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Multi-Channel 3D Deep Feature 
Learning for Survival Time 
Prediction of Brain Tumor Patients 
Using Multi-Modal Neuroimages
Dong Nie  1,2, Junfeng Lu3,4, Han Zhang2, Ehsan Adeli  2, Jun Wang  2, Zhengda Yu3,4, 
LuYan Liu5, Qian Wang5, Jinsong Wu3,4 & Dinggang Shen2,6

High-grade gliomas are the most aggressive malignant brain tumors. Accurate pre-operative prognosis 
for this cohort can lead to better treatment planning. Conventional survival prediction based on 
clinical information is subjective and could be inaccurate. Recent radiomics studies have shown better 
prognosis by using carefully-engineered image features from magnetic resonance images (MRI). 
However, feature engineering is usually time consuming, laborious and subjective. Most importantly, 
the engineered features cannot effectively encode other predictive but implicit information provided 
by multi-modal neuroimages. We propose a two-stage learning-based method to predict the overall 
survival (OS) time of high-grade gliomas patient. At the first stage, we adopt deep learning, a recently 
dominant technique of artificial intelligence, to automatically extract implicit and high-level features 
from multi-modal, multi-channel preoperative MRI such that the features are competent of predicting 
survival time. Specifically, we utilize not only contrast-enhanced T1 MRI, but also diffusion tensor 
imaging (DTI) and resting-state functional MRI (rs-fMRI), for computing multiple metric maps (including 
various diffusivity metric maps derived from DTI, and also the frequency-specific brain fluctuation 
amplitude maps and local functional connectivity anisotropy-related metric maps derived from rs-
fMRI) from 68 high-grade glioma patients with different survival time. We propose a multi-channel 
architecture of 3D convolutional neural networks (CNNs) for deep learning upon those metric maps, 
from which high-level predictive features are extracted for each individual patch of these maps. At the 
second stage, those deeply learned features along with the pivotal limited demographic and tumor-
related features (such as age, tumor size and histological type) are fed into a support vector machine 
(SVM) to generate the final prediction result (i.e., long or short overall survival time). The experimental 
results demonstrate that this multi-model, multi-channel deep survival prediction framework 
achieves an accuracy of 90.66%, outperforming all the competing methods. This study indicates highly 
demanded effectiveness on prognosis of deep learning technique in neuro-oncological applications for 
better individualized treatment planning towards precision medicine.

Brain tumors are one of the most lethal cancers. High-grade gliomas with World Health Organization (WHO) 
grades III and IV are the most deadly brain tumors with short overall survival (OS) time. Presurgical progno-
sis of the high-grade gliomas is highly desired in clinical practice for better treatment planning, but still chal-
lenging compared to low-grade gliomas (i.e., WHO grades I and II, for which generally long OS is expected). 
Presurgical OS prediction is traditionally believed to be a�ected by numerous factors, such as tumor location, 

1Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA. 
2Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA. 
3Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China. 4Shanghai Key Lab 
of Medical Image Computing and Computer Assisted Intervention, Shanghai, 200040, China. 5Med-X Research 
Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China. 6Department 
of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea. Dong Nie, Junfeng Lu and Han 
Zhang contributed equally. Correspondence and requests for materials should be addressed to Q.W. (email: wang.
qian@sjtu.edu.cn) or J.W. (email: wjsongc@126.com) or D.S. (email: dgshen@med.unc.edu)

Received: 19 March 2018

Accepted: 13 November 2018

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-018-37387-9
http://orcid.org/0000-0003-0385-8988
http://orcid.org/0000-0002-0579-7763
http://orcid.org/0000-0001-9548-0411
mailto:wang.qian@sjtu.edu.cn
mailto:wang.qian@sjtu.edu.cn
mailto:wjsongc@126.com
mailto:dgshen@med.unc.edu


www.nature.com/scientificreports/

2SCIENTIFIC REPORTS |          (2019) 9:1103  | https://doi.org/10.1038/s41598-018-37387-9

histopathological types, patient’s age, physical status, patient performance status and neurological disability1–3. 
Although generally corresponding to the short OS4, recent molecular pathological studies have shown that the 
higher grade glioma patients with the same tumor histopathology may have signi�cantly di�erent OS5. �ese 
�ndings indicate that the traditional prognosis prediction based on the simple clinical and demographical infor-
mation may not be adequately accurate6–9. Instead, based on the abundant non-invasive multi-modal neuroimag-
ing data acquired prior to any invasive examination or surgery, a more accurate prognosis model for high-grade 
gliomas could be established, which is of great clinical importance and could bene�t both treatment planning and 
patient care.

Recently, promising progress has been made using presurgical brain imaging and the radiomics features 
extracted from these images to study glioma prognosis, or to investigate phenotype-genotype association10–13 for 
indirect prognostic studies. Among all presurgical neuroimaging modalities, T1-weighted magnetic resonance 
image (MRI) provides a 3D visualization of the brain structures with high so�-tissue contrast and high spatial 
resolution. Speci�cally, contrast-enhanced T1 MRI (where hyper-intensity suggests higher grade) has been widely 
used for imaging-based presurgical diagnosis and treatment planning. �e rich appearance information depicted 
by this modality has also played an important role in prognostic studies14–16. For example, Pope et al. extracted 15 
features from contrast-enhanced T1 MRI and found that the existence of non-enhancing regions indicated good 
OS while enhancing regions was not a valuable predictor17. Jain et al.18 found that, using dynamic susceptibility 
contrast-enhanced T2*-weighted perfusion MR, increasing relative cerebral blood volume in non-enhancing 
regions could predict worsen OS. �e same group further found that patients with high rCBV and wild-type 
EGFR mutation had poor overall survival19. However, Gutman et al. suggested that the volume of the enhancing 
lesions strongly indicated poor survival14. In a phenotype-genotype association study20, more image features were 
found to be helpful for bifurcate survival curves, which included the volume of contrast-enhancing area again. 
In addition to the contrast-enhanced T1 MRI, di�usion tensor imaging (DTI) and functional MRI (fMRI) could 
also have prognostic values. DTI measures the anisotropic di�usivity of water molecules. It can be used to indicate 
edema and capture white matter microstructural alterations, which are helpful for OS evaluation. For instance, 
Saksena et al. found a potential relationship between various DTI metrics and survival time of glioblastoma 
patients21. Several survival studies have shown that DTI is statistically more e�ective to help separate glioblas-
toma patients into short and long survival groups than only using histopathologic information22,23. Although 
extensively used for presurgical functional mapping24, fMRI has not been used for OS prediction yet. FMRI can 
measure brain function with blood oxygen level dependent (BOLD) signals and, similar to perfusion MRI, fMRI 
has also been used to characterize relative cerebral blood volume/�ow25. Since highly malignant gliomas may 
have abnormal cerebrovascular reactivity26, or altered regional blood �ow due to neovascularization27 and/or 
abnormal metabolism28. �is imaging modality can also be used to predict OS.

�e aforementioned imaging-based prognostic studies usually use handcra�ed features that are carefully 
designed and manually extracted by well-trained and experienced clinicians (or automatically extracted using 
image processing techniques). Although such feature extraction is straightforward, the simplicity of such features 
prevents the rich information embedded in the multi-modal neuroimages from being fully utilized for OS pre-
diction, because the handcra�ed features are extracted based on previous studies or prior knowledge of diseases, 
and can also be limited to the existing image processing techniques. �ese feature descriptors could be biased and 
subjective to human interference. On the contrary, rich imaging phenotype information, which is beyond simple 
changes in image contrast/intensity, is deeply embedded and could be of essential prognostic value. �e functional 
alternations within/around the visible lesion in MRI should also be extracted to further improve prognostic accu-
racy. Recently, rich radiomics features have further extended our knowledge on the roles of neuroimages in OS 
predictability15. However, the automatically extracted features in these studies are mostly based on the existing 
image processing algorithms or related with the lesions or their proximity29. �ere could be more sophisticated, 
high-level features that have better OS predictive values. In addition, the simple methodology in previous studies 
may also prevent the multi-modal images being well-integrated for OS prediction. Most existing works conduct 
univariate (i.e., independently considering each feature) or multivariate (i.e., jointly considering all features in a 
linear regression framework) analysis for prognosis3,29. �e individual-level predictive capability (i.e., predicting 
OS for a single patient) of these models is limited by the group-level comparisons (e.g., identifying image features 
as biomarkers for either statistically partitioning patients into the long/short OS groups3 or statistically better bifur-
cated of survival curves15,16,30). In clinical practice, however, survival time is expected to be individually predictable.

Similar to a radiologist who deliberates a prognostic suggestion a�er carefully review and comparison of 
all multi-modal images, we propose an objective and accurate computer-aided OS prediction framework for 
high-grade glioma patients. Our method is powered by popular and e�ective machine learning techniques, 
such that it is capable of extracting multi-modal and multi-channel neuroimaging features and e�ectively fusing 
them for individual OS prediction. We particularly use deep learning to extract features. With a convolutional 
neural network (CNN), a hierarchy of appearance features can be synthesized from low level to high level in a 
layer-by-layer manner31,32. Upon the convolutional parameters of the CNN are trained, with which the input 
raw image patches (i.e., small segments of whole-brain image) can be mapped to �t the target estimates (long/
short OS). �e mapping yields a highly sophisticated feature representation for the neuroimages, which is the key 
advantage of CNN compared to other machine learning methods. �e CNN has shown superior performance 
on numerous visual object recognition and image classi�cation studies33. It has also boosted the development of 
medical image analysis34, including applications to tumor diagnosis35. In this paper, we propose a novel learn-
ing based method to predict OS of high-grade glioma patients: (1) We �rst automatically learn the high-level 
features for patches from multi-modal images (i.e., using the popularly acquired presurgical images, including 
contrast-enhanced T1 MRI, DTI and resting-state fMRI (rs-fMRI)) by training a supervised deep learning model 
at patch level; (2) We then train a binary support vector machine (SVM) model36,37 based on the automatically 
extracted semantic features (i.e., by concatenating patch-level features together to form patient-level features for 
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each patient) to predict the OS for each patient. To well utilize neuroimage information, we calculate multiple 
di�usivity metric maps as multi-channel maps for DTI; also from rs-fMRI, we derive two types of multi-channel 
images using frequency information (freq-fMRI) of voxel-wise brain activity and inter-voxel local functional 
connectivity anisotropy (expressed as “functional tensor”, or fTensor-fMRI), respectively. �e �owchart of our OS 
prediction framework is illustrated by Fig. 1.

A preliminary version of this work has been presented at a conference38. Herein, we (i) extend our method by 
introducing an additional modality (fTensor-fMRI) to enhance the multi-modal multi-channel feature learning 
by providing more supplementary information, (ii) explore the impact of using the multi-modality information, 
(iii) investigate the impact of convolutional kernels: comparing 3D convolutional kernels with 2D convolutional 
kernels, (iv) compare the proposed supervised learned features with unsupervised extracted features on the clas-
si�cation task, and (vi) test on an extra 25-subject dataset.

Experiments and Results
Data Acquisition. Subjects. In this study, we included 68 patients with high-grade gliomas screened by pre-
surgical imaging from the glioma image database (collected during 2010–2015) of Huashan hospital, Shanghai, 
China. We call this dataset training dataset. We also included another independent dataset with 25 patients (see 
Validation on Independent Dataset), which is the validation dataset to further validate our model. �e inclusion 
criteria are listed in the following: (1) patients who have primary intracranial tumor but having not received 
any treatment before multi-modal MRI scan; (2) patients who have all three key imaging modalities (i.e., T1 
MRI, rs-fMRI and DTI) with the same imaging parameters (see Imaging Parameters); and (3) with the screening 
thick-slice contrast-enhanced T1 MRI clearly showing the enhancing lesions (indicating high-grade gliomas). 
�e exclusion criteria are patients (1) with any surgery, radiotherapy, or chemotherapy of brain tumor prior to 
image acquisitions; (2) with excessive head motion or presence of artifacts in any image. To avoid subjectivity, the 
T1 images were separately visually evaluated by three raters, only consensus result were used for decision making; 
(3) with irrelevant death causes (e.g., suicide) during follow-ups which may confound OS estimation; and (4) with 
inadequate follow-up period to determine the label of long or short OS. Speci�cally, OS is de�ned by the duration 
from the date when the patient received operation (i.e., the starting date of treatment) to the date of death (if 
applicable). �e threshold is chosen to be 650 days and the patients are thus divided into two groups: short OS 
group and long OS group. �is threshold is de�ned according to the median OS for the adult high-grade glioma 
patients39. �e patients who were alive according to the latest follow-up but already lived longer than 650 days 
are also labeled as “long OS”. Detailed patient information can be found in Table 1. Informed written consents 
were acquired from all the participants before imaging. �e imaging study was also approved by the local ethical 
committee at Huashan hospital. �e whole study was carried out in accordance with the approved guidelines. 
�e images from a sample subject are shown in Fig. 2, from which we can see the contrast-enhanced T1 MRI 
(presented in single channel), and the multi-channel metric maps derived from DTI and rs-fMRI. �e detailed 
multi-channel metric map calculation will be described later.

Imaging parameters. All the multi-modal images are acquired by a 3T MRI scanner (MAGNETOM Verio, 
Siemens Healthcare, Siemens AG, Germany) at Huashan hospital. �e image data collected from each patient 
subject include T1 MRI (TR, 1900 ms; TE, 2.93 ms; �ip angle, 9; FOV, 250 × 250 mm2; matrix size, 256 × 215; slice 

Figure 1. Schematic description of the proposed survival prediction framework for high-grade glioma patients, 
by using (1) 3D CNN-based deep learning to conduct feature learning and (2) an SVM for �nal prediction (long 
or short OS).
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thickness, 1 mm; acquisition average, 1), DTI (TR, 7600 ms; TE, 91 ms; slice thickness, 3 mm; inter-slice space, 
0 mm; b-value, 1000 s/mm2; NEX, 2; FOV, 230 × 230 mm2; matrix size, 128 × 128; voxel size, 1.8 × 1.8 × 3 mm3; 
number of gradient directions, 20), and rs-fMRI (TR, 2000 ms; TE, 35 ms; �ip angle, 90; number of acquisitions, 
240 (8 min); slice number, 33; slice thickness, 4 mm; inter-slice gap, 0 mm; FOV, 210 × 210 mm2; matrix size, 
64 × 64; voxel size, 3.4 × 3.4 × 4 mm3).

Treatment. All patients have been treated according to the clinical guideline for adult high-grade gliomas. All 
cases have achieved the maximal safe tumor resection by the same neurosurgeon (JW, with 20+ years’ experience) 
with intraoperative neurophysiological monitoring, which ensures the consistency of the surgical treatments 
across subjects. All tumors have been totally or gross-totally removed according to postsurgical imaging. In our 
study, the patients received concurrent high conformal radiation therapy and chemotherapy with Temozolomide 
followed by six cycles of Temozolomide according to Stupp’s regimen40. For radiotherapy, each patient received 
fractionated focal irradiation in daily factions of 2 Gy given 5 days per week for 6 weeks, for a total of 60 Gy.

�ere is no signi�cant di�erence between two OS groups in preoperative tumor volumes (p = 0.55) and exten-
sion of resection (p = 0.22). �ere is also no signi�cant di�erence between two OS groups in the postoperative 
treatment (p = 0.82). Of note, this paper aims to develop a novel method that can preoperatively predict long/
short survival outcome. We will show that, given the guideline and suggested following treatment, one can poten-
tially predict the OS from the presurgical imaging data. Accordingly, the prediction of OS can be made for the 
presurgical planning, as the decision is made prior to the surgery. We by no means advocate that treatment is 
irrelevant to the �nal outcome.

Data Preprocessing. We preprocess the images for convincing quantitative study. Of note, the three modal-
ities of images are spatially co-registered (speci�cally, we register all other image modalities to T1-weighted image 
for each subject)41, but not further registered to the Montreal Neurological Institute (MNI) standard space, to 
avoid artifacts caused by nonlinear deformation (see details below).

T1 MRI. For each subject, the tumor as well as its close surrounding area is extracted by a rectangular bounding 
box. �e bounding box is manually drawn, and further veri�ed by a second radiologist to assure that all tumor 
lesions are included. Since both rs-fMRI and DTI images are co-registered to the T1 MRI of the same subject, the 
bounding boxes can be applied to other multi-channel metric maps of the same subject.

DTI. We use PANDA42 to process DTI data. �e main procedures include brain extraction, eddy current correc-
tion, and di�usion tensor and di�usivity metric calculation. In particular, we compute 6 di�usivity metric maps: 
fractional anisotropy (FA), mean di�usivity (MD), the �rst/second/third eigenvalue of the tensor (λ1, λ2, λ3), and 
radial di�usivity (RD) (with more details in this paper43). Together with B0 (b = 0 s/mm2) map, the 7 metric maps 
constitute 7 channels, which are co-registered to T1 MRI per subject.

rs-fMRI. Data preprocessing is performed by DPARSF44, including removal of the �rst 5 volumes, slice tim-
ing, head motion correction, spatial smoothing, linear trend removal, and regressing out the nuisance covari-
ates that consist of averaged white-matter and cerebrospinal-�uid signals. Frequency-speci�c BOLD �uctuation 
power maps are calculated in �ve non-overlapping frequency bands45,46 (see Fig. 2), resulting in 5 metric maps 
(freq-fMRI). Note that these 5 maps mainly focus on grey matter. To also extract functional features in white 
matter, we propose to use the functional connectivity tensor (fTensor-fMRI)11,47 to provide functional infor-
mation in white matter. �e fTensor-fMRI was originally proposed in the work47 to measure the structured 
spatiotemporal relationship among the BOLD signals of neighboring voxels in white matter, which shows the 
anisotropic pattern that is generally consistent with the di�usion anisotropy derived from DTI in major �ber bun-
dles. �e fTensor-fMRI has demonstrated to be able to detect functional changes in white matter, caused by task 

Variables Value Variables Value

Age (years) WHO, histological type (%)

   Mean ± std 51.4 ± 14.5    III, anaplastic astrocytomas 17 (25)

   Range 16–74    III, anaplastic oligodendrogliomas 9 (13.2)

Males/females (%) 48/68(70.6)    III, anaplastic ependymomas 1 (1.5)

Hemisphere (%)    IV, glioblastoma 41 (60.3)

   Le� 50 (73.5) Tumor size (mm3)

   Right 16 (23.5)    Mean ± std 53.9 ± 40.1

   Bilateral 2 (3)    Range 1.7 200

Main location (%) Preoperative epilepsy (%) 27/68(39.7)

   Occipital 4 (5.9) Overall survival time(%)

   Temporal 20 (29.4)    ≤650 days 29 (42.6)

   Parietal 7 (10.3)    ≥650 days (dead) 27 (39.7)

   Frontal 31 (45.6)    ≥650 days (live) 12 (17.6)

   Insula 6 (8.8)

Table 1. Statistical information for the recruited patients.
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stimulation47 and anesthesia48. Since gliomas grow in white matter, which could alter the fTensor-fMRI, we decide 
to adopt this metric (mainly focusing on the white matter) together with freq-fMRI (mainly focusing on the grey 
matter) to jointly predict OS. Like the metric maps derived from di�usion tensor for DTI, we also compute λ1, λ2, 
λ3, FA, MD and RD maps based on fTensor for rs-fMRI, which results in 6 additional metric maps (thus totally 
11 metric maps for rs-fMRI). Of note, it is the �rst time that fTensor-fMRI has been used in clinical applications.

For all channels of the metric maps from the three imaging modalities, the bounding box is applied. �en, the 
intensities inside the bounding box are normalized per metric map. �e 3D metric maps within the bounding box 
are rescaled to the same dimension (64 × 64 × 64) to facilitate the subsequent deep learning.

Experimental Settings. As described earlier, we use our 3D CNN architectures, which is implemented by 
the widely used deep learning framework Ca�e49, to extract features from multi-modal brain images and their 
multi-channel metric maps in a supervised manner. �ese features are expected to classify individual image 
patches according to the survival of the patient. �en, the high-level features of all patches of the patient, as well 
as the important limited demographic and tumor-related features, are integrated to train the SVM classi�er for 
the survival time prediction of the patient. As mentioned in the Method section, the patch-based features are 
processed through Principal Component Analysis (PCA) for feature reduction and Sparse Representation (SR)50 
for feature selection. Speci�cally, the number of the features from fc6 for each metric map is 8 × 256 = 2048 (note 
that we extract 8 non-overlapping patches uniformly within the bounding box of each metric map for a subject), 
and the number for fc7 is 8 × 2 = 16. With PCA, we preserve the principal components up to 99% and reduce 
the feature numbers of fc6 for the T1 MRI, DTI, freq-fMRI and fTensor-fMRI to 9, 14, 12, 16, respectively, as 
well as the feature numbers of fc7 to 5, 7, 7, 8, respectively. With SR, we set the balance parameter to 0.2 with 
the SLEP package51. Usually, there are 3, 10, 8, 7 selected features from fc6 for the T1 MRI, DTI, freq-fMRI and 
fTensor-fMRI, respectively; as for fc7, the corresponding numbers are 3, 5, 4, 4, respectively. For the SVM37, we 
chose the L1-regularized logistic regression and set the cost parameter to be 1.

Experimental Results. Cross-Validation Experiments. We use 10-fold and 3-fold cross-validation upon 68 
patient subjects. �at is, for each testing fold, the remaining other folds are used to train both the single-channel 
CNN (for T1 MRI) and mCNN (for DTI and fMRI), as well as the SVM. �e performance measures averaged 
over all the folds are reported in Table 2, including accuracy (ACC), sensitivity (SEN), speci�city (SPE), positive 
predictive rate (PPR), and negative predictive rate (NPR).

Incorporating both deeply learned (with the proposed CNNs) and limited demographic & tumor-related fea-
tures (dtf) leads to the best classi�cation accuracy of 90.46%. In contrast, using dtf alone, we obtain just an accu-
racy of 63.23%. Regarding the sensitivity and the speci�city, we know that the higher the sensitivity, the lower the 
chance of misclassifying the short survival patients; on the other hand, the higher the speci�city, the lower the 
chance of misclassifying the long survival patients. �e proposed feature extraction method resulted in an approx-
imately 30% higher sensitivity and speci�city, compared to the limited demographic and tumor-related features. 
Interestingly, our model predicts the short survival patients with more con�dence than the long survival patients.

To further investigate the e�ectiveness of our proposed method, we also draw a Kaplan-Meier plot based 
on the model output (i.e., the hard classi�cation labels) in Fig. 3. We can see that the survival curves of the two 
groups are well separated (p < 0.0001, log-rank test). �e result indicates that our model can well separate subjects 
with long OS from those with short OS. It should be noted that the K-M plot we plotted is not based on the two 

Figure 2. A sample glioblastoma patient in our dataset. T1 MRI is presented as a single metric map, while DTI 
and rs-fMRI are presented as multi-channel metric maps.
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values of a single explicit variable nor those of certain combined explicit variables, but the weighted combination 
of the deep learning features and the subsequent “hard” classi�cation result. �erefore, our K-M plot should be 
interpreted carefully.

Besides the deep learned features and the limited demographic & tumor-related features, we also extract the 
radiomics features using traditional unsupervised feature learning methods, such as Haar features and SIFT fea-
tures. We have reported the details in Section “Comparison with Unsupervised Feature Extraction Approaches”. 
In addition, we also compare CNN alone, CNN + SVM (our method) and SVM alone (with the above radiomics 
features), and you can refer to “Impact of Combining CNN and SVM” for details.

Validation on Independent Dataset. To further validate the e�ectiveness of our proposed algorithm on predict-
ing OS for gliomas patients, we test our trained model on a newly collected dataset. �is newly collected dataset 
consists of 25 patients; each of them has the same modalities (channels) with the dataset described in Section 
Data Acquisition. �e statistical information about the 25 patients are shown in Table 3. We preprocessed the data 
by following the same procedures as described in Section Data Preprocessing.

With preprocessed data, we adopt the trained neural networks to extract feature representation for all these 25 
patients. �en, we apply the trained SVM model for classi�cation based on the extracted features (Note that we 
only consider limited demographic and tumor-related features and fc7 features as the �nal features for the SVM 
model). �e experimental results on such an independent dataset are presented in Table 4.

�e performances reported in Table 4 are generally consistent with those in Table 2, especially for the accu-
racy, sensitivity and speci�city. �is further proves the robustness of the proposed method.

Discussion
General Discussion. Accurate pre-operative prognosis for this high-grade glioma can lead to better treat-
ment planning. Conventional survival prediction based on clinical information is prone to be subjective and 
sometimes could be not accurate enough. In this paper, we propose a multi-modality multi-channel deep learning 
method to automatically learn feature representations for the imaging data and then a binary SVM model for the 
�nal tumor OS classi�cation. Due to the use of powerful deep learning model, we can learn useful features from 
imaging data automatically. It can thus avoid being subjective if self-designing the features by radiologists, and 

Method ACC (%) SEN (%) SPE (%) PPR (%) NPR (%) Cross Validation

dtf 62.96 66.39 58.53 63.18 65.28

3-fold

fc7* 81.04 85.87 77.94 73.28 89.42

fc6-PCA* 80.78 84.88 77.04 76.03 85.37

fc6-SR 77.11 85.39 71.01 67.25 86.53

dtf + fc7* 90.66 96.77 85.04 85.82 96.31

dtf + fc6-PCA* 90.27 96.48 84.76 84.98 94.05

dtf + fc6-SR* 86.68 93.51 82.39 78.64 95.43

dtf 63.23 67.24 60.25 60.71 66.21

10-fold

fc7* 82.35 86.20 79.48 75.76 88.58

fc6-PCA* 80.88 85.27 76.92 74.52 86.26

fc6-SR 77.94 85.60 71.80 69.35 87.04

dtf + fc7* 90.46 95.82 85.78 84.81 95.59

dtf + fc6-PCA* 90.17 94.83 85.90 84.33 95.71

dtf + fc6-SR* 86.76 93.10 82.05 79.41 94.12

Table 2. Performance evaluation of di�erent features and selection/reduction methods with 3-fold and 10-
fold cross validation, respectively. *Signi�cantly improved (p < 0.05) performance compared with “dtf ” only 
method, as measured by McNemar’s test.

Figure 3. Kaplan-Meier plot of the two groups’ survival data based on our predicted results. Dotted line 
indicates the 95% con�dence interval.
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will be able to explore some useful but hard-to-design features. Furthermore, our proposed deep feature learning 
method can be adapted to both single-channel and multi-channel imaging data. �is is a huge advantage in clin-
ical application as it is common that medical imaging data has uncertain number of channels. However, we by no 
means aim to underrate and criticize the traditional OS prediction model, but to test the feasibility of deep-learn-
ing-based OS prediction model as this type of methods has many advantages such as automatic feature learning, 
high-level feature learning, better ability to fuse multi-channel images, and so on.

Other studies also used conventional features, or radiomics features, but may include more features, such as 
KPS (daily living score), resection percentage, and some genomics features (e.g., IDH1 or MGMT). But obtaining 
these features will involve enormous work and resources. We would like to provide the reasons why we did not 
include them as below. First, KPS score is based on patients’ self-report, which could be less objective. Moreover, 
all our patients have KPS scores larger than 90, making this factor count for very little variability of the survival 
data. Second, resection percentage is a treatment-related factor, which is beyond the scope of this study (i.e., to 
predict survival time based on presurgical data). Moreover, as described in Sec. “Treatment”, all tumors have been 
totally or gross-totally removed, indicating that the optimized treatment has been achieved for all the patients. 
�erefore, our goal can be simply summarized as: to predict OS based on deep learning upon tumor multimodal 
imaging obtained presurgically, given optimized treatment following the guideline later on. �ird, the genomic 
data is not available for most of the subjects, given the commencement of the study is early (i.e., since year 2010). 
Collectively, to achieve our preset research goal, and to simply convey our proposed method, i.e., to demonstrate 
the feasibility of DL-based feature selection for prognosis, we would rather prefer the current comparison strategy.

More importantly, our proposed framework is able to work well on a small dataset. In our study, the minimum 
unit or a sample is a patch in the feature learning stage, rather than a whole brain image. �at is, for each subject, 
we can extract hundreds of patches (with the same label); therefore, we can eventually have enough samples 
(i.e., patches) to train the neural networks. In other words, we train the networks at the patch level, rather than a 
whole-image (or subject) level. A�er training the neural networks, we then train a SVM with the learned “deep 
features” (as they have been learned from deep convolutional neural networks) to classify the patients with short 
or long overall survival (OS) time. Because the features learned from the deep learning framework are more 
accurate and also at much higher level, the following SVM could have better performance than the SVMs using 
features extracted by traditional methods.

Moreover, our proposed framework can fuse multi-modality information so that it can fuse more information 
from di�erent imaging modalities to determine the �nal classi�cation. �e results from additional experiments 
on this issue are detailed in the Experiments and Results section.

Contribution of Multi-Modality Information to OS Prediction. We run the same proposed frame-
work for extracting features from each single modality, and train SVM using the extracted features. In this way, 
we can justify the importance of fusing multi-modal imaging data in predicting OS. �e quantitative results are 
shown in Fig. 4. Among the single modality classi�cation performances, the features from rs-fMRI yield the best 

Variables Value Variables Value

Age (years) WHO, histological type (%)

   Mean ± std 50.2 ± 13.0    III, anaplastic astrocytomas 6 (24)

   Range 23–68    III, anaplastic oligodendrogliomas 3 (12)

Males/females (%) 16/9    III, anaplastic ependymomas 1 (4)

Hemisphere (%)    IV, glioblastoma 15 (60)

   Le� 16 (64) Tumor size (mm3)

   Right 8 (32)    Mean ± std 35.8 ± 32.3

   Bilateral 1 (4)    Range 8.4 99.3

Main location (%)    Preoperative epilepsy(%) 27(39.7)

   Occipital 1 (4) Overall survival time(%)

   Temporal 6 (24)    ≤ 650 days 9 (36)

   Parietal 2 (8)    ≥ 650 days (dead) 3 (12)

   Frontal 14 (56)    ≥ 650 days (live) 13 (52)

   Insula 2 (8)

Table 3. Statistical information for the newly recruited 25 patients (validation dataset).

ACC (%) SEN (%) SPE (%) PPR (%) NPR (%)

dtf 68 66.67 68.75 54.55 78.57

fc7* 80 77.78 81.25 75 86.67

dtf + fc7* 88 88.9 87.5 80 93.3

Table 4. Performance comparison across di�erent features for the newly collected 25 patients. *Signi�cantly 
improved (p < 0.05) performance compared with “dtf ” only method, as measured by McNemar’s test.
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performance among all single modalities, i.e., about 82.63% of accuracy (with signi�cant improvement compared 
with the “dtf ” only method, p < 0.05, McNemar’s test). However, as it is obvious from the results, we can bene�t 
about 7% improvement of accuracy by fusing multi-modal images, when using our proposed framework.

We also conduct experiments by comparing the outcome prediction performance using 3D CNN in our 
model against the case of using traditional 2D CNN. �e result shows signi�cant advantage of using 3D CNN 
(with the details given in Section Comparison with 2D CNN based Approaches). Another experiment shows 
the comparison result between supervised feature extraction method (in our proposed method) and traditional 
unsupervised feature extraction approaches (i.e., adopted in Radiomics studies), indicating the superiority of 
supervised feature extraction to unsupervised feature extraction (see details in the Section Comparison with 
Unsupervised Feature Extraction Approaches).

The Role of the Features from Each Modality. To analyze the importance of the features for predict-
ing OS, we also calculate the number of the features selected from each modality in the prediction based on 
multi-modal images. To do this, we use the L1-regularized SVM for classi�cation, for internally enforcing the 
selection of the most discriminative features from the outputs of the fc7 layers of the CNNs. �e average numbers 
of the discriminative features selected for T1 MRI, DTI, freq-fMRI and fTensor-fMRI are 1, 4, 4, and 4, respec-
tively. As can be seen, the fMRI and DTI data contribute more signi�cantly in building a better prediction model, 
compared to the T1 MRI. However, for the T1 MRI, we only have a single channel of data, while multiple channels 
for the other modalities. �erefore, we further normalize these numbers by the total number of the channels from 
the corresponding modality. �e normalized measures are 1, 0.57, 0.8 and 0.67, respectively, for the four (sub-)
modalities. In this sense, the results then show that T1 MRI encodes relatively more information for OS predic-
tion, compared to DTI and fMRI.

Comparison with 2D CNN based Approaches. To illustrate the superiority of using the proposed 3D 
CNN architectures, we also compare our proposed method with the CNNs that use the 2D �lters. Speci�cally, we 
adopted a 2D version of the CNN architecture shown in page 13, in which the inputs are 2D patches along the 
axial plane, and the feature maps are all reduced to 2D. Moreover, we employ the same strategy shown in page 14 
to train multi-channel deep networks, with 2D features. We use slices from the tumor region (64 × 64 × 64) as 
input for the 2D CNNs (Note, we can also use 32 × 32 as the patch size to train a 2D CNN model; however, such a 
small patch size could not catch much information and it resulted in unfavorable results). As the dataset is small 
(64 × 68 = 4352), we perform several �xed rotations of90,180,270 degrees for each extracted 2D patch to augment the 
dataset (4352 × 4 = 17408).

�e experimental results are presented in Fig. 5. �e 2D CNN-based approach presents a decent performance 
such as about 81% of accuracy, 89% of sensitivity, and 74% of speci�city. In contrast, the proposed 3D CNN can 
advance the performance by approximately 10%. �ese results illustrate that the proposed 3D CNN features are 
more e�ective and powerful than the 2D-CNN based features.

Comparison with Unsupervised Feature Extraction Approaches. To show the advantage of our 
3D-CNN-based supervised feature learning, we also perform comparisons with several unsupervised feature 
extraction techniques, which are popularly used in both computer vision and medical imaging �elds.

Speci�cally, we adopt scale-invariant transform (SIFT)52, a commonly used unsupervised image descrip-
tor in image reconstruction, alignment and recognition tasks, as a comparison feature extraction approach. As 
our medical image is stored in 3D format, we employ a spatial-temporal descriptor based on 3D gradients53 to 
extract the features from the tumor regions. We then cluster the vector-represented patches to “codewords” using 
k-means, which produces visual vocabularies for the features. Each patch in an image is represented by a certain 
visual vocabulary, and �nally the image can be represented by a histogram of the visual vocabularies. �is is the 
same procedure used in many recognition methods in computer vision, denoted as “bag of words” method54.

We also extract the Haar-like features from tumor patches, which are originally proposed by the paper55 for 
object detection and have been applied to many applications due to its e�ciency. Note that we use a variant of the 
Haar-like features56 calculated based on the di�erence between the mean values of two cubic-regions randomly 

Figure 4. OS prediction results using di�erent imaging modalities. “Proposed” denotes the prediction result by 
combining all modalities together.
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located within an image patch. �e size of each cubic-region is randomly chosen from an arbitrary range, i.e., 1, 
3, 5 in voxels57.

Since we have multiple modalities of data to extract the features, we �rst extract features from each modality 
separately and then use PCA to reduce their dimensionality. Next, we concatenate the features from di�erent 
modalities and the handcra�ed features, and �nally train an SVM model. �e experimental results are shown 
in Fig. 6. �e Haar-like features present the worst performance, and the proposed deep-learning-based features 
result in the best performance. Speci�cally, our supervised feature extraction framework can improve the perfor-
mance by approximately 12%.

Impact of Combining CNN and SVM. As reported in the Method Section, our proposed method com-
bines CNN and SVM together, since we assume that CNN can well learned semantic features in a patch-level, 
and SVM can well handle a small samples-size classi�cation problem in subject-level. To investigate the impact 
of combining these two models, we design comparison experiments with SVM alone method and CNN alone 
method.

With SVM alone, we used manual designed features, i.e., Haar and SIFT features, as reported in the Section 
“Comparison with Unsupervised Feature Extraction Approaches”. As for CNN-based classi�cation, as CNN has 
an ability to combine feature learning and classi�cation together, which directly generates the so� label as the 
�nal output from the neuronal network. �erefore, one can directly use CNN’s output (by treating the largest so� 
label result as the �nal classi�cation result) as the OS prediction result. �e rationale that we design our model 
(CNN-based feature extraction plus SVM-based classi�cation) is that SVM generally performs better and more 
robustly in a study with limited sample size. �erefore, we designed CNN + SVM by extracting features from the 
fully connected layers as the inputs of SVM for classi�cation.

To make the comparison results easier to understand, we concluded our results from using CNN alone, 
using SVM alone (with SIFT features) and using CNN + SVM in Fig. 7. CNN alone performs better than SVM 
alone, as CNN can learn better feature representations. Since the CNN + SVM conduct the classi�cation on the 
subject-level feature representations which can well aggregate the patch-level features, it can improve the perfor-
mance about 2.5% compared to CNN alone.

Model Transparency and Robustness. Deep learning based models hierarchically process the input data 
(imaging data in our case), and output the highly semantic features towards the target (i.e., tumor OS prediction 
in our case). As in our study, we use the last two layers (i.e., fc6 and fc7) as the extracted features. �ese features 

Figure 5. �e experimental results using di�erent feature extraction methods (such as 2D CNN and the 
proposed 3D CNN).

Figure 6. �e experimental results using di�erent kinds of (unsupervised vs. supervised) features.
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will be highly semantic and quite e�ective for tumor OS classi�cation as they are learned under supervision. 
However, it is currently di�cult to investigate which imaging features really help improve the accuracy and what 
they really represent. It is also di�cult for our study, although we have tried to investigate which region of the 
imaging data contributes most to the useful features.

However, the lack of transparency doesn’t affect the robustness of our model. As reported in Section 
Experiments and Results, we �rst validate our proposed method on the dataset with 68 patients in a 3-fold 
cross-validation fashion. �en we further validate it by introducing extra testing on a new dataset with 25 patients. 
�e experimental results on these two datasets indicate that our proposed method is robust. Furthermore, a lot 
of similar researches based on deep learning models are recently proposed and achieve great success. For exam-
ple, Setio et al. proposed a multi-stream CNN to categorize the points of interest in chest CT as a nodule or 
non-nodule58. Esteva et al. proposed a deep neural network to implement dermatologist-level classi�cation of 
skin cancer59. And part of these studies has even been applied to clinical trials. �us, we believe our proposed 
method is useful in developing a new tumor OS prediction model.

Limitation and Future Works. It is worth indicating the limitations of our work. For example, we only 
use limited clinical information in our study and thus obtain a weak clinical model. We have also thought of 
using other features such as genetic indicators for OS prediction8, including IDH1, MGMT, EGFR, 1p19q. �e 
newly revised WHO grading system even suggests using some of the genetic features to grade the gliomas. 
Unfortunately, we did not have such information for all the subjects because our data were collected several years 
ago (at that time, collecting genetic information has not become the clinical routine yet). On the other hand, 
in our recent paper60, we have used our newly-enrolled subjects’ neuroimaging data to predict their genotype 
information (IDH1 and MGMT), indicating the existence of relationship between imaging phenotypes and gen-
otypes. But, for these newly-enrolled subjects, since they were newly admitted to the hospital and have been only 
followed up for a short time, we have not had their OS information yet. In the future follow-up study, as more 
subjects with both genetic information and OS data, we will include genetic information for OS prediction.

As for other important predictive features related to treatment, such as the extent of resection and the type/
dose/duration of the adjuvant therapy, we did check this information before carrying on this study. However, as 
mentioned in the Introduction section, the motivation of this study is to answer a question: “Can we predict the 
patients’ OS based on their presurgical neuroimages, given similar treatments”. �erefore, in the experimental 
design, we have deliberately enrolled subjects with total (or gross total) resection; for most of them, they have 
been conducted with postsurgical adjuvant radiotherapy and chemotherapy with the same protocol suggested by 
the guideline. With these speci�cally selected subjects, we can then reduce the confounding e�ect of treatment 
and focus more on the prognostic value of neuroimaging. In post hoc analysis, we found that there is no group 
di�erence in extension of resection (p = 0.22) and postoperative treatments (p = 0.82) between short and long 
OS groups. Of note, we acknowledge that treatment is very important to OS, and we are carrying on an ongoing 
study to predict OS based on both presurgical and treatment features, as well as genetic features, so that future 
treatment can be better tailored for each individual.

As discussed earlier, our experiments are conducted on a dataset with 68 subjects and a new dataset with 25 
patients. �e number of subjects is relatively small. �erefore, to obtain better generalizability of the proposed 
method, we need to increase the participating subjects in the future. Also, we simply concatenate features (fc6 
or fc7) extracted from di�erent modalities together and utilize them for subsequent OS prediction without con-
sidering the relationship between di�erent modalities. We should better take it into consideration in the future 
work. Moreover, we have resized the tumor cuboids to make them consistent in size; however, this operation 
obviously a�ects parts of the geometric properties of the tumor. �is issue can be possibly resolved by applying 
a multi-instance learning framework. Furthermore, our current model considers tumor patients of WHO III 
and IV together, and we can potentially build separate models for WHO III and WHO IV patients to make more 
detailed predictions. Lastly, we choose a hard threshold to classify the patients into two categories (long or short 
OS), which decreases the precision of our predictive results. Besides, we can further categorize the patients into 
more (e.g., 4 or 5) subgroups for making more precise predictions.

In our future work, we will use all currently available features, including features from presurgical imaging, 
treatment ways, patient statuses before and a�er surgery, genetic information and molecular indicators (including 

Figure 7. Comparison of experimental results with SVM, CNN and CNN + SVM.
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IDH1, MGMT, 1p19q, TERT, and ATRX), to perform OS prediction. Since these features are from di�erent 
domains, more advanced feature learning and integration methods need to be developed. Moreover, since our 
ultimate goal is to predict the overall survival which can be better used in clinical practice, we will treat it as con-
tinuous variable with a rigorous machine-learning or deep-learning-based regression model in our future work.

Generally, in this study, we have proposed a 3D deep learning model to predict the (long or short) OS time for 
the patients with brain glioma. We trained 3D CNN and mCNN models for learning features from single-channel 
(T1 MRI) and multi-channel (DTI, freq-fMRI and fTensor-fMRI) data in a supervised manner, respectively. �e 
extracted features were then fed into a binary SVM classi�er. �e performance of our supervised CNN-based 
learned features was compared with the performances of several other state-of-the-art methods, including those 
using the traditional handcra�ed features. Experimental results showed that our supervised-learned features 
signi�cantly improved the predictive accuracy of OS time for the glioma patients. �is also indicates that our 
proposed 3D deep learning frameworks can provoke computational models to extract useful features for such 
neuro-oncological applications. Besides, the analysis on the selected features further shows that DTI data can 
contribute slightly more than fMRI, but both fMRI and DTI play more signi�cant role, compared to the T1 MRI, 
in building successful prediction models. Overall, our proposed method shows its great promise in multi-modal 
MRI-based diagnosis or prognosis for a wider spectrum of neurological and psychiatric diseases.

Method
In this paper, we �rst employ the CNN architecture to train survival prediction models with the patches from all 
metric maps of T1 MRI, DTI and rs-fMRI, respectively. With such trained deep learning models, we can extract 
features for individual patches of the respective channels/modalities in a supervised manner. �en, a binary clas-
si�er (i.e., SVM) is trained to fuse all the patches and their extracted high-level features for OS prediction (Fig. 1). 
In the following subsections, we will introduce both our CNN-based feature extraction and the SVM-based OS 
prediction strategies. Note that the CNN-based feature extraction for T1 MRI is slightly di�erent from that for 
DTI and fMRI. �at is, there is only a single inputting channel for T1 MRI, while there are multiple inputting 
channels for multiple metrics computed from DTI and fMRI. �us, we will �rst introduce the 3D CNN architec-
ture for single-channel T1 MRI, and then extend it for multi-channel DTI and fMRI. Di�erent from the conven-
tional CNN that stacks multi-channel inputs at the beginning, we perform independent convolution streams for 
each inputting channel in the early layers and then fuse them in deep layers for high-level feature extraction. Of 
note, to augment the dataset, we �ip the bounding box along three directions (x, y, z) separately for all metrics. 
Next, we extract numerous partially-overlapping patches with the size of 32 × 32 × 32 to train the CNNs.

Single-Channel Feature Extraction. For 3D T1 MRI, we propose a 3D CNN model with a set of 3D train-
able �lters. CNN derives the high-level features from the low-level input, while the estimated high-level features 
directly contribute to the classi�cation of the input data. �e network architecture usually consists of a number of 
layers. As we go deeper in the network, the layer will generate higher-level features. For example, the last layer can 
represent more intrinsic features compared to the earlier layer(s)61.

Inspired by the very deep convolutional networks (VGGNet)62, we design our CNN architecture with four 
convolutional layer groups and three fully-connected layers. �e detailed con�gurations of the four convolu-
tional layer groups (conv1 to conv4) are shown in Fig. 8. �e input to the CNN is a 3D patch with the size 
of 32 × 32 × 32, which is extracted in the bounded neighborhood of the tumor. �e convolutional layers com-
pute their outputs from the input 3D patch, by applying the convolutional operations with 3D �lters of the size 
3 × 3 × 3. �e convolutional operation results in the 3D output patch of the same size as the input, followed by 
max-pooling to down-sample the patch. �e last three layers in the CNN are fully connected (fc5 to fc7). �ese 
fully-connected layers include the neurons that are connected to all outputs of their precedent layers, as in the 
conventional neural networks. �e last layer (fc7) has 2 neurons, whose correspond to the probabilities of classi-
fying the patient into the long or the short OS group.

�e supervision on the classi�cation of the training data leads to a back-propagation procedure for learning 
the most relevant features in the CNN. Speci�cally, we regard the outputs from the last two layers of the CNN (fc6 

Figure 8. An illustration of the CNN architecture for the single-channel feature extraction from 3D patches. 
�ere are four convolutional layer groups and three fully-connected layers. �e network’s input is a 32 × 32 × 32 
patch from a tumor region of a patient, and the output is the decision that this patient belongs to the long or 
short survival group.
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and fc7) as the learned high-level appearance features of individual input patch. �e e�ciency and e�ectiveness 
of the extracted features will be veri�ed in the experiments.

There are four convolutional layer groups and three fully-connected layers. The network’s input is a 
32 × 32 × 32 patch from a tumor region of a patient, and the output is the decision that this patient belongs to the 
long or short survival group.

Multi-Channel Feature Extraction. We compute multiple metric maps for DTI and rs-fMRI. Each 
metric map corresponds to an input channel when learning the high-level appearance features. To e�ectively 
employ all multi-channel data for providing complementary information for the brain tumor, we propose a new 
multi-channel-CNN (mCNN) architecture to train one mCNN for each modality. Inspired by the multi-modal 
deep Boltzmann machine63, we extend our single-channel 3D CNN architecture to deal with multi-channel data. 
Speci�cally, in the proposed mCNN, the same convolutional layer groups are applied to each channel separately. 
�en, a fusion layer is added to integrate the outputs of the last convolutional layer group (conv4) from all chan-
nels by concatenating them. �en, three fully-connected layers are further incorporated to �nally extract the 
features. �e mCNN architecture is illustrated in Fig. 9. Note that the major di�erence between mCNN and 
single-channel CNN is the fusion layer. Other layers, including the convolutional layers and the fully-connected 
layers, follow the same con�guration.

It is important to note that the statistical properties of di�erent channels of the input data can vary largely, 
which makes it di�cult for a single-channel model to directly encode multi-channel data (i.e., by simply con-
catenating multi-channel data and then applying the single-channel model). In contrast, our proposed mCNN 
model sustains much better capability of modeling multi-channel input data and fusing them together to generate 
high-level features.

SVM-Based Survival Prediction. Once we complete training a CNN (Fig. 8) for T1 MRI and two mCNN 
(Fig. 9 for DTI and fMRI, respectively, we can predict the short/long survival given 3D patches extracted in each 
of the four “modalities” (note that we derive two sub-modalities from rs-fMRI, i.e., freq-fMRI and fTensor-fMRI). 
�at is, the patch(es), from single or multiple channels of the metrics, will go through the convolutional networks. 
�en the CNNs convert the input patch(es) to the high-level features and obtain the survival estimation in the 
�nal layer. In particular, the high-level features extracted at the last two layers (fc6 and fc7) of our CNN archi-
tectures are perceived to be suitable image-level descriptors64. In this way, each patch can associate its high-level 
features with the survival time of the patient under consideration. Note that the fc6 layer has 256 neurons, while 
the last (fc7) layer comprises of two neurons.

In addition to these high-level appearance features, the limited demographic and tumor-related features (dtf) 
are also included in our experiments. �ese limited demographic and tumor-related features consist of generic 
brain tumor features, including gender, age at diagnosis, tumor location, size of tumor, and the WHO grade. 
Tumor location is de�ned by two metrics, i.e., (1) major location (such as the brain lobe where the tumor is 
mainly located), and (2) tumor distribution (i.e., a three-grade scale, ranging from 1 to 3, denoting the number 
of di�erent brain lobes (such as 5 di�erent lobes used in this study, including occipital, temporal, parietal, frontal 
and insula lobe) with tumor). For example, the tumor distribution of 1 denotes that the tumor appears only in 
one brain lobe. �e assessment was conducted by three authors (HZ, JW and JL) with consensus. �e size of the 
tumor was calculated based on T1 contrast-enhanced MRI by manually delineating the volume with abnormal 
intensity (i.e., the volume of a tumor as shown in the presurgical imaging). �is was conducted by one neuro-
surgeon with 8-year experience (JL) to ensure the consistent tumor delineation criteria. �ere is no signi�cant 
di�erence in the tumor volume (p = 0.55) between the two OS groups. Patient performance status was evaluated 
by using Karnofsky Performance Status (KPS) scores; however, the two OS groups have no group di�erence in 
KPS score (p > 0.99). For the treatment variables, between the two OS groups, there is no signi�cant di�erence 
in resection extension (p = 0.22), and the ways of post-surgical treatments received (p = 0.82). Although not 
included as the limited demographic and tumor-related features, we think that these factors will not likely to 
make signi�cant contribution to the individualized OS prediction.

Figure 9. Architecture of mCNN for feature extraction from multi-channel data.
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Since the numbers of the features in the fc6 and fc7 layers are huge, we further conduct feature reduction or 
selection for the features from each modality separately. Speci�cally, we use Principal Component Analysis (PCA) 
and Sparse Representation (SR)50 (see Experimental Settings). Finally, we adopt SVM37 to predict the patient’s 
survival time at an individual level based on the selected features.
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