

networks, finding the optimal solution to either problem is

a challenging task. In this realm, [107] used an approach

based on the first-order condition of the optimization problem,

and [108] used a rate profile approach to reach the boundary

points of the rate region. In addition, much work has also

been done to identify solutions from a competitive (e.g., [109])

or egotistic vs. altruistic points of view [110], [94], [111].
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Although competitive optimal solutions are not global optimal

solutions for the entire network, they nevertheless can offer

improvement over existing static networks.

3) Coding for interference mitigation: So far, we have

focused on transmission strategies which treat intercell in-

terference as noise. For interference-limited networks, it is

possible to further improve these strategies by considering

the possibility of detecting then subtracting the interference.

In currently deployed cellular networks, interference signals

are typically too weak to be detected by out-of-cell users.

The key to make interference decoding work is to specifically

design transmit signals to facilitate detection at neighboring

cells — as suggested by information theoretical results on the

interference channel.

The largest known achievable rate region for the two-user

interference channel is the celebrated Han-Kobayashi region

[69] derived based on the idea of splitting each user’s transmit

signal into a common message, which is decodable by all

receivers, and a private message, which is decodable by the

intended receiver only. In other words, by lowering the rate

of part of the transmitted message to allow it to be decoded

by out-of-cell users, the overall interference level would be re-

duced, enabling a higher overall rate. The recent work of [112]

provides further insights into this scheme by showing that a

particular common-private splitting can get within one bit to

an outer bound of the two-user interference channel. The key

insight is to set the private message power seen at the opposite

receiver to be at the background noise level, whereas anything

above that should be decoded. Although the outer bound of

[112] applies only to the two-user single-antenna case, in a

multi-cell MIMO network, adjacent cells can be paired and

the optimal beamforming and power splitting problem can be

solved together to produce significant performance gain for

the overall network [113].

Finally, for an interference channel with more than two

transmitters, it is also possible to specifically design transmit

signals so that the interferences are always constrained at

confined subspaces at each receiver. This allows the receiver

to efficiently reject the interference. This idea, known as inter-

ference alignment, has been shown to achieve significantly im-

proved multiplexing gain for the MIMO interference network,

where both the transmitters and the receivers are equipped

with multiple antennas [72]. Practical implementation of these

ideas for wireless networks is an active area that is currently

attracting much research.

B. Coding strategies for MCP networks

The coding and optimization strategies considered in the

previous sections require the sharing of the channel state

information only. Significant further improvement in data rates

is possible, if, in addition, the BSs are synchronized and the

data streams for all the active users or the received signals

at all antennas are shared between the BSs via high-capacity

backhaul links [114], [115], [116], [117], [118], [119]. This

setup is illustrated in Fig. 3. Many coding strategies have been

proposed in the literature for this setting (e.g., [120], [121],

[122], [123], [124].) The antennas from all the BSs are in this

case effectively pooled together to form a giant antenna array.

The uplink channel can then be modeled as a multiple access

channel with multiple transmitters and a single multi-antenna

receiver. The downlink channel can be modeled as a broadcast

channel with a single multi-antenna transmitter and multiple

receivers.

1) Uplink: The capacity region of the uplink multiple-

access channel is achieved with superposition coding and

successive decoding [15]. The idea is to decode each user’s

codeword based on the observation sequence of the entire

antenna array (using a linear beamformer across the BSs), then

to subtract the decoded codewords in a successive fashion.

To achieve this multiple-access channel capacity region, the

cooperating BSs theoretically need to share their observation

sequence, which requires infinite backhaul capacity.

There is an important special case where the multiple-

access channel capacity can be approximately achieved by just

the linear detection of each user’s individual message using

a receive beamformer across all BSs, without the nonlinear

successive decoding step. This happens when the interfering

links are much weaker than the direct links (but the interfer-

ence level is still much stronger than the background noise).

Consider the following example where the channel matrix H

between the K single-antenna BSs and K remote users is near

diagonal:

y = Hx + z. (26)

The capacity region of this multiple-access channel is almost

a rectangle with each user achieving close to its interference-

free capacity. This is because a joint receiver across the

BSs can simply employ a zero-forcing receiver with rows

of H−1 as the beamformers. As H−1 is nearly diagonal, it

produces minimal noise enhancement. Thus, the single-user

interference-free capacity can be nearly achieved for all users

with just linear decoding, without the successive decoding

step.

Note that for the diagonally dominant network, the above

network-wide zero-forcing strategy is superior to an alternative

strategy where each BS performs detection based on the

received signal at its own antennas only, but BSs share the

decoded bits for interference subtraction. In this case, the

BSs must follow a particular decoding order with intercell

interference subtracted successively. This alternative strategy

is clearly suboptimal, because it achieves the single-user

interference-free bound only for the last user in any partic-

ular decoding order, but not for earlier users. In contrast,

the linear strategy mentioned earlier achieves the single-user

bound simultaneously for every user in a diagonally dominant

interference network.

2) Downlink: The capacity region of the downlink broad-

cast channel is achieved with a dirty-paper coding strategy at

the encoder [14]. The idea is to fix an encoding order, then

transmit each user’s codeword using a transmit beamformer

across all the antennas at all cooperating BSs, and successively

encode each user’s codeword while treating the messages

already encoded as known interference. From an information

theoretical point of view, the known interference can be

completely pre-subtracted without using extra power at the

transmitter. This is called dirty-paper coding [125]. Dirty-

paper coding can be approximately implemented in practice
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using Tomlinson-Harashima precoding or lattice precoding

strategies (see e.g., [126], [127]).

When the channel matrix associated with the interference

network is diagonally dominant, the zero-forcing strategy is

again near optimal. Consider again the single-antenna case:

y = H†x + z. (27)

The zero-forcing strategy precodes x = (H†)−1u, where

u is the information symbol. When H† is near diagonal,

it produces minimal power enhancement at the transmitter,

resulting in a near rectangular achievable rate region. Note that

this network-wide zero-forcing strategy requires joint transmit

beamforming across the BSs, but no dirty-paper coding. This

is again superior to the alternative strategy of dirty-paper

coding without joint beamforming for the diagonally dominant

interference network, analogous to the uplink case discussed

earlier.

3) Optimization: For a cellular network with an arbitrary

topology and a general channel matrix, the optimization of

a network-wide beamforming vector together with the suc-

cessive decoding or dirty-paper precoding orders becomes a

relevant question. Consider first the uplink channel:

y =

K
∑

k=1

Hkxk + z (28)

where y is the network-wide receive signal, and xk is the

transmit signal for user k, who may be equipped with multiple

antennas as well, and the noise vector z has a normalized unit

variance. Let the optimization problem be formulated as that of

maximizing the weighted sum rate
∑

k αkRk. Because of the

polymatroid structure of the multiple-access channel capacity

region, the optimal decoding order is completely determined

by the relative values of αk [128]. The user with the smallest

αk should be decoded first; the user with the largest αk last.

Without loss of generality, let α1 ≤ α2 · · · ≤ αK . The

resulting weighted sum rate can be expressed as

K
∑

k=1

αkRk =

K
∑

k=1

αk log
det

(

∑K

j=k HjSjH
†
j + I

)

det
(

∑K

j=k+1 HjSjH
†
j + I

) (29)

where Sk is the transmit covariance matrix of user k. The

above rate expression is a convex function of Sk. Thus, the

weighted sum rate optimization problem for the uplink can be

solved efficiently. The eigenvectors of the resulting optimal

Sk give the optimal transmit beamformers. The network-wide

receive beamformers for user k are the MMSE beamformers

with interference from the first k − 1 users subtracted.

For the downlink channel

yk = H
†
kx + z, (30)

(where again the noise variance is normalized to one), al-

though a straightforward formulation of the achievable rate

region does not result in a convex formulation, a key result

known as uplink-downlink duality [129] enables the downlink

transmit covariance optimization problem to be translated

to the uplink. Uplink-downlink duality guarantees that the

capacity region of the downlink channel is identical to the

capacity region of the dual uplink, where the transmitters and

the receivers are interchanged, and the channel matrices are

Hermitian transpose of each other, and where the same sum-

power constraint is applied to both. Thus, to find the optimal

downlink beamformer, one only needs to solve the optimal

uplink problem with a sum power constraint, then use the

covariance transformation technique of [129] to translate the

optimal uplink solution to the downlink.

The duality result established in [129] solves the optimal

downlink beamforming problem with a sum power constraint

across all the antennas. In a multi-cell network, the power

usages across the BSs cannot easily be traded with each

other. In addition, each antenna is typically constrained by

the linearity of its power amplifier, and hence is peak power

constrained. Thus, a more sensible approach is to apply a per-

BS or per-antenna power constraint at each cell.
The uplink-downlink duality result can be generalized to

accommodate the per-antenna power constraint [59] as men-

tioned in Section III. The additional ingredient is to recognize

that transmit power constraints for the downlink are reflected

in the dual uplink as the noise covariances. In particular, for

the weighted per-antenna power minimization problem for the

downlink, its dual uplink would have its noise variances scaled

by the same weights. Further, to enforce per-antenna power

constraints, one would need to search over all such weights

in the downlink. This amounts to searching over all possible

noise variances.
More precisely, for a downlink broadcast channel with per-

antenna power constraint Pi in each of its antennas, the dual

uplink is a multiple-access channel with the same sum power

constraint
∑

i Pi, but whose noise covariance matrix is a

diagonal matrix with qii on its diagonal and constrained by
∑

i

qiiPi ≤
∑

i

Pi. (31)

Numerically, the weighted rate sum maximization problem

for the downlink becomes a minimax problem in the uplink

with maximization over uplink transmit covariances and mini-

mization over uplink receiver noise covariances. This minimax

problem is concave in transmit covariance and convex in noise

covariance, so it can be solved using convex optimization

techniques.

The discussion so far focuses on capacity maximization.

When practical coding and modulation schemes are used, an

SNR gap needs to be included in the achievable rate com-

putation. Unfortunately, accurate expressions of the SNR gap

in the multiuser setting are not easy to obtain. Furthermore,

although duality still holds with the inclusion of gap, the dual

uplink problem is no longer tractable. The issue is that with an

additional gap term, (29) is no longer a concave function of the

transmit covariance matrices. Work on finding the approximate

optimal ordering and beamformers for the single-receive-

antenna case includes [130], but the optimization problem in

its full generality remains open.

C. Coding Strategies with Rate-Limited Cooperation

In this section, we focus on channel models where the BSs

cooperate via rate-limited backhaul links as in Fig. 4-(b), or

via independent relay nodes with rate-limited connections to

the BSs. These channel models are practically relevant, but the
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information theoretical capacities of these channels are often

unknown, except for certain simplified models as mentioned in

Section III. This situation is not really surprising considering

the fact that the capacity of even the simplest single-transmitter

single-receiver and single-relay channel is still open. Thus,

instead of capacity analysis, this section focuses on effective

interference mitigation techniques in these settings.

1) Receiver Cooperation: In the uplink direction, receiver

cooperation can be realized either with a dedicated relay

node with fixed-capacity links to the BSs, or with rate-

limited conferencing links between BSs which act as relays

for each other. In these so-called relay-interference channels,

the objective of the relay strategy is typically to mitigate

interference, rather than to enhance direct transmission. Well-

known strategies such as decode-and-forward and compress-

and-forward can both be employed toward this goal.

Consider first a two-user interference channel employing

Han-Kobayashi style common-private information splitting.

Consider a practical regime of interest where the interfering

links are “weak”, but where interference is still stronger than

background noise. In this case, the rates of the common

messages are typically constrained by the interfering links.

Thus, when the receivers are equipped with conferencing links,

the common message rates can be effectively increased if each

receiver decodes the common message from its own transmit-

ter, then forwards a bin index of the common message to

the other receiver. Such a decode-and-forward strategy allows

each conferencing bit to increase the common information rate

(and hence the overall achievable rate) by one bit, up to a limit.

This strategy can be shown to be sum capacity achieving in

the asymptotic high SNR regime for a simpler Z-interference

channel [40]. A more sophisticated coding strategy, which

consists of a two-round conferencing with quantization as the

first step and binning as the second step, can in fact be proved

to be within 2 bits to the capacity region of this channel model

for all interference regimes [34].

The decode-and-forward strategy discussed above can be

thought of as an interference-forwarding strategy, as the relay

decodes and then forwards part of the signal that would have

caused interference. The knowledge of the interference can

either help the interfered transmit-receive pair subtract the

interference, hereby increasing its direct transmission rate, or

help the interfering transmitter-receiver pair increase its com-

mon message rate. This interference-forwarding strategy has

been used in various studies, including interference channel

models with a dedicated relay node [131], [132], [133], [134],

[135].

In existing multi-cell networks where the Han-Kobayashi

style common-private information splitting is not deployed,

interference mitigation can be effectively carried out using

compress-and-forward or amplify-and-forward strategies. An

interesting result in this area is due to the works [136], [137],

[138] that show that when a relay observes the precise inter-

ference sequence of a transmitter-receiver pair, every relaying

bit to the receiver can increase the direct transmission rate

by one bit in the noiseless limit. This can be achieved using

a compress-and-forward strategy where the relay quantizes

its observation of the interference with Wyner-Ziv coding

[139], and the receiver first decodes the quantized version

of the interference, then subtracts part of the interference

before decoding the direct transmission. In fact, the asymptotic

optimality of compress-and-forward in the noiseless limit

continues to hold when the relay observes a linear combination

of the transmitted signal and the interference. This idea can

be further extended to show that a single relay can help both

transmitter-receiver pairs of an interference channel using a

universal strategy called generalized hash-and-forward [140].

Interestingly, although amplify-and-forward is typically not

optimal in these settings, the amplify-and-forward strategy can

be significantly improved with nonlinear amplification [141].
2) Transmitter Cooperation: In the downlink direction,

when the BSs are equipped with rate-limited backhaul links

at the transmitter, the BSs can still cooperate using a variety

of techniques. One idea is to share part of the common in-

formation among the transmitters (assuming a Han-Kobayashi

coding strategy is deployed), which allows the transmitters

to cooperatively send shared common messages; this idea

has been pursued in [142], [143]. Another idea is to share

part of the private message, which allows the possibility of

partial zero-forcing or dirty-paper coding at the transmitter;

these possibilities have been explored in [144], [106], [145],

[143]. In certain high SNR and interference-limited asymptotic

regimes, it is possible to show that each cooperation bit

can improve the direct transmission rate sum by one bit

[145]. However, in general, the question of which transmission

strategies should be adopted in specific cases remains very

much open.

V. SCALABLE COOPERATIVE SCHEMES

The potential benefits associated with exploiting or elim-

inating interference in cellular networks are huge. However,

there are several practical hurdles which need to be overcome,

over which we now draw the interested reader’s attention.
In this section, we address the important issue of scalability.

The first models of base station cooperation were centralized

in nature, and a natural implementation would consist of a

central processing unit, or controller, to which all the base

stations are directly connected. The downside to this is that

it has a single point of failure and would be an expensive

infrastructure to build. Such an architecture would place

enormous demands on the back-haul network, as all traffic

would have to be routed to and from the central node, causing

excessive delays. Besides the problem of user data sharing,

there is also the issue of channel state information at the

transmitter (CSIT) which also must be shared amongst base

stations, and between mobiles and base stations. This is an

additional signaling burden associated with MCP. Thus, when

it comes to an assessment of the real advantages of MCP in

realistic networks, a fundamental question arises: Might it be

that the capacity increase due to MCP is outweighed by the

signaling overhead it implies?
The information theoretic picture, examined in Section III,

reveals that the capacity of the backhaul should grow in pro-

portion to the capacity targeted on the over-the-air section of

the network, to avoid being a bottleneck for traffic. Neverthe-

less, the complete answer to our question seems highly system

and scenario dependent and is the focus of ongoing research. A

simpler yet related problem would be: how to design practical
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MCP schemes whose overhead scales favorably when the size

of the network grows large? This section considers research

that has attempted to reduce the overhead required to achieve

most of the benefits of cooperation.

One can distinguish two lines of research devoted to over-

head reduction. The first deals with deriving efficient repre-

sentations of the channel state information, which is conveyed

to precoding and decoding algorithms. In the second, (perfect

or possibly partial) CSI is assumed and attention is focused

instead on implementing scalable cooperation schemes via

distributed precoding and decoding algorithms. There is not

a great deal of difference between trying to obtain efficient

channel representations in multi-cell MIMO or in MU-MIMO

setups. Since a rich body of literature already exists for this

problem, we simply refer the reader to past special journal

issues on this topic such as [16], [146]. As a note of caution we

point out that existing work on limited CSIT representation for

MU-MIMO systems does not take into account the specifics of

the multi-cell MIMO channel, such as the different channels

from each base station to each user, whose path loss coefficient

depends on the user’s location in the network. In what follows,

we assume that a CSI model already exists at the base stations

through feedback channels. We present some concepts related

to distributed precoding and decoding and clustering.

A. Impact of channel uncertainty

1) Network capacity: As discussed in Section III-C5, chan-

nel uncertainty affects the scalability of point to point MIMO

channels. The number of transmit antennas that can effectively

be used is limited by the coherence duration in symbol times.

What are the implications for network MIMO? Recently, this

issue has been explored in [147], where random matrix theory

is exploited to obtain tractable formulas for per-cell rates,

involving parameters such as the number of base stations and

the coherence duration in symbol times. It is claimed that the

per-cell rate can in some cases decrease with the number of

base stations, due to the cost of measuring the extra channel

parameters. This conclusion may impact the optimal cluster

size to use in network MIMO (see Section V-C for a discussion

of clustering in the context of MCP). On the other hand, this

analysis does not take into account the impact of intercluster

interference, leaving open further research on this issue.

2) Downlink: Distributed precoding with partial informa-

tion sharing: The general problem of distributed multi-cell

precoding, whereby the l-th base station must design op-

timally its transmit beamforming vectors on the basis of

partially shared CSIT and partially shared user data is largely

open. Interestingly, in the case of fully shared user data

(MIMO cooperation), this problem can be shown to fall

within the framework of team decision theory, which reviews

optimization problems in which different agents (here, the

base stations) must act cooperatively despite not sharing the

same view of the system state [148]. In our context, the

problem can be formalized as follows: the users are assumed

to feedback their channel state information to all base stations,

in a broadcast fashion. As the distance between the user

and surrounding bases differ, the quality of feedback for a

given channel coefficient is unequal at different base stations.

An optimization problem, by which the beamforming vectors

are designed taking into account the locally received CSIT

feedback as well as the expected quality level for the feedback

received at other bases, is formulated [148]. The obtained

beamformers can range smoothly from fully distributed to

fully centralized, depending on the feedback model.

Rather than a partial sharing of CSIT along with fully

shared user data, another particular framework for distributed

precoding assumes a partial sharing of the user data, but under

perfect CSIT sharing. A possible practical model for this is

as follows: the finite backhaul links are used to convey two

types of traffic. The first type is routed in the interference-

coordination mode, i.e. a message to user k in cell m is

routed to base station m alone, while the second type of

traffic is duplicated to all cooperating bases, in the MIMO

fashion. The first and second types are referred to as private

and common, respectively. An optimization problem can be

formulated by which the total user rate is optimally split

across private and common information, as a function of the

finite backhaul capacity and of the channel state information

[149]. By comparing private and common information rates,

one can assess the value of MIMO cooperation depending on

the interference strength model.

B. Distributed processing using Turbo Base Stations

1) Uplink: distributed decoding: We now consider the

problem of uplink decoding of multiple base station signals

jointly. The fact that the complexity of the general multi-user

detection problem grows exponentially with the number of

users [150] raises a question of scalability: A priori, it looks as

though the multiuser decoding of all users might be intractable

as the size of the network grows large. On the other hand,

the very localized structure of the interference offers hope of

salvation from the apparent intractability, and it motivates the

search for decentralized algorithms.

An interesting question to ask is whether the global uplink

task of demodulating all the users’ data symbols can be

distributed across a network of interacting base stations. In

this context, each base station is individually performing

local computations, and then passing the results to immediate

neighbors for further processing. It is very natural to try and

apply well known message passing techniques from coding

theory, such as the iterative method of Turbo decoding.

A first step in this direction is taken in [151], which

considers an uplink multi-user detection (MUD) problem.

Each base station first does an independent MUD to try

and separate the desired same-cell user from the co-channel

interferers in other cells. However, the desired user is also

heard at the neighboring base stations, and to gain the benefits

of macrodiversity, the base stations share their log-likelihood

ratios. The base station controller computes an a posteriori

log-likelihood ratio using the log-likelihoods from the local

base stations, which is in essence the first step of the Turbo-

decoder. Later works, such as [152], provided an explicit

connection to Turbo-decoding, and propose iterative, message

passing algorithms.

A related problem is to find the most likely sequence of

bits transmitted in the network. This problem has a simplified
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Fig. 9. Hidden Markov model of linear cellular array

structure due to the local interference coupling, which may

make it amenable to a solution via dynamic programming

[153].

Turbo decoding is an example of belief propagation on a

graph. Communication on the uplink of a one dimensional, lin-

ear cellular array model, with one user per cell (as considered

in [8], [9]), can be modeled by a Markov chain moving to the

right along the circular array, see Figure 9. Each state of the

Markov chain corresponds to the choice of code words in three

consecutive cells. For example, state S1 in Figure 9 consists of

the codewords chosen by users 1,2, and 3, respectively. Each

base station observes a noisy version of the superposition of

the three signals, so it is a hidden Markov model, and a one-

dimensional probabilistic graph can be associated with this

model. The (forward-backward) BCJR algorithm [154] can be

applied to compute the MAP estimates of the codewords [155].

This is a one dimensional graphical model, with clustering to

provide the Markov structure. Although simple, this model

allows an exploration of issues such as distributed computa-

tion, parallelism, complexity, and accuracy [155], [156], [157],

[158], [159], [30], [160].

Since the complexity of the BCJR grows exponentially with

the size of the state space, Gaussian models are considered in

[156], [157], where linear estimation techniques are optimal.

The analogous problem is Kalman smoothing, and a forward-

back Kalman smoother is proposed. Note that the delay and

complexity are linear in the network size, but the local nature

of the interference can be exploited. In [158] a parallelized

version of the forward-backward algorithm is proposed, which

allows base stations to make estimates at any time. If the

coupling between base stations is weak, or the noise is strong,

then accurate estimates are obtained after a small number of

message passings. Thus, the complexity and delay, per base

station, need not grow with the array size in practice.

More realistic two dimensional cellular array models are

more problematic. Forward-backward methods no longer ap-

ply, and the associated probabilistic graph models now have

loops. The uplink decoding problem is considered in [30], and

two graphical models are investigated. The belief propagation

algorithm is applied, and it is found that in spite of the loops,

error rates near the single user lower bound are obtained, for

fading channels. The numerical complexity per base station is

a constant, independent of the network size.

Since the complexity of the sum-product algorithm (i.e.

belief propagation) grows exponentially with the number of

variable nodes connected to a function node, it is of interest

to look for suboptimal approaches that reduce the complexity,

especially when there are many interfering users per cell.

In this case, the computation of the log-likelihood messages

sent from a variable node to a function node is in essence

an MUD computation. In [161], symbols are grouped, and a

posteriori probabilities are computed within a group, treating

the interference from the other groups as Gaussian noise,

with the mean and variance determined from the a priori

probabilities. Thus, a reduced complexity group-wise MUD

scheme is proposed. This paper also incorporates an LDPC

(Low Density Parity Check) code, so that the graph is in time

as well as space.

2) Downlink: Distributed beamforming: The downlink is

a broadcast channel in which all base station antennas are

pooled. If attention is restricted to linear techniques, then the

problem to be solved is that of macroscopic beamforming. As

was exposed earlier in Section IV, duality between the uplink

and downlink allows some of the above methods to be used on

the downlink, also. The downlink beamforming problem can

be recast as an equivalent, virtual, uplink estimation problem,

in which the downlink data symbols to be transmitted become

observables in the uplink problem, and belief propagation on

the virtual uplink graph finds the samples to be transmitted by

each base station, i.e. the outputs of the global precoder. These

samples are obtained by the sum-product message passing

algorithm [160].

C. Limited cooperation via clustering

Current cellular networks typically connect base transceiver

stations (BTS’s) to base station controllers (BSC’s), and in

some implementations the BSC handles the base-band signal

processing and encoding/decoding [151]. It is therefore very

natural to consider clustered models, in which the processing

is done locally at the BSC, which is connected to the adjacent

base stations. The collection of base stations served by a

BSC forms a cluster, each cluster behaving as a network

MIMO system, but now there is interference between adjacent

clusters. In this case, there is not a single, centralized node,

but many nodes, each independently encoding and decoding

signals for the mobiles in the local cluster. The advantages of

the clustered model are 1) relevance to currently implemented

systems 2) reduced computational complexity 3) reduced

demands on the back-haul network since only neighboring

base stations (i.e. those which are mutually interfering the

most) are engaged in cooperation, and 4) increased robustness

to node failures (a base station can be served by more than

one system controller). The disadvantages when compared

with full network-wide cooperation are 1) increased levels of

intercell interference in some areas (since adjacent clusters

will interfere), 2) reduced diversity, and 3) lower capacity.

Tradeoffs between these factors have been considered in a

number of research papers.

It is well known that network MIMO has the capability

to eliminate intercell interference. In models in which inter-

ference is treated as noise, a notion of effective bandwidths

can be developed, which allows a definition of user capacity
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Fig. 10. Cluster decoding using pairs of base stations

region [6], [162], [7]. It can be shown that in these models,

base station cooperation and optimal power control effectively

eliminate inter-cell interference [163], [5], [6], [7]. In other

words, the user capacity region of a network of K cooperating

base stations is the same as that of K non-interfering (isolated)

cells, as was pointed out in Section III. However, this relies

on global cooperation. Consider instead a very simple model

consisting of three base stations labelled 1, 2, and 3, as

depicted in Figure 10. Suppose base stations 1 and 2 cooperate

to decode the users between them (cluster 1, 2), and base

stations 2 and 3 cooperate to decode the users between them

(cluster 2, 3). With full cooperation, there is a capacity limit on

the sum of the effective bandwidths in the two cells. With the

limited cooperation described here, the user capacity region is

reduced, with additional constraints imposed by each cluster.

It is shown in Theorem 9.6 in [5] that the user capacity region

is the intersection of three regions: one corresponding to each

of the two-receiver clusters, and one corresponding to the

three-receiver system (the user capacity region under global

processing).

Extensions of the above simple three antenna model to more

complex networks, including linear and planar models, are

considered in [164]. In these models, MCP "receivers" are

associated with clusters of antennas, and adjacent receivers

share common antennas, as in the simple three antenna model

above. In [164] the focus is the information-theoretic capacity,

and since the transmitters interfere at nearby receivers, the

techniques used come from the theory of interference chan-

nels. Upper and lower bounds on achievable rates are derived.

The impact of clustering on the information-theoretic ca-

pacity of multi-cell processing (MCP) has been considered

more recently in [38], [23], [165], and in other works surveyed

in Section III-C4 (i.e. capacity results for the uplink, with

local base station backhaul). In [23], the degrees of freedom

are shown to be reduced by a factor of N/(N + 1) or

(N −1)/(N +1), when N is even or odd, respectively, where

N is the number of base stations in each cluster. In [38]

a similar result is obtained for a limiting regime in which

the number of antennas at each base station grows large, in

proportion to the number of users in each cell. In this case, the

corresponding result is (N − 2)/N , for N ≥ 3: The limiting

asymptotics wash out the effect of even or odd parity. Recently,

[165] has undertaken a large system analysis of MCP, with

clustered decoding, fair user scheduling, and a realistic path

loss model.

A practical way to reduce inter-cluster interference is to

use frequency planning. For example, one can employ two

frequency bands, and by employing appropriate power control

in each band, and alternating the roles of each band in

adjacent clusters, the impact of inter-cluster interference can

be mitigated, whilst maintaining full frequency re-use in each

cell [166], [167]. Another approach to clustering is to limit

the base station cooperation to the users that really need it

i.e. those users near the cell boundaries. The problem then

becomes that of grouping users into appropriate clusters for

joint MUD. These ideas related to dynamic clustering have

started to be investigated in [168], [169] among others.

Clustering reduces the information available to encoders

and decoders alike. Information-theoretic approaches in which

encoders and decoders are limited to knowledge of the code-

books of users in adjacent cells only are to be found in [155],

[41], [37]. Clustering can also create unfairness for mobiles

that happen to lie near the boundary of a cluster. A way to

treat this problem is to introduce a family of clusters, so that

every cell gets a turn at being on a cluster boundary. A round

robin across the clusters provides fairness to all the users [38],

[166], [167]. Dynamic clustering based on channel strength

information also helps to mitigate the unfairness effects in the

long run. Clustering has also recently been considered in the

context of linear precoding. In [170] mobiles are classified as

cluster interior or cluster edge users. Within a cluster, block

diagonalization subject to per base station power constraints

is performed, but, as in coordinated beamforming, nulls are

also steered to neighboring edge users.

VI. REAL-WORLD IMPLEMENTATION AND PERFORMANCE

The previous sections have addressed the theoretical per-

formance of cooperative networks, including some non-ideal

assumptions such as limited backhaul bandwidth and channel

uncertainty. In this section, we discuss these and other topics

related to the real-world implementation of cooperative tech-

niques in cellular networks. We discuss the practical aspects of

system implementation and present system-level simulations

and prototypes which hint at the potential and problems of

real-world cooperative cellular networks.

A. System implementation

In the practical implementation of any coherent wireless

communication system, issues including synchronization and

channel estimation need to be addressed. In addition, downlink

MU-MIMO transmission requires channel state information at

the base station transmitters, and cooperative networks require

an enhanced backhaul network connecting base stations with

each other or with a central processor.

1) Synchronization: Downlink MIMO cooperation across

multiple base stations requires tight synchronization so that

there is ideally no carrier frequency offset (CFO) between the

local oscillators at the base stations. Sufficient synchronization

could be achieved using commercial GPS (global positioning

system) satellite signals for outdoor base stations [171]. For

indoor base stations, the timing signal could be sent from an

outdoor GPS receiver using a precisely timed network proto-

col. In the absence of a GPS signal, each base could correct

its offset based on CFO estimatation and feedback from the

mobiles [172]. On the uplink, CFO results in interference

between subcarriers of an OFDM transmission. Techniques for

joint detection and CFO compensation in uplink coordinated
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multi-cell MIMO OFDM systems have been proposed in

[173].

2) Channel estimation: Coherent combining at the receiver

or coherent pre-combining at the transmitter provides SNR

gain when the channel state is known. Sufficient resources

must be allocated to pilot signals to ensure reliable estimation

of the channel state, accounting for the fact that the estimation

is performed on each transmit/receive antenna pair with no

combining benefit. In the context of network coordination with

spatially distributed bases, the extent of the coordination could

depend on the range of reliable channel estimation, and there

is a tradeoff between increasing the coordination network size

at the expense of increased pilot overhead.

For estimation of channels at the transmitter in time-division

duplex (TDD) networks, one can rely on the reciprocity of

the uplink and downlink channels so that channel estimation

on the uplink can be used for downlink transmission. In this

sense, channel estimation at the receiver and at the TDD

transmitter face similar challenges. However, the TDD system

faces additional challenges if the number of users is much

larger than the total spatial degrees of freedom, and if the users

transmitting uplink data are not the same as those receiving

downlink data. Pilot signals and protocols should be designed

to address these issues without resulting in excessive training

overhead. For example, these issues could be addressed by

allowing only high priority users receiving downlink data to

transmit uplink pilots, regardless of whether they have uplink

data to send.

Estimation of channels at the base station transmitters in

frequency-division duplex (FDD) networks face much greater

challenges, as mentioned in Section V. In FDD networks, the

channel estimates obtained at the mobile receiver must be

conveyed to the transmitter, typically over a limited-bandwidth

uplink feedback channel. While quantized channel estimates

could be fed back, current cellular standards such as LTE

[174] implement transmitter “codebooks" consisting of fixed

precoding (i.e., beamforming) vectors. Under these standards,

the mobile estimates the downlink channel and feeds back an

index to its desired precoding vector. In cooperative networks,

these codebooks would be designed to contain codeword

vectors up to size MJ , where M is the number of bases and

J is the number antennas per base. Because the codebooks for

cooperative networks contain more codewords than for con-

ventional networks, additional feedback bits will be required

to index the codebooks, most likely leading to an increase in

the uplink feedback rate.

Note that the problems for obtaining channel estimates

at the transmitter are encountered in single-cell MU-MIMO

downlink transmission, but they are more complicated in

multi-cell coordinated networks due to the size of the net-

works and the potential latency introduced in distributing the

estimates across the bases.

3) Backhaul issues: Strategies for rate-limited cooperation

described in Sections III and V require a high-bandwidth,

low-latency backhaul network for connecting the base sta-

tions with each other or with a central processor [175][144].

Compared to a conventional network with no coordination,

interference coordination techniques shown in Figure 2 require

the sharing of channel state information among cooperating

bases. MIMO cooperation requires the sharing of both channel

state information and user data. As shown in Figure 3, the

data symbols of all users must be known at all cooperating

bases. With coordination among a cluster of L base stations,

the data is sent to these base stations results in a factor

of L increase in the backhaul bandwidth. Compared to the

exchange of data, the bandwidth required for exchanging

channel state information are minimal for the case of moderate

mobile speeds [176]. Of course the bandwidth requirements

for exchanging channel information increase for higher mobile

speeds and more frequency selective channels.

As an alternative to sending the data signals and beamform-

ing weights separately to the bases, one could send a quantized

baseband signal. A linearly quantized signal was shown to

achieve a significant fraction of the ideal unquantized sum-

rate performance in an uplink coordinated network [176].

In the context of the 3GPP LTE-Advanced standard [177],

network coordination techniques are known as coordinated

multi-point (CoMP) transmission or reception. Downlink

CoMP transmission requires standardization of signaling and

will be addressed as a study item starting in September of 2010

for possible consideration in Release 11 of LTE-Advanced. On

the other hand, uplink CoMP reception can be implemented

in a proprietary fashion, and could be introduced earlier as a

vendor-specific feature.

B. Simulated System Performance

Network coordination was studied for an indoor network

with eight access points arranged in a line and using a

TDD framing structure based on WiMAX [178]. Detailed

simulations that model the physical layer of the network

employed joint zero-forcing precoding and MMSE detection

across all access points for the downlink and uplink, respec-

tively. Results confirm that a multiple-fold increase in spectral

efficiency is achievable for both the uplink and downlink with

conventional channel estimation based on linear interpolation.

Interpolation based on minimum mean squared error (MMSE)

was also considered but was shown to have nearly identical

performance. It is potentially more accurate, but because

it requires the estimation of the channel’s time-frequency

covariance, it is also potentially less robust for higher-speed

mobiles.

The downlink cooperative performance of a large multi-

cell FDD network was evaluated in the context of 3GPP

LTE parameters [179]. Using pilot signals with powers set

according to LTE simulation assumptions, mobiles could not

reliably acquire the pilots from multiple base stations, and

as a result, cooperation could occur among only a limited

set of bases. This was a major limiting factor, reducing the

throughput gain by 50% compared to the ideal theoretical

performance. Limited uplink feedback for conveying channel

estimates to the base was another important limiting factor,

reducing throughput by about 30%. Overall, the performance

gains of network coordination in terms of mean throughput

were about 20%. These relatively pessimistic results highlight

the importance of designing efficient pilot signaling to en-

able effective channel acquisition and estimation for larger

networks and higher mobility users.
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C. Prototypes and testbeds

The feasibility of cooperative techniques have been demon-

strated in “over-the-air" networks of limited size. A downlink

cooperative network with four distributed base antennas serv-

ing two users was implemented using zero-forcing precoding

[180] as described in Section IV. The proposed system showed

significant gains in mean sum-rate capacity (as a function of

measured SINR) compared to a conventional time-multiplexed

baseline.
Two outdoor testbeds for implementing network coordina-

tion have been developed under the EASY-C project (Enablers

for Ambient Services and Systems Part C- Cellular networks),

a collaboration between academia and industry for the research

and development of LTE-Advanced technologies. One testbed

in Berlin, Germany, consists of four base station sites (seven

sectors) connected through a high-speed optical fiber network

[181]. An even larger testbed consists of ten base station sites

(28 sectors) distributed in downtown Dresden, Germany [182].

Network coordination has been recently demonstrated over

limited portions of each testbed.
Using two distributed base antennas and two users, the

Berlin testbed demonstrated downlink network coordination

for an FDD LTE trial system [183]. It accounted for many

practical implementation aspects including synchronization,

CSI uplink feedback, limited modulation and coding schemes,

and a finite-bandwidth backhaul connection between the bases.

Zero-forcing precoding based on limited CSI feedback was

implemented jointly across the two bases. The Dresden testbed

demonstrated a similarly detailed field trial for an LTE uplink

system, also consisting of two bases and two users [184].

MMSE detection was performed jointly across the bases. In

both systems, the users had low mobility (or were stationary),

and the systems were isolated so there was no intercell

interference. In these relatively benign environments, network

coordination was shown to provide significant performance

gains over the conventional interference-limited strategy. In

particular, it is claimed that MCP can provide median rate

gains on the order of at least 50 percent, as well as increased

fairness, and improved diversity, taking into account the prac-

tical constraints of their system.
Some testbeds are currently testing MCP principles together

with the use of relays, in the scenario of so-called mesh

networks [185] . Recently a large integrated research project

called ARTIST4G funded by the EU and comprising over

20 academic and industrial partners throughout Europe was

launched and is fully dedicated to the development of multi-

cell cooperation techniques in future cellular networks. These

testbeds and projects allow the exploration of system-level

issues discussed in this section as well as broader issues that

include hybrid ARQ, resource allocation, and user scheduling.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

Although the underlying MIMO theoretic concepts are well

understood, cooperative systems are still in their infancy and

much further research is required in order to fully understand

these systems and to practically achieve the full benefits of

multi-base cooperation. Unlike standard MIMO systems where

the cost of multi-antenna processing lies in the extra hard-

ware and software at individual devices, cooperative MIMO

techniques do not necessarily require extra antennas. Rather,

the cost lies in the additional exchange of information (user

data and channel state) between the devices engaged in the

cooperation, or between the devices and the central controller

in a centralized architecture. Furthermore, the information

exchange is subject to tight delay constraints which are diffi-

cult to meet over a large network. MIMO-cooperation offers

additional benefits over simpler beamforming coordination

schemes, but it requires user data sharing among several BSs

and more complex precoding and decoding.

This tutorial began, in Section III, with an extensive re-

view of capacity results for the classical Wyner model and

its variants, including limited backhaul bandwidth, localized

clustered MCP, and relay assisted MCP. The main conclusions

are summarized in Section III-F. Although the Wyner model

is mathematically tractable, attention must now steer to more

realistic models of cellular communication.

Fading is included in the Wyner model, but the fading

parameters are always assumed to be known perfectly at the

mobiles and/or base stations. Future work must consider the

impact of channel uncertainty, and the cost of measuring the

channels in the network. Channel measurement issues may

impact the optimal size of clusters in clustered MCP. Bounds

on capacity under channel uncertainty are needed, and the cou-

pling of channel uncertainty with limited backhaul bandwidth

is an important area yet to be explored. Information-theoretic

models provide tractable, elegant capacity formulas that are

amenable to optimization, and performance bounds against

which practical schemes can be compared. More importantly,

however, they provide insights into the key performance

bottlenecks, which can then be addressed in more practically

oriented research.

Section IV reviewed the transmission and coding techniques

required to approach the information-theoretic limits. This

included a review of the celebrated uplink-downlink duality

theory for the MIMO broadcast channel, which in a rough

sense is the model for MCP on the downlink. However,

network MIMO has additional constraints, such as limited

backhaul bandwidth, the need for decentralized processing,

and per base station power constraints. Recent research has

included per base station power constraints, and introduced

notions such as coordinated beamforming, along with the

development of the associated Lagrangian optimization the-

ory. Coordinated beamforming is intermediate between SCP,

where only local information is used, and MCP, where global

information is available to a central processor. In coordinated

beamforming, the BS knows the data and channel state of the

users in its own cell, but it also knows the channel state of

users in adjacent cells, and this enables a joint optimization

problem to be solved.

One challenge for the future is to move these ideas from

theory to practice. Joint optimization across many cells may

be problematic when channels are changing due to mobility.

One approach may be to reformulate the problem in terms

of channel statistics, rather than require instantaneous channel

knowledge. Another approach may be to look for simplified,

suboptimal beamforming structures which nevertheless come

close to optimality in practical settings.

Other challenges addressed include coordinated power con-
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trol, and the multi-cell joint problems of scheduling, power

control, and rate allocation across the frequency spectrum.

Many of these problems are computationally intractable, in

general, and the way forward may be to look for structure

in real-world networks that allows the problems to be solved

in polynomial time. Recent work on fractional frequency re-

use in OFDMA systems provides a new set of techniques

that could be applied to network MIMO in a joint multi-

cell optimization. Recent work at the cutting edge of network

information theory, including interference alignment, network

coding, and the recent progress on the interference channel,

all provide new ways to approach the fundamental problem:

how do we achieve maximum spectral efficiency in a multiple

cell network?

Sections V and VI address a few of the fundamental

and practical issues, such as scalability, synchronization, and

channel estimation. It is highly unlikely that a future net-

work MIMO system will be built according to a centralized

architecture. Recent research has considered the problem of

distributing the network-wide optimization problems, so that

much of the processing can be done locally, with limited

communication between nearby nodes. One option is clustered

MCP, in which small clusters of BSs collaborate together

on uplink decoding and downlink beamforming. Turbo base

stations provide another approach, in which soft information

is passed between adjacent BSs, allowing iterative, probabilis-

tic graph-based methods to provide decentralized solutions

to similar problems. Other interesting approaches lending

themselves to distributed implementations are game and team

decision theoretic approches.

Behind such problems, a recurrent and quite fundamental

issue is associated with the aquisition of channel state infor-

mation. An important open question is to determine just how

much channel state information is needed at each particular

node in the network, including information that has been

measured at other nodes in the network. This question gives

rise to a fundamental feedback resource allocation problem.

Cooperation gains go at the expense of feedback resource,

hence such a cost is justified when interference is strong

enough. More generally, a fundamental trade-off between

cooperation and information exchange exists which remains

to be explored theoretically.

Another important problem in practice is that of synchro-

nizing the BSs so that there is no carrier frequency offset. GPS

offers one approach, but future work may consider methods

of distributed clock synchronization. From a practical point

of view, distributed precoding and decoding at multiple bases,

which are designed to offer cooperation gains while exploiting

primarily local channel state and user data information are of

high interest and will attract significant research efforts in the

years to come.
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