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Abstract
Polyps are among the earliest sign of Colorectal Cancer, with their detection and segmentation repre-

senting a key milestone for automatic colonoscopy analysis. This works describes our solution to the

EndoCV 2021 challenge, within the sub-track of polyp segmentation. We build on our recently devel-

oped framework of pretrained double encoder-decoder networks, which has achieved state-of-the-art

results for this task, but we enhance the training process to account for the high variability and hetero-

geneity of the data provided in this competition. Speci�cally, since the available data comes from six

di�erent centers, it contains highly variable resolutions and image appearances. Therefore, we intro-

duce a center-sampling training procedure by which the origin of each image is taken into account for

deciding which images should be sampled for training. We also increase the representation capability of

the encoder in our architecture, in order to provide a more powerful encoding step that can better cap-

ture the more complex information present in the data. Experimental results are promising and validate

our approach for the segmentation of polyps in a highly heterogeneous data scenarios.
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1. Introduction

Colorectal Cancer (CRC) is among the most concerning diseases a�ecting the human gastroin-

testinal tract, representing the second most common cancer type in women and third most

common for men [1]. CRC treatment begins with colorectal lesion detection, which is typically

performed during colonoscopic screenings. In these procedures, a �exible tube equipped with a

camera is introduced through the rectum to look for such lesions throughout the colon. Early

detection of CRC is known to substantially increase survival rates. Unfortunately, it is estimated

that around 6-27% of pathologies are missed during a colonoscopic examination [2]. Colono-

scopic image analysis and decision support systems have shown great promise in improving

examination e�ectiveness and decreasing the amount of missed lesions [3].
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Figure 1: Polyp visual aspects have a wide variability in terms of shape, appearances, and

boundaries. In this figure, polyps sampled from di�erent databases, acquited in di�erent centers and

with di�erent equipment: (a) Kvasir-Seg [11], (b) CVC-ColonDB [12], (c) ETIS [13].

Gastrointestinal polyps are among the most relevant pathologies to be found in colonoscopies,

since they are one of the main early signs of CRC [4]. However, their correct identi�cation and

accurate segmentation are challenging tasks for both clinicians and computational techniques,

due to their wide and highly variable range of shapes and visual appearances, as illustrated in

Fig. 1. For this reason, computer-aided polyp detection has been extensively explored in recent

years as a supplementary tool for colonoscopic procedures to improve detection rates, enable

early treatment, and increase survival rates.

Polyp segmentation is often approached by means of encoder-decoder convolutional neural

networks. In [5] an encoder-decoder network containing multi-resolution, multi-classi�cation,

and fusion sub-networks was introduced, whereas [6] explored several combinations of di�erent

encoder and decoder architectures. In [7] an architecture with a shared encoder and two inter-

depending decoders was proposed to model polyp areas and boundaries respectively, and in

[8] ensembles of instance-segmentation architectures were studied. More recently, in [9] the

authors proposed parallel reverse attention layers to model the relationship between polyp

areas and their boundaries. A recent review of di�erent approaches to polyp segmentation (and

detection) on gastroendoscopic images can be found in [10].

This work describes our solution to the EndoCV 2021 challenge on the polyp segmentation

track [14]. The proposed approach is based on our recently introduced solution for polyp

segmentation [15], consisting of a cascaded double encoder-decoder Convolutional Neural

Network, which achieved the �rst position on the EndoTect Challenge [16]. We improve upon

our previous approach by 1) increasing the representation capability of the pre-trained encoder,

and 2) adopting a multi-site sampling scheme to better capture the varying nature of endoscopic

data during training. Our approach is straightforward to implement, yet it delivers outstanding

performance for the task of polyp segmentation. Our experimental analysis, even if limited due

to the �nal results of the competition not being released at the time of writing, demonstrate that

he proposed technique is highly e�ective and can reliably generate accurate polyp segmentations

on endoscopic images of a highly varying visual aspect.



Figure 2: Double encoder-decoder networks for polyp segmentation. The first encoder-decoder

U (1) generates an initial attempt to segment the polyp, which is supplied to the second encoder-decoder

U (2) together with the original image x. This guides the learning of U (2) towards more challenging

regions within x.

2. Methodology

2.1. Double Encoder-Decoder Networks

Dense semantic segmentation tasks are nowadays typically approached with encoder-decoder

networks [17] equippedwith skip connections that produce pixel-wise probabilities. The encoder

acts as a feature extractor downsampling spatial resolutions while increasing the number of

channels by learning convolutional �lters. The decoder then upsamples this representation back

to the original input size. Double encoder-encoders are a direct extension of encoder-decoder

architectures in which two encoder-decoder networks are sequentially combined [18]. Being x
an input RGB image, U (1) the �rst network, and U (2) the second network, in a double encoder-

decoder, the output U (1)(x) of the �rst network is fed to the second network together with x,
behaving like an attention map that allows U (2) to focus on the most interesting areas of the

image:

U(x) = U (2)(x, U (1)(x)), (1)

where x and U (1)(x) are stacked so that the input to U (2) has four channels, as illustrated in

Fig. 2. In this work we employ the same structure in both U (1) and U (2): we select a Feature

Pyramid Network architecture as the decoder [19]. In addition, in order to take into account

the more complex data characteristics in this challenge, we increase the encoder capability (as

compared to [15]) by leveraging the more powerful DPN92 architecture instead of the DPN68

CNN [20]. Note also that during training we apply pixel-wise supervision on both U (1) and

U (2) by computing the Cross-Entropy loss between U (2)(x) and the corresponding manual

segmentation y, but also between U (1)(x) and y.

2.2. Multi-Center Sampling

The nature of the provided database of segmented polyps for this competition is highly hetero-

geneous, with samples collected from 6 di�erent centers. This leads to a widely variable training

set containing images of varying resolutions, visual quality, and even diverse annotation styles.



Figure 3: Multi-Center training data sampling strategy. Instead of a regular data sampling in

which each image in the training set is shown to the model based on a uniform probability distribution

(resulting in center-imbalanced batches, bottom le�), in this work we implement a center-based sam-

pling technique in which each mini-batch of images contains a proportionate representation of images

from the di�erent centers on which the data was collected (center-balanced batches, bottom right).

In this work, we attempt to facilitate the training of the CNN described in the previous section

on such irregular dataset by considering the origin of each sample (its center) when designing

our training sampling approach.

Modi�ed sampling strategies are typically used in classi�cation problems when there is a high

class imbalance during training, the most typical scheme being oversampling under-represented

categories. In our case, we consider the set of di�erent centers provided by the organization,

C1, . . . , C6 as our categories. We denote our training set as D = {(xi, yi, ci), i = 1, ..., N},
where xi is an image containing a polyp, yi its manual segmentation, and ci ∈ {1, . . . , 6} its
original center. In our case, each class/center c contains nc examples, so that

∑6
c=1 nc = N .

With this notation, most data sampling strategies can be described with a single equation as

follows:

pj =
nq
j

∑6
c=1 n

q
c

, (2)

where pj is the probability of sampling an image from center j during training. By specifying

q = 1, we are de�ning a sampling scheme akin to selecting examples with a probability equal

to the frequency of their center in the training set (conventional sampling), while setting q = 0
leads to a uniform probability pj = 1/6 of sampling from each center, this is, oversampling

of minority centers in order to supply our CNN with mini-batches containing representative



Table 1

Performance comparison for polyp segmentation of di�erent double encoder-decoder networks on the

hidden validation set in terms of mean and standard deviation of Dice score

FPN/ResNet34 FPN/DPN68 FPN/DPN92

Dice (Mean ± Std) 79.12 ± 4.32 81.69 ± 2.34 81.81 ± 1.19

images from all sites. The latter is the sampling strategy implemented in this work.

2.3. Training Details

Our models are trained on training data (�ve di�erent center data) provided by EndoCV2021

challenge organisers [14]. Here, we minimized the cross-entropy loss using Stochastic Gradient

Descent with a batch-size of 4 and a learning rate of l = 0.01, which is cyclically decayed

following a cosine law from its initial value to l = 1e− 8 during 25 epochs, which de�nes a

training cycle. We repeat this process for 20 cycles, resetting the learning rate at the start of each
cycle. Images are re-sampled to 640× 512 and during training they are augmented with stan-

dard operations(random rotations, vertical/horizontal �ipping, contrast/saturation/brightness

changes). The mean Dice score is monitored on a separate validation set and the best model is

kept for testing purposes. In test time, we generate four di�erent versions of each image by

horizontal/vertical �ipping, predict on each of them, and average the results.

3. Experimental Results

At the time of writing, �nal results on this challenge have not been released yet. An o�ine

validation phase on unseen images (a subset of the �nal test set) was run by the organization

for the participants to be able to perform model selection. This allows us to compare internally

the performance of di�erent versions of our approach1. Table 1 shows the performance of the

system described in the previous sections when using three di�erent double encoder-decoder

networks, all of them trained with the center-sampling approach. It can be appreciated that

increasing the complexity of the encoder correlates with a greater performance in terms of

average Dice score. In addition, we can also observe a substantial decrease in standard deviation

measured across centers when the more powerful DPN92 encoder architecture is employed, as

compared to the smaller DPN68 or a more simple ResNet34, highlighting the relevance of this

design decision.

4. Conclusions

In this work, we have detailed our solution for the EndoCV 2021 challenge on the polyp

segmentation track. The proposed approach consists of a double encoder-network, enhanced

with an improved encoder architecture and a training data sampling strategy speci�cally

designed to deal with the multi-site nature of the data associated to this competition. The

1Details on performance analysis metrics for this problem can be found in [21].



limited experimental results show that our method achieves a consistently high Dice score with

a remarkably low standard deviation, which indicates that it is suitable for polyp segmentation

on endoscopic images, and it has enough generalization capability to perform well on images

collected from di�erent centers.
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