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Abstract

Recent end-to-end models for automatic speech recognition use

sensory attention to integrate multiple input channels within a

single neural network. However, these attention models are sen-

sitive to the ordering of the channels used during training. This

work proposes a sensory attention mechanism that is invariant

to the channel ordering and only increases the overall parameter

count by 0.09%. We demonstrate that even without re-training,

our attention-equipped end-to-end model is able to deal with

arbitrary numbers of input channels during inference. In com-

parison to a recent related model with sensory attention, our

model when tested on the real noisy recordings from the multi-

channel CHiME-4 dataset, achieves a relative character error

rate (CER) improvement of 40.3% to 42.9%. In a two-channel

configuration experiment, the attention signal allows the lower

signal-to-noise ratio (SNR) sensor to be identified with 97.7%

accuracy.

Index Terms: end-to-end speech recognition, multi-channel,

attention mechanism

1. Introduction

In recent years, end-to-end models are being considered for au-

tomatic speech recognition (ASR) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

as they present a simplification in both the model architec-

ture and training process over conventional DNN-HMM hy-

brids [11, 12]. End-to-end models transcribe speech to text

with a single neural network, replacing the combination of sep-

arate deep neural network (DNN) acoustic models and hidden

Markov models (HMMs). The simplified model learns the map-

ping from acoustic feature to character sequences in a single

training process, thereby avoiding the disjoint multi-stage train-

ing procedures for hybrid ASR systems.

While most ASR research with end-to-end models focused

on single-channel scenarios, the multi-channel scenario is less

explored. Many real-world ASR applications (e.g. Amazon

Echo, voice-control systems in cars etc.) deal with speech from

multiple microphones in noisy environments, and their accuracy

relies on methods that robustly pre-process multi-channel in-

puts, ideally avoiding noise corruption and generating a cleaner,

enhanced signal. In this context, conventional beamforming al-

gorithms are widely used to extract a single enhanced chan-

nel from multi-channel setups, but they introduce a separate

beamforming processing stage which is typically optimized in-

dependently from the ASR objective. Alternate approaches for

multi-channel integration are based on methods that leverage

convolutional neural networks (CNNs) for channel combination

[13, 14, 15], that learn a beamforming function with neural net-

works [16, 17, 18, 19, 20, 21], and attention mechanisms that fo-

cus on higher signal-to-noise ratio (SNR) channels [22]. While

these methods are differentiable and suitable for joint optimiza-

tion in an end-to-end model, they were usually combined with

conventional hybrid ASR approaches.

To the best of our knowledge, only two recent studies

[23, 24] have examined multi-channel ASR and meet the cri-

teria of a strict end-to-end scenario, i.e. training a single neu-

ral network model towards the ASR objective only and testing

without a separate lexicon or language model. In both studies,

inputs from the multiple channels are combined into a single

representation that is used for the classification task. In one

case, a neural beamformer is used to combine the channels [24]

and in the second case, a sensory attention mechanism [23]

is used instead. While both approaches show promising per-

formance compared to conventional beamforming, the neural

beamformer shows benefits such as invariance to channel re-

ordering and robustness to channel configurations that were not

used during training.

In this work, we propose a sensory attention mechanism

that follows a similar, but not identical design strategy as in [23].

Our proposed design shows invariance to channel re-ordering

and the design is simplified by using long short-term mem-

ory (LSTM) and dense units instead of a custom-designed neu-

ral network cell. We evaluate the use of this sensory attention

mechanism in an end-to-end ASR model and compare our re-

sults with related models [23, 24] on the CHiME-4 dataset. We

demonstrate that our attention-equipped end-to-end model can

process new channel configurations without re-training, and that

the sensory attention signal is strongly correlated to the channel

SNR.

2. End-to-end multi-channel ASR model

We first present the two main components of our end-to-end

model for multi-channel ASR, that is, the sensory attention

mechanism described in Subsection 2.1, and the acoustic model

described in Subsection 2.2. The block diagram of this model

is given in Figure 1.

2.1. Sensory attention mechanism

The attention mechanism combines multiple input channels into

a single representation by summing the dynamically weighted

frames from individual channels.

We consider a multi-channel setup with c = 1, ..., N micro-

phone channels. We assume that the input time series of every

channel is binned into t = 1, ..., T frames and that each channel

c produces a D-dimensional feature vector fc
t ∈ R

D for every

frame t. The merged representation mt ∈ R
D is generated as

follows:

zct = Z(fc
1...t) (1)

αc
t =

exp(zct )
∑N

j=1
exp(zjt )

(2)

mt =

N
∑

c=1

αc
tf

c
t (3)
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Figure 1: Architecture of our proposed model for end-to-end ASR from multi-channel inputs. Depicted is the case of two input channels.

Input feature vectors fc
t are weighted and summed to create the merged representation mt, which is then used for classification. The

attention mechanism suppresses noisy frames irrespective of the channel, resulting in a cleaner merged representation.

The scoring function Z produces attention scores zct ∈ R
1

based on the feature frames of channel c (Equation 1). The

attention weights αc
t ∈ R

1 are computed by performing a soft-

max operation on the attention scores zct ∈ {z1t , ..., z
N
t } (Equa-

tion 2), and thus
∑N

c=1
αc
t = 1. Finally, the individual feature

frames fc
t are weighted by the corresponding attention weights

αc
t and summed into the merged representation mt (Equation 3)

which is then presented to the acoustic model.

The scoring function Z is arbitrary and can be modelled us-

ing neural networks. In our experiments, we implemented Z us-

ing 10 LSTM units [25] followed by a single dense unit (weight

W , bias b) with a SELU non-linearity [26] (Equation 4):

Z(fc
1..t) = SELU(W · LSTM(fc

1..t) + b) (4)

The use of LSTM units is convenient because past history is

automatically considered.

By design, our sensory attention mechanism has the fol-

lowing useful properties. First, it is a soft attention mechanism

which is fully differentiable and therefore, suitable for end-to-

end optimization. Second, the attention weights ac
t at each

frame t indicate the contribution of single channels to frame

t of the merged representation. Third, because the attention

weights are re-computed on every frame, they can dynamically

adjust for temporal changes in signal quality (e.g. temporary

noise corruption) of each channel. Fourth, as the same scoring

function Z is used for all input channels, the attention mech-

anism is invariant to channel re-ordering. Finally, because the

scoring function Z evaluates each channel independently from

other channels, channels may be removed or new channels may

be added after training.

2.2. Acoustic model

The acoustic model receives as input, the merged representa-

tion generated by the sensory attention mechanism. It is com-

posed of a convolutional front-end (CFE) followed by a stack

of LSTM units.

The CFE is made of three convolutional blocks. Each block

performs a function f that includes a 2D convolution, a 2D

instance normalization [27] and a clipped ReLU non-linearity

σ(x) = min{max(x, 0), 20}) [28]:

f(x) = σ(InstanceNorm2d(Conv2d(x))) (5)

The CFE operates on spectrogram features. As the CFE uses a

temporal stride of 2 in the first layer, it effectively halves the se-

quence length and reduces training time. Our CFE implementa-

tion is closely related to the DeepSpeech2 CFE, where a similar

configuration helped to improve error rates especially in noisy

conditions [3]. Therefore, the proposed acoustic model should

provide a noise robust baseline model. The main difference of

our implementation from that of DeepSpeech2 is that we use

instance normalization (sample-wise normalization) instead of

batch normalization (batch-wise normalization) and we do not

keep mean and variance statistics from training to be applied

during normalization at test time. On the four different noise

environments of CHiME-4, using mean and variance statistics

computed across samples from different environments for nor-

malization, decreases our model performance therefore we use

instance normalization.

The CFE is followed by a stack of bidirectional LSTM units

and the final output layer is an affine transform to the class la-

bels. We use the Connectionist Temporal Classification (CTC)

[29] objective to automatically learn the mapping and alignment

between input features and label sequences. The model is tested

with strict end-to-end criteria and without use of external lexi-

cons or language models. We use greedy decoding on the CTC

output: at each time step, the most likely label is selected.

2.3. Related work

We compare our model to related work on multi-channel end-to-

end ASR without additional lexicons or language models. The

ATTMULTI-E2Emodel [23] combines multiple input channels

into a single representation with a sensory attention mechanism

based on weighted summation. Their attention mechanism has

three main differences to our work: (1) it operates on filter-

bank features while ours operates on spectrogram features, (2)

it uses a custom designed neural network cell to compute atten-

tion scores while we use generic LSTM and dense units, (3) by

design, it is not invariant to channel re-ordering in contrast to

ours which is invariant. The MASK NET(ATT) model [24] ap-

plies an attention mechanism to select the reference microphone

for a neural beamformer. In contrast to the ATTMULTI-E2E

and our proposed model, the channels are not combined by a

sensory attention mechanism but rather by using a neural beam-
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former. The neural beamformer is also able to exploit spatial

information, which is not considered by ATTMULTI-E2E and

our model. Both ATTMULTI-E2E and MASK NET(ATT) use

a CTC+Encoder/Decoder hybrid model that is trained with a

joint CTC-attention multi-task objective [10], while our model

is trained with an encoder (i.e. the acoustic model) and standard

CTC objective only.

3. Experiments

3.1. Dataset

All experiments are carried out as ASR tasks on the CHiME-4

data-set [30] which provides real and simulated noisy speech

data from a tablet device with 6 microphones. Recordings were

done in four noisy environments: a cafe, a street junction, pub-

lic transport and a pedestrian area. The real data was recorded

with the tablet device, while the simulated data was obtained

by mixing clean utterances from WSJ0 [31] with environment

background recordings. The tablet device provided 5 micro-

phones facing the speaker and 1 microphone facing away from

the speaker (backward channel #2, the noisiest of all). For train-

ing we use both real data (’tr05 real’, 1600 samples) and simu-

lated data (’tr05 simu’, 7138 samples).

The audio samples are pre-processed into 161-dimensional

spectrogram features with the short-time Fourier transform

(STFT). First, the STFT-coefficients are computed (20 ms

frame length, 10ms frame shift, Hamming window) and then

the log of the magnitude of the STFT-coefficients is kept. The

features are further normalized to zero mean and unit variance

per sample. The output labels consist of 59 distinct labels such

as characters and digits and are obtained with the EESEN pre-

processing routines [5].

3.2. Models

In total, 5 different models are evaluated: NOISY,

BEAMFORMIT, MVDR, MC-AVG and MC-ATT. The NOISY

model is trained and evaluated only on channel 5. It provides a

baseline for a model optimized on the best-performing channel.

All other models are trained and tested on the front channels

1/3/4/5/6, but differ in their channel combination strategies. The

BEAMFORMIT model uses a delay-and-sum beamformer [32],

while the MVDR model uses a minimum variance distortionless

response (MVDR) beamformer based on the implementation

provided by the CHiME authors [30]. Both beamformers pro-

duce enhanced waveforms in a separate pre-processing stage

that is not optimized towards the ASR objective, and so their

corresponding models are not considered as end-to-end mod-

els. The MC-ATT model uses our proposed sensory attention

mechanism (Subsection 2.1) to merge the input channels. In

order to assess the effectiveness of this attention mechanism,

we compare the MC-ATT model against an averaging model,

MC-AVG, that assigns fixed attention weights αc
t = 1/5 for

the five input channels. We do not include the simple channel

concatenation strategy, because it is not inherently invariant to

channel re-ordering (see [23]) and it complicates channel ad-

dition or removal after training because the acoustic model ex-

pects a fixed input dimensionality. We include results from both

ATTMULTI-E2E [23] and MASK NET(ATT) [24] models for

comparison.

Table 1: 2D convolution filters of the CFE. First dimension is

frequency and second dimension is time.

Layers Channels Kernel Stride

L1, L2, L3 32, 32, 96 41x11, 21x11, 21x11 2x2, 2x1, 2x1

3.3. Training parameters

All our models are optimized separately, but use the same

acoustic model architecture presented in Subsection 2.2: a CFE

with 3 layers of convolutional blocks (Table 1) followed by 5

layers of bidirectional LSTMs with 256 units in each direction.

The final output layer is an affine transform to the 59 output

classes. The MC-ATT model uses 10 LSTM units followed by

a single dense unit with a SELU non-linearity to implement the

attention scoring function Z (Equation 1), resulting in 7k ad-

ditional parameters. The models were trained in an end-to-end

fashion with the CTC objective [29] and the ADAM optimizer

[33] for 150 epochs. The model with the lowest character error

rate (CER) on the development set was used for evaluation.

3.4. Results

The CER obtained on the CHiME-4 development and evalua-

tion sets are reported in Table 2. All reported models do not

make use of external lexicons or language models.

3.4.1. Real noisy data

The MC-ATT model achieves the lowest overall error rates on

both real noisy subsets ’et05 real’ and ’dt05 real’. MC-ATT

shows a relative CER improvement of 4.4% to 8.1% over

MC-AVG and 22.7% to 23.3% over NOISY. Seemingly,

MC-ATT benefits from the automatically learned channel

weighting. The BEAMFORMIT model shows error rates that are

similar to that of the MC-ATT model. The MVDR model shows

better results than the single channel NOISY model, but is not

competitive with the other approaches on real noisy data.

Results from related work report higher error rates.

Our MC-ATT model shows a relative CER improvement

of 15.3% to 15.9% over MASK NET(ATT) and 40.3% to

42.9% over ATTMULTI-E2E. The higher error rates of

MASK NET(ATT) and ATTMULTI-E2E may originate from

their hybrid CTC+Encoder/Decoder acoustic model unlike our

simple CTC model. The number of parameters of the MC-ATT

model (8.031M) also compares favorably against those of

ATTMULTI-E2E (∼8M) and MASK NET(ATT) (∼18M).

Note that the latter implements the neural beamformer part with

an estimated ∼10M parameters, while our sensory attention

mechanism uses only 7k parameters.

3.4.2. Simulated noisy data

The MVDR model clearly achieves the lowest CER on both sim-

ulated noisy subsets ’et05 simu’ and ’dt05 simu’ and yields

significantly lower error rates than it did on the real noisy

data. For MVDR beamforming, better performance on simu-

lated data was also reported by the CHiME-4 authors and ex-

plained with the absence of reverberation in the simulated data

[30]. The MASK NET(ATT) model performs significantly bet-

ter than MC-ATT on ’dt05 simu’, but worse on ’et05 simu’. The

BEAMFORMIT model performed worse than the single channel

NOISY model on ’et05 simu’. This result may be explained

by the separate optimization of the beamforming and acoustic
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Table 2: CER [%] results on CHiME-4 ASR experiments. No

language models are used. The best results are printed in bold.

Related work did not give parameter counts, thus they were es-

timated to the best of our knowledge.

dt05 dt05 et05 et05

Model Parameters simu real simu real

NOISY 8.024M 20.1 19.8 25.3 29.6

MC-AVG 8.024M 18.2 16.0 24.8 24.7

MC-ATT 8.031M 17.5 15.3 22.5 22.7

BEAMFORMIT 8.024M 17.7 15.3 26.2 23.5

MVDR 8.024M 13.0 18.6 17.4 28.6

ATTMULTI-E2E [23] ∼8M 26.5 26.8 32.9 38.0

MASK NET(ATT)[24] ∼18M 15.3 18.2 23.7 26.8

model components. We further hypothesize that the simulated

noisy data itself could explain the unexpected findings: at times,

the simulation process introduces residual speech artifacts on

channels 1/3/4/6 but produces a cleaner channel 5 signal1.

3.4.3. New channel configurations

The flexibility and interpretability of the sensory attention

mechanism is demonstrated through additional experiments on

’dt05 real’. We test the CER of the MC-ATT and MC-AVGmod-

els for the cases of channel re-ordering, channel addition and

channel removal. The models are not re-trained for these new

channel configurations. The CER results are reported in Table 3

along with the average attention weight
(

ᾱc = 1

T

∑T

t=1
αc
t

)

of every channel c of MC-ATT, computed over all T = 989608
frames of ’dt05 real’. Note that the way we report the atten-

tion weights, corresponds to the CHiME-4 channels, and does

not reflect the channel order. The MC-AVG model assigns equal

attention weights to all N channels, i.e. αc
t = 1

N
.

As expected, both models are invariant to channel re-

ordering and yield identical CER for channel orders 6/5/4/3/1

and 1/3/4/5/6. Adding the noisy channel 2 (1/2/3/4/5/6) leads

to a smaller increase in CER for MC-ATT. In fact, MC-ATT

suppresses channel 2 as seen by the lower attention weight α2

t

of this channel when compared to the other channels. This in-

dicates a good generalization of the sensory attention mecha-

nism because it was not trained on the data from channel 2. For

all channel configurations, channel 2 has the lowest attention

weight and channel 5 has the highest attention weight whenever

either one is present. When removing channels, MC-ATT has

an increased advantage and shows a relative CER improvement

of up to 12.7% over MC-AVG in the channel configuration 2/5.

For this configuration, the results show that the attention mech-

anism is quite accurate: α5

t > α2

t holds true for 97.7% of all

frames. In other words: by comparing attention weights alone,

we can identify the higher SNR channel 5 with 97.7% accuracy.

The high interpretability of the attention weights is further con-

firmed by the plots of the input features and attention weights

for the channel configuration 2/5 in Figure 2.

4. Conclusion

In this work we presented an end-to-end model that embeds

a sensory attention mechanism for noise-robust multi-channel

ASR. The attention mechanism uses no prior assumptions on

microphone configurations, and therefore enables our end-to-

1e.g. sample ’M06 447C0216 STR’ from ’et05 simu’

Table 3: CER [%] results on the ’dt05 real’ subset of CHiME-

4 for new channel configurations. The attention weights for

MC-ATT are an average over all frames of this subset. Low-

est CER and highest attention weight are printed in bold.

CER [%] MC-ATT attention weights

Channels MC-AVG MC-ATT ᾱ1 ᾱ2 ᾱ3 ᾱ4 ᾱ5 ᾱ6

1/3/4/5/6 16.0 15.3 0.19 - 0.18 0.22 0.23 0.18

6/5/4/3/1 16.0 15.3 0.19 - 0.18 0.22 0.23 0.18

1/2/3/4/5/6 17.1 16.1 0.16 0.12 0.16 0.19 0.21 0.16

2/3/4/5 18.3 16.9 - 0.18 0.23 0.29 0.30 -

2/3/5 19.8 18.0 - 0.25 0.32 - 0.43 -

2/5 22.8 19.9 - 0.37 - - 0.63 -

2 46.4 45.8 - 1.00 - - - -

5 18.3 17.9 - - - - 1.00 -

CH2

CH5

Merged

(a) spectrogram features

0 100 200 300 400 500 600
Frames t

0.0

0.5

1.0
(b) attention weights

−2

0

2

α
2
t ,α

5
t

Figure 2: Operation of MC-ATT on a sample with channel con-

figuration 2/5. (a) Spectrogram features for the two input chan-

nels and the merged representation. (b) Attention weights for

the two input channels. The merged representation is dominated

by channel 5, as evident by the higher attention weight values

of this channel which has less noise.

end model to deal with arbitrary channel ordering without re-

training. The attention weights are dynamically decreased on

channels with more noise, and the model is able to deal with the

addition or removal of input channels. These are useful proper-

ties for real-world systems, as the attention weights could help

to identify failing sensors that need replacement or suboptimal

sensors which can then be removed to save computation and

hardware resources.

The attention mechanism is implemented by a simple net-

work consisting of generic LSTM and dense units. Even though

the total parameter count of our end-to-end model increases by

only 0.09% from the addition of this mechanism, it allows the

model to achieve performance that, on real noisy data, is on

par or better than using separate beamforming pre-processing

stages. Compared to a related model which also uses a sensory

attention mechanism, our end-to-end model showed a relative

CER improvement of 40.3% to 42.9% on the real-world noisy

recordings of the CHiME-4 data-set.
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