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Simple Summary: Visual identification of cattle in a realistic farming environment is helpful for
real-time cattle monitoring. Based on continuous cattle detection, identification, and behavior
recognition, it is possible to utilize cameras on farms within company or government networks to
provide the services of production supervision, early disease detection, and animal science research
for precision livestock farming. However, cattle identification in the wild is still a difficult problem
due to the high similarities of different identities and the variances of the same identity as posture or
perspective changes. Our proposed method based on deep convolutional neural networks and deep
metric learning provides a promising approach for cattle identification and paves the way toward
continuous monitoring of cattle in a nearly natural state.

Abstract: Visual identification of cattle in the wild provides an essential way for real-time cattle
monitoring applicable to precision livestock farming. Chinese Simmental exhibit a yellow or brown
coat with individually characteristic white stripes or spots, which makes a biometric identifier for
identification possible. This work employed the observable biometric characteristics to perform
cattle identification with an image from any viewpoint. We propose multi-center agent loss to
jointly supervise the learning of DCNNs by SoftMax with multiple centers and the agent triplet. We
reformulated SoftMax with multiple centers to reduce intra-class variance by offering more centers
for feature clustering. Then, we utilized the agent triplet, which consisted of the features and the
agents, to enforce separation among different classes. As there are no datasets for the identification of
cattle with multi-view images, we created CNSID100, consisting of 11,635 images from 100 Chinese
Simmental identities. Our proposed loss was comprehensively compared with several well-known
losses on CNSID100 and OpenCows2020 and analyzed in an engineering application in the farming
environment. It was encouraging to find that our approach outperformed the state-of-the-art models
on the datasets above. The engineering application demonstrated that our pipeline with detection
and recognition is promising for continuous cattle identification in real livestock farming scenarios.

Keywords: cattle identification; deep convolutional neural networks (DCNNs); deep metric learning
(DML); open-set recognition; precision livestock farming

1. Introduction

Chinese Simmental, native to Switzerland, are the cattle mainly farmed in China
due to their comprehensive performance in milk and meat production [1]. Continuous
visual cattle identification in real farming environments provides an essential stage for
registration, identification, and verification for real-time cattle monitoring applicable to
precision livestock farming and animal science research, such as automated production
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monitoring, behavioral and physiological observation, health and welfare supervision, and
more [2,3]. Owing to its significance, cattle identification is becoming an emerging research
field of computer vision in agriculture. On account of its uniqueness, immutability, and
low costs, the visual biometric identification methodology has been a promising research
trend in intelligent perception for precision farming [2]. Observable biometric identifiers
for cattle, including the muzzle [4–6], iris image [7,8], retina vascular patterns [9], and
coat pattens [10–15], promote cattle identification technology from the semi-automated to
automated stage. There are mainly two drawbacks recently in using biometric characteris-
tics. The difficulties of obtaining the cattle muzzle, iris, or retina make it hard to achieve
automated and continuous identification. Moreover, the inability to see the activities from
a fixed view affects a series of applications that require images of multiple viewpoints, such
as behavior monitoring, physiological analysis, and so on. Chinese Simmental exhibit a
yellow or brown coat with intrinsic white stripes or spots on the head, body, limbs, and tails,
which is visually akin to those generated from Turing’s reaction–diffusion systems. This
coat pattern makes it possible to identify cattle individuals from any viewpoint. Compared
with the current use of biometric features, this work utilized the coat patten of Chinese
Simmental as a biometric identifier in order to perform automated visual cattle identifica-
tion with an image from any viewpoint, paving the way toward continuous monitoring of
cattle in a nearly natural state.

In recent years, Deep Convolutional Neural Networks (DCNNs) have achieved great
success in the face recognition field and have surpassed human’s abilities on several bench-
marks due to progressive network architectures and discriminative learning methods. Deep
Metric Learning (DML) aims to learn the semantic embeddings by Deep Convolutional
Neural Networks (DCNNs), where similar instances are closer than different ones on a
manifold, and has boosted face recognition performance to an unprecedented level. In the
field of visual cattle identification, DML has also been promoted and has achieved state-of-
the-art performances [12,13]. The most common pipeline for visual cattle identification or
face recognition under an open-set protocol involves feature extraction and classification.
As shown in Figure 1, in the feature extraction stage, it is crucial to design efficient loss
functions that strengthen the learning ability to obtain discriminative features in training
and make it possible to obtain high performance even when the test individuals are not
seen in the training stage. After training, the k-NN with normalized embeddings is the
most commonly used classifier for identification in the testing stage.

Training Set

Training Stage

Testing Stage

DCNNs

ft

DCNNs

k-NN ID

Feature 

Extractor

xt Classification

...

Features

Feature 

Distribution

Metric Learning

Feature 

Extractor ...

Features(Identities do not appear in training set)
Testing Set

Figure 1. Pipeline of the cattle identification model training and testing under the open-set identifica-
tion protocol. In the training stage, the deep metric learning methodology is utilized to supervise the
learning process to extract separable and discriminative features. In the testing stage, the feature is
extracted using DCNNs and classified by the k-NN classifier.



Animals 2022, 12, 459 3 of 19

The early forms of DML focused on optimizing pairwise [16] or triplet constraints [17–19].
Triplet loss [19], the typical DML approach, has led to state-of-the-art face recognition
results by directly adding a margin among embeddings from different identities. However,
there exists an obvious problem that the number of all possible pairs and triplets goes up to
O(n2) and O(n3), where n is the number of training samples. Both contrastive and triplet
constraints empirically encounter sampling difficulties in selecting informative pairs or
triplets efficiently, and thus, it is difficult to learn global optimal embeddings even with a
hard or semi-hard negative mining strategy. Proxy-NCA in [20] learned proxy points to
construct triplets in a latent space, and it was proposed to optimize the loss with a small
number of triplets, which consisted of an anchor and the similar and dissimilar proxies.
However, it is very complex and inconvenient to learn proxies for triplets in the new space.
Once the feature and weight vectors in the last fully connected layer are normalized to lie
on a hypersphere in the SoftMax loss, the weight vector acts as a center for the features of
the same class. By observing it, normalized-SoftMax-based constraints utilize this property
to increase the cosine similarity among the embeddings of the same class and enforce
separation among the embeddings of different classes by adding/multiplying a margin in
SoftMax. A series of normalized SoftMax losses, including NormFace [21], CosFace [22],
SphereFace [23], ArcFace [24], NPT loss [25], etc., has been proposed and continuously
promoted performance in face recognition. In the form of normalized SoftMax loss, there is
only one single center for a class; however, one naturally standing individual of Chinese
Simmental has several feature clusters with the change of perspective or posture, as shown
in Figure 2. Thus, a single center suffers from a lack of representing ability to obtain the
diversity of information in real-world data. Softtriple loss in [26] sets multiple centers for
each class to capture local clusters and has achieved State-Of-The-Art (SOTA) performance
on fine-grained benchmarks. Besides clustering feature points of the same class, it is crucial
to obtain sufficient separation embeddings of different individuals that are unseen in the
training set for open-set identification tasks. Thus, separated centers for each class are
especially essential for proxy-based constraints.

210265887

210335867

210379137

210435859

210487299

211749155

Figure 2. CNSID100 dataset examples. The CNSID100 dataset contains images of Chinese Simmental
from multiple views, such as front, back, left, and right perspectives, on standing postures in the
real farming environment for cattle identification. It contains 11,635 images of 100 identities, about
100 images with at least 3 main views per identity. Samples of several individuals in the CNSID100
dataset are given, and the most notable is the variance of imagery perspective, standing postures,
and illumination conditions. The numbers on the right are the ID codes of the cattle. Best viewed
in color.
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In this paper, we propose multi-center agent loss, including SoftMax with multiple
centers and the K-nearest negative agent triplet (K-NNAT), by which we jointly supervise
the training stage. SoftMax with multiple centers aims at reducing intra-class distance
by more local centers for the embeddings to cluster. Moreover, K-NNAT, consisting of an
embedding and its positive and K-nearest negative agents, directly enforces separation
among different classes’ agents.

Our multi-center agent loss achieved state-of-the-art performance on the Chinese
Simmental Identification dataset (CNSID100) and OpenCow2020 dataset [13] without extra
mining stages. Furthermore, the engineering application significance of the proposed
approach is discussed on a real-world livestock farming environment and provides a
foundation for our next application research. More specifically, the contributions of this
work are as follows:

(1) SoftMax loss with multi-center agents is introduced to learn the agent point for
each individual to capture more local clusters of the data, and more centers for each class
are helpful to reduce the intra-class variance;

(2) Multi-center agent loss consists of SoftMax with multiple centers, and K-NNAT
loss is proposed to jointly supervise the model to learn more intra-class centers for
feature clustering and to simultaneously guarantee a separation among the agents of
different classes;

(3) Due to the lack of suitable datasets for the identification of cattle in a nearly
natural state, the CNSID100 dataset with multi-view images was created to facilitate the
experiments. It will be made available publicly after the paper is accepted to support more
applications of cattle identification/re-identification and verification tasks in precision
livestock farming.

The rest of the paper is organized as follows: The CNSID100 dataset is introduced
in Section 3; multi-center agent loss is proposed in Section 4; the experiment details and
results are provided in Section 5; finally, the conclusions and future work are given in
Section 7.

2. Related Work
2.1. Visual Biometrics for Cattle Identification

Visual biometrics assign a unique identity to individual cattle according to some
observable physiological characteristics [2]. With the development of computer vision
technology, the identification of cattle based on visual biometric features has been one of
the current and future research frontiers of computer vision in agriculture [6]. Recently,
muzzle [4–6], iris [7,8], retina vascular pattern [9], and coat patten, including Holstein
Friesian dorsal [10–13], tailhead [14], and profile images [15], have been used to perform
visual cattle identification.

Cattle muzzle, a unique and permanent trait of individual cattle, has been studied as
a biometric identifier for decades, from artificial features [4,5] to, recently, deep learning
embeddings [6], and has pushed forward the cattle identification methodology. However,
it is obvious that a muzzle image, as well as the iris and retinal vascular pattern, suffer
from image capturing difficulty, especially for auto identification applications.

Comparing the above modalities, the coat pattern can be more easily obtained and
thus has been utilized as a visible biometric characteristic for cattle identification recently.
In [15], profile images from one side of a cow have been applied for visual identification,
but single-view images are extremely limited with respect to the practicality of continuous
cattle monitoring. W. Li et al. introduced the low-order Zernike moment features of cow
tailhead images from a top-view camera with quadratic discriminant analysis and utilized
SVM algorithms to classify the cows [14]. William Andrew et al. proposed a series of studies
focusing on extracting features from full dorsal images of Holstein Friesian cattle captured
by a UAV or a top-down camera, as in [14]. The works go through from exploiting manually
delineated features to extracting deep learning features. More recently, Andrew et al.
proposed the use of SoftMax-based reciprocal triplet loss to supervise the DCNN model
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learning stage and achieved promising performance for cattle identification [13]. This gives
a typical standard DML approach for cattle identification under the open-set protocol.

However, to sum up the recently used visual biometric identifiers, the inconvenience of
capturing muzzle, retinal, or retina vascular pattern images and the incomplete perspective
of coat images from a fixed view indeed affect the continuous and automated applications
such as behavior monitoring, so identification from any viewpoint of individual cattle in a
natural state is needed.

2.2. Deep Metric Learning

Deep Metric Learning (DML) aims at mapping the raw data into the feature space
such that the distance among embeddings of the same class is less than that of dissimilar
identities with well-designed DCNN models and an appropriate loss function. The key
ingredient is the design of efficient loss functions to learn better semantic embedding
structures that keep the compactness of the same class features and guarantee separation
among dissimilar individuals.

Contrastive [16] and triplet [19] constraints are typical approaches to directly obtain
embeddings meeting the needs of DML, and triplet loss has become the most commonly
used approach for face recognition, cattle identification, and other open-set recognition
tasks. However, the extremely large set of the possible combinations of samples makes it
hard to mine informative pairs or triplets to train efficiently.

In order to reduce the number of possible triplets, Proxy-NCA, as an early form of
proxy triplet loss, was proposed to learn the proxies in the latent space to approximate
the origin data points and construct triplets with an anchor and its positive and negative
proxies in [20]. Once the feature and weight in the last fully connected layer are normalized,
the SoftMax loss is used to maximize the cosine similarity between the feature and the
weight. Therefore, the normalized weight vectors can be used as a representation of the
class centers, and a series of normalized-SoftMax-based losses, other forms of the proxy
methodology, utilize this property to achieve promising performances in face recognition
tasks, including NormFace [21], SphereFace [23], CosFace [22], and ArcFace [24]. By the
most extensive evaluation on over 10 face recognition benchmarks, additive angular margin
loss (ArcFace), adding an angular margin penalty to the angle between the feature and
its corresponding weight vector to calculate the logits in SoftMax, has become the current
benchmark method in face recognition tasks [24]. Nearest-neighbors Proxy Triplet loss
(NPT loss) in [25] explicitly creates a margin between an anchor and its nearest-neighbor
negative weight vectors and ensures separation among different classes.

However, in all the above proxy approaches for face recognition tasks, there is only
a single center for each class, not satisfying the real-world data that have multiple local
clusters, especially as the samples in our CNSID100 dataset. Softtriple loss introduced
multiple centers for each class to obtain the hidden clustered information of the data, and
by reducing the intra-class variance, it obtained SOTA performance in fine-grained dataset
benchmarks. Inspired by Softtriple and NPT loss, this work proposes multi-center agent
loss, a joint supervision, to simultaneously reduce the intra-class variance by capturing
inner clustered information with multiple centers for each class and keep an explicit
separation among centers of different classes without any extra sampling stage.

3. Materials: CNSID100 Dataset

With the development of cattle identification using visual biometric identifiers, visual
cattle identification or validation datasets, including muzzle, iris, and coat pattern images,
have been produced. The list of datasets is shown in Table 1.

As is shown in Table 1, there is no applicable dataset for the identification of cattle
with multi-view images. To facilitate the experiments carried out in this paper, we created
the CNSID100 dataset, the first with multi-view images of Chinese Simmental in a natural
standing state, which is much closer to the real farming environment. There are in total
11,635 images, from a population of 100 individuals, an average of above 100 images with
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at least 3 views per class, including front, back, left, or right. The images in the CNSID100
dataset were identified manually, and indeed, it was a time-consuming work. However,
we can perform this work independently without the help of the livestock managers due
to the cattle’s coat pattern. Images from some of the individuals are shown in Figure 2.

Table 1. Datasets for visual cattle identification.

Author Year Identities Images/Videos Details

Allen et al. [9] 2008 869 1738 Retina
Lu et al. [8] 2014 6 60 Iris
Santosh Kumar et al. [4] 2017 500 5000 Muzzle
Wenyong Li [14] 2017 22 1965 Tailhead images
William Andrew et al. [13] 2021 46 4376 Dorsal images
Our dataset 2021 100 11,635 Multi-view images

As is shown in Figure 3, our dataset is much closer to the natural environment and
demonstrates two main challenges in cattle identification: (1) Compared with other cattle
identification or face recognition datasets, the CNSID100 dataset demonstrates a large
intra-class variance with the change of views, standing postures, and illumination condi-
tions, but very high similarity from the same-perspective images of different individuals.
(2) There are several local characteristic clusters in the samples of the same identity with
changes of views and standing postures, being another challenge for feature extraction in
the identification task.

intra-class 

variation

intra-class 

variation

inter-class 

similarity

ID:210405870

ID:210265887

local 

cluster

Figure 3. Challenges for cattle identification on the CNSID100 dataset. Samples of two typical
individuals in the CNSID100 dataset are given. It is observable that the large intra-class distance,
inter-class similarity, and the existence of multiple local clusters present challenges for unique identity
feature extraction for Chinese Simmental identification. Best viewed in color.
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4. Methods: Our Proposed Multi-Center Agent Loss

In real-world data, especially in our CNSID100 dataset, it is obvious that the large
intra-class distance and small inter-class distance, as well as the existence of multiple intra-
class local clusters present challenges for unique feature extraction for the identification
task. Therefore, we propose multi-center agent loss to learn separable discriminative
features by jointly supervising using multi-center SoftMax and agent triplet loss. The
details are shown in Figure 4.

xi

fi

DCNNs

Features
Centers for yi

LSoftMax-Ag

Ltriplet-KNA

LabelScore

SoftMax

Wyi
c

[Wyi
0,   ... , Wyi

C ]

Ayi

Centers for j

Aj

agents

Triplet [ fi, Ayi , Ayi
k
 ]

LMCA

Figure 4. Procedures of multi-center agent loss. Multi-center agent loss includes SoftMax with
multiple centers and K-NNAT loss. SoftMax with multiple centers uses the logit score of the agent to
calculate the cross-entropy loss and learns the agent for each class. K-NNAT consists of the feature
and its corresponding/positive agent and the K-nearest negative agents as hard negatives. Then,
the model is jointly supervised by multi-center agent loss to learn more center points for features to
concentrate on and meanwhile enforces separation among agents of different classes. Best viewed
in color.

4.1. SoftMax with the Multi-Center Agent

It is assumed that each class has C centers, and as is in [26], the similarity between the
feature fi of sample i and the agent of multiple centers for class yi is defined as,

si,yi = max
c=1,...,C

f T
i Wc

yi
, (1)

where Wc
yi

is the c-th weight of the multi-center [W0
yi

, . . . ,WC
yi

] for class yi.
The maximized problem in Equation (1) is considered as:

max
p∈P ∑

c
pc f T

i Wc
yi
+ γR(p), (2)

where p ∈ RC is a distribution over the class andP is a set asP =

{
p|∑

c
pc = 1, ∀c, pc ≥ 0

}
.

R(p) is the entropy regularization of distribution p.
According to the K.K.T. condition [27] and the analysis in [26], p in Equation (2) has

the closed form as:

pc =
exp( 1

τ f T
i Wc

yi
)

∑C exp( 1
γ f T

i Wc
yi
)

. (3)

Then, Ayi , the agent of multiple centers for class yi, is defined as:

Ayi = ∑C pcWc
yi

. (4)

This means that given a feature fi of class yi, agent Ayi provides several local centers
for fi to concentrate, rather than only one center for clustering. Thus, it is very helpful to
reduce the intra-class variance.

In order to decrease the number of centers per class while keeping their diversity, we
introduced the regularization from [26] to obtain a more sparse center matrix.
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For each center Wt
i for class j, we can make a similarity matrix as:

S t
j =

[
W1

j −Wt
j , . . . , WK

j −Wt
j

]T
(5)

We used the Euclidean distance to measure the similarity of two centers as
∥∥∥Ws

j −Wt
j

∥∥∥
2

and the L1-norm for S t
j to obtain a sparser center matrix for the efficient representation of

local clusters. By adding the L2,1-norm, the regularization of the multiple centers of class j
is as:

R(W1
j , . . . , WC

j ) =
C

∑
t

∥∥∥S t
j

∥∥∥
2,1

(6)

By applying the multi-center agent and regularization, SoftMax with the multi-center
agent is defined as:

`So f tMaxAg = − log
exp(λ f̂ T

i Ayi )

∑
yi∈Y

exp(λ f̂ T
i Ayi )

+ τ
∑Y

j R(W1
j , . . . , WC

j )

YC(C− 1)
, (7)

where Y is the number of classes, C is the number of centers per class, τ is the scale of
regularization, and λ (

√
λ exactly) represents the radius of the hypersphere that the feature

and weights are normalized to due to the problem introduced in NormFace [21], that is
the existence of large gradients to the well-classified examples caused by normalization
to the hypersphere with radius 1. It is noted that in the following, we use f to denote the
normalized feature for simplicity.

The normalized SoftMax loss maximizes the cosine similarity between the feature
point and its corresponding weight vector in the last fully connected layer. As was analyzed
in [26], the target of our normalized SoftMax with multiple centers is:

∀i, j, f T
i Ayi ≥ f T

i Ayj . (8)

Although the SoftMax loss is designed for classification, after normalization, it is
available for distance learning to constrain the cosine similarity between the feature and
the positive and negative multi-center agents.

4.2. K-NNAT Loss

With the formulation of multi-center agent for each class, we introduce the triplet loss
with K-nearest-neighbor negative agents firstly.

Definition 1. Let A = {A1, . . . , AY}, be the set of agents for Y identities. Let fi be an anchor
feature of sample i. A(i)

NN =
{

A(i)
1 , A(i)

2 , . . . , A(i)
K

}
is defined as the K-nearest negative agent set of

sample i belonging to class yi and satisfying d
(

fi, A(i)
1

)
≤ d

(
fi, A(i)

2

)
≤ · · · ≤ d

(
fi, A(i)

K

)
, for

K 6= yi,A
(i)
NN ⊂ A.

Then, the triplet with multi-center agent loss is given as:

∑
Ak∈A(i)

NN

max
{

0, d( fi, Ayi )− d( fi, Ak) + ∆
}

(9)

where ∆ is the margin of the distance between an anchor and its positive agent and that
between the anchor and any of its top-K-nearest negative agent. In Equation (9), only the
top-K-nearest negative agents are used to perform the negative mining strategy without
any other extra sampling manipulation.
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If fi and Ak are normalized to 1, we obtain:

d( fi, Ayi )− d( fi, Aj) =
∥∥ fi − Ayi

∥∥2
2 −

∥∥ fi − Aj
∥∥2

2 = 2( f T
i Aj − f T

i Ayi ) (10)

then we can reformulate our agents’ triplet loss with the cosine similarity, shown as:

`Triplet−KNA = ∑
Ak∈A(i)

NN

max
{

0, f T
i Ak − f T

i Ayi + ∆
}

(11)

4.3. Multi-Center Agent Loss

Based on the above analysis, we propose the multi-center agent loss as:

`MCA = `So f tMaxAg + β ∗ `Triplet−KNA, (12)

where β controls the learning rate of the triplet with multi-center agents. In our loss
function, SoftMax with multiple centers supervises the model to learn the embedding
clustering around the agent point of the corresponding class. The agent triplet loss plays
the role of an implicit hard negative mining strategy because the hard negative samples
are compacted to the agents with the constraints of the SoftMax part.

The properties of our proposed loss are as follows:

Theorem 1. If `MCA < δ for fi, then f T
i Ayi − f T

i Aj > ∆− δ for all j = 1, 2, . . . , Y, j 6= yi.

Proof of Theorem 1. If `MCA < δ, then explicitly, `Triplet−KNA. Based on the definition of

A(i)
NN =

{
A(i)

1 , A(i)
2 , . . . , A(i)

K

}
, it is explicit that f T

i Ayi − f T
i Aj > f T

i Ayi − f T
i A1 > · · · >

f T
i Ayi − f T

i AK > ∆− δ.

Theorem 2. If `MCA < δ for fi, then d(Aj, Ayi ) ≥ 2(∆− δ) for all j = 1, 2, . . . , Y, j 6= yi.

Proof of Theorem 2. If `MCA < δ, then according to Equation (10), it has d( fi, Aj) −
d( fi, Ayi ) ≥ 2(∆ − δ). Thus, we can easily obtain d(Aj, Ayi ) ≥ d( fi, Aj) − d( fi, Ayi ) ≥
2(∆− δ) based on the triangle principle.

Properties 1 and 2 show that our proposed loss not only guarantees the separation
among the feature points and the negative agents, but also enforces a larger distance
between the positive agent and its negative ones.

Theorem 3. Given fi1, fi2 from sample i with the same nearest negative agent A(yi)
k and f j from

sample j, with the results in Property 1 that f T
i Ayi − f T

i Aj > ∆− δ, if ∀i,
∥∥xi − Ayi

∥∥ ≤ θ, then
we have:

fi1
T fi2 − fi1

T f j= ≥ ∆− δ− 2θ (13)

Proof of Theorem 3.

≥ fi1
T( fi2 − Ayi ) + fi1

T(A(i)
k − f j) + δ

≥ δ− ‖ fi1‖2
∥∥ fi2 − Ayi

∥∥
2 − ‖ fi1‖2

∥∥∥A(i)
k − f j

∥∥∥
2

= δ−
∥∥ fi2 − Ayi

∥∥
2 −

∥∥∥A(i)
k − f j

∥∥∥
2
≥ ∆− δ− 2θ

(14)

Property 3 shows that optimizing our proposed loss with an agent margin can retain a
separation among feature points of different classes. Moreover, multiple centers are very
useful to obtain more local clusters for each class and reduce the intra-class distance θ.
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5. Results

To show the performance of our proposed multi-center agent loss, a series of exper-
iments was conducted to compare with the triplet loss [18], ArcFace [24], and Softtriple
loss [26] on our CNSID100 database and SoftMax-based reciprocal triplet loss on the
OpenCow2020 dataset [13]. Besides, the pipeline of cattle identification in engineering
applications was verified in a real farming scenario to show the scalability of our approach
to new populations and new farm scenarios. The details of the experimental analysis are
presented in this section.

5.1. Implementation Details

The DCNN backbone architecture used in our work was ResNet50 [28], with weights
pretrained on ImageNet [29]. We replaced the last fully connected layer with the inner
product layer, and the output number was 384 as the dimension of the features. The images
were resized to 224 × 224, and random erasing was used as the data argumentation. In the
training stage, the output of the inner product layer was the features used to calculate the
loss. In the testing, the input image was put into the model to obtain the features, then the
features were input into the k-NN classifier to predict the identity.

We used Pytorch 1.7.1 to implement the multi-center agent loss. In each experiment,
the network was trained on the training set of the CNSID100 dataset over 200 epochs. We
used Adam as the optimizer and set the initial learning rate value as 1× 10−3 for the weight
updating. An exponential scheduler with γ = 0.95 for the learning rate decay was utilized.
The recorded accuracy was the highest value in testing after 50 epochs. Once an image
was input into the network, we obtained its d-dimensional feature vector f ∈ Rd where
d = 384. Then, we normalized it and used the k-NN algorithm with k = 5 to classify the
feature. To validate the model’s capability under the open-set protocol recognition tasks,
we performed two-fold cross-validation on the CNSID100 dataset, with 50% individuals
for training and the other half for testing. In the training stage, the unseen set was withheld,
and the model only learned from the seen set. For the k-NN classifier, images of each
identity were randomly split into training and testing samples in a ratio of 7:3. All the
images were input into the network and mapped into deep features in the latent space.
Then, the features of the test samples were classified with k-NN from the votes of the
k-nearest features from the training samples.

5.2. Study of the Number of Centers

The number of centers for each class was important in our proposed multi-center
agent loss function, which affected the learning efficiency and the ability to capture the
variance. It is intuitive that more centers were able to obtain many local clusters that were
beneficial to reducing the intra-class distance; however, too many of them dramatically
increased the parameters and also reduced the representation performance of the unique
centers due to their redundancy.

In Figure 5, it is shown that when the number of centers increased from C = 1 to
C = 10, the accuracy went up to the highest value, but after that, the accuracy fell slightly
while continuing to increase the centers. When the number of centers was less than five,
the centers’ L2,1-norm regularization had little effect due to the small number; however,
with the increasing number of centers, its effect became more obvious.

5.3. Ablation Study

In order to probe the necessity of multiple centers and the agent triplet, we conducted
ablation studies to demonstrate the performance of multiple centers in SoftMax and K-
nearest negative agent triplet loss. We conducted two-fold cross-validation experiments
supervised by SoftMax with a single center and a multi-center agent and equipped with
the K-nearest negative agent triplet, respectively, to demonstrate the effectiveness of our
loss with 50% individuals unseen in the CNSID100 dataset.
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Figure 5. Study of the number of centers and the L2,1 regularization. When the number of centers for
each class increases to 5, the L2,1 regularization starts to work and the accuracy decreases slightly
while continuing to increase the centers to more than 10 due to the low efficiency of the redundant
centers. Best viewed in color.

From Table 2, firstly, it is notable that using multiple centers was rather superior to
SoftMax with a single center due to its ability to capture more local cluster information
to reduce the intra-class difference. Taking multiple centers in SoftMax with or without
the K-nearest negative agents, we could obtain an increase in the identification accuracy.
Moreover, the triplet using the K-nearest negative agents was also helpful in SoftMax with
single or multiple centers to empirically confirm the properties of our proposed loss to
reduce the intra-class variance and keep the separation of different classes.

Table 2. Ablation study of multi-center agent loss on CNSID100 with 50% individuals unseen.

Average Accuracy (%):[Minimum, Maximum]

SoftMax with single center 96.84:[96.5, 97.17]
Single center agent loss 96.96:[96.44, 97.47]
SoftMax with multiple centers 97.29:[96.86, 97.71]
Multi-center agent loss 98.55:[98.13, 98.97]

5.4. Comparing the Experiments

Recently, ArcFace [24] has become a benchmark in large-scale face recognition tasks.
Softtriple [26] is the representation of multiple centers approach for fine-grained recognition
tasks. In this section, we conducted several experiments to compare the triplet loss [18],
ArcFace [24], and Softtriple loss [26] with our proposed loss. Two-fold cross-validation was
employed to demonstrate the performances. For the hyperparameter selection, firstly, we
chose β for the contribution of the triplet with multi-center agents. Then, we fixed β and
selected γ and τ for SoftMax with multi-center loss experimentally. Finally, we conducted
experiments for margin m in the triplet with multi-center agents for the best performance.
However, λ in SoftMax with multiple centers had little effect on the performance with
values of 8, 16, 24, and 32.

Consequently, for our proposed loss, we set λ = 24, τ = 0.2 for SoftMax with multiple
centers. For multi-center agent loss, we set γ = 0.1 for entropy regularization, and the
center number C = 10. We set a margin δ = 0.4 for the top-two nearest negative agents
and β = 0.1. In the triplet loss, we set the margin as 0.5 and utilized the hard negative
mining strategy. There are two hyperparameters in ArcFace [24]. Parameter m denotes the
angular margin on the hypersphere and r is the radius of the hypersphere to which the
features are normalized. With m = 0.1 and r = 32, we obtained the highest accuracy in the
50% identities unseen set. For Softtriple loss, we set λ = 24, τ = 0.2 for the L2,1-norm, and
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γ = 0.05 for entropy regularization, and the center number C = 10. We set the margin as
0.01, the same as in [26].

As is shown in Table 3, our multi-center agent loss achieved the best performance on
the CNSID100 dataset with 50% identities unseen, demonstrating the powerful supervision
for intra-class local variance and inter-class separation information learning.

Table 3. Results on CNSID100 with 50% individuals unseen.

Average Accuracy (%):[Minimum, Maximum]

Triplet loss [18] 93.45:[91.72, 95.17]
ArcFace [24] 97.59:[96.74, 98.43]
Softtriple [26] 97.59:[97.22, 97.95]
Ours 98.55:[98.13, 98.97]

In [13], the OpenCow2020 dataset included indoor and outdoor cattle whole dorsal
images from top-down view, made to facilitate the cattle identification experiments. We
used its identification part, which consisted of 46 cows and a total of 4736 dorsal images
from bird’s-eye view cameras indoors and a UAV outdoors, to compare our proposed loss
with the SoftMax-based reciprocal triplet loss in [13]. SoftMax-based reciprocal triplet loss
achieved the highest accuracy on the OpenCow2020 identification set with 50% individuals
unseen in [13]; thus, we conducted two-fold cross-validation experiments that trained
ResNet50 [28] supervised by our proposed loss.

We set C = 5 and set β = 0.2 and δ = 0.2 to strengthen the agent triplet supervision.
As can be seen in Table 4, we found that supervision with our loss function led to a margin
with the same dimension of the embeddings (d = 128) as in [13].

Table 4. Result on OpenCow2020 with 50% individuals unseen.

Average Accuracy (%):[Minimum, Maximum]

SoftMax-based reciprocal triplet loss [13] 98.19:[97.58, 98.79]
Ours 98.59 [97.99, 99.19]

6. Engineering Applications

In order to verify the effectiveness of our proposed method in real farming scenar-
ios, an application pipeline, including object detection, feature extraction, and identity
recognition, is given in this paper. The architecture of the pipeline is shown in Figure 6.
YOLOv5s [30] with the proposed weights was directly used to detect Chinese Simmental
objects in the image. ResNet50 using weights trained on half of the identities in CNSID100
with the best accuracy of 98.97% in Section 5.4 was utilized as the feature extractor without
retraining to show the scalability for new breeds and a real farming environment. The
image taken by a real farm surveillance camera was put into the object detector to obtain
the cattle targets. Then, the target regions were cropped and resized to 224 × 224 and input
into the feature extractor to obtain the embeddings. The k-NN classifier was finally used to
identify the target identity.

To facilitate the engineering application, we created the CAIDRE dataset, as a valida-
tion supplement to validate the performance of the model trained on the CNSID100 dataset
under a realistic environment, such as the presence of mutual occlusion and more com-
plicated background conditions. This was taken from 382 images including 27 identities,
from fixed cameras in several real farm scenarios, as shown in Figure 7. The breed was not
only limited to Chinese Simmental, but also included Holstein Friesian cattle.
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Figure 6. Engineering application pipeline. The images in the CNSID100 dataset were acquired partly
by digital cameras, partly by smart phones, and partly by surveillance cameras at more than 12 mega
pixels. Then, they were cropped with the cattle object in the center and resized to 500 × 500 pixels.
In the engineering application, the image taken from the surveillance camera in the farm was input
into YOLOv5s [30] to detect cattle targets. Then, the target regions were cropped, resized, and input
into ResNet50 [28] to extract features for each instance. k-NN was used to classify the features for
identification. Best viewed in color.

Figure 7. Real farming scenarios in the CAIDRE dataset. There are many identities such as standing,
lying down, or walking. Some of them are partially obstructed by the farming structure or other
animals. The breed of cattle is not limited to Simmental, but also includes Holstein Friesian cattle.
Best viewed in color.
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Images in the CAIDRE dataset were split into a ratio of 3:1 for training and testing.
The test set included 91 images, part of which is show in Figure 7. About 450 training
samples for the k-NN classifier in the engineering application were detected and cropped
from the training set in CAIDRE by YOLOv5s [30], including a more complex background
(Lines a and b in Figure 8), different postures (Line c in Figure 8), partially obscuring each
other (Lines d and e in Figure 8), and more complicated than CNSID100. Details are shown
in Figure 8. Then, the training samples were input into ResNet50 to extract features and to
create the features dataset for the k-NN classifier with k = 2.

a

b

c

d

e

Figure 8. CAIDRE dataset examples. The CAIDRE dataset contains 27 individuals, including not only
Chinese Simmental, but also Holstein Friesian cattle in several scenarios. It faces the difficulties of
identification for a more complex background (Lines a and b), different postures (Line c), and partially
occlusion with structures or other animals (Lines d and e). The samples are more complicated and
realistic with real farming conditions than in the CNSID100 dataset. Best viewed in color.

Rather than retraining the model with CAIDRE, we directly extracted the features
of the targets in the CAIDRE images using ResNet50 and weight training on half of the
identities in CNSID100 with the best accuracy of 98.97% in Section 5.4. For cattle detection,
YOLOv5s with the proposed weights achieved a 99.1% mAP. Based on the performance
of the object detection with YOLOv5s, the precision of our pipeline for detection and
identification achieved 88.14%, and the recall was 86.43% at a 0.5 intersection over union, as
shown in Figure 9. The time spent on object detection was 8.9 ms per image, and that spent
on identification, including the processing of feature extraction and k-NN classification,
was 21.1 ms per target. The details are shown in Table 5.
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Although our proposed loss supervised the model with images in the CNSID100
dataset with standing posture and no occlusion with farm structures or other individuals,
it was still effective at extending to identify new individuals in more complex conditions,
even with a variety of postures and obstructed instances. The typical results of the detection
and identification are shown in Figure 10.

Table 5. Implementation details for the engineering application.

Results of implementation

mAP@0.5 99.1% Cattle detection
Precision 88.14% Detection and identification
Recall 86.43% Detection and identification
Detection time 8.9 ms per image
Recognition time 21.1 ms per target Feature extraction and k-NN classification

Hardware Configuration

CPU: Intel i9 GPU: NVIDIA 2080TI Memory: 64 G

Software Configuration

Ubuntu 18.06 Python 3.6 Pytorch 1.7.1

Figure 9. Precision and recall results. (Left) The precision of the detection and identification per
identity with the mean precision achieving 88.14%. (Right) The recall of detection and identification
per identity with a mean value of 86.43%. Best viewed in color.

However, some of the typical identification errors in the application experiments are
listed in Figure 11. As is shown in Figure 11, there were mainly three types of errors caused
by mutual occlusion, high similarities, and appearance around the target, all of which are
common in a realistic farming environment. In addition, the mean value of precision and
recall was also affected to some extent due to cattle detection errors.
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a b

c d
Figure 10. Engineering application results. It is shown that our proposed approach has the ability
to generalize to new breeds and more realistic and complicated scenarios. It correctly identified
instances obstructed by farming structures or other animals (the targets circled in red in (a–c)). It
also correctly recognized the breeds that had diverse postures (the targets circled in pink in (d)). Best
viewed in color.

Mutual occlusion Small inter-class difference Appearance near the target

214720311 214720212

214730125 212170009 214722040 214721881

214722040214720901 214720311

 214720017 214720311

21472002840 214722040214720028212170007 212170009 214720311

214720311

Figure 11. Typical identification errors in CAIDRE with ResNet50. The left image of the pairs in the
red box is the test identity, and the right one is its wrongly predicted result. Mutual occlusion, high
similarities, and appearance around the target are the main causes of misidentification. Best viewed
in color.
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7. Discussion

In this paper, we introduced SoftMax with multiple centers to learn agent points for
each individual to capture more local clusters and constructed agent triplet loss with an
anchor point and its positive and K-nearest negative agents to learn embeddings without
an extra mining strategy. By joint supervision with our proposed multi-center agent loss,
more discriminative features were learned to obtain SOTA solutions in cattle identification
tasks under the open-set protocol. We created the CNSID100 dataset with multi-viewpoint
images of cattle in a nearly natural state and will make it available publicly for further
applications for cattle identification/re-identification and verification tasks. Extensive
experiments, comparing triplet loss, ArcFace, and Softtriple loss on our CNSID100 dataset
and with SoftMax-based reciprocal triplet loss on the OpenCow2020 dataset, convincingly
demonstrated the effectiveness of the proposed approach. Taking advantage of the coat
pattern as a biometric identifier to perform automated visual identification of cattle with
an image from any viewpoint is very helpful for continuous monitoring of cattle in a
natural farming state. Moreover, the open-set protocol is able to pave the way for the
model to generalize to new farms and new breeds without any retraining, which is of vital
importance for actual application tasks in real livestock farming.

An engineering application pipeline was given in this paper to perform detection
and identification tasks in real farming. However, high similarity between identities
of the same view, intra-class variety with the change of views and postures, and mutual
occlusions have been the main difficulties for identification in the real farming environment.
Thus, we will look towards tracking with multiple cameras to build seamless video-based
pipelines for detection and identification in a real environment. The use of multiple
cameras, complementing each other, would be helpful for identifying and tracing from a
better viewpoint with less or no occlusion.

How robust this approach will be remains to be evaluated for the identification of
new breeds with a greater variety of views, postures, backgrounds, and mutual occlusions
in realistic farming conditions. Increasing the number of individuals via continuous data
sampling is helpful to reinforce the scalability of the model to new herds on new farms. As
the number of images and individuals in the real farming environment increases, target
annotation will be the most time-consuming task. Thus, the approach of weakly supervised
learning will be the main focus of our current and future research.

Based on continuous cattle detection and identification, we will conduct research on
behavior detection and recognition for welfare and health assessment. With the standard
deployment of cattle detection, identification, and behavior recognition, it is possible to
utilize monitoring on farms within company or government networks to provide the
services of production monitoring, early disease detection, and animal science research for
precision livestock farming.
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