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Dept. de Matemàtiques i Informàtica, Universitat de Barcelona, Spain
(e-mail: victor.campello@ub.edu).

A. Sojoudi is with Circle Cardiovascular Imaging, Canada.
P. M. Full and K. Maier-Hein are with the Division of Medical Image

Computing, German Cancer Research Center, Germany.
Y. Zhang is with the Institute of Computing Technology, Chinese

Academy of Sciences, China.
Z. He is with Lenovo Ltd., China.
J. Ma is with the Dept. of Mathematics, Nanjing University of Science

and Technology, China.
M. Parreño is with the PRHLT Research Center, Universitat
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Abstract— The emergence of deep learning has consid-
erably advanced the state-of-the-art in cardiac magnetic
resonance (CMR) segmentation. Many techniques have
been proposed over the last few years, bringing the ac-
curacy of automated segmentation close to human per-
formance. However, these models have been all too often
trained and validated using cardiac imaging samples from
single clinical centres or homogeneous imaging protocols.
This has prevented the development and validation of
models that are generalizable across different clinical cen-
tres, imaging conditions or scanner vendors. To promote
further research and scientific benchmarking in the field
of generalizable deep learning for cardiac segmentation,
this paper presents the results of the Multi-Centre, Multi-
Vendor and Multi-Disease Cardiac Segmentation (M&Ms)
Challenge, which was recently organized as part of the
MICCAI 2020 Conference. A total of 14 teams submitted
different solutions to the problem, combining various base-
line models, data augmentation strategies, and domain
adaptation techniques. The obtained results indicate the
importance of intensity-driven data augmentation, as well
as the need for further research to improve generalizability
towards unseen scanner vendors or new imaging proto-
cols. Furthermore, we present a new resource of 375 het-
erogeneous CMR datasets acquired by using four different
scanner vendors in six hospitals and three different coun-
tries (Spain, Canada and Germany), which we provide as
open-access for the community to enable future research
in the field.

Index Terms— Cardiovascular magnetic resonance, im-
age segmentation, deep learning, generalizability, data aug-
mentation, domain adaption, public dataset.
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I. INTRODUCTION

A
CCURATE segmentation of cardiovascular magnetic res-

onance (CMR) images is an important pre-requisite in

clinical practice to reliably diagnose and assess a number of

major cardiovascular diseases [1], [2]. Currently, the process

typically requires the clinician to provide a significant amount

of manual input and correction to accurately and consistently

annotate the cardiac boundaries across all image slices and

cardiac phases. The automation of such a tedious and time-

consuming task has been pursued for a long time by using

multiple approaches, such as statistical shape models [3] or

cardiac atlases [4]. In the last few years, the advent of the deep

learning paradigm has motivated the development of many

neural network based techniques for improved CMR segmen-

tation, as listed in a recent review [5]. However, most of these

techniques have been all too often trained and evaluated using

cardiac imaging samples collected from single clinical centres

using similar imaging protocols. While these works have

advanced the state-of-the-art in deep learning based cardiac

image segmentation, their high performances were reported on

samples with relatively homogeneous imaging characteristics.

As an example, the CMR datasets from the Automated

Cardiac Diagnosis Challenge (ACDC) dataset [6] have been

extensively used to build and test new implementations of

deep neural networks for cardiac image segmentation. The

top performing technique in the ACDC challenge, proposed

by Isensee et al. [7], obtained a very high segmentation

accuracy for both the left and right ventricles. However, the

ACDC datasets were compiled from 150 subjects scanned

at a single clinical centre using the same imaging protocol,

which limits the ability of the researchers to develop and test

models that can generalize suitably across multiple centres

and scanner vendors. Other researchers attempted to encode

higher variability by building and testing their models based

on much larger datasets obtained from the UK Biobank [8].

For instance, Bai et al. [9] implemented a fully convolutional

network that achieved highly accurate results on this large

dataset (over 4,875 cases), but the authors concluded that their

model might not generalize well to other vendor or sequence

datasets.

Some researchers proposed to improve CMR segmentation

by training neural networks with images from multiple cohorts

[10], [11], but these works do not include methods for address-

ing domain shifts between training and new unseen cohorts.

Other works used data augmentation on models built from

single cohorts such as the ACDC [12] or the UK Biobank [13],

then tested their techniques on other existing public cohorts,

including the Sunnybrook Cardiac Data [14], LV Segmentation

Challenge Dataset (LVSC) [15] or RV Segmentation Challenge

Dataset (RVSC) [16]. However, these studies are limited by

the fact that these different CMR cohorts have been annotated

with distinct standard operating procedures (SOPs), which

makes it difficult to draw conclusions from the multi-cohort

comparative results. Furthermore, such an approach requires a

large training dataset from the single centre to model high

variability across subjects. Another multi-centre and multi-

vendor study conducted by Tao et al. [11] relied solely on

private data, which makes it difficult to replicate the results

and perform community-driven benchmarking. While these

recent works confirmed the difficulties encountered by deep

learning models to generalize beyond the training samples,

they also support the need for well-defined heterogeneous

public datasets that can be used by the community to improve

model generalizability through scientific benchmarking.

In this context, the Multi-Centre, Multi-Vendor and Multi-

Disease Cardiac Segmentation (M&Ms) Challenge was pro-

posed and organized as part of the Statistical Atlases and

Computational Modelling of the Heart (STACOM) Workshop,

held in conjunction with the MICCAI 2020 Conference. The

M&Ms challenge was set up as part of the euCanSHare inter-

national project1, which is aimed at developing interoperable

data sharing and analytics solutions for multi-centre cardiovas-

cular research data. Together with clinical collaborators from

six different hospitals in Spain, Canada and Germany, a public

CMR dataset was established from 375 participants, scanned

with four different scanners (Siemens, Philips, General Electric

(GE) and Canon) and annotated using a consistent contouring

SOP across centres.

To our knowledge, this dataset is the most diverse resource

of CMR studies, which is provided as open-access2 to promote

further research and scientific benchmarking in the devel-

opment and evaluation of future generalizable deep learning

models in cardiac image segmentation. In this paper, we also

present and discuss the results of the M&Ms challenge in

detail, to which a total of 14 international teams submitted

a range of solutions, including different strategies of transfer

learning, domain adaptation and data augmentation, to accom-

modate for the differences in scanner vendors and imaging

protocols. The obtained results show the extent of the problem,

the promise of the proposed solutions, as well as the need for

further research to build fully generalizable tools that can be

translated reliably and deployed in routine clinical practice

across the globe.

II. CHALLENGE FRAMEWORK

A. Data preparation

TABLE I

INFORMATION FROM CENTRES INCLUDED IN THIS WORK.

Name City Country

1 Hospital Vall d’Hebron Barcelona Spain
2 Clı́nica Sagrada Familia Barcelona Spain
3 Universitätsklinikum Hamburg-Eppendorf Hamburg Germany
4 Hospital Universitari Dexeus Barcelona Spain
5 Clı́nica Creu Blanca Barcelona Spain
6 McGill University Health Centre Montreal Canada

A total of six clinical centres from Spain, Canada and

Germany (numbered 1 to 6 in this work) contributed to this

challenge by providing a different number of CMR studies

from different scanner vendors, as detailed in Table I. In

total, 375 studies were included in this challenge. The subjects

considered for this multi-disease study were selected among

1euCanSHare project website: www.eucanshare.eu
2The dataset is publicly available at www.ub.edu/mnms
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Fig. 1. Visual appearance of a CMR short axis middle slice for
anatomically similar subjects in the four different vendors considered.

TABLE II

DISTRIBUTION OF THE MOST FREQUENT PATHOLOGIES AND HEALTHY

VOLUNTEERS BETWEEN CENTRES. THE ABBREVIATIONS CORRESPOND

TO HYPERTROPHIC CARDIOMYOPATHY (HCM), DILATED

CARDIOMYOPATHY (DCM), HYPERTENSIVE HEART DISEASE (HHD),

ABNORMAL RIGHT VENTRICLE (ARV), ATHLETE HEART SYNDROME

(AHS), ISCHEMIC HEART DISEASE (IHD) AND LEFT VENTRICLE

NON-COMPACTION (LVNC).

Centre 1 2 3 4 5 6
Pathology

Healthy vol. 22 33 32 21 14 3
HCM 25 37 14 8 15 4
DCM 37 - 5 - 9 -
HHD - 4 - 19 1 1
ARV 12 - - 2 1 1
AHS - - - 3 - -
IHD - - - 4 1 3

LVNC - - - - 2 2
Other - - - 18 7 15

groups of various cardiovascular diseases, such as hypertrophic

cardiomyopathy, dilated cardiomyopathy, coronary heart dis-

ease, abnormal right ventricle, myocarditis and ischemic car-

diomyopathy as well as healthy volunteers (see Table II for

more details on the distribution of these cases). The specific

scanner manufacturers are: 1) Siemens (Siemens Healthineers,

Germany), 2) Philips (Philips Healthcare, Netherlands), 3)

General Electric (GE, GE Healthcare, USA) and 4) Canon

(Canon Inc., Japan). These four manufacturers were coded as

A, B, C and D during the challenge, respectively. The CMR

images derived from these four vendors are illustrated in Fig.

1. More specific details on the studies are given in Table III.

Every CMR study was annotated manually by an expert

clinician from the centre of origin, with experiences ranging

from 3 to more than 10 years. Following the clinical protocol,

short-axis views were annotated at the end-diastolic (ED) and

end-systolic (ES) phases, as they correspond to the phases

used to compute the relevant clinical biomarkers for cardiac

diagnosis and follow-up. Three main regions were considered:

the left and right ventricle (LV and RV, respectively) cavities

and the left ventricle myocardium (MYO). In order to reduce

the inter-observer and inter-centre variability in the contours,

in particular at the apical and basal regions, a detailed revi-

sion of the provided segmentations was performed by four

researchers in pairs. They applied the same SOP across all

CMR datasets to obtain the final ground truth. To generate

consistent annotations for the research community, we chose to

apply the SOP that was already used by the ACDC challenge,

as follows:

a) The LV and RV cavities must be completely covered,

including the papillary muscles.

b) No interpolation of the MYO boundaries must be per-

formed at the basal region.

c) The RV must have a larger surface at the ED time-frame

compared to ES.

d) The RV does not include the pulmonary artery.

Clinical delineations as well as later corrections were per-

formed using CVI42 software (Circle Cardiovascular Imaging

Inc., Calgary, Alberta, Canada). All studies were provided

in DICOM format and contours were extracted in cvi42

workspace format (.cvi42ws). An in-house software was then

used to extract the contours and transform the images into

the NIFTI format, representing the final files delivered to the

challenge participants.

B. Model training

Fig. 2. Degree of generalizability of models trained from the four
vendors. Four 2D UNet models [17] were trained with datasets from the
four vendors separately (rows) and subsequently tested their segmenta-
tion performance on datasets from all vendors (columns). The heatmap
shows the Dice similarity coefficient, with a color scale that goes from
blue (good generalizability) to red (poor generalizability). The results
are the average of 5 models cross-validated on subsets of 30 training
subjects.

The 375 CMR studies were divided into three sets, namely

training, validation and testing, as detailed in Table IV. To de-

cide on a particular subdivision, we first estimated the degree

of generalizability of models trained from the four vendors,

as shown in Figure 2. We have thus decided to combine the

datasets from vendors A, which generalize relatively well, with
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TABLE III

AVERAGE SPECIFICATIONS FOR THE IMAGES ACQUIRED IN THE DIFFERENT CENTRES.

Centre Vendor Model
Field

strength (T)
In-plane

resolution (mm)
Slice

thickness (mm)
Number
of slices

Number of
time frames

1 Siemens MAGNETOM Avanto 1.5 1.32 9.2 12 25
2 Philips Achieva 1.5 1.20 9.9 10 30
3 Philips Achieva 1.5 1.45 9.9 11 26
4 GE Signa Excite 1.5 1.36 10 12 25
5 Canon Vantage Orian 1.5 0.85 10 13 29
6 Siemens MAGNETOM Skyra 3.0 0.98 9.7 12 29

TABLE IV

NUMBER OF STUDIES FOR EACH STEP OF THE CHALLENGE PRESENTED

BY CENTRE AND SCANNER VENDOR.

Siemens Philips GE Canon Total

Label A B C D
Centres 1 6 2 3 4 5

Training 75 0 50 25 25 0 175
Validation 5 5 5 5 10 10 40
Testing 16 24 19 21 40 40 160

Overall 96 29 74 51 75 50 375

datasets from B, which generalize poorly to new vendors, as

training datasets. The participants received the 175 training

cases on 1st May 2020, including 75 annotated CMRs from

vendor A, 75 annotated CMRs from vendor B, 25 CMRs from

vendor C but without any annotations (only the raw images)

and no datasets from vendor D, in order to test generalizability

to different situations (e.g. image protocol included or not

included in the training). Note that in the case of vendor A,

the 75 CMRs were included from centre 1 but none from

centre 6, to test generalizability across vendors but also across

centres for the same vendors. Regarding vendor B, we included

more training datasets from centre 2 (50 cases) than from

centre 3 (25 cases) to assess the impact of imbalanced training

data and fairness in multi-centre cardiac image segmentation.

For optimizing the models, the participants were allowed to

remotely validate against 40 additional CMRs, i.e. 10 from

each of the four vendors. A maximum of 7 submissions were

allowed per team during the validation process. Note that

during training, it was not allowed to use any external datasets

or pre-trained models, to enable a fair comparison between the

proposed solutions.

C. Model evaluation

The testing period for the challenge started on 8th June

2020 and concluded on 15th July 2020. The participants had

to evaluate their models remotely to ensure the unseen datasets

were totally hidden from the segmentation methods. As such,

for example, the participants had no prior information on the

images provided by vendor D. In order to evaluate the models,

the participants were asked to build a Singularity image3 and

share it with the organizers via a MEGA4 folder shared by the

organizers or by any other secure cloud storage service. This

Singularity image allows its execution on a similar architecture

machine without the need to install all the diversity of used

3https://sylabs.io
4https://mega.nz

libraries. The necessary computing power was sponsored by

NVIDIA, who provided the organizers with access to an

NVIDIA V100 GPU card with 16GB of memory, as well as

the Barcelona Supercomputing Center (BSC) who provided

access to two K80 NVIDIA GPU cards.

In order to assess the quality of the automatically segmented

masks P with respect to the ground truth G, four measures

were proposed, namely:

(i) Dice similarity coefficient (DSC):

DSC(P,G) =
2|P ∩G|

|P |+ |G|
(1)

that measures the degree of overlapping of two volumes.

(ii) Jaccard index (JI):

JI(P,G) =
|P ∩G|

|P ∪G|
=

|P ∩G|

|P |+ |G| − |P ∩G|
(2)

that measures overlapping as well but is more sensitive to

results with average performance.

(iii) Average symmetric surface distance (ASSD):

ASSD(P,G) =
1

|P |+ |G|





∑

p∈P

d(p,G) +
∑

g∈G

d(g, P )





d(p,G) := inf
g∈G

d(p, g) (3)

that measures the average distance between the two volumes.

(iv) Hausdorff distance (HD):

HD(P,G) = max

{

sup
p∈P

d(p,G), sup
g∈G

d(g, P )

}

(4)

that measures the largest disagreement between the volumes

and it is useful for identifying small outliers. All these metrics

were computed using the public library medpy5.

These metrics were computed for the three target labels:

LV, RV, and MYO, resulting in a total of 12 measures. In case

one participant had a prediction missing for a specific subject,

a value of zero was assumed for DSC and JI and maximum

values of 150 and 50 milimetres were assumed for HD and

ASSD, respectively, based on the worst results obtained by

the participating methods. Any value above the thresholds on

surface distances was set to the maximum value.

To obtain the final ranking for each team, a weighted

average was computed giving a greater importance to the

unlabelled and unseen scanner vendors. Therefore, if vA and

vB are defined as the labelled vendors, vC , the unlabelled one

5https://github.com/loli/medpy
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and vD, the unseen one, the weighted sum for a metric M is

obtained as follows:

M =
1

6
MvA

+
1

6
MvB +

1

3
MvC

+
1

3
MvD

(5)

Then, a min-max normalization was applied across participants

for each measure and a final average over the normalized

metrics yielded the performance (P) ranging from 0 to 1, being

1 the value that a team would obtain if it had the best results

for every metric.

III. PARTICIPATING METHODS

In total, 80 teams registered to download the M&Ms training

dataset, 16 submitted a solution for the final testing phase

and 14 teams submitted their methodology as a paper to the

STACOM Workshop (see Table V for details on these teams).

All participants used deep learning as their segmentation

approach. Table VI summarizes the main characteristics of

the submitted techniques, including the backbone architectures

and domain adaptation strategies, which are described in more

detail in the following subsections. Furthermore, details on

the hardware used during training and the times that each

method took for training and inference as well as the number

of parameters for each model are presented in Table VII.

A. Backbone architectures

There is a degree of variability in the backbone architectures

used between the different participants, as shown in Table

VI. Four teams used the nnUNet [33] (which includes UNet

architectures in 2D and 3D as well as a cascaded UNet) as their

baseline segmentation model (P1-P3 & P9). Four participants

used a traditional UNet [17] (P6, P10, P13, P14), while other

variants of UNets were adopted by the rest of the teams. In

particular, UNets combined with residual connections were

applied by three teams (P4, P8, P11), with P8 preferring

a residual UNet with dilated convolutions (DRUNet) [34].

P5 proposed the use of an attention UNet [35], while P7

developed a modified UNet based on multi-gate and dilated

inception blocks to extract multi-scale features. Lastly, one

team (P12) proposed a modified Spatial Decomposition Net-

work (SDN) [36] with an AdaIN [37] decoder.

As pre-processing techniques, all models that provided

detailed information about this step performed either image

normalization to a unit Gaussian distribution or pixel value

rescaling to the range [0,1] (only P6 chose the range [0,255]

instead). With regards to image resolution, images were re-

sized based on target size or pixel resolution values in 10

out of 14 methods, while the other methods preferred to keep

the original image resolution (P4, P7, P8, P11). In order

to obtain squared images, cropping and zero padding were

used depending on the desired image size for each case.

Additionally, some methods applied intensity clipping between

varying ranges to get rid of bright artifacts (P5, P6, P11).

Finally, P8 was the only method to apply also a non-local

means denoising filter prior to the training process.

Fig. 3. The effect of data augmentation on a single CMR slice. In the
top row, the original image and spatial augmentations are shown. In the
bottom row, intensity-based augmentations.

B. Data augmentation

All participants in the challenge (except P11) used some

form of data augmentation to enhance their models. Specifi-

cally, two families of data augmentations were considered: (1)

spatial transformations to increase sample size through rota-

tion, flipping, scaling or deformation of the original images;

(2) intensity-driven techniques, which maintain the spatial

configuration of the anatomical structures but modify their

image appearance. The second type of augmentation seems

particularly relevant for the M&Ms as it may increase the

variability in image appearance, with the hypothesis that this

may lead to improved adaptation to varying imaging protocols

and scanner vendors. Two teams performed data augmen-

tation using only spatial transformations (P4, P6). Eleven

teams additionally implemented intensity-based transforma-

tions using one of two main approaches: (i) standard image

transformations such as histogram matching, blurring, change

in brightness, gamma and contrast, or addition of Gaussian

noise (P1-P3, P7-P8, P10, P13) (see 3 for a visualization

of a subset of these transformations on a training slice);

(ii) advanced image synthesis by using generative adversarial

networks (GANs) (P5, P8, P14) or variational auto-encoders

(VAE) (P12). For the latter one, the generation of synthetic

images for the unseen vendor D is not feasible since it was

not included in the training. Note that the majority of the

teams participating in the challenge (10 out of 14) relied solely

on data augmentation of the training sample to address the

domain-shift problem posed by the M&Ms challenge.

Additionally, some teams (P1-P3, P9, P13) applied test-

time augmentation techniques, which consist of passing to the

model two or more transformed versions of the same inference

image to obtain several predictions. These predictions are then

combined to obtain one final outcome, usually by averaging

them. This method has been shown to improve the final per-

formance in small data size scenarios and a net improvement

with a scale effect that depends on the model architecture [38].

C. Domain adaptation

Of all participants, only three teams (P4, P6, P10) imple-

mented a method to explicitly address the differences in the

image distributions between the unseen and trained vendors.

At training, P4 constructed a classifier to distinguish between
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TABLE V

LIST AND DETAILS OF THE PARTICIPATING TEAMS IN THE CHALLENGE.

Team Institution Location Name during challenge Reference

P1 German Cancer Research Center (DKFZ) Heidelberg, Germany Mountain goat [18]
P2 Chinese Academy of Sciences Beijing, China Dugong [19]
P3 Nanjing University of Science and Technology Nanjing, China Opossum [20]
P4 Universitat Politècnica de València València, Spain Ox [21]
P5 University of California Berkeley, USA Monkey [22]
P6 University of Oxford Oxford, UK Donkey [23]
P7 Nile University Cairo, Egypt Porpoise [24]
P8 Technical University of Munich Munich, Germany Owl [25]
P9 Aristra GmbH Berlin, Germany Lovebird [26]
P10 King’s College London London, UK Mandrill [27]
P11 University of Alberta Edmonton, Canada Muskox [28]
P12 University of Edinburgh Edinburgh, UK Springbok [29]
P13 Shenzhen University Shenzhen, China Seagull [30]
P14 Fudan University Shanghai, China Steer [31]

TABLE VI

CHARACTERISTICS OF PARTICIPATING MODELS. ABBR: ROTATIONS (R), FLIPPING (F), SCALING (S), DEFORMATIONS (D), HISTOGRAM MATCHING

(HM), GAUSSIAN NOISE (GN), BRIGHTNESS (B), GAMMA (G), TEST TIME AUGMENTATION (TTA).

Method
Backbone

architecture

Data augmentation
TTA

Domain
adaptation

Spatial augmentations Intensity-based augmentations
R (°) F S D HM GN B G Synthesis Others

P1 nnUNet ±180 X X X X X X contrast X No
P2 nnUNet ±180 X X X X X label propagation X No
P3 nnUNet ±180 X X X X X X No
P4 UNet (ResNet-34) ±45 X X translations Yes
P5 Attention UNet ±10 X CycleGAN low-level frequency No
P6 UNet+DA+DUNN ±180 X translations Yes
P7 UNet ±15 X X X No
P8 DRUNet ±15 X X X X CycleGAN blurring No
P9 nnUNet ±180 X X X No
P10 UNet ±22.5 X X X X translations Yes
P11 UNet++ (ResNet101) No
P12 SDNet X VAE No
P13 UNet ±90 X X X WaveCT-AIN [32] contrast X No
P14 UNet CycleGAN No

scanner vendors and used it to modify the training images

(through error propagation) until the classifier could not dis-

tinguish between the domain. In other words, this method

resulted in training images and a trained model that are less

dependent on the specific vendors. P6 and P10 proposed to

train two models simultaneously with shared features, one

for segmentation and one for classification, such that the

classification loss is high while the segmentation loss is low,

generating features that are robust to vendor-specific variations

as well as optimal for segmentation.

IV. RESULTS

As shown in Table IV, a balanced dataset across the four

vendors was prepared for evaluating the final submissions

(40 CMRs per vendor, total 160 datasets). In this section,

we analyze the obtained results per (1) team, (2) vendor,

(3) clinical center, and (4) show some qualitative results.

For analysing the obtained results, we also implemented two

baseline models to better appreciate the added value of the

data augmentation and domain adaptation techniques used in

this challenge:

B1: A 2D UNet without any data augmentation as described

in the original reference [17], trained with weighted

cross entropy loss.

TABLE VII

TRAINING AND INFERENCE TIME, AND HARDWARE USED, FOR ALL

PARTICIPATING METHODS. H, M, S AND MIL. STAND FOR HOURS,

MINUTES, SECONDS AND MILLIONS, RESPECTIVELY.

Team
Training

time
Inference
time (s)

Model para-
meters (Mil.)

GPU (NVIDIA)

P1 60 h 26 30 Titan XP
P2 48 h 4.8 30 Tesla V100
P3 96-120 h n/a 30 Tesla V100
P4 6 h 0.35 36 RTX 2080
P5 11 h 10.4 33 GTX 1080 Ti
P6 15 m/epoch 10 28 Tesla V100
P7 8 h 0.0022 6 GTX 1080 Ti
P8 8 h 10 9 Titan V 12GB
P9 96 h 1.2 30 GTX 1080 Ti
P10 10 h 1 4 Tesla K20
P11 11 h 4.48 38 Tesla P100 12GB
P12 3.4 h 0.014 18 GTX 1080 Ti
P13 3 h 0.087 20 GTX 2080 Ti
P14 n/a 15 24 Titan X GPU

B2: The nnUNet pipeline, with a 2D UNet module and de-

fault parameters as given in [33] (the best fold according

to the validation set was selected).

In particular, B2 differed from those in P1-P3 in that it

only included one architecture type [2D UNet] and ±180
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Fig. 4. Weighted average DSC and HD for all participating methods, according to equation (5).

degrees rotations, flippings, scalings, deformations, gamma

transformations and test-time augmentation as data augmen-

tation. In contrast, P1, P2 and P3 methods included further

augmentation techniques such as histogram matching, noise

addition, brightness modification, contrast modification and

pseudo-label generation by label propagation in time space.

A. Analysis per team

Fig. 4 displays the results of the challenge for all partici-

pants and according to two evaluation metrics (DSC and HD).

It can be seen that the curves are flat for about half of the

participating teams, which indicates comparable performances

overall. Note that these methods (P1 to P7) are also the

ones that performed better than the baseline methods and we

hypothesize that the other models (P8 to P14) suffered from

some form of over-fitting (see also the shapes of the curves in

Fig. 4). Team P1 provided the most consistent results across

all metrics. However, the difference with respect to other

teams was relatively small and in many cases not statistically

significant, as presented in Table VIII. The three best perform-

ing teams, P1 to P3, used nnUNet as the baseline pipeline,

as well as standard intensity-based data augmentation (e.g.

blurring, noise addition, histogram matching), but no domain

adaptation, showing a significative improvement with respect

to the standard nnUNet implementation B2. For a similar

performance, P5 used an Attention UNet as the backbone

architecture and CycleGANs for data augmentation through

image synthesis. P4 and P6 also obtained similar performances

overall, but implemented instead domain adaptation methods

and no image-driven data augmentation.

Fig. 5 displays the average DSC for all participating teams

organised this time per pathology, showing better segmentation

performance for healthy cases and dilated cardiomyopathy

(DCM), followed by hypertrophic cardiomyopathy (HCM) and

other pathologies. It can be seen that the performances of

the 14 techniques relative to each other do not change when

analysed per pathology.

B. Analysis per vendor

Fig. 6 summarizes the segmentation results for all teams

for each vendor separately (A, B, C & D). It can be seen that

overall, the differences in the segmentation errors between the

vendors are reduced with respect to the results obtained by the

two baseline methods as detailed in Table IX. Specifically, it

can be seen that for the baseline methods there is a loss of

Fig. 5. Average DSC for all participants for the most common patholo-
gies in the dataset. HCM and DCM stand for hypertrophic and dilated
cardiomyopathy, respectively.

Fig. 6. Boxplots with vendor-wise results for DSC and HD when all
participants predictions are considered. Vendors are presented in order:
Siemens (A), Philips (B), GE (C) and Canon (D).

accuracy of up to -6% in the segmentation of images from

vendors C and D compared to A and B. However, this loss

is reduced, for example, to -1.5% for P1 (e.g. from DSC =

0.92 for vendor A to 0.90 in vendor C and D, for the LV),

-2.1% for P2 (e.g. from DSC = 0.87 in vendor B to 0.82
in vendor D, for the RV), and almost to 0% for P7. This

indicates that while there is a need for further research to

bring segmentation accuracy in unseen and unlabelled vendors

at the same level of the one obtained in trained vendors, data

augmentation and data adaptation enable to close the gap and

improve the generalizability of deep learning models.

C. Analysis per centre

In the previous subsection, centres were combined in the

analysis despite having different machines or scanning proto-

cols. In doing so, possible variabilities between centres using

the same scanner may be overstated, making it necessary
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TABLE VIII

DSC AND HD FOR THE FINAL SUBMISSIONS OF ALL PARTICIPANTS AND THE TWO BASELINE MODELS. BOLD FACE NUMBERS ARE THE BEST

RESULTS FOR EACH COLUMN AND BLUE NUMBERS ARE NON-SIGNIFICANTLY LOWER RESULTS WHEN COMPARED TO THE P1 RESULTS (P-VALUE >

0.01 FOR THE WELCH’S T-TEST). HD IS MEASURED IN MILIMETERS.

Method
ED ES

LV MYO RV LV MYO RV
DSC HD DSC HD DSC HD DSC HD DSC HD DSC HD

P1 0.939 9.1 0.839 12.8 0.910 11.8 0.886 9.1 0.867 10.6 0.860 12.7

P2 0.938 9.3 0.830 12.9 0.909 12.3 0.880 9.5 0.861 10.8 0.850 13.0
P3 0.935 9.5 0.825 13.3 0.906 12.3 0.875 10.5 0.856 11.6 0.844 13.0
P4 0.939 11.3 0.826 15.2 0.886 15.4 0.884 11.4 0.856 14.0 0.829 16.7
P5 0.931 10.0 0.816 13.7 0.893 14.3 0.877 9.8 0.850 11.3 0.827 15.2
P6 0.927 11.2 0.815 14.0 0.892 13.6 0.877 9.7 0.852 11.1 0.834 15.0
P7 0.933 13.4 0.812 17.1 0.876 15.7 0.867 14.0 0.839 18.2 0.815 18.1
P8 0.922 15.5 0.809 18.0 0.867 16.6 0.857 17.5 0.836 17.2 0.802 19.1
P9 0.914 12.1 0.768 17.2 0.850 17.5 0.853 12.0 0.814 15.2 0.794 17.0
P10 0.905 13.6 0.772 17.2 0.876 16.2 0.848 15.5 0.820 17.5 0.809 19.6
P11 0.913 14.5 0.776 17.8 0.791 30.7 0.851 13.0 0.809 14.5 0.732 32.9
P12 0.889 16.0 0.785 22.1 0.814 22.1 0.835 14.2 0.808 18.9 0.758 22.0
P13 0.896 15.7 0.761 17.9 0.820 21.0 0.772 23.0 0.721 20.2 0.698 29.5
P14 0.797 21.9 0.668 31.6 0.552 49.1 0.716 25.8 0.673 33.0 0.517 52.0

B1 0.918 12.9 0.801 15.5 0.881 15.7 0.866 11.5 0.842 12.6 0.817 16.3
B2 0.930 10.8 0.817 15.7 0.889 14.8 0.863 13.2 0.835 14.8 0.818 16.8

TABLE IX

DSC RESULTS STRATIFIED BY VENDOR AND HEART SUBSTRUCTURE. THE LAST TWO COLUMNS ARE THE AVERAGE DSC LOSS FOR VENDORS C

AND D WITH RESPECT TO THE COMBINED AVERAGE DSC RESULTS FROM VENDORS A AND B.

Method
Vendor A Vendor B Vendor C Vendor D DSC % loss

for vendor C
DSC % loss
for vendor DLV MYO RV LV MYO RV LV MYO RV LV MYO RV

P1 0.923 0.857 0.887 0.915 0.876 0.888 0.903 0.842 0.884 0.909 0.838 0.882 -1.7 -1.6
P2 0.919 0.848 0.885 0.916 0.872 0.887 0.899 0.834 0.876 0.903 0.827 0.871 -2.0 -2.4
P3 0.915 0.843 0.877 0.914 0.868 0.879 0.894 0.827 0.873 0.898 0.824 0.870 -2.0 -2.1
P4 0.908 0.831 0.864 0.913 0.867 0.879 0.906 0.833 0.870 0.918 0.833 0.816 -0.9 -2.4
P5 0.912 0.834 0.869 0.910 0.859 0.870 0.891 0.817 0.819 0.903 0.820 0.882 -3.8 -0.8
P6 0.912 0.837 0.880 0.912 0.858 0.877 0.893 0.816 0.861 0.892 0.823 0.833 -2.6 -3.4
P7 0.891 0.804 0.820 0.904 0.859 0.870 0.898 0.821 0.838 0.908 0.817 0.853 -0.7 +0.1
P8 0.889 0.821 0.817 0.900 0.854 0.877 0.880 0.799 0.842 0.889 0.815 0.802 -2.3 -2.9
P9 0.879 0.765 0.800 0.889 0.816 0.827 0.881 0.787 0.831 0.885 0.797 0.829 +0.5 +1.0
P10 0.894 0.812 0.860 0.887 0.822 0.841 0.849 0.753 0.803 0.877 0.796 0.865 -6.1 -0.8
P11 0.885 0.781 0.778 0.899 0.846 0.846 0.875 0.787 0.773 0.869 0.758 0.650 -3.3 -9.8
P12 0.831 0.769 0.795 0.909 0.860 0.867 0.859 0.786 0.792 0.847 0.771 0.690 -3.1 -8.3
P13 0.820 0.712 0.684 0.885 0.823 0.858 0.868 0.779 0.803 0.762 0.650 0.691 +2.5 -12.1
P14 0.805 0.668 0.492 0.872 0.818 0.794 0.822 0.740 0.703 0.528 0.456 0.147 +2.3 -50.9

B1 0.908 0.834 0.861 0.901 0.850 0.865 0.863 0.790 0.800 0.894 0.813 0.870 -6.0 -1.3
B2 0.905 0.832 0.860 0.902 0.846 0.857 0.890 0.806 0.836 0.886 0.821 0.861 -2.7 -1.3

to consider also Fig. 7, where the segmentation results are

summarized according to the six clinical centres. Here too,

it can be seen that there remains some degree of variation

in the segmentation of the CMR images from the different

centres. In more detail, there is a decrease in segmentation

accuracy between centres 1 and 6 even though their images

are from the same scanner vendor A. However, this difference

can be explained by two facts: 1) the scanners in these two

centres are different models and have different field strengths,

as shown in Table III, and 2) all the 75 datasets included during

training for vendor A were from centre 1 (Spain) and none

from centre 6 (Canada). In this case, even though the images

are from the same vendor, differences in scanner specifications

resulted in the lack of generalizability. In contrast, images from

both centres 2 and 3 were included in the training of vendor

B, which resulted in segmentation accuracies for these two

centres that are comparable. Finally, the datasets from centres

4 and 5 correspond to vendors C and D, respectively, which

were not included in the training, which explain the loss of

accuracy compared to centres 1, 2 and 3. In Fig. 8, the results

are grouped for all centres according to their inclusion (or not)

in the training. Clearly, it can be seen that the segmentation

accuracy is the highest for centres that are part of the training

together with their labels, followed by those with images but

no labels, and finally the performance is the lowest and most

variable for images from fully unseen centres. This result

confirms the need for further developments to optimize the

generalizability of deep learning solutions in future tools for

cardiac image segmentation.

D. Qualitative results

Fig. 9 presents the effect of the slice position in the

final segmentation DSC for the top three performing teams,

quantifying the loss of accuracy, especially prominent in the
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Fig. 7. Boxplots with centre-wise results for DSC and HD when all
participants predictions are considered. Same color-coding as in Fig. 6
is used for scanner vendors.

Fig. 8. Boxplots for DSC and HD results for centres that had labelled
samples in the training set, unlabelled samples in the training set and
no samples at all.

apical and basal slices. To illustrate this, Fig. 10 provides some

visual examples from team P1 to further show the added value

of the implemented techniques, as well as their limitations

when applied to unseen vendors. In the two examples above,

the segmentation techniques enabled to accurately identify the

cardiac boundaries even though these imaging protocols were

not included in the training set. However, in the two examples

below, despite the use of data augmentation and domain

adaptation, the models were unsuccessful in the segmentation

of these unseen cases and diverged more notably from the

ground truth in basal slices. These examples illustrate the need

for future work to further improve the generalizability of deep

learning models in cardiac image segmentation.

V. DISCUSSION

In this paper, we presented a comprehensive analysis of a

range of deep learning solutions for the automated segmen-

tation of multi-centre, multi-vendor and multi-disease CMR

datasets. Roughly speaking, the 14 participants in the chal-

lenge developed varying workflows combining a baseline neu-

ral network, intensity-based and/or spatial data augmentation,

and in some cases a data adaptation strategy. In addition

to a relatively large sample of 175 cases for training, the

authors were given a total of seven attempts for optimising

the parameters and characteristics of their models during

the validation process, to ensure an optimal design of the

solutions.

Fig. 9. Boxplots for DSC results for the top 3 performing methods
depending on different cardiac structures (LV, MYO and RV) and different
slice position for both ED and ES. The apex and the base are defined as
the last and first annotated slices, respectively. The middle slice is the
slice located in between the apex and base slices. The remaining slices
are defined based on their relative position with respect to the middle
slice.

A. Analysis of the methods

The obtained results, first of all, indicate that data augmen-

tation, though its primary purpose is to increase training size

and reduce over-fitting, can perform well in addressing some

of the differences in image appearance between vendors. In

particular, by varying the parameters and types of intensity

transformations (e.g. histogram matching, contrast modifica-

tion, noise addition, image synthesis), one can generate new

training images that enhance the generalizability of the models.

As an example, one can look at the performance of the

baselines models B1 and B2 and augmented models, such as

P1, P2 and P3. While for the baseline models, the results do

not differ significantly for specific cases, such as at ES, P1-P3

used many more data augmentation types, such as histogram

matching, noise addition, brightness modification and contrast

modification, and obtained a more marked improvement (e.g.

the DSC for the myocardium at ES increased from 0.84 for

B1 to 0.86 for P1, the DSC for the RV at ES increased from

0.81 for B1 to 0.84 for P3). This indicates the added value

of more advanced image-driven data augmentation for multi-

vendor image segmentation as well as that the domain shift

between different scanners or protocols can be potentially

solved by using an exhaustive set of image transformations

during training. However, the results also clearly show that

the obtained segmentations remain generally more stable in

trained vendors compared to unseen vendors, as intensity-

driven data augmentation alone cannot enable a full coverage

of the variety of imaging protocols that can exist across clinical

centres.

As for domain adaptation, while it is theoretically suitable

for multi-vendor image segmentation, as it can adapt on the

spot to the imaging distribution of the unseen images, it did

not result in better segmentations than when using exhaustive

data augmentation alone. In fact, the three first techniques in

the ranking did not use any domain adaptation, though it is

important to reiterate that the first seven solutions obtained

relatively similar results overall. It is worth noting that the

choice of the baseline model may play a role, as again

the first three techniques used the same model, namely the
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Fig. 10. Prediction examples for method P1 for vendors C (GE) and D (Canon). Top two rows show satisfactory results, while the two bottom rows
present some error in the final contours. Color correspondence: left ventricle endocardium (red), left ventricle epicardium (green) and right ventricle
endocardium (yellow). Ground truth is drawn in white color.

nnUNet. Finally, while the results indicate the potential of

data augmentation and domain adaption, they also show that

there is still a loss in segmentation accuracy when segmenting

labelled versus unlabelled or unseen image samples. Note also

that training and testing a model on two datasets from the

same vendor does not guarantee a good generalizability. This

is particularly true if the two sets of images are from two

different centres and scanner types, such as 1.5T (e.g. centre

1) and 3T (e.g. centre 6) as shown in Figure 7.

The results also show that advanced workflows integrating,

for instance, data augmentation or generative adversarial net-

works, are not guaranteed to lead to robust segmentations. In

fact, half of the submitted techniques had a lower performance

than the two baselines implemented for comparison. This

shows that over-fitting remains a challenge that requires spe-

cial attention during the calibration and validation of complex

deep learning solutions for cardiac image segmentation, in

particular in the presence of highly heterogeneous data.

Lastly, the presented methods show a vast diversity in

hardware performance, with training times ranging from 6 to

100 hours and inference times from tenths of seconds to almost

half a minute. However, the amount of training and inference

time do not correlate well with the final accuracy, indicating

an excessive use of computational power for some techniques.

For example, the methods implemented by P1 and P2, despite

using the same baseline model than P3, needed around half

the time for training and obtained slightly better results (1.2%

average improvement in DSC), while P4 used around one tenth

of computing time for similar loss of accuracy with respect to

P1 (1.6% average loss in DSC). Furthermore, clinical centres

usually lack dedicated hardware for deep learning models thus

increasing even more the segmentation time. In this sense, a

good equilibrium between accuracy and processing time needs

to be attained, with methods such as P4 serving as a good

example with a competitive performance and a prediction rate

of around 3 images per second.

In summary, the main findings are:

a) Exhaustive data augmentation reduced considerably the

domain gap, although the results were still more stable

within the domains used during training.

b) Domain adaptation did not result in better performance

when compared to nnUNet models trained with spatial

and intensity-driven data augmentation.

c) Complex workflows did not always lead to better results,

resulting sometimes in an excessive use of computing

resources.

B. Analysis of the segmentation results

Compared to other publicly available and annotated multi-

structure (LV, MYO, RV) datasets in the field of CMR seg-

mentation, M&Ms is the largest as well as the most diverse

(375 cases from four vendors, six centres and three countries,

vs. 150 cases for ACDC from one centre). However, given

that ACDC is an established database, we selected to use

its contouring SOP in this challenge to derive standardized

annotations for the community, as well as to enable the

combination of these datasets in future studies.

Note that our study, while it focuses on multi-scanner

generalizable segmentation, confirms several of the results

already obtained by the ACDC challenge and other previous

works. Specifically:
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a) The segmentations at ED were more accurate than at

ES for LV and RV cavities, but not for the myocardium,

which becomes thicker and therefore easier to segment

when the heart contracts.

b) The segmentation accuracy according to the DSC was

the highest for the LV blood pool, followed by the RV

and MYO, in this order, but it was the lowest for the

RV for the distance-based measures, given its shape

complexity.

c) The segmentation accuracy was at its maximum at the

mid-ventricular slices, while the performance decreased

for the apical and basal slices, where there is higher

variability and complexity.

On average, the best performing method in this challenge

obtained 0.88 as DSC and 11 mm as HD versus the values 0.93

and 9 mm obtained in the ACDC challenge, respectively, with

the greatest difference shown at ES. This gap can be easily

explained by the single-centre nature of the ACDC studies in

comparison to a multi-centre scenario in this work, although

other effects such as the training size may play a role and

should be assessed (150 vs. 100 studies, respectively).

C. Future work

In addition to the results and analyses presented in this paper

on multi-scanner cardiac image segmentation, we also provide

the M&Ms dataset open-access for the community, which

can be downloaded from the M&Ms website6. It represents

one of the most heterogeneous datasets ever compiled in

cardiac image analysis, comprising CMRs from a variety of

imaging protocols and cardiology units, and including a range

of cardiovascular diseases as distinct as coronary heart disease,

cardiomyopathies, abnormal right ventricle or myocarditis. We

thus hope the dataset will be of high value for the community

to address a number of research topics in the field, such as

multi-scanner image registration, multi-structure segmentation,

cardiac quantification, motion analysis and image synthesis.

It is important to note that a follow-up challenge is being

organised on multi-centre, multi-vendor and multi-disease car-

diac diagnosis. The diagnoses for the 375 cases are being gath-

ered from the different hospitals in a legally compliant manner

and the clinical information will be made available after the

end of the next challenge, thus allowing the community to

work on cardiac image analysis as well as on computer-aided

diagnosis in a multi-centre setting. Note that the participants

had less than three months to implement, optimize and test

their techniques, which did not allow to go beyond the

existing state-of-the-art techniques in data augmentation and

domain adaptation. With more time at their disposal beyond

the constraints of the challenge, we expect that researchers

will have a valuable resource with the M&Ms dataset to

investigate, develop and test new theories and frameworks for

addressing the difficulties posed by domain-shift in cardiac

image analysis.

6www.ub.edu/mnms

D. Conclusions

The M&Ms challenge is the first study to evaluate a range

of deep learning solutions for the automated segmentation of

multi-centre, multi-vendor and multi-disease cardiac images.

The results show the promise of existing data augmentation

and domain adaptation methods, but also calls for further

research to develop highly generalizable solutions given the

inherent heterogeneity in cardiac imaging between centres,

vendors and protocols. More generally, there is a need for

more research and development to realise the much-needed

shift from single-centre image analysis towards multi-domain

approaches that will enable wider translation and usability

of future artificial intelligence tools in cardiac imaging and

clinical cardiology.
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K. Maier-Hein, P. M. Full, I. Wolf, S. Engelhardt, C. F. Baumgartner,
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