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Abstract  

The role of different cell types and their interactions in Alzheimer’s disease (AD) is an open                

question that we have pursued by mapping the human brain at the single cell level. Here, we                 

present a high resolution cellular map of the aging frontal cortex by single nucleus              

RNA-sequencing of 24 individuals with different clinicopathologic characteristics; which we          

used to infer the cellular architecture of 640 individuals from bulk RNA-seq profiles.             

Powered by this sample of sufficient size to obtain statistically robust results, we uncovered              

AD associations with neuronal subtypes and oligodendroglial states. Moreover, we uncovered           

a network of cellular communities, each composed of different neuronal, glial and endothelial             

cells subpopulations whose frequencies are correlated across individuals. Two of the cellular            

communities are altered in relation to cognitive decline and tau pathology. Our work provides              

a roadmap for evaluating cross-cell type differences in the cellular environment of the AD              

brain. 
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INTRODUCTION 

Over the past decade, our understanding of the molecular landscape of Alzheimer’s disease             

(AD) has advanced rapidly as new experimental and analytic methods synergize to uncover             

pathways that contribute to the sequence of events that lead to AD dementia. While genetic               

studies have created a strong foundation of selected loci and genes implicated as causal in               

susceptibility to AD and its endophenotypes, transcriptomic analyses have sketched a broader            

outline of molecular changes that capture the dynamic component of the disease and the state               

of the target organ. However, most prior efforts profiled RNA at the bulk tissue level (​e.g. ​1​),                 

averaging expression measures across a myriad of cell types and states which obscured finer              

distinctions and contributions from cell subtypes found at low frequency in the target tissue.  

 

Recent efforts to profile single nuclei from post-mortem brain tissue of healthy and AD              

patients, as well as mouse models, have uncovered specific cell types with different             

signatures and proportions in AD, especially in certain subsets of microglia, oligodendrocytes            

and astrocytes​2–8​. While such studies also hint at substantial inter-individual diversity, their            

limited sample size and moderate number of profiled nuclei per subject yields an incomplete              

sketch of the architecture of the aging neocortex, and they did not yet tackle the critical                

question of cellular interactions among the many different cell types and subtypes found in              

the aging and AD brain. As a result, several key questions remain open: (1) Where in the                 

causal chain of events leading to AD are such changes in the cellular architecture taking               

place? (2) Are changes in certain cellular subsets coordinated with or independent of one              

another? Addressing these questions requires relating detailed single cell/nucleus maps to           

datasets composed of large numbers of deeply phenotyped individuals and using           

computational methods which characterize both individual cells and cellular communities. 

 

Here, we have deployed a combined approach that integrates single nucleus RNA-seq            

profiling (snRNA-seq) in a structured subgroup of 24 well-characterized human subjects,           

together with bulk profiles of a statistically well-powered set of 640 subjects​1​. Each of these               

subjects is a participant in a prospective longitudinal study of cognitive aging (ROS and              

MAP ​9–11​) with cognitive and neuropathologic characterization, and their dorsolateral         

prefrontal cortex (DLPFC) was profiled by RNA-seq: 24 participants (profiled by           

snRNA-seq) span four archetypal categories of older women and men, to ensure the capture              

of the cellular diversity of this brain region across a range of clinicopathologic states; 640               

participants (with previous bulk RNA-seq profiles​1​) are a relatively random sample of the two              
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cohorts and reflect the distribution of characteristics seen in the older population, enabling             

robust statistical modeling (​Fig. 1a ​). Our deeper sampling of single nuclei profiles and high              

library quality yielded an enhanced map of cell types, subtypes and cell states of the aging                

cortex (when compared to previous reports ​3–5​). We used our map of single nucleus profiles               

and a new computational approach, CelMod, to hierarchically estimate broad cell class and             

subtype proportions across the 640 bulk profiles. This large set of inferred proportions             

provided power for statistical assessments of cell subpopulations associated with          

pathophysiology, uncovering an association between cognitive decline and the proportion of           

specific subsets of glial cells and subtypes of inhibitory neurons, in particular, a relative              

decrease in somatostatin (SST) ​neurons. Further, we used our single nucleus data to infer a               

map of multi-cellular communities whose proportions are correlated across individuals,          

suggesting the existence of possible micro-environments in the aging brain. Associating each            

of these cellular communities to AD related traits identified two anti-correlated communities,            

which each display opposite associations with cognitive decline in AD and tau pathology.             

Finally, causal modeling suggests that the differences in cell subtypes and signatures occur             

downstream of the accumulation of tau pathology and might mediate downstream effects that             

accelerate cognitive decline. Our model can inform further investigation and therapeutic           

development, by identifying those cellular factors that may most proximally and directly            

contribute to loss of cognitive function with advancing age and AD.  

  

RESULTS 

Inter-individual diversity drives cellular landscapes in the aging DLPFC 

To build a map of the aging DLPFC (BA9), we generated snRNA-seq profiles from frozen               

tissue samples obtained from 24 ROSMAP ​10,11 participants (average age of 87.9 years at the              

time of death). ROS (Religious Order Study) and MAP (Memory and Aging project) are two               

harmonized longitudinal studies of cognitive aging with prospective autopsy and deep           

cognitive and neuropathologic characterization that are run by a single group of investigators             

and designed to be analyzed together​10,11​. To sample a wide variety of cell subtypes and               

states, we selected participants that represent four major archetypes of the aging population             

( ​Fig. 1a, Supplementary Table 1​): (1) a reference group of cognitively non-impaired            

individuals with minimal AD pathology, (2) a resilient group of cognitively non-impaired            

individuals with a pathologic diagnosis of AD, (3) an AD group diagnosed who fulfill              

diagnostic criteria for both clinical AD dementia and pathologic AD, and (4) a clinical-AD              

group diagnosed with AD dementia but only minimal AD pathology post-mortem. Each            
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group consists of 6 individuals (50% men/women). This sampling strategy ensures that we             

capture a wide range of cellular signatures across the different pathological and clinical             

manifestations of the disease within the 24 individuals profiled by snRNA-seq. Following            

rigorous pre-processing, we retained 162,562 DLPFC nuclei for analysis, with an average of             

7,094 nuclei per participant after doublet filtering and quality control, ​Fig. 1b,            

Supplementary Fig.​ 1, Methods ​).  
 

Using an unsupervised clustering approach, we identified distinct groups of nuclei spanning            

all 8 major expected cell types (​Fig. 1c, ​Supplementary Fig. 1b, Supplementary Table 2​),              

with all subsets present in each individual, but with considerable inter-individual variation in             

their relative proportions (​Fig. 1c)​. Cell proportions varied in coordinated ways across the 24              

individuals, forming two cell groupings (​Fig. 1d ​), with intra-group positive correlation (mean            

Spearman ρ=0.37 and 0.29) and inter-group negative correlation (mean Spearman ρ=-0.1).           

Group 1 includes microglia, oligodendrocytes, pericytes and endothelial cells, and Group 2            

includes astrocytes, oligodendrocyte progenitor cells (OPCs), and inhibitory neurons.         

Excitatory glutamatergic neurons do not correlate with either group (​Fig. 1d ​). The association             

trends agree with previously-reported changes in broad glial and neuronal categories in aging             

human brains ​3–5​. 

 

Moreover, there were differences between the four patient groups within the major cell             

classes, such that the spectrum of cells within a category shifted between patient groups (​Fig.               

1e​). For example, while all participants had astrocyte cells across a spectrum of subtypes, the               

distribution of astrocytes along this spectrum varied between the four patient groups. This             

distribution was more similar between the two groups with high AD pathology and more              

distinct in the reference group (​Fig. 1e​).  
 

A high-resolution atlas of cell subtypes in the aging neocortex 

To explore finer distinctions in cellular diversity, we assembled our 162,562 nuclei to             

characterize the diversity of cell subsets (subtypes, states and expression programs) in the             

neocortex. We analyzed profiles from each of the 8 major cell types separately and used one                

of two approaches: we used either a standard clustering of cells into subsets or recovery of                

co-varying gene programs (topic models), depending on the specific properties of each cell             

type. 
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We used clustering to identify discrete subsets for 4 of the cell types (​Methods ​, ​Fig. 2a,                

Supplementary Fig. 2) ​; this yielded 5 astrocytic, 6 microglial, 4 endothelial, and 16 neuronal              

subsets (​Fig. 2b, Supplementary Table 2​). We did not identify robust subdivisions within             

the OPCs and pericytes, possibly due to their relatively lower numbers. Among neurons, 9              

excitatory and 7 inhibitory subsets (​Fig. 2b ​) capture the diversity of the neocortex which are               

consistent with prior characterizations ​12 ( ​Fig. 2c)​. They include pyramidal neurons across the             

different layers of the cortex and known GABAergic inhibitory subtypes, such as those             

expressing vasoactive intestinal peptide (VIP), somatostatin (SST), or parvalbumin (PV)          

( ​Fig. 2c​).  
 

On the other hand, oligodendrocytes appear to be distributed along several different gradients             

of expression, without clear boundaries. As a result, we applied topic modeling using Latent              

Dirichlet Allocation (LDA) ​13–16 ( ​Fig. 2d, Supplementary Table 2, Methods ​), to recover           

gene programs (called “topics”) based on co-variation patterns of gene expression across            

cells. These topics are weighted differently across each cell/nucleus, and thus this approach             

simultaneously models every cell as a mixture of these gene programs. Each gene has a score                

for each topic, indicating its contribution to the topic, and each nucleus profile has a weight                

for each topic, indicating the extent to which that topic (program) is present in a particular                

nucleus. In oligodendrocytes, we found four major topics (​Fig. 2c​), and some nuclei are              

weighted for more than one topic. We annotated the topics by their highly scoring genes per                

topic, using a score based on the KL divergence to compare the distribution of topic weights                

and the expression level of genes across cells​15 ( ​Methods​, ​Supplementary Table 3 ​). For             

example, genes highly weighted in topic Olig.3 include insulin growth factor receptor 1             

(IGFR1, KL divergence score=0.089, ​Methods​) previously linked to Aβ degradation​17​, and           

the calcium homeostasis gene ITPR2 (KL divergence score=0.047). Another notable gene is            

Potassium Voltage-Gated Channel KCNAB1, which had a high weight in Topic Olig.1 and             

plays a role in extracellular potassium homeostasis (KL divergence score=0.11). Examining           

the relative distribution of cells from the 24 subjects across the four archetype groups              

suggests that oligodendrocytes distribute differently between groups, in a manner that is            

partially mirrored by the distribution of topics (​Fig. 2e ​). Thus, such shifts in cellular states               

may be related to differences in gene programs associated with pathology and cognitive             

decline; however, the small sample size of this dataset is underpowered for meaningful             

statistical analysis (​Figure 4D​). 
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We thus subsequently deployed this refined atlas of cell subsets and topics to assess              

inter-individual diversity and inter-group variation in the context of demographic and           

clinico-pathological measures.  

 

A diversity of cell states in microglia and astrocytes 

The 3,916 microglial nuclei profiled were partitioned into 6 major subsets (​Fig. 3a,             

Supplementary Fig. 3a-d ​), characterized by expression of known marker genes (​Fig. 3a,b ​)            

as homeostatic microglia (Micr.1), two subsets of active microglia (Micr.2, Micr.3), active            

interferon-associated (Micr.4), and proliferating (Micr.5) microglia subsets, and a small          

cluster of myeloid-like cells (Micr.6, ​k​=67 nuclei). We then used our reference map​8 of 9               

microglial subsets generated from 16,096 living human microglia isolated from the same            

brain region (DLPFC) to further annotate and validate each of the 6 nucleus-derived clusters              

( ​Fig. 3c,d​). Most nuclei subsets mapped clearly to a defined set of clusters of live microglia                

cells: Micr.1 mapped to homeostatic cells-clusters; Micr.2 to putative stress response, the            

anti-inflammatory and the antigen-presenting cells-clusters; Micr.3 to the putative enhanced          

redox and the interferon response cells-clusters; Micr.4 to the putative interferon-response           

cells-cluster; Micr.5 to the proliferation cells-cluster. Not all mapping between microglia and            

nuclei subsets were one to one: Both Micr.3 and Micr.4 contain nuclei that mapped to the                

living microglial interferon-response cluster. Micr.2 contains nuclei mapped to more than one            

cluster of living microglia annotated as activated - one defined as stress response and another               

as anti-inflammatory response - therefore Micr.2 captured at least two different reactive states             

of microglia cells that could be further partitioned when additional cells are available (as              

observed by their projection to two distinct domains on the UMAP, ​Fig. 3c​). While there are                

differences in individual gene levels in RNA profiles from nuclei ​vs ​. living microglia             

(consistent with earlier reports​18,19​, we detect expression of known markers of microglial            

subtypes in nuclear-derived profiles (​Fig. 3b ​). Our nuclear-derived model is also consistent            

with earlier, lower-resolution models of nuclear-derived microglia subtypes, showing the          

consistency of data generated independently from frozen cortex​3–5,7​. Thus, the overall           

population structure of microglial cells​8 is well captured in our nuclear data and allows us to                

evaluate the inter-relation of microglia with other cell types. 

 

The astrocytes (30,078 nuclei) included five major subsets, each with a distinct RNA profile              

( ​Fig. 3e, ​Supplementary Fig. 3e-h ​): homeostatic protoplasmic-like astrocytes (Astr.1,         

expressing SLC1A2, SLC1A3, MFGE8 ​2​), two non-homeostatic subsets (Astr.2 and Astr.3,          
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expressing reactive markers genes GFAP and OSMR ​2​), fibrous-like astrocytes (Astr.4,           

expressing reactive marker GFAP and fibrous markers CD44​20 and endfeet marker AQP4 ​21​)            

and a small subset expressing interferon-response genes (Astr.5, ​e.g. ​IFI44L, IFI6) ( ​Fig. 3e,f,             

Supplementary Fig. 3f ​), detected in samples from only two individuals. Interestingly, the            

AD susceptibility gene ​APOE ​22 is upregulated in the homeostatic subset of astrocytes             

(Astr.1, ​Fig. 3f ​), while it is upregulated in non-homeostatic microglia cells (​Fig. 3b ​). Genes              

induced in Astr.4 nuclei were enriched (FDR<0.01, hypergeometric test) in cholesterol           

metabolism and stress pathways, including heat shock response, oxidative stress and           

senescence (​e.g.​, ID3, ​Fig. 3g​). Astr.4 and Astr.3 expressed genes recently reported in             

astrocytes enriched in a murine amyloid proteinopathy model​2,7 (ID3, VIM, FOS in Astr.4             

and OSMR in Astr.3, ​Fig. 3f ​). However, Astr.3 profiles had higher expression of the FGF               

signaling pathway (FGF2 and its receptor NRP1, FDR<0.01), associated with a protective in             

an ​in vitro ​amyloid toxicity model ​24​ ( ​Fig. 3f​), and not expressed by Astr.4 nuclei (​Fig. 3f​).  
 

Distinct populations of glial cells and a GABAergic neurons are associated with AD             

traits  

We next turned to explore the association of cell subtype proportions with AD-related traits              

available from the deep ante-mortem and post-mortem characterization of ROSMAP          

participants​9–11​. We prioritized three outcomes that capture distinct critical aspects of AD:            

quantitative measures of (1) β-amyloid and (2) tau, the two defining pathologic            

characteristics of AD, as well as (3) the slope of aging-related cognitive decline over up to 20                 

years before death. This last measure captures the progressive cognitive impairment that            

leads to dementia. β-amyloid generally accumulates earlier than tau pathology but, while both             

pathologic features are found in the DLPFC of most ROSMAP participants, tau burden is              

more closely associated with cognitive impairment and dementia ​25,26​. 

 

Although our sample size has limited statistical power, we found a clear trend of positive or                

negative correlations between the proportion of certain cell subsets (​within each broad cell             

class) and cognitive decline (​Fig. 4a​) or measures of amyloid and tau accumulation that are               

defining characteristics of AD (​Supplementary Fig. 4a​). For example, the proportion of the             

Olig.1 subset among oligodendrocytes and of the Inh.5 subtype among inhibitory neurons are             

both negatively correlated with cognitive decline (​r ​=-0.56 and -0.3 respectively), while           

Olig.3 and Inh.3 proportions are positively correlated (r=0.24 and 0.15 respectively) (​Fig.            

4a,b ​), yet more samples are required for significant statistical validations. 
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Deconvolution of cell subtype composition in bulk RNAseq profiles of 640 individuals            

validates association of cell populations with AD traits 

Given that our 24 profiled participants were selected to capture different archetypes, they are              

not representative of the distribution of traits in aging brains captured by the parent ROSMAP               

studies; there is a lot of heterogeneity in the clinicopathologic characteristics of the ROSMAP              

participants. We thus used the single nucleus profiles to infer cell proportions in bulk DLPFC               

RNA profiles from 640 ROSMAP participants (​Supplementary Table 1 ​). To this end, we             

developed ​CelMod (Cellular Landscapes Modeling by Deconvolution), ​a method that builds           

and validates a model of cell type and cell states proportions from matched sc/snRNA-seq              

and bulk RNA-seq ​from the same individuals (​Fig. 1a ​). CelMod relies on a consensus of               

gene-wise regression models, with cross validation to estimate accuracy (​Methods, Fig. 1 ​).            

Unlike most methods, CelMod is sensitive enough to detect the proportions of the different              

cell subsets (subtypes and states) ​within each broad cell class, and it can also deconvolve the                

relative contribution of expression programs (topics) in bulk profiles using program-specific           

weights (as opposed to proportions of discrete cell populations). We applied CelMod first at              

the broad cell class level and then subsequently within each class. CelMod identifies a large               

set of informative genes for each cell subset, ensuring that a small set of overlapping gene                

markers from different cell groups are not skewing the proportion estimates for cell types as               

well as for subsets within each cell class. Ultimately, this resulted in inferred relative              

proportions of each of the 35 cell subsets and 4 oligodendrocyte topics in the bulk DLPFC                

RNA-seq data from each of the 640 ROSMAP participants (​Supplementary Table 4​).  
 

CelMod accurately inferred proportions of cell types, subsets and programs (topics) as            

validated by comparing the inferred to the matched empirically defined proportions from            

snRNA-seq data in a four-fold cross-validation (mean r=0.79 , stdev=0.13 across cell types             

and mean r = 0.78, stdev = 0.15 across cell subsets ​within each cell type, Fig. 4c,d,                 

Supplementary Fig. 4b,c ​, ​Methods ​). We also compared the inferred proportions to matched            

proportions derived from immunofluorescence data on DLPFC tissue sections from 48           

ROSMAP participants (​Fig. 4e,f​) that have both data: we compared proportions of neurons             

(NeuN+), astrocytes (GFAP+) and microglia (IBA1+) (​Methods ​). The estimated proportions          

correlated well with histology-derived proportions for neurons (r=0.45) and microglia          

(r=0.34, ​Fig. 4e​) but less strongly for astrocytes (r=0.18). Re-examination of the staining of              

the astrocyte marker GFAP, showed that the correlation is higher (r=0.5) with the inferred              
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proportions of the of GFAP+ astrocyte subsets (Astr.2, Astr.3 and Astr.4) out of all other               

cells (​Fig. 4e​). 
 

Testing for association of the three AD-related traits with the inferred cellular proportions             

( ​within each broad cell class) was performed using linear regression (with correction for age,              

RIN score and sex, ​Methods ​, ​Supplementary Table 5 ​) and revealed significant associations            

(FDR<0.05) between the proportions of neuron and glial cell subsets (​within each cell class)              

and pathologic and/or cognitive traits (​Fig. 4g-i​). Interestingly, variation in proportions of            

many cell subsets were significantly associated with β-amyloid pathology (FDR<0.05),          

including negative association with most (5 out of 9) subtypes of glutamatergic neurons,             

inhibitory neuron subtypes Inh.5/13, and oligodendrocyte topics Olig.2/4, as well as positive            

association with non-homeostatic microglia states (Micr.3/4/5) and oligodendrocyte topic         

Olig.3 (​Fig. 4h ​). However, only a minority (19%) of these β-amyloid-associated populations            

were also significantly associated with cognitive decline (​e.g. Olig.3, Micr.3 and Inh.5, ​Fig.             

4g​). In contrast, cell subsets and topics associated with tau pathology also showed significant              

associations to cognitive decline (FDR<0.05, ​Fig. 4h ​); these include a positive association            

with cognitive decline for Olig.3, Inh.3 and Micr.3 and a negative association for Olig.1 and               

Inh.5. This overall finding is consistent with the stronger association between tau (vs.             

β-amyloid) pathology and cognitive decline. β-amyloid pathology, while correlated with Tau           

pathology (r=0.48), has a broader range of cellular associations, only some of which are also               

correlated with tau pathology. So, the two pathologies have a largely distinct set of              

associations with cell subtypes/states, consistent with our earlier report of distinct microglial            

transcriptional programs being associated with amyloid and tau pathology​27​. 

 

The inferred associations with cognitive decline and tau-pathology showed that          

oligodendrocyte topic Olig.1 appears to be more prominent in non-impaired individuals while            

topic Olig.3 is enriched in individuals with cognitive decline. In parallel, the relative             

proportion of inhibitory neuronal subtype Inh.5 (SST+) is higher in healthy individuals, in             

contrast to inhibitory subtype Inh.3 (PV+), which is relatively higher in individuals with             

cognitive decline (​Fig. 4f-h ​). This suggests a potential difference in the vulnerability of SST+              

vs. PV ​+ GABAergic neurons in AD. Additional subsets positively associated with cognitive            

decline include Micr.3 which is enriched for genes related to reactive oxygen pathways and              

interferon response (​Fig. 3​) and the endothelial subset Endo.3 (​Fig. 4f-h​).  
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Inter-individual variation in composition of cell states and subtypes is confirmed in 640             

individuals 

Assessing the extent of inter-individual variation in cell subsets (subtypes, states and            

programs) composition across the 24 subjects revealed differences ​within each of the            

different broad cell classes separately (​Fig. 5a ​), which was beyond the association of specific              

cell subsets to the AD subgroup of individuals. For example, among the astrocytes, most              

(70.83%) of the individuals had predominantly homeostatic astrocytes (Astr.1 and Astr.5),           

and the remainder predominantly had astrocyte from one of the non-homeostatic subsets            

(Astr.2 & Astr.3) but not both (​Fig. 5a ​). Similarly, among microglial cells, individuals were              

distinguished by having either a predominant homeostatic signature (Micr.1, 58.3%) or an            

active stress/anti-inflammatory associated signature (Micr.2) (​Fig. 5a ​). A similar but less           

pronounced trend of a predominant signature per individual was present in oligodendrocytes            

and endothelial cells (​Fig. 5a​). Finally, while all neuronal subtypes are detected in all              

individuals, we found differences in their relative proportions across groups of individuals            

( ​Fig. 5b ​), including a systematic anti-correlation within the proportions of the SST+ (Inh.5)             

and PV+ (Inh.3) GABAergic subtypes (as a fraction of all GABAergic neurons, ​Fig. 5b​). 
 

To assess the robustness of these correlated differences in composition of cell subsets across              

individuals, we used the CelMod-inferred proportions of each of the 31 cell subsets and 4               

oligodendrocyte topics from the bulk DLPFC RNA-seq across 640 individuals          

( ​Supplementary Table 4​). We observed the same co-variation in broad cell class proportions             

across 640 individuals (​Fig. 1e, ​Supplementary Fig. 4d ​), which we then confirmed by             

immunohistochemistry across 48 individuals (​Supplementary Fig. 4e​). We also confirmed          

the variation in cell subsets across individuals ​within each broad cell class separately (​Fig.              

5c,d​, ​Supplementary Fig. 5a​). For example, we again observed the mutually exclusive            

predominance of homeostatic (Astr.1) ​vs ​. non-homeostatic (Atsr2 and Astr.3) astrocyte          

signatures (R=-0.95), and of homeostatic (Micr.1) ​vs​. non-homeostatic (Micr.2) microglial          

subtypes (R=-0.88) in the 640 individuals (​Fig. 5c,d ​). Similarly, we continued to observe a              

strong anti-correlation between Olig.1 and Olig.3 oligodendrocytes topics (R=-0.81) as well           

as between the relative proportions of PV+ and SST+ inhibitory neuronal subtypes as a              

fraction of total GABAergic neurons (R=-0.58) (​Fig. 5d​). 
 

Correlated proportions of cell subsets across individuals suggest the existence of distinct            

cellular communities in aging brains 
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We next asked how the variation across all the individuals in the proportion of each cell                

subsets was correlated with variation in other cell subsets, particularly those from a different              

broad cell class. To this end, we calculated the Spearman correlation coefficient for each              

pairwise combination of cell subset proportions, and clustered the subsets into communities            

by these correlations (​Fig. 6a, Methods ​). The cell subsets exhibited significantly similar            

co-variation structures across both the 24 participants with empirically determined          

proportions (​Fig. 6b ​) and across the 640 participants with inferred proportions (​Fig. 6c ​), as              

assessed by a permutation test (​Fig. 6d ​, p-value<0.001, ​Methods ​). A network of cell subsets,              

connecting each pair of subsets (nodes) with significant correlations and anti-correlations           

(edges) was also found to be similar between the 24 participants network (​Fig. 6e ​) and 640                

participant network (​Fig. 6f, Supplementary Fig. 5b,c​).  
 

These networks identified five cellular communities (groups of positively correlated cell           

subsets), defined by community detection using eigenvector matrices​28 on all (significant)           

positive edges (​Fig. 6g​, ​Methods ​) across the 640 participants (and matched the 24 participant              

network, ​Supplementary Fig. 5b,c​). These included two pairs of coupled, anti-correlated           

communities. The first pair includes a putative ​homeostatic community ( ​Community 1​,           

mean intra-community R=0.73, stdev = 0.13), composed of a microglia (Micr.1), astrocyte            

(Astr.1), and endothelial (Endo.1) subsets; and a putative ​non-homeostatic community          

( ​Community 2, ​mean intra-community R=0.67, stdev = 0.15), composed of a microglia            

(Micr.2) and two astrocytes (Astr.2, Astr.3) subsets. These two communities are strongly            

anti-correlated (mean inter-community R=-0.79, stdev = 0.06) with one another across           

individuals. The second anti-correlated pair of communities consists of two mixed           

neuronal-glial communities​, ​Community 3 (including Olig.1, Inh.5/4/9/10, Exc.0/1,        

Astr.4/5, and Endo.2 subsets) and ​Community 4 ​(including Olig.3, Micr.3, Inh.3, and End.3/4             

subsets). In addition, there exists a community of ​predominantly glutamatergic neurons           

( ​Community 5​, mean intra-community R=0.57, stdev = 0.23). Notably, the representation of            

neuronal-glial community 3 was correlated with homeostatic community 1 (mean          

inter-community R=0.17, stdev = 0.14) across individuals, whereas neuronal-glial         

Community 4 was correlated with ​both non-homeostatic-community 2 (mean         

inter-community R=0.21, stdev = 0.07) and glutamatergic community 5 ​(inter-community          

mean R=0.28, stdev = 0.27). Although there were minor differences between the community             

networks from the 24 and 640 participants (​Supplementary Fig. 5b,c ​), we focused on their              

shared elements in all subsequent analyses.  
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Distinct ligand-receptor pairs identified in the homeostatic and non-homeostatic cellular          

communities 

We hypothesized that the anti-correlation between homeostatic ​community 1 and          

non-homeostatic ​community 2 ( ​Fig. 6h ​), may reflect distinct signaling patterns between cell            

subtypes ​within each community​29,30​. We thus searched for ligand-receptor pairs (LRPs) ​31,32            

that putatively connect the microglia and astrocyte signatures ​within each of the two             

communities (Micr.1 with Astr.1, or Micr.2 with combined Astr.2/Astr.3) ( ​Methods ​). ​We           

identified ​452 ​expressed LRPs ​( ​2.05% of all possibl​e LRPs, ​M​ethods ​) in a cellular             

community, with at least one cell subset expressing the ligand and one expressing the              

receptor within the community (​Methods ​). The number of expressed LRPs distributed           

equally across all possible cell subsets (p = 0.13, Chi Square test). ​Next, we searched for                

community-specific LRPs, defined as expressed LRPs in which either the ligand, the receptor,             

or both, were differentially expressed within a cell type between the two communities             

(FDR<0.01, comparing expression in Micr.1 to Micr.2, and Astr.1 to combined Astr.2/Astr.3;            

Methods ​). We identified 25 ​community-specific LRPs ( ​Fig. 6h-j ​), considering, within each           

community, putative signaling from microglia to astrocytes, astrocytes to microglia, and           

auto-signaling​. ​Community-specific ​LRPs ​were found between all pairs of cell populations,           

with no significantly favored pair of cell subsets (​p > 0.5​, Chi Square test)​. Yet, the overall                 

number of ​community-specific LRPs within the non-homeostatic ​community 2 was higher (21            

LRPs) than in the homeostatic ​community 1​ (4 LRPs; ​Fig. 6j​) ​.  
 

For example, within the non-homeostatic ​community 2 ​, we found upregulation of           

Transforming Growth Factor Beta (TGF-β) signaling. The TGFB2 ligand is upregulated in            

Astr.2/Astr.3 (compared to Astr.1), and its receptors TGFBR1 and TGFBR3 are upregulated            

in Micr.2 (compared to Micr.1) and Astr.2/Astr.3 (compared to Astr.1, ​Fig. 6g-i​),            

respectively. TGF-β signaling was shown to be ​upregulated during infection in the CNS in              

astrocytes ​33​, and it has a known anti-inflammatory effect ​33​. There are also indications for its                

dysfunction in AD brains​34​. ​Within the homeostatic ​community 1​, we find an up-regulation of              

APOE-associated signaling, with higher expression in Astr.1 of APOE, a major AD            

susceptibility gene ​35​, and its putative receptor SORL1 (based on previous reports ​36–38​), a              

susceptibility locus for AD associated with cognitive decline levels ​39​, upregulated in            

homeostatic Micr.1 (​Fig. 6g-i​). An increase in SORL1 levels has been associated with             

reduced β-amyloid accumulation ​34,40​. 
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A mixed neuro-glial cellular community is associated with cognitive decline 

We next asked whether the changes in the composition of cell subsets found to be associated                

with AD (​Fig. 4g-h ​) reflect multiple independent effects that contribute to cognitive decline,             

or a coordinated set of changes. We found that certain cellular communities were             

significantly enriched for cell subsets associated with AD related traits (​Fig. 7a,b,c ​),            

suggesting that these cellular populations may be engaged in a common disease-related            

process. In particular, the cognitive decline-associated cell subsets segregated into two           

anti-correlated communities, each composed of highly interconnected neuro-glial-endothelial        

cell subsets: ​Community 4 includes most (4 out of 6) of the cell subsets that have a significant                  

positive association with more rapid cognitive decline (Hypergeometric ​p-value < 0.001) and            

tau pathology load (4 out of 4, ​p-value < 9.4e​-5​) including the Olig.3 signature, Micro.3,               

Endo.3 and GABAergic PV+ neuronal subtype Inh.3 (​Fig. 4g,h, Fig. 7a,b ​). Conversely,            

Community 3 ​includes all four cell subsets whose relative proportions were significantly            

higher in individuals with little or no cognitive decline (​p-value < 0.004), including the Olig.1               

signature and GABAergic SST+ neuronal subtype Inh.5 (​Fig. 4g,h ​, ​Fig. 7a-b ​). Finally,            

Community 5, ​was enriched for most (9 out of 10) cell subsets and programs negatively               

associated with β-amyloid load (​p-value < 7.2e​-6​), including most glutamatergic neuronal           

subtypes ( ​Fig. 4i, Fig. 7c​). We therefore identify several sets of coordinated cellular             

responses that are associated with distinct aspects of AD, with Community 4 appearing to be               

associated with accumulation of both proteinopathies as well as cognitive decline.  

 

The proportion of inhibitory neurons and oligodendrocytes subsets partially mediate          

the association between tau pathology and cognitive decline 

While our autopsy-based cross-sectional data cannot formally determine the causal chain of            

events leading to AD, rigorous modeling can propose a most likely scenario that will inform               

the design of validation studies. The strongest common genetic risk factor of late onset AD,               

the ​APOEε4 haplotype, explains 5.6% of the variance in cognitive decline in the ROSMAP              

participants (adjusted for age, sex and RIN values, ​Methods ​), and this effect size is              

comparable to the 5.3% variance explained (VE) by the frequency of Inh.5 (SST+ neurons)              

and the 4.7% VE explained by the Olig.1 topic. Micr.3, Inh.3 and Olig.3 have slightly smaller                

VE: 3.3%, 2.8% and 2.7%, respectively. Thus, the cell subtypes that we have identified              

explain a substantial fraction of the variance of cognitive decline, but this analysis does not in                

itself provide any inference as to the sequence of events. 
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To model the sequence of events from risk factors to dementia, we conducted mediation              

analyses on the variability of the proportions of the two most significant subsets associated              

with cognitive decline: Olig.3 (positive association) and Inh.5 (SST+, negative association).           

We first leveraged a Mendelian randomization approach ​41 using ​APOEε4 as an instrumental             

variable to infer the causal relationship between tau pathology and cell subset proportions.             

APOE​ε4 is a genetic risk factor that is not affected by reverse causation, and has a known                 

strong association with tau pathology. ​APOE​ε4 was also associated with both Inh.5            

(β=-7.9×10-3, 95% CI -0.015 to -6.4×10-4, p=0.033) and Olig.3 (β=0.020, 95% CI 0.002 to              

0.038, p=0.028), but these associations were no longer significant once we adjusted for tau              

pathology (Inh.5 p=0.31, Olig.3 p=0.24). By contrast, the association between ​APOEε4 and            

tau pathology remained similarly strong even after adjusting for the relative proportions of             

Inh.5 and Olig.3 (before adjustment: β=0.63, 95% CI 0.42 to 0.84, p=4.6×10​-9​; after             

adjustment: β=0.58, 95% CI 0.38 to 0.79, p=3.8×10-8), ruling out the scenario that the              

APOEε4 – tau link is mediated by changes in frequency of these two cell subsets. Thus,                

APOEε4 is a valid instrumental variable to assess the causal relationship between tau             

pathology and cell type proportions. Based on these results, we performed two Mendelian             

randomization analyses for each cell subset (Inh.5 and Olig.3) separately, with APOE-ε4 as             

an instrumental variable, tau as an exposure of interest, and Inh5 or Olig3 as the outcome of                 

interest ( ​Methods ​, ​Fig. 7d ​). ​The results are consistent with a model in which there is a                

significant causal effect of tau pathology on cell subset proportions. We note that Inh.5 and               

Olig.3 were highly collinear (r=-0.76), and thus we could not statistically assess whether the              

proportion variation of one cell subset is upstream of the other.  

 

Next, we examined ​whether the ​downstream ​variation in proportions of cell subsets, mediate             

the relationship between tau pathology and cognitive decline. We performed ​mediation           

analysis for each cell subset (Inh.5 and Olig.3)​. In the resulting causal models, cell subset               

proportions partially mediated the association between tau pathology and cognitive decline:           

both Inh.5 and Olig.3 proportions differences mediate a small but significant part of the              

association between tau pathology and cognitive decline (​Fig. 7e​). Thus, our analysis            

suggests that differences in Inh.5 and Olig.3 proportions may reflect some of the             

consequences of tau pathology accumulation that lead to impaired cognition. This model is             

consistent with the current biomarker-based model of human AD progression, in which            

15 
 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.22.424084doi: bioRxiv preprint 

https://paperpile.com/c/WiBjVD/Xvm0W
https://doi.org/10.1101/2020.12.22.424084


neuropathology precedes alterations of the brain parenchyma (such as neurodegeneration),          

which is then followed by cognitive decline and functional deficits ​42​. 

 

DISCUSSION 

In this study, we constructed a high-resolution cellular map of the DLPFC from 24              

individuals, which enabled the characterization of the diversity of neuronal, glial and            

endothelial cell subsets and topic models at unprecedented resolution in order to extract new              

insights about intra- and inter-individual diversity in the aging brain. Our optimized            

snRNA-seq protocol and analytic pipelines uncovered a greater diversity of cellular           

populations in the aging neocortex (​Fig. 2 and 3​) than has been previously reported ​3,7​.               

Further, using a new method (CelMod), we integrated this detailed cellular map with bulk              

RNA-seq data from the same brain region in the same 24 individuals, to estimate the               

proportions of the major cell classes and cell subsets in a cohort of 640 aging individuals.                

The general approach can be readily applied to other matched tissue-level datasets. The             

inferred cellular composition data was statistically powered for disease association analyses,           

which uncovered key players with potential involvement in the cellular cascade leading to             

cognitive decline, including an anti-correlated pair of GABAergic neuronal subtypes as some            

of the most prominent findings (​Fig. 4 and 7 ​). Specifically, our analysis suggests a striking               

inverse association between PV+ (Inh.5) and SST+ (Inh.3) GABAergic neuron proportions in            

healthy and diseased participants, suggesting that SST neurons may be more vulnerable or             

PV neurons relatively more resilient to tau pathology (​Fig. 4 and 7 ​). Such changes were not                

reported in previous studies ​3,7​, which have profiled a lower total number of neurons. Next,               

we applied a new computational framework to expand our analysis across all cell types,              

which led to the discovery of distinct ​cellular communities ( ​Fig. 6​) that we linked to AD                

associated traits (​Fig. 7​). 

In microglia, we mapped our snRNA-seq-based clusters to those found in single-cell analysis             

of live human microglia profiled from fresh autopsy and surgically resected tissue ​8​, finding a               

good match with only few differences in subtype composition between the two experimental             

approaches. Although the numbers of microglial nuclei in our single nucleus data set remains              

small (<4,000 nuclei), we nonetheless identify clearly distinct signatures of activated           

microglia, which was not necessarily guaranteed with a snRNA-seq approaches given the low             

and unique content of nuclear RNA that have been previously noted ​18​. Oligodendrocytes             

emerge as an interesting cell class for further evaluation. We highlight the need to deploy a                
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distinct analytic approach when studying this cell type: We represented the heterogeneity            

within these cells utilizing a continuous approach by topic models ​13–16 to capture expression              

programs instead of discrete cell clusters. One such topic (Olig.3) is very strongly associated              

with tau pathology and cognitive decline, while another (Olig.1) is prevalent in cognitively             

non-impaired brains, suggesting a clear oligodendrocytic signature associated with AD. 

β-​amyloid pathology was associated with a much broader set of cell subsets than tau              

pathology, yet most of the variability in ​β-​amyloid does not appear to relate directly to               

cognitive decline. This can help de-prioritize those cell types, subtypes and expression            

programs that may not contribute to clinical symptoms, namely cognitive decline. Since most             

studies focus on a pathology-based diagnosis of AD and/or AD dementia, or a low-resolution              

measure of pathology such as Braak score, it is challenging to resolve the effects of the                

distinct pathologies involved in the course of AD. Our extensive, high resolution profiling of              

deeply characterized individuals provides a more informed prioritization of candidate gene           

signatures and cellular subsets for further investigation. 

Finally, a major innovation of our study is the definition of cellular ​communities defined by               

correlated changes in the frequency of different cell subsets across individuals (​Fig. 6 and              

7f​). The correlation structure initially observed in our snRNA-seq data from 24 individuals             

( ​Fig. 6b,e​) was reproduced in the 640 ROSMAP participants who have inferred cell type              

proportions (​Fig. 6c,f​). Our modeling further shows that the composition of cell subsets and              

topics in these communities may reflect an underlying shared process, which is supported by              

finding ​community-specific ligand-receptor pairs(​Fig. 6h-j ​), such as (TGF-β) signaling that is           

enhanced in ​Community 2 ( ​Fig. 6i​). Moreover, this community structure is clinically relevant             

as ​Community 4 is enriched for associations with both proteinopathies and cognitive decline             

( ​Fig. 7a-c​). These results fit within our conceptual understanding that AD is a distributed              

pathophysiologic process involving multiple interacting cell types. Spatial transcriptomics         

methods will help to resolve whether these communities represent groups of co-located cells             

or distributed communities responding to an underlying, shared signal.  

Finally, because profiling post-mortem brain tissue is by definition a cross-sectional study,            

we have to infer the temporal links between cellular communities, appearance of pathology,             

and cognitive symptoms. Mediation analysis suggests that the strong known link between tau             

pathology and cognitive decline is mediated in part through the cell type proportion changes              

that we observed, specifically through an oligodendrocyte state changes and and differences            
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in SST+ and PV+ interneuron proportions (​Fig. 7d,e ​). Our modeling thus presents a clear              

hypothesis that the observed alterations in cell frequency occur downstream of the            

accumulation of tau pathology but upstream of cognitive deficits (​Fig. 7d,e ​). This can help              

the design of future studies to validate these observations and, later, potential avenues to              

mitigate cognitive decline by targeting the molecular processes leading to these cellular            

changes.  

Overall, our work highlights the importance of a unified, cross-cell type view of the cellular               

ecosystems of the brain, beyond a cell-type-specific focus, in the study of Alzheimer’s             

Disease and other complex neurodegenerative disorders. Embracing the complexity of this           

heterogeneous parenchymal tissue, network approaches can uncover new insights, such as           

key members of each cellular community that are involved in different aspects of the aging               

brain.  

 

 

Figures and Legends  
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Figure 1. A cellular-molecular map of the human aging DLPFC shows coordinated changes in              
cell type proportions across individuals. ​(​a​) Overview of the experimental scheme and analysis. ​24              
individuals with clinicopathologic characteristics were profiled by single nucleus RNA-seq          
(snRNA-seq) t​o generate a high resolution ​cellular map ​of the aging DLPFC brain region​, and used as                 
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input ​to our CelMod deconvolution algorithm to iteratively estimate ​cellular compositions ​in 640             
individuals. Network analysis uncovered ​cellular communities​, cell subsets coordinately varying          
across individuals, and statistical modeling ​associated AD traits to cell subsets and to cellular              
communities. (​b​) High quality 162,562 libraries generated across 24 post-mortem samples of the             
DLPFC brain region of aging individuals. The number of cell profiles for each individual, divided by                
the ​four major archetypes of the aging population: No clinical and minor pathological AD,              
pathological AD only, clinical & pathological AD, and clinical AD only. ​(​c​) A detailed              
cellular-molecular map of the human aging DLPFC. Left: Umap embedding of 162,562 single-nuclei             
RNA profiles from the DLPFC brain region of 24 individuals; colored by cell type (or by cluster in                  
Supplementary Fig. 1b ​). Right: Diversity of cell type proportions across individuals. The proportion             
of cell types (color coded as in the Umap) for each individual (columns). (​d​) Inter-individual               
variations in cell type proportions across individuals is correlated across cell types. A heatmap of the                
pairwise Spearman’s correlation coefficient of cell type proportions across 24 individuals. (​e​) ​Cellular             
landscapes diverge between groups of individuals from four archetypes of the aging population. Umap              
embedding (as in ​c)​, split to the four major archetypes of the aging population (as in ​b​), colored by the                    
local relative density of cells from each archetype (​Methods​)​.  
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Figure 2. A high resolution map of cell subtypes and states in the aging DLPFC. ​(​a​) ​Diversity of                  
non-neuronal cell states in the aging DLPFC. Umap embedding of individual cell types, colored by               
clusters capturing distinct cell states in (from left to right): astrocytes (​30,078 cells, 5 clusters),               
microglia (3,916 cells, 6 clusters), and endothelial cells (1,988 cells, 4 clusters). ( ​b​) Neuronal              
diversity in the DLPFC. Umap embedding of excitatory (58,359 cells, 9 clusters) and inhibitory              
neuronal subtypes (24,805 cells, 7 clusters), colored by clusters capturing distinct subtypes. Annotated             
by Allen Brain Atlas ​12 (​Methods ​). (​c​) Distinct marker genes per neuron​al cluster. ​Mean expression               
level in expressing cells (color) and percent of expressing cells (circle size) of selected markers in                

21 
 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.22.424084doi: bioRxiv preprint 

https://paperpile.com/c/WiBjVD/wwUP2
https://doi.org/10.1101/2020.12.22.424084


each cluster of neuronal subtypes ​(rows) of novel marker genes and known marker genes (marked in                
green, from Allen Brain Atlas ​12​), including pyramidal neurons across cortical layers and GABAergic              
subtypes. (​d​) Diverse continuum of expression programs in oligodendrocyte cells inferred by topic             
modelling ​13–16​. For each topic model: Umap embedding of oligodendrocytes cells, colored by the              
weight of each topic per cell (right); The top scoring genes (colored by the score), computed as the                  
Kullberg-Leibler divergence between the expression level and the topic’s weight across cells (left);             
and The cumulative distribution function of topic weights for cells ​split by the sample of origin to four                  
major archetypes of the aging population (as in ​Fig. 1e​, bottom). ​(​e​) ​Oligodendrocytes composition              
diverge between four archetypes of the aging population. Umap embedding of ​oligodendrocyte cells             
(as in ​d​)​, split to four major archetypes of the aging population (as in ​Fig. 1e​), and colored by the                    
local relative density of cells from each archetype (​Methods​)​. 
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Figure 3. Diverse cell states in astrocytes and microglia cells. ​(​a​) ​Microglia subclusters are              
associated with distinct marker genes. Umap embedding of microglia cells colored by cell cluster (as               
in ​Fig. 2b​, top left), or by the local density of expression levels (​Methods​) of marker genes for:                  
microglia activation (SPP1), interferon signaling (IFI44L), AD-risk (APOE) and proliferation          
(TOP2A). (​b​) Dot plot of the mean expression level in expressing cells (color) and percent of                
expressing cells (circle size) of selected marker genes across microglia subsets (rows). ​(​c-d) ​Clusters              
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of microglia nuclei from snRNA-seq match published live microglia cell clusters from scRNA-seq ​8​.              
Umap of snRNA-seq microglia colored by the best predicted scRNA-seq cluster ID (​Methods​, ​c​). The               
proportions (color scale, scaled per column) of nuclei per cluster (columns) mapped to each              
scRNA-seq cell cluster (rows, ​d ​). (​e​) Diverse astrocyte subsets are associated with distinct marker              
genes. Umap embedding of astrocyte cells, colored by subcluster (as in ​Fig. 2b​, top left), or by the                  
density of expression levels of marker genes ​(​Methods ​)​: astrocyte activation marker (GFAP),            
senescence regulator (ID3), AD-risk gene (APOE). (​f​) Dot plot showing the mean expression level in               
expressing cells (color) and percent of expressing cells (circle size) of selected genes in each astrocyte                
cluster. 
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Figure 4. The proportion of neuronal subtypes and glial subsets are associated with AD-traits in               
a cohort of 640 individuals ​. (​a​) ​Proportions of cellular subsets within cell classes correlate with               
cognitive decline. Correlation (color scale) of proportions of cell subsets ​within each cell type              
(individual columns) to cognitive decline. Associations to other AD traits in ​Supplementary Fig. ​4a​.              
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(​b ​) GABAergic subtypes proportions vary in association with cognitive decline. Box plots of the              
proportion of three GABAergic subtypes (out of total GABAergic neurons) across four cohorts:             
reference group, pathological AD only, clinical AD only, and clinical with pathological AD. Box,              
25% and 75% quantiles; line, median; Dots, individual samples. (​c​) Estimated cell type proportions by               
CelMod algorithm match snRNA-seq data. Scatter plots of the estimated proportions (Y-axis)            
compared to the snRNA-seq measured proportions (X-axis) across the 24 individuals, for different             
cell types: microglia, excitatory (Exc) neurons, astrocytes and oligodendrocyte cells (other cell types             
in ​Supplementary Fig. ​4b​). (​d​) Estimated cell subtypes and states proportions by CelMod algorithm              
match snRNA-seq data. Scatter plots as in C, for selected cell subsets (all other subsets in                
Supplementary Fig. ​4c,d​). (​e-f​) Cell type proportions measured by histology match CelMod            
estimates. (​e​) Immunohistochemistry in DLPFC sections of 48 individuals (24 healthy, 24 declined),             
stained for marker for (GFP): neurons (anti-NeuN), microglia (anti-IBA1), astrocytes (anti-GFAP).           
Representative immunofluorescence images. DAPI, nuclei. Scale ​bar = 100 µm. Correlation of (​f​)             
Pearson correlation coefficient of CelMod and immunofluorescence estimations of proportion of cell            
populations (out of the total number of cells), for: neurons, microglia, and GFAP+ astrocyte              
populations (Astr.2, Astr.3, Astr.4). (​g-i​) Association of cell population to AD traits. ​Association             
scores for the CelMod estimated proportions across 640 individuals of all cell subsets (cell subtypes,               
states or topic models) to cognitive decline rate (X-axis, in ​g and ​i​), β-amyloid load (Y axis, in ​g and                    
i​), tangle load (Y-axis in ​h ​, X-axis in ​i​). Association score = -log(FDR)*sign(beta), from              
multivariable linear regression analysis correcting for age, sex and RIN values. Statistically significant             
subsets with positive association (red) or negative ​association (blue) with cognitive decline (in ​g,h​) or               
β-amyloid load (in ​c​). 
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Figure 5. ​Inter-individuals diversity of cell subsets within each cell type validated in 640              
individuals ​. (​a​) D​iverse proportions of cell subsets across individuals in glial and endothelial cells.              
The frequency (out of total cells in the class, color scale) of each cell subset (columns) in each                  
individual (rows; n = 24) across different cell classes: Astrocytes, microglia, oligodendrocytes and             
endothelial cells. (​b ​) Diverse proportions of neuronal subtypes across individuals. Frequency of            
neuronal subtypes, (presented as in ​a​) in excitatory and inhibitory neurons. (​c-d ​) CelMod estimated              
cellular proportions in 640 individuals validate changes in cell states across individuals observed in              
snRNA-seq data. (​c​) The frequency of each cell subset in each individual (n = 640) across astrocytes                 
and micr​oglia. The cell subsets (columns) are ordered as in ​a​. (​d ​) Scatter plots of selected pairs of cell                   
subsets from the same cell class, confirming high anti-correlations between subsets of astrocytes             
(Astr.1 and Astr.2), microglia (Micr.1 and Micr.2) and oligodendrocytes (Olig.1 and Olig.3), and             
inhibitory neuronal subtypes (Inh.3 and Inh.5). Full estimated proportions of cell types and cell states               
in ​Supplementary ​ Fig. 5a​.  
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Figure 6. Multi-cellular communities exist in the aging DLPFC brain region. ​(​a​) Scheme of              
computational framework for estimating multicellular communities. Proportions of cell subsets across           
individuals within each cell type are calculated, combined and pairwise correlations between all             
cellular subsets are computed. A multi-cellular network is derived from the correlation matrix, cellular              
subsets are assigned to cellular communities using an eigenvectors community detection algorithm,            
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and associated with AD-traits by statistical analysis (​Methods ​). (​b-c​) ​Coordinated changes in            
proportions of cell states and subtypes across individuals. A heatmap of the pairwise Spearman’s              
correlation coefficient of the proportions of all cell states and subtypes across 24 individuals              
(snRNA-seq measurements, ​b ​) and validated in 640 individuals (CelMod estimated proportions, ​c​),            
exposing a structure of mixed correlated and anti-correlated cellular populations of all cell types. ( ​d​)               
CelMod estimated pairwise correlations of cellular populations (n=640 individuals) matches the           
snRNA-seq measurements (n=24 individuals). Similarity between the two correlation matrices (in ​b            
and ​c​) is statistically significant (p-value<0.001, by permutation test, ​Methods ​). Histogram of the             
distribution of similarity scores (Jenrich’s test, ​43​) of correlation matrices in 10,000 random             
permutations of the cellular frequencies matrix (in ​Supplementary Fig. 5a​) independently per cell             
type. Red, similarity score of the true matrices in ​b and ​c​. (​e-f​) A network of cellular subsets reveals                   
coordinated variation across individuals in multiple cell types. Network of coordinated and            
anti-coordinated cell subsets (nodes). Edges between pairs of subsets with significantly correlated            
proportions across individuals (r>0.3, solid red line) or anti-correlated (r<-0.3, dashed blue line),             
based on snRNA-seq proportions (in ​e​, n=24) or CelMod proportions (in ​f​, n=640). Nodes are               
colored by the cell type and numbered as in ​Fig. 2a,b​. Comparison of the two networks in                 
Supplementary Fig. 5b,c. (​g​) Multi-cellular communities. Cellular community network (as in ​f​)            
colored by the assigned cellular community (n=640 individuals, by eigenvector community detection            
method ​28​, ​Methods ​). (​h-i​) ​Community-specific ligand and receptor pairs connecting microglia and            
astrocyte cells in opposing cellular communities. (​h ​) Scheme of differentially expressed ligand and             
receptor pairs putative signaling between astrocytes and microglia states from homeostatic ​community            
1 (Micr.1 and Astr.1, top) compared to those in non-homeostatic ​community 2 (Micr.2, Astr.2/Astr.3,              
bottom). (​i​) ​Selected examples of differential ligand and receptor pairs. Scaled mean average             
expression (color scale) across microglia and astrocyte states. Asterisk, marking cellular populations            
with a significant up-regulated expression compared between the cell subsets of the same cell              
type(multiple hypothesis correction p-value <0.001). ( ​j​) ​An increase in the community-specific           
ligand-receptor pairs in the non-homeostatic community 2 compared to the homeostatic community 1.             
Upregulated (red) or down regulated (blue) or non-differential (grey) ligand-receptor pairs (rows)            
within pairs of cell subsets (columns). 

29 
 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.22.424084doi: bioRxiv preprint 

https://paperpile.com/c/WiBjVD/XYBx
https://paperpile.com/c/WiBjVD/S2Ciw
https://doi.org/10.1101/2020.12.22.424084


 
 
Figure 7. Mapping the cellular environment of the healthy and AD brain. ​(​a-c)​. Cellular              
communities are linked to AD associated traits. Cellular communities network (as in ​Fig. 6f​), of               
coordinated and anti-coordinated cell subsets (nodes). Edges between pairs of subsets with            
significantly correlated proportions across individuals (n=640, r>0.3, solid red line) or anti-correlated            
(r<-0.3, dashed blue line). Nodes are colored by the cell type and numbered as in ​Fig. 2a,b                 
(non-significant subsets in grey). Cellular subsets associated (multivariable linear regression,          
FDR<0.05) with AD traits (dotted outline: positive, blue; negative, red) for: cognitive decline (​a​),              
tangles load (​b ​), and β-amyloid load (​c​). Other traits in ​Supplementary Fig. 6a,b ​. (​d​) Tau pathology                
load is predicted to be upstream of changes in proportion of Inh.5 subset or Olig.3 topic. Mendelian                 
randomization analysis using APOE-ε4 as an intermediate variable, Tau pathology as the exposure,             
and each cell subset proportion (Inh.5 or Olig.3) as the outcome. TSLS= two-stage least squares.               
CI=confidence interval. Arrow, the predicted optimal model ( ​e) Mediation analysis shows variation in             
proportions of Inh.5 and Olig.3 partially mediates the association between tau pathology and cognitive              
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decline. Top: Scheme of mediation analysis results, with tau pathology the continuous independent             
variable, each cell subset proportion (Inh.5 or Olig.3) the mediator, and cognitive decline the              
continuous outcome (​Methods ​). Bottom: Non-parametric bootstrap was done with 10,000          
simulations. (​f​) A scheme of our proposed model of multi-cellular communities of the aging DLPFC               
brain region and their associations with AD traits. Cellular networks (as in ​a​), nodes colored by the                 
community assignments. The significantly enriched associations to AD-traits (hypergeometric         
p-value) are marked next to the graph. 
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Methods 

Experimental design 

Data were derived from subjects enrolled in two clinical-pathologic cohort studies of aging             

and dementia, the Religious Orders Study (ROS) or the Rush Memory and Aging Project              

(MAP), collectively referred to as ROSMAP. All participants are not diagnosed with            

dementia at enrolment, have annual clinical evaluations and agree in advance for brain             

donation at death. At death, the brains undergo a quantitative neuropathologic assessment,            

and the rate of cognitive decline is calculated from longitudinal cognitive measures that             

include up to 20 yearly evaluations ​9–11​. For this study, we used data from 24 individuals (12                 

males and 12 females) chosen to represent the range of pathologic and clinical diagnoses of               

AD dementia (at the time of death), divided to four groups (​Supplementary Table 1 ​) ​: ( ​1) a                

reference group of cognitively non-impaired individuals (cAD =1 in ROSMAP) with minimal            

AD pathology (pathoAD =0 in ROSMAP), (2) a ​resilient group of cognitively non-impaired             

individuals (cAD=1) with a pathologic diagnosis of AD(pathoAD=1), (3) an ​AD group who             

fulfill diagnoses for both clinical AD dementia and pathologic AD(cAD=4 and pathoAD=1),            

and (4) a ​clinical-AD group of individuals diagnosed with clinical AD dementia but showed              

only minimal AD pathology upon post-mortem characterization (cAD=4 and pathoAD=0).          

We excluded samples that had RIN>5 and with post-mortem interval (PMI) < 4, and included               

only samples that had bulk RNA-sequencing in a previous study ​1 as well as whole genome                

sequencing data ​9–11​.  

 

Experimental design: AD traits in the ROS/MAP cohorts. 

The pathologies were collected as part of the ROS/MAP cohorts (previously described in             

details ​44–47​). We used the following traits in the poise of samples and in the association                

analysis: ​Cognitive Decline. ​Uniform structured clinical evaluations, including a         

comprehensive cognitive assessment, are administered annually to the ROS and MAP           

participants. The ROS and MAP methods of assessing cognition have been extensively            

summarized in previous publications ​11,45,48–50​. Scores from 17 cognitive performance tests           

common in both studies were used to obtain a summary measure for global cognition as well                

as measures for five cognitive domains of episodic memory, visuospatial ability, perceptual            

speed, semantic memory, and working memory. The ​summary measure for global           
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cognition ​is calculated by averaging the standardized scores of the 17 tests, and the summary               

measure for each domain is calculated similarly by averaging the standardized scores of the              

tests specific to that domain. To obtain a measurement of cognitive decline, the annual global               

cognitive scores are modeled longitudinally with a mixed effects model, adjusting for age,             

sex and education, providing person specific random slopes of decline (which we refer to as               

cognitive decline​). The random slope of each subject captures the individual rate of cognitive              

decline after adjusting for age, sex, and education. Further details of the statistical             

methodology have been previously described ​51​. Clinical diagnosis of AD at the time of              

death. ​Annual clinical diagnosis of AD dementia follows the recommendation of the joint             

working group of the National Institute of Neurological and Communicative Disorders and            

Stroke and the AD and Related Disorders Association ​52​. The diagnosis requires a history of               

cognitive decline and evidence of impairment in memory and at least one other cognitive              

domain. After a participant had died, a neurologist specializing in dementia reviews all             

available clinical information and provides a summary opinion with regards to the most likely              

clinical diagnosis at the time of death. The summary diagnosis was blinded to all              

neuropathologic data, and case conference are held for consensus as necessary ​53​. AD             

dementia includes persons with probable or possible AD dementia, i.e. AD dementia with or              

without comorbid conditions that may be affecting cognition. ​A pathologic diagnosis of AD             

was determined by a board-certified neuropathologist blinded to age and all clinical data and              

using modified Bielschowsky silver stained 6 micron sections of hippocampus, entorhinal           

cortex, midfrontal cortex, midtemporal cortex and inferior parietal cortex. The diagnosis           

follows the recommendation of the National Institute on Aging-Reagan criteria ​54​. Briefly,            

based on the scores of Braak stage for severity of neurofibrillary tangles and CERAD              

estimate for burden of neuritic plaques, a pathologic AD diagnosis requires an intermediate             

likelihood AD (i.e., at least Braak stage 3 or 4 and CERAD moderate plaques) or a high                 

likelihood AD (i.e., at least Braak stage 5 or 6 and CERAD frequent plaques). ​β-amyloid and                

tau pathology load. ​Quantification and estimation of the burden of parenchymal deposition            

of β-amyloid and the density of abnormally phosphorylated tau-positive neurofibrillary          

tangles levels present in the cortex at death (which we refer to as β-amyloid and tau                

pathology, respectively), tissue was dissected from eight regions of the brain: the            

hippocampus, entorhinal cortex, anterior cingulate cortex, midfrontal cortex, superior frontal          

cortex, inferior temporal cortex, angular gyrus, and calcarine cortex. 20µm sections from            

each region were stained with antibodies to the β-amyloid beta protein and the tau protein,               

and quantified with image analysis and stereology. 
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Nucleus isolation and single nucleus RNA library preparation  

Dorsolateral Prefrontal Cortex (DLFPC) tissue specimens were received frozen from the           

Rush Alzheimer’s Disease Center. We observed variability in the morphology of these tissue             

specimens with differing amounts of gray and white matter and presence of attached             

meninges. Working on ice throughout, we carefully dissected to remove white matter and             

meninges, when present. We expect this will help to reduce variability between tissue             

specimens. Working on ice throughout, about 50-100mg of gray matter tissue was transferred             

into the dounce homogenizer (Sigma Cat No: D8938) with 2mL of NP40 Lysis Buffer [0.1%               

NP40, 10mM Tris, 146mM NaCl, 1mM CaCl​2​, 21mM MgCl​2​, 40U/mL of RNAse inhibitor             

(Takara: 2313B )]. Tissue was gently dounced while on ice 25 times with Pestle A followed                

by 25 times with Pestle B, then transferred to a 15mL conical tube. 3mL of PBS + 0.01%                  

BSA (NEB B9000S) and 40U/mL of RNAse inhibitor were added for a final volume of 5mL                

and then immediately centrifuged with a swing bucket rotor at 500g for 5 mins at 4°C.                

Samples were processed 2 at a time, the supernatant was removed, and the pellets were set on                 

ice to rest while processing the remaining tissues to complete a batch of 8 samples. The                

nuclei pellets were then resuspended in 500ml of PBS + 0.01% BSA and 40U/mL of RNAse                

inhibitor. Nuclei were filtered through 20um pre-separation filters (Miltenyi: 130-101-812)          

and counted using the Nexcelom Cellometer Vision and a 2.5ug/ul DAPI stain at 1:1 dilution               

with cellometer cell counting chamber (Nexcelom CHT4-SD100-002). 20,000 nuclei in          

around 15-30ul volume were run on the ​10X Single Cell RNA-Seq Platform using the              

Chromium Single Cell 3’ Reagent Kits v2​. ​Libraries were made following the manufacturer’s             

protocol, briefly, single nuclei were partitioned into nanoliter scale Gel Bead-In-EMulsion           

(GEMs) in the Chromium controller instrument where cDNA share a common 10X barcode             

from the bead. Amplified cDNA is measured by Qubit HS DNA assay (Thermo Fisher              

Scientific: Q32851) and quality assessed by BioAnalyzer (Agilent: 5067-4626). This WTA           

(whole transcriptome amplified) material was diluted to <8ng/ml and processed through v2            

library construction, and resulting libraries were quantified again by Qubit and BioAnalzyer.            

Libraries from 4 channels were pooled and sequenced on 1 lane of Illumina HiSeqX by The                

Broad Institute’s Genomics Platform, for a target coverage of around 1 million reads per              

channel.  

Pre-processing of snRNA-seq data 
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De-multiplexing, alignment to the hg38 transcriptome and unique molecular identifier          

(UMI)-collapsing were performed using the Cellranger toolkit (version ​2.1.1, ch​emistry V2,           

10X Genomics, for chemistry Single Cell 3’), and run using cloud computing on the Terra               

platform (https://Terra.bio). Since nuclear RNA includes roughly equal proportions of          

intronic and exonic reads, we built and aligned reads to a genome reference with pre-mRNA               

annotations, which account for both exons and introns. For every nucleus, we quantified the              

number of genes for which at least one read was mapped, and then excluded all nuclei with                 

fewer than 400 det​ected genes. Genes that were detected in fewer than 10 nuclei were               

excluded. Expression values ​E​i​,​j for gene ​i in cell ​j were calculated by dividing UMI counts                

for gene ​i by the sum of the UMI counts in nucleus ​j​, to normalize for differences in                  

coverage, and then multiplying by 10,000 to create TPM-like values, and finally computing             

log​2​(TP10K + 1) (using the ​NormalizeData function from the ​Seurat​22 package version 3).           

Next, we selected variable genes (using the FindVariableFeatures function in Seurat, setting            

the selection method to ​vst​) and scaled the data matrix (using the ScaleData function from               

Seurat 3), yielding the relative expression of each variable gene by scaling and centering. The               

scaled data matrix was then used for dimensionality reduction and clustering. ​To rule out the               

possibility that the resulting clusters were driven by batch or other technical effects, we              

examined the distribution of samples within each cluster and the distribution of the number of               

genes detected across clusters (as a measure of nucleus quality). ​Additional filtration of             

low-quality cells and clusters was done following this initial clustering analysis, to remove             

low quality neuronal cells that could not be filtered out initially based on the number of genes                 

detected, due to the cellular heterogeneity of the tissue, that includes both high RNA content               

cells (such as neurons) and low RNA content cells (such as microglia cells).  

Dimensionality reduction and clustering  

We used the scaled expression matrix restricted to the variable genes for Principal             

Component Analysis (PCA), using ​RunPCA ​method in Seurat (a wrapper for the irlba             

function), computing the top 50 PCs. After PCA, significant principal components (PCs)            

were identified using the elbow method, plotting the distribution of standard deviation of             

each PC ( ​ElbowPlot in Seurat), choosing 25 PC ​s for analysis of all cell​s, 25 PCs for                

astrocytes, 16 for microglia, 11 for endothelial cells, and 20 PCS for oligod​endrocytes.             

Scores from only these top PCs were used as the input to downstream clustering or               

visualization. The scaled data was embedded in a two-dimensional space using Uniform            
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Manifold Approximation and Projection (UMAP) ​55​, based on the first significant PCs (as             

listed above). Clustering was performed using a graph-based approach: ​a ​k​-nearest neighbor            

( ​k​-NN) graph over the cells was calculated (using the FindNearestNeighbors function),           

followed by the Louvain community detection algorithm ​55,56​, ​which decomposes an input            

graph into communities ​to find ​transcriptionally similar clusters of cells (using the            

FindClusters function). The resolution of the clustering was selected using both cell-type            

markers and visualization of the UMAP embedding (using resolutions ranging betw​een 0.3 to             

0.6). ​For the full dataset across all cell types, ​cells were hierarchically clustered and clusters               

were re-ordered accordingly (using ​BuildClusterTree​method the ​Seurat ​package, given the          

same set of variable genes as input to the PCA analysis), providing the cluster ordering               

described throughout this study. In addition, we removed a group of nuclei that exhibits a               

neuronal signature that we suspected to be technically altered (expressed a low number of              

genes compared to other neurons, with missing expression of basic neuronal markers, and             

had a high signature of cytoplasmic specific genes). Cell population​s were manually matched             

to cell types based on the expression of known marker genes as previously done ​2,57​. 

Doublet cells removal 

For doublet detection and elimination, we clustered our data at high resolution, to generate              

multiple small clusters, and removed clusters enriched with suspected doublets. We used a             

combined approach of manual and automatic detection. First, we ran DoubletFinder ​58 to             

identify clusters of doublets and found small clusters that had over 70% of nuclei classified as                

doublets, which we then excluded from downstream analysis. We validated that these clusters             

are “doublet clusters” based on manual inspection of expression patterns of cell type marker              

genes, showing that they co-express markers of at least two different cell types.  

In downstream analysis of specific cell types, a second manual inspection for doublets was              

performed for expression patterns of cell type marker genes, excluding additional small            

clusters of doublet cells. Some of these suspected doublet cells might have been cells with               

high content of ambient RNA, and were removed conservatively. 

Sub-clustering analysis of glia, endothelial and neuronal cells 
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For each cell type that had sufficient number of cells: astrocytes, microglia, endothelial cells,              

GABAergic neurons and glutamatergic neurons, we performed sub-clustering analysis to          

reveal additional diversity of cell subtypes and cell states. To this end, the pipeline described               

for all cells was applied separately to each cell type, including: normalizing the count matrix,               

finding variable genes, scaling the normalized count matrix, dimensionality reduction by           

PCA, graph clustering and dimensionality reduction by UMAP for visualization in 2D. To             

determine the individuals that had predominant homeostatic astrocytes (Astr.1) or          

homeostatic microglia (Micro.1) cells, we set all indivi​duals that had ​more than 50% of              

Astr.1 or 40% of Micr.1​. For microglia and astrocytes, initial annotations of subsets were              

done by known marker genes ​2,3,5,7,8​. Microglia subsets were further annotated by comparison             

to a dataset of live microglial cells ​8 (see the section ​Comparing snRNA-Seq and scRNA-Seq               

of microglia​). ​Differentially expressed signatures were calculated using a negative binomial           

test and controlled false-discovery rates (FDRs) using the Benjamini–Hochberg procedure, to           

find genes that are upregulated within each cluster compared with the rest of the nuclei in the                 

dataset or between pairs of clusters, including genes with less than 1% FDR. Genes were               

required to be expressed in at least 10% of nuclei in the given cluster, and at least 0.3-fold                  

less in all other cells. The differential expression signatures were tested for enriched             

pathways and gene sets, using a hypergeometric test (function enrichment in the bc3net             

package in R), and corrected for multiple hypotheses by FDR. Results with FDR < 0.05             

were reported as significantly enriched pathways. Gene sets and pathways were taken from             

the MSigDB/GSEA resource (combining data from Hallmark pathways, KEGG, Reactome,          

Pathway Interaction Database (PID), Canonical Pathways and Gene Ontology (GO)          

biological processes) ​59​.  

Annotating neuronal subtypes, was first done by known marker genes ​12,57​, assigning neuronal             

cells to excitatory and inhibitory classes, to inhibitory subtypes and excitatory subtypes of             

pyramidal neurons. Next, an automatic annotation was performed by running a logistic            

regression classifier against a recent fully annotated cortical single nuclei RNA-seq dataset            

from the Allen Brain Atlas ​12​. Briefly, the classifier is based on a logistic regression model                

(linear_model.LogisticRegression from Python's sklearn package), which was modified to         

include a calculation of the classification probability for each cell against a dataset of              

reference pre-annotated cells. Annotations were done on the cluster level: each cell was             

associated to a cluster, and the annotation of the cluster was done based on the overall highest                 

scoring cell type across all cells. A regression model was learned based on the dataset from                
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the Allen Brain Atlas, and then applied to our neuronal data. The automatic annotations were               

validated by the expression of known marker genes. 

Topic modeling for oligodendrocyte cells 

We modeled the cell state diversity in oligodendrocyte cells by topic modelling ​13–16​, ​using              

Latent Dirichlet Allocation (LDA). Topic modeling was performed on the normalized and            

scaled data matrix. ​To assign topics and score cells for each topic, we used the CountClust                

package in R, which calculated the grade of membership for 4 topics (using the GoM               

function, which was run on the scaled expression matrix with tolerance 0.01). To find the               

optimal number of topics and tolerance levels, we ran a grid of parameters of topic numbers                

and tolerance levels, and visualized topic scores on the UMAP. The results were robust to the                

choice of parameters, yet we favored a small number of topics given the number of cells and                 

samples in our data. A higher number of topics often captured only cells of one individual                

and would require more individuals for reproducibility. To select the genes highly associated             

with each topic, ​we used the Kullback-Leibler divergence ​(KL), which measures the            

difference between two probability distributions, applied to the distribution of the topic            

weights and the distribution of gene expression level across cells (using the            

ExtractTopFeatures function with default parameters). 

Removal of ambient signatures  

Removal of ambient RNA signatures was performed prior to topic modeling, as            

oligodendrocyte cells had a large subset of cells with variable levels of ambient RNA which               

skewed the analysis. To this end, we identified a set of genes that constitute the ​ambient gene                 

signature​, defined as genes that appeared in empty droplets with the highest frequency. In              

more details, we identified the ambient RNA signature by selecting droplets (cells) that ha​d              

10 UMIs o​r less assigned to them (from the raw CellRanger output) which we considered to                

be empty droplets. We then selected the top 100 genes that had the overall highest number of                 

UMIs across all the empty droplets, and defined them as the ​Ambient RNA signature​. To               

address potential sample specific technical bias, we performed the analysis for each            

individual (sample), and united the ambient RNA signatures across individuals. Finally, we            
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excluded the ambient gene signature from the list of variable genes included in the analysis,               

and rescaled the data accordingly, and proceeded with the downstream analysis as described.  

Densities plots to visualize distribution of cellular populations and gene expression in            

2D embeddings 

For clear visualization of the distribution of cell populations or distribution of the expression              

levels of a gene, in dense 2D graphs of multiple cells, we used a Gaussian kernel approach to                  

plot and the density of cells and gene levels. We used this approach to plot groups of                 

individuals divided by AD-associated traits in ​Fig. 1 and Fig. 2, and the expression of marker                

genes in ​Fig. 3​. For discrete traits, we scored each cell by calculating the density of neighbors                 

sharing the same trait, calculating the Gaussian kernel adjacencies of the 2D UMAP             

embedding for all other cells (using the Gauss kernel from the ‘KLRS’ package in R, with                

sigma = 1.5). We filtered out cells with an adjacency measure > 0.0005. For ​the remaining                

cells, we calculate the proportion of cells assigned to individuals with the relevant phenotype,              

weighing them by their Gaussian distance to the cell. Finally, we normalize the obtained              

measure of the cell by the total distances to the remaining cells. In the continuous case, we                 

use a similar approach, considering all neighboring cells weighted by their individual            

expression level. 

Comparing snRNA-Seq and scRNA-Seq of microglia  

We mapped our microglia snRNA-Seq to our recent published dataset of scRNAseq of live              

microglia cells from fresh autopsy and surgically resected human brain tissue ​8​. Mapping was              

performed using Canonical Correlation Analysis in Seurat with standard parameters (3,000           

genes and 20 canonical components) to align the snRNA-Seq and scRNA-seq data. We then              

used a naive Bayes classifier trained on the scRNA-seq-derived live microglia clusters in             

canonical correlation component space. This classifier was used to predict the class            

membership of the CCA-transformed snRNA-Seq nuclei profiles, and each nucleus profile           

was assigned to the single-cell live microglia cluster with the maximum prediction value. 

Estimating major cell class and cell subset proportions from bulk data by CelMod  

We developed a regression-based consensus model to extend our snRNA-seq-derived cell           

class and subset estimates to bulk data, leveraging matched bulk and snRNA-seq data from              

the same 24 donors.  
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We train the regression model as follows: (​1 ​) Perform a linear regression on each gene               

separately for each cell cluster of interest, using its expression as the dependent variable and               

the proportion of that cluster in each snRNA-Seq sample in the training set as the               

independent variable; (​2 ​) For each gene, use the regression model to calculate the predicted              

proportion of each cell type, normalizing their sum to 1; (​3 ​) Rank genes by the 90 ​th percentile                 

of the absolute value of the error between predicted and training proportions, for each cell               

type; and (​4​) Select the number of top-ranked genes (constant for each cell cluster) to use for                 

deconvolving a new bulk RNA-Seq sample; this number of genes, the only tunable             

parameter, is selected based on cross-validation, as described below.  

To determine the optimal number of genes to use for the prediction, we use 5-fold               

cross-validation using 80% of the data for training and 20% as the validation set. The               

validation sets are mutually exclusive, such that after 5 runs, the proportions in every bulk               

sample have been “predicted” once. This cross-validation is run using 3 to 100 ranked genes               

(from step 3 above), and the optimal gene number is selected as that which minimizes the                

mean of the 90​th ​percentile errors for each cell group in all samples. This gene number is then                  

used for deconvolution predictions in the larger bulk RNA-seq data set, for a given set of cell                 

clusters. 

We run the algorithm iteratively, starting at the “top level”, with the broad cell classes               

(glutamatergic neurons, GABAergic neurons, astrocytes, oligodendrocytes, OPCs, microglia,        

endothelial cells, and pericyte), and then again for the subtypes within each of the cell               

classes. For the broad cell classes, the proportions are based on the total nuclei per sample.                

For the subtypes, the proportions are normalized to the total nuclei from the broad class of                

interest - for example, for astrocyte subsets, the proportions for the training (and thus the               

prediction) are normalized to the total number of astrocyte nuclei per sample. This allows us               

to directly model both the overall and subtype-level composition of the bulk tissue, especially              

for cell types that comprise a small fraction of the overall population (such as the endothelial                

or microglial subtypes). For the oligodendrocyte signatures, which are modeled as topics            

instead of discrete clusters, we sum the weights for each given signature over all nuclei from                

a given sample, and then normalize these sums so that they add up to 1 for a given sample.                   

This reflects a “proportion of topic weights” per sample, as opposed to a strict proportion that                

can be calculated for the discrete cell types. 
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The performance of this algorithm on the validation set (20% of the data, with 5-fold               

cross-validation) is shown i​n ​Fig. ​4c-d and Supplementary Fig. 4b,c​, for ea​ch level, and the               

validations using immunohistochemistry in ​Fig. 4e-f​. 

 

Cellular Communities 

To find co-occurring cellular populations across individuals, we generated a network of            

cellular communities, defined as a set of cell populations (cell types, subtypes, cell states or               

expression programs) that have coordinated variation of ​proportions across individuals (for           

topics we use the proportional weights instead of the subset proportion). ​We applied this              

approach to define cellular communities from our snRNA-seq dataset (​n=24 individuals) and            

from the CelMod estimated proportions (n=640 individuals), across 6 broad cell classes            

(astrocytes, microglia, endothelial cells, oligodendrocytes, inhibitory (GABaergic) and        

excitatory (glutamatergic) neurons) for which we had a defined sub-clustering (splitting each            

cell type to subsets capturing distinct cell subtypes or cell states), or defined topic models               

(splitting each cell type to distinct expression programs, without the need for a discrete              

assignment of cells to clusters). When applying this approach to the estimated cellular             

proportions by the CelMod algorithms in 640 individuals, we included the estimations for the              

oligodendrocyte cells, which allowed for a distribution of weights across the topics for each              

cell.  

To detect cellular communities we followed four steps: ​(1) Cellular proportions. ​Using the             

classification of cells to cell subsets (in the current analysis the subsets are cell subtypes for                

neurons, cell states for glial and endothelial cells, and topic models for oligodendrocytes), we              

calculated for each cell class and for each individual: the frequency of all subsets ​within each                

cells class (i.e. the proportion of cells within a subset out of the total number of nuclei in that                   

broad cell class ​or sum of all topic weights, for oligodendrocytes). Next, we appended the cell                

subset proportions across ​all cell classes into a ​combined frequency matrix​. Of note, for the               

640 individuals we used the estimated proportions by CelMod per subset. ​(2) Correlation             

matrix. We calculated the pairwise Spearman correlation coefficient over the frequency of            

each cell subset across individuals, created a pairwise correlation matrix and clustered it by              

hierarchical clustering (using the pheatmap function in R, based on the distance metric of              
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1-Pearson correlation). ​(3) Cellular network. We transformed the correlation matrix into a            

graph, where each cell subset is a node, and edges connected every two nodes if their                

absolute pairwise Spearman correlation value was at least 0.3. Each edge was assigned a              

positive or negative sign. The graph was laid out using the igraph package (in R), using the                 

function graph_from_data_frame, with positive edges only, and the negative edges were           

added for visualization (setting the parameter layout = layout_with_fr). We maintained a            

consistent common layout between the networks derived from 24 and 640 individuals, based             

on the output of graph_from_data_frame on CelMod data. ​(4) Cellular communities. ​We            

assigned cell populations to communities using the eigenvectors o​f the correlation matrix ​28             

(cluster_leading_eigen function in igraph, using only the edges with positive weights as input             

to the function). ​(5) Associating cellular communities to AD-traits. ​Each cellular subset            

was first associated to AD-traits by multivariable linear regression (see details in the section              

Statistical analysis to assign cell types, subtypes, cell states and topic models to AD related               

traits​). cellular subset-trait associations with FDR<0.05 were considered significant and          

assigned as positive (beta>0) or negative (beta<0) associations. For each cellular community            

we checked the overlap with cellular subsets significantly associated with the various AD             

traits (cognitive decline, amyloid load and tau pathology load). For cellular communities and             

traits with overlap of at least 3 subsets, a hypergeometric p-value was calculated, and we               

termed a cellular community to be ​enriched ​for a specific trait if the  p-value<0.05. 

Of note, since we used only 4 topics that are largely disjoint sets of cells for the                 

oligodendrocytes, a hard assignment for an oligodendrocyte to a specific topic (by the             

maximum weight, thus transforming the data to discrete clusters), did not substantially impact             

the results compared using the continuous topic weight. However, the framework proposed            

here applies more generally to any level of topic modeling or other soft assignment of cells to                 

continuous cell states.  

To compare the snRNA-Seq network (24 individuals) and the CelMod estimated cellular            

network (640 individuals, as in ​Supplementary Fig. 5b,c​) we did the following: First, we              

calculated the statistical significance of the similarity between the snRNA-Seq network and            

the CelMod network by an empirical p-value. B​riefly, we performed 10,000 random            

permutations of the combined frequency matrix over all cell subsets in the 640 individuals              

(estimated by CelMod), shuffling the values within each cell cluster, such that the frequency              

of cell subsets will sum to 1 for each cell class. We calculated a correlation matrix for every                  
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permutation, and a similarity score between the snRNA-seq correlation matrix and the            

permutation matrix using Jenrich's score ( ​43​, ortest.jennrich function in R). An empirical             

p-value (p<0.001) was assigned to the original CelMod estimated proportions, since the            

non-permutation matrix consistently got the lowest score compared to the permuted-matrix.           

Other similarity scores, such as the ​L ​2 and ​L ​1 norms yielded similar significant p-values,              

showing the result is robust to the choice of similarity score. Next, we compared the               

snRNA-seq and CelMod networks directly: for each pair of cell subsets (edges in the graph),               

we noted whether the edge is preserved, inverted its orientation (negative or positive             

correlation), specific to the CelMod network (​i.e. in the CelMod network absolute(r)>0.3 and             

in snRNA-Seq network absolute(r)<0.3) or specific to the snRNA-seq network (​i.e. in the             

CelMod network absolute(r)<0.3 and in snRNA-Seq network absolute(r)>0.3). Of note, in           

this comparison a Spearman correlation coefficient value higher than absolute(0.3) is           

considered (anti-)correlated, between -0.15 and 0.15 is considered uncorrelated (or neutral),           

and between absolute(0.15) and absolute(0.3) is softly correlated. To avoid the effects of             

harsh thresholds, when in one model the edge is correlated and in the other softly-correlated               

the edge was considered to be preserved. 

Statistical analysis to assign cell types, subtypes, cell states and topic models to AD              

related traits 

We analyzed five major pathological and cognition hallmarks of AD, collected as part of the               

ROS/MAP cohort, including: primary neuropathological and cognitive phenotypes. The two          

clinical traits were a clinical diagnosis of AD dementia proximate to death (clinical AD) and               

a continuous measure of cognitive decline over time quantified as a per-subject slope of the               

cognitive decline trajectory from a linear mixed-effects model ​51​. The three pathology            

variables include continuous measures of tau tangle pathology density and β-amyloid burden            

(both averaged over multiple regions) and a binary diagnosis of pathologic AD (as previously              

described ​60​). Details on the traits can be found in the section: ​Experimental design: AD traits                

in the ROS/MAP cohorts. 

To test the statistical associations between neuropathological phenotypes and cell types or            

cell subsets proportions, we performed multivariable linear regressions, modeling cellular          

proportions as the outcome, and neuropathology as the independent variable. In each            

analysis, we adjusted for age, sex, and RIN score as covariates to remove potential              

confounding, and corrected for multiple testing, by calculating the false discovery rate (FDR)             
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for each set of pathology analyses. The analysis was done for each of the five traits separately                 

(amyloid, tau, cognitive decline, pathologically determined Alzheimer’s disease, and post          

mortem clinical diagnosis of Alzheimer’s disease), across all cell types (astrocytes,           

oligodendrocytes, endothelial, inhibitory neurons (GABAergic), excitatory neurons       

(glutamatergic), microglia, pericyte, and oligodendrocyte progenitor cells (OPCs)), or across          

all ce​ll subsets (5 astrocytes, 4 endocyte, 7 GABAergic neurons, 9 glutamatergic neurons, 6              

microglia subsets, and 4 oligodendrocyte topics).  

Mediation analysis assigning causal relations to cell states, AD pathology and genetic            

drivers 

To assess the causal relationship between tau burden and inferred cell subtype proportions             

associated with cognitive decline, we performed Mendelian randomization analysis ​41 using           

APOE ε4 allele count (0, 1, or 2) as an instrumental variable. We focused on two cell                 

subtypes/signatures, ​Olig.3 and Inh.5, ​whose inferred proportions had the strongest          

associations with cognitive decline. We first tested whether these cell subtype/signature           

proportions were also associated with ​APOE ε4 allele count at p<0.05, adjusting for age at               

death, sex, RIN score, among participants with both ​APOE ε4 and PHFtau measurement             

(n=630). For these cell subtype/signature proportions, we examined whether association          

between ​APOE ε4 and the respective proportions were no longer significant when PHFtau             

was controlled in a liner model (adjusted for age at death, sex, and RIN score), to confirm                 

that PHFtau mediates ​APOE ε4 effect on cell subtype/signature proportions, and ​APOE ε4 is              

a valid instrumental variable. We also assessed whether cell subtype/signature proportions           

could explain the association between ​APOE ε4 and tau using linear regression models, to              

rule out an opposite direction of causal link. Finally, we used R package “ivmodel” to run                

instrumental variable analysis adjusting for age at death, sex, and RIN score, and reported              

results from two-stage least squares (TSLS) k-class estimator. We note that the limited             

information maximum likelihood (LIML) estimates were identical to TSLS estimates for the            

instrumental variable models we ran in this study. 

For cell subtype/signature proportions suggested to be downstream of PHFtau per the            

Mendelian randomization analysis, we examined whether the proportion values mediate the           

relationship between tau and cognitive dysfunction through mediation analysis using R           

package “mediation.”​41,61​. We set tau as an independent causal variable (“treatment”), each            
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inferred cell subtype/signature proportion as a continuous mediator, and cognitive decline           

(the random slope of longitudinal global cognition; already adjusted for age, sex, and             

education) as a continuous outcome. Mediated (indirect) effect, direct effect, and proportion            

mediated were estimated using non-parametric bootstrap method with 10,000 simulations,          

and all models included in the mediation analysis were adjusted for the RIN score.  

Immunohistochemistry  

Formalin-fixed ​post-mortem brain tissues were obtained from Rush University Medical          

Center. As part of these studies, all participants consent to brain donation at the time of death.                 

6μm sections of formalin-fixed paraffin-embedded (FFPE) tissue from the cortex frontal were            

stained with NEF (Sigma, N2912). Heated-induced epitope retrieval was performed using           

citrate (pH=6) using microwave (800W, 30% power setting) for 25 min. The sections were              

blocked with blocking medium (3% BSA) for 30 min at Room Temperature, then incubated              

with primary antibody anti-NEF prepared in 1% BSA for overnight at 4​o​C. Sections were              

washed three times with PBS and incubated with fluochrome conjugated secondary           

antibodies (Thermo Fisher) for one hour at RT. Anti-fading reagent with Dapi (P36931, Life              

technology) was used for coverslipping. For each subject, 30 images of cortical grey matter at               

magnification x20 (Zeiss Axio Observer.Z1 fluorescence microscope) were taken in a zigzag            

sequence along the cortical ribbon to ensure that all cortical layers are represented in the               

quantification in an unbiased manner. The acquired images were analyzed using CellProfiler            

and Cellprofiler Analyst developed by Broad Institute.  

We estimated the proportions of a broad cell class or signature (neurons, microglia and              

GFAP+ astrocytes) from the images as the fraction of nuclei stained with the marker of               

interest (NeuN, IBA1, or GFAP, respectively for neurons, microglia, and GFAP+ astrocytes)            

out of all nuclei stained by DAPI. 

Ligand-receptor analysis 

We searched for logan-receptor interactions linking subsets of microglia and astrocyte cells            

within two highly anti-correlated cellular communities: ​homeostatic community 1 and          

non-homeostatic community 2. Ligand and receptor interactions were assembled from          

published resources ​31,32​. ​1,379 out of the 2,164 known ligand-receptor pairs (LRPs) were             

measured in our dataset. ​Receptors or ligands ​were considered as expressed if they had              

average normalized counts ​≥ 1 in at least one of the relevant astrocytes and microglia subsets                
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(homeostatic Micr.1 and Astr.1, non-homeostatic Micr.2, Astr.2 and Astr.3). Next, we           

assigned each of the 1,379 expressed LRPs with all 16 possible pairs of cell subsets (four per                 

ligand and four per receptor), resulting ​in 22,064 possible LRP tuples, where each tuple is               

composed of the LRP, the cell subset expressing the ligand and the cell subset expressing the                

receptor​. We denoted LRP tuples where both the ligand and the receptor were expressed in               

their respective ​cell subsets as ​potential ​LRP tuples, resulting in 452 potential tuples (2.05%              

of all possible LRP tuples). We scored each potential LRP tuple by the ​combined ​expression               

of the ligand and the receptor, which was calculated by multiplying their average normalized              

counts in the corresponding populations​. Next, w ​e ​compared ​the distributions of the            

combined expression scores of potential LRP tuples and all possible LRP tuples. When             

scoring all possible LRPs by the ​combined ​expression of the ligand and the receptor in their                

associated community, the 452 expressed LRPs ​ranked at 93.9 percentile or higher​. ​To             

estimate if the distribution of the number of potential LRP tuples across the cell pairs was                

significantly different than expected by chance we used the Chi Square test.  

To identify potential LRP tuples that were ​differentially expressed ​between homeostatic and            

non-homeostatic cellular communities, we applied differential expression analysis to all          

ligands and receptors ​in ​the 452 potential LRP tuples, ​considering within each community             

putative signaling from microglia to astrocytes, astrocytes to microglia, and auto-signaling​.           

We used the ​FindMarkers function in Seurat V3.2 R package, with a minimum percentage of               

expressing cells (​min.pct​) and ln(Fold-Change) (​logfc.threshold​) parameters set to 10% and           

0.1, respectively. The p-values associated with the differential expression values were           

adjusted for multiple hypothesis testing by using Bonferroni correction. Only ligands and            

receptors with adjusted p-value < 0.001 were further considered. LRPs that were both             

differentially expressed, but in opposite directions (i.e. one upregulated and the other down             

regulated within the same community) were excluded from the downstream analysis. The            

differential expression score of each LRP tuple was set to the sum of ln(Fold-Change) of the                

ligand and the receptor. LRP tuples with an absolute differential expression score ≥ 0.5 were               

considered as differentially expressed, which we denote as ​community-specific LRP​. ​To test            

the distribution of the number of LRPs ​across all the different pairs of cell subsets,               

within-community and between-community, we used the ​Chi Square test. ​LRP expression           

data for each pair of populations, ​differential values ​for each pair of populations are available               

at ​Supplementary Table 6​. 

DATA AND SOFTWARE AVAILABILITY 
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Raw and processed snRNA-seq data is deposited in the SYNAPSE database 
( ​https://www.synapse.org​). Other ROSMAP data can be requested at the RADC Resource 
Sharing Hub at ​https://www.radc.rush.edu​. Processed data, CelMod model for deconvolution 
and code will be available at the time of publication in the Single Cell Portal 
( ​https://singlecell.broadinstitute.org/single_cell​) and in the GitHub. 
 

SUPPLEMENTAL TABLES 

Supplementary Table 1 - ​Samples details and phenotypes.  
Supplementary Table 2 - ​Cell annotations clustering and projids 
Supplementary Table 3 - ​Oligodendrocytes topic modeling associated genes. 
Supplementary Table 4 - ​CelMod estimated cellular proportions for 640 individuals 
Supplementary Table 5 - ​AD-traits associations to cell types and cell subsets proportions 
Supplementary Table 6 - ​Ligand-Receptor analysis 
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